“SOLUTIONS”
Problem Set 2: Static Entry Games
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These are my attempt at the second problem set for the second year Ph.D. 10
course at NYU with Heski Bar-Isaac and Allan Collard-Wexler in Fall 2007.
They are offered as suggested “solutions”, and they benefit from discussions
with the instructors. Any errors are my own.

In this problem set we consider estimating static entry games from data on
automobile service centers in isolated US towns.

1 Examining the data
(a) Summary statistics

Table 1 displays summary statistics for population, housing, and autoroute
(whether or not the town is on a major travel route) variables in our data

Table 1. Summary Statistics

Variable Observations Mean Std. Dev. Min Max

population 449 12,031 14,269 4,019 176,576
housing 449 22,153 19,910 989 132,640
autoroute 449 0.28062 0.44981 0 1

Both the population and housing statistics indicate the large amount of vari-
ation in the data set of sizes of these isolated towns. We might wonder if



the market structure and competition between establishments isn’t funda-
mentally different in towns of 176,576 people versus towns of 4,019 people,
but we will hope that our models are “good enough” for the purposes of
this problem set. The other statistic of note is that 28% of the towns are
located on major auto routes, which is something we might think matters for
the demand for automobile repairs shops (though we won’t include it in our
models in this problem set).

(b) Distribution of market sizes

Figure 1 shows the distribution of the number of firms per market for the
transmission (811112) and exhaust (811113) sectors.

Figure 1: Distribution of the number of firms per market
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Here we notice that the distributions take approximately the same shape,
with transmission repair shops having relatively more likelihood of zero entry
and less likelihood of greater than 20 firms. Both distributions seem to
indicate that monopoly is rare relatively to oligopoly.

(c) Unobservable market characteristics

Regressing the number of transmission and exhaust establishments, respec-
tively, on the population we find that both are positively and significantly
correlated with the size of the town, with the results shown in Table 2.



Table 2. Regressions of the number of establishments on population

Transmission Exhaust

constant 0.7684 0.4311
(0.1492) (0.1881)
population 7.29e-5 12.58e-5
(0.8e-5) (1.0e-5)

The residuals from these regressions contain other market characteristics that
are correlated with the number of each type of establishment. We can see
if these unobserved market factors are similar across the two types of estab-
lishments by examining the correlation between the residuals, which we find
is p = 0.5331. This tells us that there are very likely unobserved market-
specific characteristics that affect entry of both types of establishments in
similar ways (thinking of our summary statistics, autoroute comes to mind
as one possible such characteristic).

The correlation between the residuals also tells us something about the econo-
metrics of estimating these regressions, namely that we are in a “seemingly
unrelated regressions” (SUR) situation. Thus we might get more efficient es-
timates by estimating the two regressions simultaneously via GLS, however,
since in our case the independent variables are the same, there is no such
efficiency gain (see Greene 5th Ed., p.341-343 for a discussion).

2 Bresnahan-Reiss model

The original Bresnahan and Reiss (1991) model assumes symmetry among
firms in each market as well as two further behavioral assumptions (which
are necessary conditions for a Nash Equilibrium in pure strategies for their
entry game):

A1 Firms that enter make positive profits

T(Npy, Xon) + € >0 whenever N,,, >0



A2 Further entrants would earn negative profits

(N + 1, X)) + €, <0

These assumptions combine to predict a unique number of firms in each
market in equilibrium. We complete the model by specifying a profit function

W(Nma Xm) =a+ Xmﬁ + [1{Nm22}a 1{Nm23}> maX(0> Nm - 3)]7

where N,, and X,, are the number of firms and log of the population,
respectively, in market m; €,, are i.i.d. N(0,1); and 6 := («, 3,7) are pa-
rameters to be estimated. Note this is essentially a Probit model on cross
sectional data, so we need to assume the i.i.d. and additively separable unob-
servables as well as normalize scale (variance equals 1) and position (profits
for not entering equal 0) for identification.

(a) Constructing the likelihood

We can then estimate the parameters via maximum likelihood, where the
likelihood is
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(b) Estimation

Maximizing the corresponding log-likelihood function gives us the parameter
estimates in Table 3! below.

!Standard errors are obtained via the inverse of the outer product of the gradients of the
log likelihood w.r.t. the parameters (often called the Bernt-Hall-Hall-Hausman estimator
for the asymptotic covariance matrix).

Pr ([7(Npy, X3 0) + €m > 0150, [T(Nim + 1, X3 0) + €, < 0])



Table 3. MLE for Bresnahan-Reiss model

constant -6.6483
(0.5309)

log population 0.7115
(0.0064)

Lin>2y -0.2087
(0.0013)

Lin>3y -0.2754
(0.0019)

max(0, N — 3) -0.2566
(0.0001)

log Likelihood = -701.41
N =449

Implementing this estimation required some tweaks on a simple maximizing
of the likelihood. First, I put in a penalty function to restrict the impact
of competition to be non-positive. While the model is technically identified
without this restriction, this data does not seem to have enough independent
variation in X,, and N,, to do so. Thus the non-positivity constraint is a
“sensible”, theory-based assumption that helps identify the model with this
data. Second, much of the parameter space gives vectors that conflict with
the combination of our model and data in that Pr(N,, = n|X,,,0,7(-)) can
be non-positive (for our profit function in this model this occurs exactly
when the impact of competition is non-negative). Such a case automatically
makes the likelihood zero, so again I put in a penalty function to prevent
it. Note that in this specific model, the above two cases are exactly linked,
so only one of the “fixes” is necessary. Finally, using fminsearch for this log
likelihood is not robust to starting values, so I tried several values and chose
the parameter vector with the largest log likelihood value.

Looking at the estimation results, we see that all the coefficients are highly
statistically significant. The constant is negative, indicating there may be
some fixed costs of entry. Population has a positive marginal impact, as we



might expect. A somewhat surprising result is that the impact of additional
competitors does not appear to decrease as the number of firms in the market
increases.

3 Mazzeo model using moment inequalities

We want to look at competitive interactions between transmission and ex-
haust repair shops using Mazzeo’s model of entry where type choice is en-
dogenous. This model makes the following three behavioral assumptions
(which are again necessary conditions for a pure strategy Nash equilibrium
in Mazzeo’s game):

A1l Firms that enter make positive profits (for both types h and 1)

(X, N NEY 4 €l >0

T (X, N2 NLY €l >0

A2 Further entrants would earn negative profits (for either type)

(X, N" +1,NL )+ €l <0

(X, NEUNL 4+ 1)+ € <0

A3 No entrant wants to switch type

(X, NU NDY 4+ € > nl(X,,, NP — 1, ND 1) + €

(X, NEUNL) + €y > 7( X, NE + 1, N — 1) + €,
The above are as listed in the problem set, but you may recall from our work
in problem 2 that the requirement that firms that enter make positive profits
should be conditional on N,, > 0 since profits need not be positive (and
probably aren’t) if N,, = 0. This has consequences for how to construct v;
and vy in what follows. Since no one was expected to notice this (we didn’t
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at first), I will do the problem twice. First, I will proceed as suggested in
the problem set—but keep in mind this is wrong (and thus I won’t interpret
parameter estimates in this section)! After that, I will go through a way to
do it that fixes the mistake.

3.1 As suggested in the original problem . . .

We can form moment inequalities from the identifying assumption that each
of these six inequalities must hold in expectation. To construct our objective
function, we use the sample analog of these expectations, i.e. we let

+
v = _Zﬁh(Xm,Ng,Ngl)Zm>
+
Vg = _ZWZ(meN::men)Zm)
+
vy = Zﬂh(xm,N,ﬁ;JrLNjn)Zm)
+
o = zwwxm,zvg,zml)zm)
+
vy = —Z[wh(Xm,Nf,i,an)—Wl(Xm,Nf;—l,NilJrl)]Zm)

m

+
v = (-Z[H(Xm,NT’A,an)—wh<Xm,Na+1,Na—1>]Zm>

where Z = [1 X] are instruments, giving us 12 moment inequalities to
estimate 6 parameters. We will combine these moments in a way that weights
them all equally, using the objective function

Q8) =) v, (1)

1

Jj=
and again we complete the model by specifying the profit functions
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(X, NN = ol + XB" + 6" log(N" + 1) + 6" log(N; + 1)
(X, N NM = ol + X3+ 60" log(N" + 1) + 6" log(N, + 1)

where here we normalize 3" = 3" = 1 for scale (though we could techni-
cally normalize one and estimate the other since the difference is identified
from our “no switching type” moment).

(a) Partial identification

Minimizing the criterion function, we find that Q(f) = 0 for some vector
f. Thus the model is partially identified, and there is potentially a set © of
parameter vectors that satisfy Q(6) =0, V0 € ©.

(b) Estimating the identified set

Finding the exact set © in the parameter space is not a simple thing to do.
We will actually find the hyper-cube that contains the set. We will do this
by solving constrained optimization problems, each of which will give one of
the bounds in one of the dimensions of the parameter space. For example,
to find the lower bound for ", we will solve the problem

min a (2)

which we can modify to find the lower bounds for other parameters by
substituting them for «y, in (2) as the objective to be minimized; and upper
bounds can be found by changing min to max. We can implement this in
Matlab using the constrained minimization function fmincon. One could
either specify our six inequality constraints or use Q(f) = 0 as a nonlinear
equality constraint (I did the latter). The results of this procedure give the
hypercube containing the identified set described in Table 42 below.

2Inference on the appropriate confidence interval for the identified set is an active area
of research. The state-of-the-art to my knowledge is a subsampling procedure which is in
the spirit of bootstrapping (but slightly different). I would recommend interested parties
to Professor Stoye.



Table 4. Bounds on the identified set of parameters in Mazzeo model

Variable

Lower bound Upper bound

o, constant for transmission

B", log population for transmission

6" log(transmission firms + 1) for transmission
6" log(exhaust firms + 1) for transmission

a!, constant for exhaust

G, log population for exhaust

6 log(transmission firms + 1) for exhaust

6", log(exhaust firms + 1) for exhaust

-6.3588 -2.4213
1.0000 1.0000
-12.2635 -4.9190
-15.0958 -0.6883
-7.1446 -3.9515
1.0000 1.0000
-16.7776 -1.6889
-3.1053 -1.8872

Here I restricted the impact of competition to be negative, and I found the
values of the bounds to be sensitive to the starting parameters. More discus-

sion in the next section.

3.2 A better way .

As stated previously, the problem comes from the fact that the first behav-

ioral assumption is really

A1 Firms that enter make positive profits

T(Npy, Xm) + €n >0 whenever N,,, > 0

and thus our identifying moment assumption is

0 < E[m(Nm, Xn) + €m| Ny > 0]
= 7T(Np, Xon) + Elém| Ny > 0]

9



where since we are taking a conditional expectation, we have E|€,,|N,, >
0] > 0 (according to our model of profit maximizing entry), and this means
that our original construction of v; and vy uses bounds that are too tight.
There is, however, a clever way (due to Allan) to construct moments that
will allow us to drop these unobservables from our moment condition.

We can create an inequality that is an implication of A1 and A2, i.e.

A1* Firms that enter in market 7 make more profits than a further entrant
in market j # i

[m(N;, Xi) + €] — [7(N; +1,X;) + €] >0  whenever N;, N; >0

and from this inequality we can construct the following moment

0 < E[n(Ni,X;)+e]—[n(N;+1,X;)+¢]|N;y N; > 0]
7(N;, Xi) — m(N; + 1, X;) + Ele; — €;|N;, N; > 0]
= 7w(N;, X;) —n(N; + 1, X;) + Ele;|N; > 0] — Ele;|N; > 0]
7(N;, X;) — m(N; + 1, Xj;)
where the unobservables cancel out. We can then construct the sample
analog of this by either taking all ¢ # j pairs or a random sample of these

pairs (I chose a single random order of j to match with the 7). Thus we follow
the procedures in the previous section, but with the modified conditions

Jr
UI = - Z [ﬂ—h(XiaNih7 Nzl) - ﬂ-h(Xj7N]h + 17N]l)j| Zz
NZ',N]'>O
+
v o= (= > X NN - (XN + LN 2,
N;,N;>0

in place of v; and vy in our criterion function (1).

Again we find that there exists many parameter vectors such that Q*(6) = 0,
so we are partially identified. One such vector is § = [a" = —-3.04 3" =
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1.00 6" =529 9" =-096 o' =-504 B =100 6" =-347 G =
—2.92|. Though this vector is just one of many that could be true given our
data and model, it does give us an idea of the relative values of the different
coefficients. The negative constants again suggest fixed costs of entry. The
impact of competition appears to be negative and perhaps stronger within
types than between types, though in this case there is an asymmetric impact
of competition in that entry of transmission firms appears to hurt exhaust
firms more than exhaust firms hurt transmission firms.

Proceeding with estimation of the hypercube containing the identified set ©,
we get the results in Table 4* below.

Table 4*. Bounds on the identified set of parameters in Mazzeo model

Lower bound  Upper bound

o, constant for transmission -6.0874 -2.7736

B", log population for transmission 1.0000 1.0000

0" log(transmission firms + 1) for transmission -10.0261 -5.0534
6™, log(exhaust firms + 1) for transmission -11.0090 -0.4852

a!, constant for exhaust -6.4283 -3.5635

G, log population for exhaust 1.0000 1.0000

6 log(transmission firms + 1) for exhaust -17.4398 -1.1287

0" log(exhaust firms + 1) for exhaust -100.0000 -1.6317

Again here it is worth making some comments about the estimation details
before discussing the results. As in problem 2, I constrained the effect of
competition to be negative, but in this case this assumption has extra bite
because it doesn’t have the direct mapping to the objective function effect
that it does in the maximum likelihood approach. Also, I found the bounds
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were not robust to different starting values (the results shown are for the
particular € given above as the starting value). This is a result of the fact that
fmincon is a local optimization routine and our Q(#) = 0 constraint is highly
nonlinear. Thus even this approach of finding the hypercube containing
the identified set suffers from the potentially non-smooth shape of the set’s
boundaries. I have not attempted to try enough starting values to obtain
more robust bounds (though obviously the hypercube would grow if I did
s0). The discussion of the results should be interpreted with this caveat.

Turning to the results, it is hard to draw many decisive conclusions by looking
at these bounds. The negativity of the constants, and thus the presence of
some fixed costs of entry, are one definitive conclusion. It also appears that
all of the competitive effects are bounded away from zero.

There are many ways in which such large bounds on the hypercube can be
misleading, though, since the coefficients are correlated through our model.
One way to dig deeper is to look at many specific € O, as we did above
with one vector. We could also presumably improve our results by getting
more data or by modifying our model (perhaps incorporating the autoroute
variable and/or some interactions that would make the profit function more
flexible).

3.3 MLE vs. Moment Inequalities approaches

It is worth thinking about the pluses and minuses of examining Mazzeo’s
model with the moment inequalities approach we use here versus his MLE
approach. The big differences are summarized in Figure 2 below.
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Figure 2: MLE versus Moment Inequalities

MLE Moment Inequalities

assumes €,, ~ N (0,1) Vm  assumes Ele,, = 0] Vm

imposes selection among consistent with necessary
multiple equilibria conditions for all equilibria
point identified set identified

Thus the moment inequalities approach has the advantage of eliminating
what might be ad-hoc assumptions on the unobservables and equilibrium
selection with the disadvantage that the parameters will only be set identified.
As we have seen in this problem set, this disadvantage can be very large in
that the bounds on the identified set might be difficult to calculate robustly
and/or the bounds may be so large that one is left with little to conclude.
However, a large identified set in itself is a result in that it emphasizes exactly
how much identification is coming from the assumptions on the unobservables
and equilibrium selection in the maximum likelihood approach.
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