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These are my attempt at the first problem set for the second year Ph.D. IO
course at NYU with Heski Bar-Isaac and Allan Collard-Wexler in Fall 2007.
They are offered as suggested “solutions”. All errors are my own.

In this problem set we consider estimating discrete choice demand mod-
els from weekly panel data on sales of over-the-counter pain medications in
Chicago supermarkets. We have data on the number of customers, product
sales, retail prices, wholesale prices (the retailer’s costs)in each store each
week. We also have access to demographic data on income distributions in
the store regions. The standard position normalization of zero utility from
the outside good and scale normalization of the i.i.d. logit unobservables εijt
are both maintained throughout.

1 Logit

We assume that consumers choose among products j ∈ J to maximize the
utility model

uijt = Xjtβ + αpjt + ξjt + εijt

or

uijt = δjt + εijt

where the mean utility from product j in week t is

δjt = Xjtβ + αpjt + ξjt (1)
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Berry (1994) shows how to analyze this model by solving for δ as a function
of observed market shares, obtaining

δjt = ln(sjt)− ln(s0)

allowing us to consider the linear regression model implied by equation
(1).

1.1 OLS

OLS regression with X =(price, promotion) will provide consistent param-
eter estimates under the assumptions that: 1) our utility model is speci-
fied correctly (i.e. the function δ(s) gives us the true mean utility), and 2)
E[ξ|X] = 0 (throughout we will focus on the concern that price could be
set as a function of ξjt, which are unobservable to the econometrician, but
potentially known to the firms). Note that in this model the full variation in
the data is used to identify the parameter values.

1.2 OLS with product fixed effects

In this case the product-specific fixed effects will absorb any portion of the
ξjt that are not store/week specific, i.e. now the unobservables should be
interpreted as deviations from a product-specific unobservable (the fixed ef-
fect). For many cases of interest, this might make the condition E[ξ|X] = 0
more plausible. Note that here we are now only using variation in deviation
from product-specific means (i.e. only across stores and time) to identify the
parameters on price and promotion.

1.3 OLS with product/store fixed effects

This more flexible set of fixed effects account for the mean variation across
both products and stores, so we should again alter our interpretation of the ξjt
to account for this, and the assumption of E[ξ|X] = 0 becomes perhaps yet
more plausible. Note, however, that we continue to trade off “robustness” of
our mean independence assumption against the fact that now our only source
of identifying variation is across time (deviations from product/store-specific
means).
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1.4 Instruments and results

In this data set we have wholesale prices, which are the retailers’ costs,
but which more importantly might be good proxies for the manufacturers’
marginal costs, making them potential instruments for price endogeneity
with ξjt (we might think that only the markup, and not costs, depends on
the unobservable). By similar logic, we could use the “Hausman” instruments
of average price in other markets.

Since the arguments for good instruments are largely informal, it is worth
thinking hard about if these instruments make intuitive sense. First, note
from our discussion above that we are instrumenting for three different unob-
servables in the three different dummy structures (product-store-week unob-
servables, product-store-week deviations from product mean unobservables,
and product-store-week deviations from product-store mean unobservables).
Also, in the retail world, the price has two markups over the manufacturer’s
marginal cost: 1) the markup the manufacturer charges the retailer, and 2)
the markup the retailer charges the consumer. My personal thought is that
we might not expect wholesale costs to be very good instruments here be-
cause they are actually the price the manufacturer charges the retailer, which
has a markup that is likely a function of the unobservable, leaving us with
the exact same endogeneity problem we started with. As for the Hausman
instruments, we might expect them to be better instruments in the dummy
variable regressions where the unobservable is market-specific.
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Table 1. Results from Logit Regression
OLS

(i) (ii) (iii)

Price -0.0514 -0.3413 -0.3302
(0.0025) (0.0101) (0.0096)

Promotion 0.2132 0.3295 0.3290
(0.0163) (0.0126) (0.0115)

Dummies – Brand Store-Brand

Wholesale Cost IV
(iv) (v) (vi)

Price -0.0106 -0.0080 -0.0345
(0.0027) (0.0197) (0.0183)

Promotion 0.2362 0.4309 0.4195
(0.0164) (0.0138) (0.0126)

Dummies – Brand Store-Brand

Hausman IV
(vii) (viii) (ix)

Price -0.0511 -0.5469 -0.5480
(0.0026) (0.0135) (0.0122)

Promotion 0.2133 0.2669 0.2624
(0.0163) (0.0130) (0.0118)

Dummies – Brand Store-Brand

Looking at the results gives us a much clearer picture of the endogeneity is-
sues and our instrument candidates. The first thing to note is that neither set
of instruments seems to move the coefficients the way we would hope in the
regressions with no dummy variables, which we anticipated in our discussion
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above. We do see that adding the product dummies shifts the coefficients
quite a bit in the direction of being more reasonable in our OLS regressions,
and moving to product-store dummies doesn’t have much further effect, sug-
gesting that 1) a lot of endogeneity is at the product mean unobservable
level, and 2) there isn’t much further endogeneity at the product-store mean
level. Looking at the Hausman IV dummy regressions shows that there may,
however, be some more endogeneity as the unobservable changes across time,
and that the Hausman IV do well at instrumenting for this. Finally, we have
the curious results in the cost IV regressions, which give different results for
the no dummy regression, and which react quite differently to the addition
of dummies than the OLS and Hausman IV cases. After a fair amount of
investigation, I can’t determine exactly what is causing this, but looking at
the variation of wholesale costs within each product, they have on average
less than half the standard deviation of prices, which might be enough to
lower the identifying variation of the data, especially as we add the dummy
variables. Combining this with the fact that wholesale costs move with pro-
motions (the manufacturers pay for at least part of the promotion), we might
even be approaching having a rank problem with our data matrix.

1.5 Logit elasticities

For the Logit model, the elasticity of demand for product j with respect to
a price change in product k is given by (all in a given market t, with the
subscript suppressed for convenience)

ηkj :=
∂sj/sj
∂pk/pk

=

(
pk
sj

)
∂

∂pk

(
exp(δj)

1 +
∑

m exp(δm)

)
=

pk
sj
α
(
−sjsk + 1{k=j}sk

)
The mean own-price elasticities over all markets for the parameter estimates
from the three OLS regressions are then
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Table 2. Mean Own-Price Elasticities

Logit Model
Brand (Size) (i) (ii) (iii)
Tylenol (25) -0.1756 -1.1667 -1.1287
Tylenol (50) -0.2538 -1.6854 -1.6305

Tylenol (100) -0.3603 -2.3935 -2.3155
Advil (25) -0.1522 -1.0110 -0.9781
Advil (50) -0.2642 -1.7556 -1.6984

Advil (100) -0.4190 -2.7848 -2.6941
Bayer (25) -0.1372 -0.9122 -0.8825
Bayer (50) -0.1852 -1.2311 -1.1910

Bayer (100) -0.2037 -1.3535 -1.3094
Generic (50) -0.0990 -0.6580 -0.6366

Generic (100) -0.2283 -1.5176 -1.4682

There are a host of general issues with logit substitution patterns which are
discussed at length elsewhere. The most important thing to note in our
specific results here is how unreasonable the model with no dummy variables
is in that the elasticities it implies suggest that the firms are all pricing on an
inelastic portion of the demand curve, where increasing price would certainly
increase profits.

2 Random Coefficients Logit a.k.a. BLP

Here the utility model is

uijt = Xjtβ + βibBjt + αipjt + ξjt + εijt

where the random coefficients are βiB = σBvi with vi ∼ N(0, 1); and
αi = α + σIIi with Ii the observed income.

Substituting the full specifications for the random coefficients, and collecting
the terms that represent the mean utility of product j, we can rewrite the
model as

uijt = δjt + σBviBjt + σIIipjt + εijt
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where the mean utility from product j in week t is

δjt = Xjtβ + αpjt + ξjt (2)

2.1 Parameter estimates

Identification and the estimation criterion

Our identifying assumption is E[ξ0′
jtZjt] = 0 ∀j, t for some instruments Zjt

and the true unobservables ξ0
jt. Since we don’t know the true unobservables,

we will use some estimates ξjt(θ) where ξjt(θ
0) = ξ0

jt at the true parameter
values θ0. Our estimator for the parameters will minimize the weighted sum
of squares (with the “optimal” weights),

θ̂ = arg min
θ
ξ′Z(Z ′Z)−1Z ′ξ (3)

and to form this criterion function we need two things: Z and ξ.

Calculating ξ

1. Equation (2) tells us that ξjt = δjt − Xjtβ − αpjt. Note X and p are
data, but we still need δ. Berry (1994) proves that there is a unique
vector δ that solves sjt = s(δjt) ∀j, t. BLP gives us the contraction
mapping that allows us to solve for this δ,

δ
(m+1)
jt = δ

(m)
jt + log(sjt)− log(s(δ

(m)
jt , θ2))

and for this we need to know how to calculate the market shares implied
by our model s(δjt, θ2).

2. The market share implied by our model is the share of consumers who
choose good j at time t (where we assume they maximize utility)

s(δjt, θ2) =

∫ ∫
exp(δjt + σBviBjt + σIIipjt)

1 +
∑

j exp(δjt + σBviBjt + σIIipjt)
dF v(v)dF I(I)

but this integral does not have an analytic solution, so we need to
simulate ns “individuals” (for each market t), each characterized by
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a pair (vi, Ii) drawn from the appropriate distributions, and use the
simulator

ŝ(δjt) =
1

ns

ns∑
i=1

exp(δjt + σBviBjt + σIIipjt)

1 +
∑

j exp(δjt + σBviBjt + σIIipjt)

where the ns elements of the sum are the probability that individual i
chooses product j in market t.

Instruments Z

We need some instruments Zjt that are correlated with our independent vari-
ables (Xjt, Bjt, pjt) but not with the ξjt. Here we use wholesale price, average
price in other markets, and prices in 30 other markets as instruments for price,
and we let the other independent variables be instruments for themselves.

Solving for θ̂

With Z and ξ in hand, estimation comes from solving equation (3) where
θ = (β, σB, α, σI) are the coefficients to be estimated. This nonlinear search
becomes more complicated as the size of the parameter space grows, so one
useful trick worth repeating is to “concentrate out” the linear parameters
θ1 := (β, α) by imposing the FOC of 2SLS as discussed in the appendix to
Nevo (2000) and BLP.

The resulting estimates are
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Table 3. Results from BLP

Logit Random Coefficients (BLP)

Price -0.4186 -0.4604*
Promotion 0.3060 0.2995

Tylenol (25) -5.8068 -5.9836
Tylenol (50) -4.9997 -5.1566

Tylenol (100) -4.5983 -4.7555
Advil (25) -6.2712 -6.4562
Advil (50) -5.8658 -6.0219

Advil (100) -5.4373 -5.6048
Bayer (25) -7.5146 -7.7074
Bayer (50) -7.3817 -7.5548

Bayer (100) -6.3075 -6.4741
Generic (50) -7.1249 -7.0569

Generic (100) -6.5145 -6.4000

α -0.4186 -1.3925
σB 0.7821
σI 0.0877

GMM Objective 363.1
computer time 4.36 min

* For comparison, this is the mean effect of price, α+ σI Ī.

Notice here that the biggest difference in the random coefficients model (ver-
sus the logit) is not in the mean effects, but in that it allows for systematic
heterogeneity among consumers (which shows up more in substitution ef-
fects). This is demonstrated here by the fact that the mean effect of price in
the two models is very similar, but the effect can vary quite among individual
consumers in the random coefficients case. Note in both cases a good “reality
check” we can do here is to verify that our fixed effects are monotonically
increasing in price inside the branded and generic categories (since we have
a vertical model in this case, which requires this for positive market share).

The addition of the random coefficient on whether or not the product is
branded provides another example of how the logit model is restricted in how
it can explain variance in outcomes. Note how the product-specific dummy
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coefficients shift systematically down for the branded products and up for
the generic products when we move to the random coefficients model. This
is because the random coefficient allows for the fact that there is a subgroup
of the population that strongly prefers the branded product, but also a group
that doesn’t, so it can explain the “branded premium” by both a mean and
variance effect, whereas the logit model was restricted to only a mean effect
(which forced the mean effect to be larger in the logit).

2.2 Elasticities

For a fixed market t the price elasticities for product j with respect to a
price change in product k in that same market are given by (dropping the t
subscript for convenience)

ηkj :=
∂sj/sj
∂pk/pk

=

(
pk
sj

)
∂

∂pk

(∫ ∫
exp(δj + σBviBj + σIIipj)

1 +
∑

m exp(δm + σBviBm + σIIipm)
dF v(v)dF I(I)

)
≈ pk

sj

ns∑
i=1

(α + σIIi)
(
−sijsik + 1{k=j}sik

)
Our estimates for the elasticities from the random coefficients model and
Logit models are shown in Table 4.
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Table 4. Own and Cross-Price Elasticities

Random Coefficients Model (BLP)

Tylenol Tylenol Tylenol Advil Advil Advil Bayer Bayer Bayer Generic Generic
(25) (50) (100) (25) (50) (100) (25) (50) (100) (50) (100)

Tylenol (25) -1.4003 0.0034 0.0028 0.0008 0.0013 0.0003 0.0006 0.0006 0.0004 0.0004 0.0001
Tylenol (50) 0.0011 -2.0289 0.0029 0.0008 0.0013 0.0003 0.0006 0.0006 0.0004 0.0004 0.0001

Tylenol (100) 0.0011 0.0034 -2.6116 0.0008 0.0013 0.0003 0.0006 0.0006 0.0004 0.0004 0.0001
Advil (25) 0.0012 0.0034 0.0028 -1.2124 0.0013 0.0003 0.0006 0.0006 0.0004 0.0004 0.0001
Advil (50) 0.0011 0.0034 0.0029 0.0008 -2.1948 0.0003 0.0006 0.0006 0.0004 0.0004 0.0001

Advil (100) 0.0011 0.0034 0.0030 0.0008 0.0013 -3.3635 0.0005 0.0006 0.0004 0.0004 0.0001
Bayer (25) 0.0012 0.0034 0.0028 0.0008 0.0013 0.0003 -1.1631 0.0006 0.0004 0.0004 0.0001
Bayer (50) 0.0011 0.0034 0.0028 0.0008 0.0013 0.0003 0.0006 -1.4212 0.0004 0.0004 0.0001

Bayer (100) 0.0011 0.0034 0.0029 0.0008 0.0013 0.0003 0.0006 0.0006 -1.6755 0.0004 0.0001
Generic (50) 0.0007 0.0021 0.0018 0.0005 0.0008 0.0002 0.0004 0.0004 0.0003 -0.7330 0.0001

Generic (100) 0.0007 0.0022 0.0019 0.0005 0.0008 0.0002 0.0004 0.0004 0.0003 0.0004 -1.8840

Logit Model

Tylenol Tylenol Tylenol Advil Advil Advil Bayer Bayer Bayer Generic Generic
(25) (50) (100) (25) (50) (100) (25) (50) (100) (50) (100)

Tylenol (25) -1.3525 0.0020 0.0017 0.0005 0.0008 0.0002 0.0003 0.0003 0.0002 0.0004 0.0001
Tylenol (50) 0.0007 -2.0010 0.0017 0.0005 0.0008 0.0002 0.0003 0.0003 0.0002 0.0004 0.0001

Tylenol (100) 0.0007 0.0020 -2.6223 0.0005 0.0008 0.0002 0.0003 0.0003 0.0002 0.0004 0.0001
Advil (25) 0.0007 0.0020 0.0017 -1.1635 0.0008 0.0002 0.0003 0.0003 0.0002 0.0004 0.0001
Advil (50) 0.0007 0.0020 0.0017 0.0005 -2.1750 0.0002 0.0003 0.0003 0.0002 0.0004 0.0001

Advil (100) 0.0007 0.0020 0.0017 0.0005 0.0008 -3.4506 0.0003 0.0003 0.0002 0.0004 0.0001
Bayer (25) 0.0007 0.0020 0.0017 0.0005 0.0008 0.0002 -1.1143 0.0003 0.0002 0.0004 0.0001
Bayer (50) 0.0007 0.0020 0.0017 0.0005 0.0008 0.0002 0.0003 -1.3734 0.0002 0.0004 0.0001

Bayer (100) 0.0007 0.0020 0.0017 0.0005 0.0008 0.0002 0.0003 0.0003 -1.6326 0.0004 0.0001
Generic (50) 0.0007 0.0020 0.0017 0.0005 0.0008 0.0002 0.0003 0.0003 0.0002 -0.6947 0.0001

Generic (100) 0.0007 0.0020 0.0017 0.0005 0.0008 0.0002 0.0003 0.0003 0.0002 0.0004 -1.8466

Looking at the elasticities of substitution shows the full advantage of the more
flexible random coefficients model. The random coefficients model allows
for much larger substitution effects because it allows for the fact that price
sensitive consumers will substitute more to lower priced goods whereas brand
sensitive consumers will substitute more to branded goods.

The random coefficients model also allows for substitution effects to vary
across alternatives as the price of a single product changes, instead of being
driven by market share alone as in the logit model.

Finally, it is worth noting that because the outside good has such a large
market share, substitution to the outside good keeps substitution among
inside goods perhaps artificially small. A way to relax this and allow for the
fact that perhaps people who are at the store to buy pain medicine are more
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likely to substitute between the inside goods would be to introduce a random
coefficient for the inside goods.

2.3 Marginal Costs

With a behavioral assumption on firms (we use a NE in prices) we can back
out the marginal costs from the firms’ first-order conditions. We assume that
prices are set at the brand (firm) level, where each brand (Tylenol, Advil,
Bayer, Store) sets price to maximize its total profits. The FOC in this case

are a vector
∂πf

∂pf
with the element corresponding to product j in the set Ff

of products sold by firm f being (again dropping the t subscript, assuming
prices are set at the individual market level)

0 =
∂πf
∂pj

=
∂

∂pj

∑
n∈Ff

sn(pn −mcn) = sj +
∑
n∈Ff

∂sn
∂pj

(pn −mcn)

which can be rewritten in vector form (as in BLP p.853) as

0 = s+ ∆(p−mc)

where ∆ is a J×J matrix with ∆n,j equal to
(
∂sn

∂pj

)
if both n and j owned

by the same firm, and equal to zero otherwise.

Thus the vector of marginal costs for all products is

mc = ∆−1s+ p (4)

giving us the estimates in Table 5.
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Table 5. Costs for Store 9 in Week 10
Marginal Cost Wholesale Cost
Logit BLP

Tylenol (25) 0.85 0.93 2.10
Tylenol (50) 2.43 2.47 3.29

Tylenol (100) 3.94 3.93 5.66
Advil (25) 0.40 0.49 2.10
Advil (50) 2.86 2.88 3.46

Advil (100) 5.96 5.89 5.76
Bayer (25) 0.28 0.38 1.79
Bayer (50) 0.91 0.99 2.08

Bayer (100) 1.54 1.60 3.71
Generic (50) -0.74 -0.62 0.94

Generic (100) 2.06 2.11 1.92

Pursuant to our discussion in problem 1, interpreting these results requires
that we specify whose marginal costs we think we are explaining with our
behavioral model. I assume we are estimating the manufacturers’ marginal
costs, in which case we get some very unrealistic results, like the fact that the
generic 50 tablet bottles having a negative marginal cost and the Advil and
generic 100 tablet bottles being sold at a wholesale price that is less than the
marginal cost of producing them. This is a red flag that our markup estimates
are wrong. That could be for two reasons: 1) the price-setting model is
wrong; 2) the partial derivatives matrix is wrong. We might think there
are problems with both in this model. As we discussed when looking at the
elasticities, our model is still not fully flexible and might be underestimating
substitution effects among the inside goods, which might implies “softer”
competition and thus might lead to markups that are too large. Further,
as we discussed in problem 1 when we were considering instruments, retail
goods go through two sets of markups by different entities (the manufacturer
and the retailer) with different environments, thus it is not clear how our
equilibrium assumption matches the market mechanism at work here.
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3 Merger Analysis

Now that we have marginal costs and a model of demand, we can predict
the impact of changes1 such as mergers, where we assume these changes do
not affect marginal costs or demand parameters (again making a behavioral
assumption on the price setting mechanism). A Nash Equilibrium is a vector
of prices p̂ that satisfy the FOC

0 = s(p̂) + ∆(p̂)(p̂−mc)

which we can solve numerically (e.g. choose p̂ = arg minp ‖s(p)+∆(p)(p−
mc)‖ where ‖ · ‖ is some norm).

3.1 Logit predictions

For consistency (so we will get the exact same prices when we don’t have a
merger), we want to use the marginal costs implied by the Logit model, which
involves changing ∆ to contain the Logit partials and again using equation
(4).

With marginal costs and our parameter values, the only thing we need to
compute the FOC at a new price is a model for the shares at a given price.
For the Logit model, the formula for s(p), given our data X and parameters
estimates from earlier analysis β, α, ξ) is then

sj(p) =
exp(xjβ + αpj + ξj)∑J

m=0 exp(xmβ + αpm + ξm)

which gives us all the components we need to compute the new equilib-
rium price vector, reported with the predictions of the random coefficients
model in the next section.

3.2 BLP predictions

Prediction with the BLP random coefficients model proceeds in much the
same way, with the difference being that computing the shares implied by the
model for a given price requires the computational machinery for aggregating

1Note such out of sample predictions is one of the fundamental reason we take the time
to estimate “structural” models, where we believe the parameters we estimate may not
change with the environment.
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over “individual” choice probabilities that we employed in estimation when
we were computing the shares for new parameter vectors.

Table 6. Pre and Post-Merger Prices for Store 9 in Week 10
Pre-merger Price Logit Prediction BLP Prediction

Tylenol (25) 3.29 3.28 3.30
Tylenol (50) 4.87 4.86 4.88

Tylenol (100) 6.38 6.37 6.39
Advil (25) 2.83 2.82 2.84
Advil (50) 5.29 5.28 5.30

Advil (100) 8.39 8.37 8.40
Bayer (25) 2.71 2.70 2.72
Bayer (50) 3.34 3.33 3.35

Bayer (100) 3.97 3.96 3.98
Generic (50) 1.69 1.69 1.69

Generic (100) 4.49 4.49 4.49

sup(FOC) 1.10E-07 4.85E-08

Here we see no discernable effect of the merger. This is because the substi-
tution effects are so small between the products that there that the “gains
from collusion” are not very high. We do see a very small increase in prices of
the branded products under the random coefficients prediction, which makes
sense since substitution effects are larger in that model.
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