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Reading for next week: “Make Versus Buy in Truck-
ing: Asset Ownership, Job Design, and Informa-
tion” by Baker and Hubbard, American Economic
Review.

Introduction

The issue of moral hazard is key to understand-
ing several topics, most notably how firms are or-
ganized, different compensation schemes such as
CEO pay, and also many of the monitoring schemes
that companies have in place, such as Board of Di-
rectors, auditing departments, and more generally
accounting and control mechanisms within firms.

The purpose of this lecture is to introduce some of
the basic models that revolve around the fact that
the principle cannot usually observe exactly what
agents are doing, and in particular if agents are do-
ing what would be in the best interests of the firm
or just in the best interests of the agents.

The key reason we are interested in moral hazard
problems, is that the wrong contractual form can
lead to inefficient effort on the part of agents, and
outcomes which aren’t Pareto efficient.
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An individual - the principal - hires another individual
- the agent - to perform a task which is determined
by an unobservable action chosen by the agent. We
study the design of contracts in a setting where
actions are not observable: hidden actions or moral
hazard settings.

Examples of moral hazard:

• owner manager relationship

• insurance companies and insured individuals

• manufactures and their distributors

• banks and their borrowers
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We analyze the owner-manager case.

The owner hires the manager to perform a project.
The manager’s actions affect the profitability of the
project. However, these actions are not observable
by the owner, hence he cannot use a compensation
scheme that depends on the actions of the manager.
The question we aim to answer is how does an op-
timal contract look like in this case? Does it always
implement an efficient choice of effort level by the
manager? In general, the answer to this question is
negative. Sometimes providing incentives for that
we not be worthwhile - in the sense that it is too
costly to induce the correct action.
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Simple Model

The agent:

The agent’s utility function is:

u(w)− a (1)

where a is the action taken by the agent, and w is
the agent’s wealth.

The agent’s utility function u(·) is strictly concave,
hence the agent is risk averse. This is the key reason
for having a principle in the setup, since the principle
will be less sensitive to risk than the agent, and
hence the optimal solution won’t just be to sell the
firm to the agent. Another reason for which agents
might appear to be risk-averse is the problem of
limited liability: agents may have limited capital to
start a firm, and if they fail it will be impossible
to recuperate a large amount of losses. In general,
whenever faced with principal agent problems and
your first reaction should be: what’s stopping the
agents from owning firms, and if the agents did
own firms would this eliminates any inefficiency in
the model.

Finally, the agent can also choose not to work for
the principal, in which case they receive their outside
option Ū .
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Two Action Model

Suppose the agent can take either action a = 1
corresponding to high effort, or action a = 0 cor-
respondent low effort. If the agent exerts effort,
there is a probability P of success, which generates
output xS, and and the probability 1 − P of failure
which will generate output xF , with xS > xF . If the
agent does not exert effort, then there is only a
probability p < P of success.

The principal:

The principal’s utility function is:

R =


P (xS − wS) + (1− P )(xF − wF)

( if the agent exerts effort, i.e. a = 1)

p(xS − wS) + (1− p)(xF − wF)

(if the agent does not exert effort, i.e. a = 0)

Notice that this implies the principal is risk neutral.

6



How to make the agent exert effort?

There are two important conditions that need to be
satisfied in order for the agent to exert effort.

The first condition is called the incentive compati-
bility constraint ( or IC constraint), which says that
the agent must get a higher utility from exerting
effort than for not exerting effort:

Pu(wS) + (1−P )u(wF)− 1 ≥ pu(wS) + (1− p)u(wF)

More generally the IC constraint implies that the
agent must get a higher payoff from taking the ac-
tion that the principal wants her to take that from
taking any other action available to him. It appears
in virtually all papers of mechanism design.
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Individual Rationality:

The second condition is called the individual ratio-
nality (or IR constrained) which says that the agent
must prefer working for the principle, then not work-
ing and receiving his outside option:

Pu(wS) + (1− P )u(wF)− 1 ≥ Ū
Note that I have written the IR constraint assuming
that the agent chooses to exert effort, but if it is
optimal for the agent not to exert effort the IR
constraint will have to hold it for the low effort
choice.

Theorem 1 The IR constraint will bind, i.e. will be
satisfied with equality, for the the optimal contract.

To show that the IR constraint will bind, I will do a
proof by contradiction. If Pu(wS) + (1− P )u(wF)−
1 > Ū , then there exists an ε amounts by which
I can lower the wages in the successful and unsuc-
cessful state without violating the IR constraint, i.e.
Pu(wS − ε) + (1 − P )u(wF − ε) − 1 > Ū . Now let’s
check the IC constraint, which we can rearrange as:

(P − p)u(wS − ε)− 1 ≥ (P − p)u(wF − ε)
However since wS > wF , then by concavity of utility
function the new IC will hold as well. Since both the
IR and IC constraint still hold, this means that the
principal’s payoff can be raised by ε, which violates
the assumption that the contract was optimal in the
first place.
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Theorem 2 The IC constraint will bind, i.e. will be
satisfied with equality, for the the optimal contract.

To see why the IC constraint needs to bind, I can do
a proof by contradiction and suppose suppose that
the IC constraint does not bind. Then I can lower
the gap between wS and wF . Since u(·) is concave,
this makes it easier to satisfy the IR constraint, i.e.

Pu(wS − δ) + (1− P )u(wF + δ)− 1 ≥ Ū
so I can lower the wages here by ε

Pu(wS − δ + ε) + (1− P )u(wF + δ − ε)− 1 ≥ Ū
but then the original contract wasn’t profit maxi-
mizing.
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Multiple Outcomes Version

e− the action chosen by the agent: we will call it
effort. For simplicity we will assume that effort can
just take two values and it is either low or high:

e ∈ {eL, eH}

Manager’s utility: u(w, e) = v(w) − g(e), where w
stands for wage and e stands for effort.

v′ > 0 and v′′ < 0

g(eH) > g(eL)

ū is the managers reservation utility.

The profit of the project π is random and can take
values in {π1, ...., πn}, where π1 < .... < πn . The
distribution of profits - how likely each profit level
is depend on the effort exerted by the manager.
Let p(πk |e) denote the probability that πk is realized
when the manager chooses effort e.

Exerting high effort versus low effort is more costly
for the manager in terms of disutility but it makes
higher profits more likely. In order to formalize this,
that is, that higher effort induces higher profits we
use the notion of first order stochastic dominance.
That is we assume that p(. |eH ) first order stochas-
tically dominates p(. |eL), which means that for any
m ∈ {1, ...., n}

Σm
k=1p(πk |eH ) ≤ Σm

k=1p(πk |eL).
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Where the CDF looks like:

Profit

D
en

si
ty

1

Low Effort

High Effort

The firm owner’s problem is as follows: Choose
e and the wage scheme w that maximizes profits:
π − w.



Benchmark Model: The optimal contract when ef-
fort is observable.

Wage payment can depend both on e and π : w(e, πk) =
wk(e)

w1(eL), ....., wn(eL);w1(eH), ....., wn(eH)

The principle’s problem is:

maxe∈{eL,eH}
w1(eL), ....., wn(eL);w1(eH), ....., wn(eH)Σn

k=1{πk−wk(e)}p(πk |e)

such that Σn
k=1v(wk(e))p(πk |e)− g(e) ≥ ū. (P )

where (P ) is called the participation constraint

This problem can be solved in two steps:

1) For each choice of e, what is the best compen-
sation scheme?

2) What is the optimal level of effort?
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Step 1: For each choice of e, what is the optimal
compensation scheme?

Suppose that the owner wants to implement effort
level e : Then the problem reduces to finding the
cheapest way to do so. That is the minimum level
of way that will induce the manager to choose effort
level e :

Minw1(ê),.....,wn(ê)Σ
n
k=1wk(ê)p(πk |ê)

such that Σn
k=1v(wk(ê))p(πk |ê)− g(ê) ≥ ū. (P )

It is easy to see that the participation constraint will
be binding at the optimum.

The Lagrangian for this problem is given by

L(ŵ1, ...., ŵn, λ) = Σn
k=1ŵkp(πk |ê)−λ{Σn

k=1v(wk(ê))p(πk |ê)−
g(ê)− ū}

where λ ≥ 0.

FOC’s

∂L
∂ŵk

= p(πk |ê)− λv′(ŵk)kp(πk |ê) = 0, k = 1,2, ..., n

Assume that p > 0 then we get 1
λ

= v′(ŵk) > 0

hence the participation constraint is binding
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This condition implies that is the case that the man-
ager’s effort is observable - the firm owner will pay
the manager the same wage offer all the time:

v′(ŵ1) = .... = v′(ŵn) = 1
λ
; v′′ < 0, v′ is weakly de-

creasing and hence it is a 1− 1 function.

ŵ1 = .... = ŵn.

Now we will use the fact that the participation con-
straint is binding to get the optimal level of w :

v(w∗e)− g(e) = ū.

w∗e = v−1(ū+ g(e∗)) : This is the optimal wage con-
ditional on e∗ being implemented.
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Step 2: What is the optimal level of effort being
implemented?

e∗ = eL or e∗ = eH.

If e∗ = eL then w∗L = v−1(ū+ g(eL)) and the owner’s
expected payoff is given by

Σn
k=1(πk−v−1(ū+g(eL)))p(πk |eL) = Σn

k=1πkp(πk |eL)−
v−1(ū+ g(eL))

If e∗ = eH then w∗H = v−1(ū+ g(eH))and the owner’s
expected payoff is given by

Σn
k=1(πk−v−1(ū+g(eH)))p(πk |eH ) = Σn

k=1πkp(πk |eH )−
v−1(ū+ g(eH))

Proposition. In the principal-agent model with ob-
servable managerial effort, an optimal contract spec-
ifies that the manager choose the effort e∗ that max-
imizes Σn

k=1πkp(πk |e)− v−1(ū+ g(e))

and pays the manager a fixed wage w∗ = v−1(ū +
g(e∗)). This is the uniquely optimal contract if v′′(w) <
0 at all w.
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The optimal contract when effort is not observ-
able.

The optimal contract in the case of observable achieved
two goals: It specifies the optimal level of effort by
the manager and it insures him against risk. When
effort is not observable the two goals may be in con-
flict. To disentangle the roles of the choice of the
optimal level of effort and risk-sharing we will first
study the case of a risk neutral manager.

Before doing this let us note that the set of compen-
sation schemes available to the owner in the case
that effort is observable is strictly larger than the
one available to the owner in the case of unobserv-
able effort. With observable effort the principal can
make compensation scheme proposed to the agent
contingent on the effort level he chooses. This kind
of compensation schemes are not available to the
owner when effort is not observable. Hence the
choice set in the case of observable effort is strictly
larger then the one with unobservable effort, which
implies that the value of the owner’s program is
(weakly) higher then the value of owners program
with unobservable effort.
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We will now demonstrate that the case that the
manager is risk neutral the maximized values of
these programs is the same

In order to do so, we consider first the manager’s
problem in the case that effort is observable. The
owners problem is given by

maxe∈{eL,eH} Σn
k=1πkp(πk |e)− ū− g(e)

The owner’s profit in this case is the value of the
program and the manager receives utility at least ū.
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The following proposition establishes this point.

Proposition. In the principal-agent model with un-
observable managerial effort and a risk neutral man-
ager, an optimal contract generates the same effort
choice and expected utilities for the manager and
the owner as when effort is observable.

Proof:

The owner offers the manager a compensation sched-
ule wk = πk − α, where α is some constant. If
the manager accepts this contract, he chooses e
to maximize his expected utility

Σn
k=1wkp(πk |e)− g(e) = Σn

k=1πkp(πk |e)− g(e)− α.

The solution to manager’s problem solves also the
owner’s problem in the case of non-observable ef-
fort. Let e∗ denote the optimal effort level chosen
by the manager given this sell-out contract. The
manager is willing to accept this contract so long
as

Σn
k=1πkp(πk |e∗) − α − g(e∗) ≥ ū. Let α∗ denote the

α such that Σn
k=1πkp(πk |e∗) − g(e∗) − ū = α∗. Given

a compensation scheme of wk = πk − α∗ the owner
and the manager get exactly the same payoff as
with observable effort.
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The case of risk-averse manager

Since the optimal compensation scheme cannot be
conditioned on the optimal effort level, it has to be
designed in such a way that it induces it. Suppose
that the owner wants the manager to choose effort
level e. Then in the case that effort is observable
the owner seeks for the cheapest way that gets the
manager to agree to do the project - that is the
owner chooses w to minimize payments over the
set of wages that guarantee the manager expected
utility level of ū when he chooses e. When effort e is
not observable the owner faces an additional con-
straint: in order that w implements e it must belong
in the set of compensation schemes such that the
agent prefers to choose e versus choosing e′. This
kind of constraint is called incentive constraint.

The owner’s problem in the case of unobservable
effort and risk averse manager is given by

Minw1,....,wn
Σn
k=1wkp(πk |e)

such that (i)Σn
k=1v(wk)p(πk |e)− g(e) ≥ ū (P )

participation constraint

(ii) e solves maxẽ
∑n

k=1 v(w(πk))p(πk |ẽ)− g(ẽ) (IC)

incentive constraint
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Implementing eL : in this case the optimal compen-
sation scheme is for the owner to offer a fixed wage
payment w∗e = v−1(ū+g(eL)), the payment he would
offer if contractually specifying effort eL when effort
is observable. This compensation scheme is not af-
fected by the effort exerted by the manager - hence
he will choose the lowest possible level of effort,
which is indeed eL.

Implementing eH. First note that the incentive con-
straint can be rewritten as:

Σn
k=1v(wk)p(πk |eH ) − g(eH) ≥ Σn

k=1v(wk)p(πk |eL) −
g(eL) (IC)

that is the owner chooses among the compensation
schemes that satisfy this condition.

Let λ ≥ 0 and µ ≥ 0 denote the Lagrange multipliers
associated with the constraints (P ) and (IC).

Lemma. When the owner wants to induce high ef-
fort both constraints (P ) and (IC) are binding that
is λ > 0 and µ > 0.
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The Lagrangian for this problem is given by

L(w1, ..., wn, λ, µ) = Σn
k=1wkp(πk |eH )

−λ{Σn
k=1v(wk)p(πk |eH )− g(eH)− ū}

−µ{Σn
k=1v(wk)p(πk |eH )− g(eH)

−Σn
k=1v(wk)p(πk |eH ) + g(eH)}

FOC’s

∂L
∂wk

= p(πk |eH )− λv′(wk)p(πk |eH )

−µ{v′(wk)p(πk |eH )− v′(wk)p(πk |eL)} = 0

λ ≥ 0, µ ≥ 0

Complementary Slackness

Divide by v′(wk)p(πk |eH ) > 0

1
v′(wk)

− λ− µ
[
1− p(πk|eL)

p(πk|eH )

]
= 0, k = 1, ..., n
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Suppose that λ = 0 then

1
v′(wk)

= µ
[
1− p(πk|eL)

p(πk|eH )

]
Recall that p(. |eH ) first order stochastically domi-
nates p(. |eH )

For any m :Σm
k=1p(πk |eH ) ≤ Σm

k=1p(πk |eL)

for m = 1 p(π1 |eH ) ≤ p(π1 |eL)

1 ≤ p(πk|eL)
p(πk|eH )

contradiction. Hence λ > 0 which implies

that the participation constraint is binding.

We now proceed to show that (IC) is binding as
well. Suppose that µ = 0, then

1
v′(w1)

= .... = 1
v′(wn)

= λ is and only if w1 = ... =

wn, but then this violates the incentive constraint
since the manager has no incentive to exert high
effort. Contradiction. Hence the wage payment
will depend on k.
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Observations:

1)Recall that π1 < .... < πn. Does this imply that
at the optimum we have w1 ≤ .... ≤ wn? No. In
order that the optimal compensation scheme to be
increasing it must be the case that p(πk|eL)

p(πk|eH )
is decreas-

ing πk,

p(π1|eL)
p(π1|eH )

≥ p(π2|eL)
p(π2|eH )

≥ .... ≥ p(πk|eL)
p(πk|eH )

.

which implies that as π increases the likelihood of
getting profit level π if effort is eH relative to the
likelihood if effort is eL must increase. This is known
as the monotone likelihood ratio property. MLRP
implies first order stochastic dominance but not the
opposite.

2) From the FOC it follows that the optimal com-
pensation scheme is likely to be non-linear

3) The fact that effort is non-observable increases
the owner’s compensation cost of implementing high
effort. First note that we have E[v(w(π) |eH ] =
ū + g(eH) and v′′() < 0. From Jensen’s inequality
it follows that v(E[w(π) |eH ]) > ū + g(eH) - since v
is concave. But from the previous analysis we have
that v(w∗eH) = ū+ g(eH), and so E[w(π) |eH ] > w∗eH .
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Hence unobservability increases the cost of imple-
menting eH but does not change the cost of imple-
menting eL− this means that sometimes an ineffi-
ciently low level of effort will be implemented. As
usual, in order for the owner to choose the optimal
effort level he must compare the benefits, with the
cost

benefits: Σm
k=1p(πk |eH )πk −Σm

k=1p(πk |eL)πk

costs: the difference in expected wage
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Proposition. In the principal-agent model with un-
observable manager effort, a risk-averse manager,
and two possible effort choices, the optimal com-
pensation scheme for implementing eH satisfies the
FOC given above, given the manager expected util-
ity level of ū and involves a larger expected wage
payment than is required when effort is observable.
The optimal compensation scheme for implement-
ing eL involves the same fixed payment as if ef-
fort were observable. Whenever the optimal ef-
fort level with observable effort would be eH, non-
observability causes a welfare loss.

24



The First-Order Approach:

The first-order approach deals with the problem
when there are an infinite number of actions that
can be chosen, i.e. a continuous action space.
What’s nice about the first-order approaches that
you can use derivatives, however there are some se-
rious technical conditions that need to be applied in
order for this derivative-based approach to be valid
such as Rogerson(1985)’s Econometrica.

Suppose that the probability of success is given by
p(a) and p(a) is increasing and concave.

Let’s first showed that p(a) satisfies two important
conditions for the the first-order approach to work:

1. Convexity of the distribution function condition
(CDFC): This just means that:

aj = λai + (1− λ)ak

where λ ∈ [0,1] then by CDFC:

Pjl ≤ λPil + (1− λ)Pkl

for all outcomes l. For the continuous problem
this implies that:

p(λā+ (1− λ)a) ≤ λp(ā) + (1− λ)p(a)

2. Monotone Likelihood Ratio Property (MLRP)
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This is equivalent to saying that 1−p(a)
p(a)

is decreasing

in a. So

d

da

[
1− p(a)

p(a)

]
= −p′(a)

(
1− p(a)

p(a)2
+

1

p(a)

)
which will be negative since p(a) is increasing.

Let’s suppose that the IR and IC constraints both
blind. First let’s take a look at the IR constraint:

p(a)u(ws) + (1− p(a))u(wf)− a = Ū

Next the IC constraint can be derived from the fact
that the individuals payoff is just:

p(a)u(ws) + (1− p(a))u(wf)− a
So if we take the first-order condition with respect
to a, i.e. I choose the action that maximizes my
payoff then we obtain:

∂U

∂a
= p′(a)u(ws)− p′(a)u(wf)− 1 = 0
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Okay now let’s derive the wages in the case of suc-
cess and failure given that the IC in the IR constraint
will bind. From the IC we get:

u(ws) = u(wf) +
1

p′(a)

Then plugging this into the IR constraint:

p(a)

(
u(wf) +

1

p′(a)

)
+ (1− p(a))u(wf) = Ū + a

u(wf) = Ū + a−
p(a)

p′(a)

And likewise for the wages of success we get:

u(ws) = Ū + a−
1− p(a)

p′(a)

Notice that if there wasn’t an IC constraint, then I
would would pay the agents just Ū + a a flat wage.
I need to get a higher wage for success in order to
induce effort, and this magnitude of this inducement
depends on the marginal effect of efforts on the
probability of success. So if effort translates into a
very large change in the probability of success, then
after will be easy to detect and I get closer to the
case where effort is fully observable.
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Repeated Moral Hazard: Holmstrom 1982 First, some
notation:

Agent’s ability: ηt+1 = ηt + δt, where δ is a random
i.i.d. normal shock.

Action: at

Output: yt = ηt + at + εt, where εt is a random i.i.d.
normal shock, and at is the agent’s effort.

History: The agent’s history is yht = (y1, · · · , yt−1).

Wages are set competitively, but aren’t dependent
on current output, just your employment record:

wt(y
ht−1) = E[yt|yht−1]

Agent’s Utility:

∞∑
t=1

βt−1[ct − g(at)] =
∞∑
t=1

βt−1[wt − g(at)]

essentially, risk neutral agent, with no motive to
save here, so ct = wt.

Efficiency:

g′(at)︸ ︷︷ ︸
MC

=
∂[ηt + at + εt]

∂at︸ ︷︷ ︸
MB

= 1
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Two Period Model, t = 1,2

Let’s start with a two-period model to get some
intuition. We can work by backward induction.

• t = 2

In period 2 the agent does not work, so a2 = 0.
Thus the wage to the agent is just

y2 = E[η2 + a2 + ε2] = E[η2]

The expectation of η2 = E[y1 − a1 − ε1] = y1 − a∗1.

• t = 1

In period 1 the agent has to choose wether to work.
The agent’s wage is

y1 = E[η1 + a∗1 + ε1] = E[η1] + a∗1

• Finding a1, the first-order condition is:

−g′(a1) + β
∂(y1 − a∗1)

∂a1
= −g′(a1) + β = 0

So the agent works a bit less that would be implied
by the first-best where g′(a1) = 1 instead of g′(a1) =
β.
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Stuff on Linear Filtering Problems:

Suppose that X and Y are independent normal vari-
ables. X ∼ N (µ, σX) and Y ∼ N (0, σY ).

Define hX = 1/σ2
X and hY = 1/σ2

Y

We want to know X|X + Y = q, i.e. we observe a
noisy signal q on X. It can be shown that:

X|(X+Y = q) ∼ N (
hX

hX + hY
µ+

hY

hX + hY
q,

1

hX + hY
)

Say I don’t know anything about X, i.e. X ∼
N (µ,∞) then hX = 0 and:

X|(X + Y = q) ∼ N (q,
1

hY
)
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End of t = 1

η1|(η1 + ε1 = y1 − a∗1) ∼ N (
h1

h1 + hε
0 +

hε

h1 + hε
(y1 − a1),

1

h1 + hε
)

= N (
hε

h1 + hε
(y1 − a1),

1

h1 + hε
)

Begining of t = 2

η2|(η1 + ε1 = y1 − a∗1) ∼ N (
hε

h1 + hε
(y1 − a1)︸ ︷︷ ︸
η2

,
1

h1 + hε
+

1

hε︸ ︷︷ ︸
1/h2

)

End of t = 2

η2|(η1 + ε1 = y1 − a∗1), (η2 + ε2 = y2 − a∗2) ∼

N (
h2

h2 + hε
η2 +

hε

h2 + hε
(y2 − a2),

1

h2 + hε
)

Beginning of t = 3

η2|(η1 + ε1 = y1 − a∗1), (η2 + ε2 = y2 − a∗2) ∼

N (
h2

h2 + hε
η2 +

hε

h2 + hε
(y2 − a2)︸ ︷︷ ︸

η3

,
1

hε
+

1

h2 + hε︸ ︷︷ ︸
h3

)
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So by induction we get:

ηt+1 =
ht

ht + hε
ηt +

hε

ht + hε
yt

By the way this property that I just need to keep
track of two numbers to summarize the entire his-
tory of the agent’s performance, just the mean and
the variance of my prediction is a very special prop-
erty the linear model with normal measurement er-
ror. If you try to tweak this model in any direction
on it gets very hard to preserve this feature that
there’s only two summary statistics that you need
to keep track of. Dealing with histories of quickly
leads you to very intractable models.
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Let’s get back to:

mt+1 −mt = λt[yt − a∗t −mt]

Suppose the agent deviates and expends a tiny bit
more effort, which I’ll call da. The induced change
in the principles estimate of the agents ability is:

dmt+1 − dmt = −λtda
Okay, how does the effect total wages over time,
and let’s assume we’ve reached a t large enough
so that λt → λ. Let’s look at the wage change
tomorrow:

dw1 = λ

An likewise in s periods from now:

dws = λ(1− λ)s−1da

since the effect of effort today on my reputation for
ability decays over time, with parameter 1− λ.
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Okay now let’s add up all these effects:

dU = dw1 − g′(a)da+
∞∑
t=2

βtdwt

= λda− g′(a)da+
∞∑
t=1

βtλ(1− λ)t−1da

= −g′(a)da+ λ

∞∑
t=0

(β(1− λ))tda

= −g′(a)da+
λβ

1− β(1− λ)
da = 0

Remember the efficient level of effort if g′(a) = 1.
So the whether the agent will provide more or less
effort that what is optimal depends on if:

λβ

1− β(1− λ)
≥≤?1

If β < 1 then λβ
1−β(1−λ)

≤ 1, so less effort is provided

that what is optimal. Essentially this happens since
the rewards of effort are delayed in the future. What
happens is the consequences of effort are growing
over time. This may be reversed.
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Empirical Applications

1. Lafontaine on Franchising.

2. Partnerships versus Corporations.

3. Hubbard (monitoring).

4. Hubbard and Baker (monitoring again).
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