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1 Introduction

Production Functions are indispensable tools for Empirical I.O. and Eco-
nomics in general. Recently there has been considerable progress in estima-
tion techniques which take into account the fact that profit maximizing firms
are making input and exit decisions based on their current levels of efficiency.

• Sources of Aggregate Productivity Growth: By definition, aggre-
gate productivity growth is due to individual plants within a country
becoming more productive. Does productivity increase due to the en-
try of efficient producers or because productive plants grow more than
unproductive plants?

• Trade: When a country opens up to international trade this forces
plants to compete with firms in other countries. This has the effect of
inducing inefficient producers to exit the industry and other firms to
raise their productivity. Pavcnik (2002) finds that when trade barriers
were lifted in Chili, plant productivity showed a marked increase.

• Mergers and Monopoly: When two firms merge are there efficiency
gains that will lead to increased productivity? To answer this question
we need to estimate returns to scale for the industry to see if larger
plants also end up being more productive.

• Impact of I.T. on Productivity Growth: There has been sus-
tained discussion on which factors led to the increase in productivity
growth during the late 90’s. One conjecture is that increase spending
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on information technology was responsible for this jump in productiv-
ity. Looking at the correlation between increases in productivity and
plant level spending on I.T. (such as in Athey and Stern (2002)) could
allow us to answer this question.

2 Functional Forms and Unobservables

Let’s start with the typical Cobb-Douglas production function:

Yit = AitK
βk
it L

βl
it (1)

where Y is value-added, and L and K are salaries and total assets respec-
tively. Taking logs we get the following log-linear form:

yit = βkkit + βllit + εit (2)

where ε is a unobservable input/output. Note that this formulation assume
two things. First, the Cobb-Douglas production function assume unit elas-
ticity of substitution between capital and labour. Second, the unobservable
ε is additively separable in logs and is thus Hicks Neutral, i.e. firms do not
differ in their capital to labour ratios (assuming they pay the same rental
rate for capital and the same wages for labour), and firms do not vary in
their returns to scale.

There are of course other functional forms we could assumed:

• Translog:

yit = βkkit + βllit + βkk(kit)
2 + βll(lit)

2 + βlklitkit (3)

• CES:
Yit = A(βk(Kit)

ρ + βl(Lit)
ρ)

1
ρ (4)

• Another alternative is to assume less functional form such as mono-
tonicity, i.e. l′ < l ⇒ y′ < y and k′ < k ⇒ y′ < y or concavity,
linear homogeneity or any assumptions on the functional form of the
production function derived from theory.
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2.1 Unobservables and Returns to Scale

In Economics there are several different assumptions we can make about
unobservables:

1. Measurement Error: The unobservables ε’s are measurement error
which is uncorrelated with the x’s. This is the usual assumption dis-
cussed in Econometrics classes. However, in empirical microeconomics
we don’t usually perform experiments to collect data. As such, we
don’t control the factors that may enter into the firm’s decision such as
the amount of managerial capital that the firm uses or the presence of
an unobserved component to productivity. So the assumption that the
unobservables are simply measurement error is often hard to swallow.

2. Expectation Error: The unobservables can also be due to errors on
the part of agents. So for instance, I may observe different firms making
decisions on how much capital and labour to purchase in this period,
even though I believe that all firms face the same input and product
market and use the same technology. Certain firms will purchase more
capital and labour than others because they make a mistake when
choosing their optimal use of inputs, i.e. |∂Π

∂L
−w| < ε where ε represents

my inability to verify if I am really at a zero of my first-order condition.
This type of error could be quite reasonable in cases where agents face
very difficult optimization problems which have a very flat first-order
conditions, i.e. if I make a small mistake in evaluating my first order
condition, this could lead to a big difference in the amount of capital
or labour I choose to use.

3. Private Information Unobservables: Sometimes it is useful to as-
sume that each firm knows their own εi but that other firms don’t know
about it. It is typically a more reasonable assumption for unobserv-
ables, that econometrician (a.k.a. you) knows less about the players in
the market than they know about themselves. However, in the case of
private information, I also assume that I know as much about about
a firm’s rivals as the firm itself. There are some cases where this is a
reasonable assumption, such as in auctions on Ebay where I know that
bidders are anonymous. However, when I model GM’s decision to price
it’s cars, it is unreasonable to assume that Ford would not know more
about this unobservable ξ’s than I do.
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4. Common Knowledge Unobservables to the Econometrician:
In BLP, firms do not react just to Xβ − αp but to Xβ − αp+ ξ which
includes the unobserved product characteristics ξ. Thus I assume that
all firms know each other’s ξ−i when making their decision. Moreover,
it is hard to imagine many situation where firms where firms have some
uncertainty over their rivals’s ξ since they can learn about these after
repeated play over many periods.

One example where unobservables play a large role is in estimating returns
to scale. For many different policy applications it is important to know if
an industry has increasing returns to scale. For example, if two firms merge
will prices increase because of greater market power, or decrease because
lower marginal costs? However, most production function regressions find
decreasing returns to scale, which is puzzling given that we also find very
large plants in most industries.

Suppose I estimate the following production function:

qti(cubic yards of concrete) = βll
t
i(salaries) + βkk

t
i(capital)

+mt
i(materials) + At + ρti

(5)

Table shows production function regressions using alternatively value added,
shipments and cubic yards of concrete as a measure of output. As you can
see, in all three regression the return to scale coefficient (the sum of βl, βk
and βm) is less than 1. However this makes no sense since Table ?? shows
that in larger markets you get bigger plants.

What is most likely going on is the presence of unmeasured inputs into
the production process such as managerial ability (henceforth denoted at
man). If we omit man from the production function, and if other inputs
such as capital or labor are not perfectly correlated with man then this will
bias estimates of returns to scale downwards. Formally:

yit = βkkit + βllit + βmanmanit + εit

= (βk + βkm)kit + (βl + βlm)lit + (βman − βkm − βlm)manit + εit
(6)

where manit = βkmkit + βkllit + uit.

2.2 Market Power Versus Productivity

Another issue brough up by Syverson (2004) and de Loecker (2006) is the
problem of distinguishing market power from productivity. In most produc-
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tion function regressions, output is measured in dollars instead of in quanti-
ties. Thus it is impossible to know if firms are more productive or do they
simply exploit their market power to charge higher prices?

As is de Loecker (2006), since revenue are Rit = PitQit, then the produc-
tion function regression estimated using sales has the following bias:

rit = βllit + βkkit − pit + εit (7)

Therefore, firms which can charge higher prices will have upward bias in their
measured productivity.

3 Selection and Endogeneity

If I treat the ε term as measurement error, then I can obtain consistent
estimates with OLS. However these ε terms are more appropriately though
of as inputs, such as managerial ability, that the firm observes but I don’t.
Let’s rewrite the production function as:

yit = βkkit + βllit + ωit + ηit (8)

where ωit are productivity factors that the firm observes such as soil quality
and ηit are productivity factors that the firm does not anticipate such as
changes in rainfall from year to year. Anticipated components of productivity
are a problem since they will induce a correlation between the firm’s choices
for capital and labour and the anticipated component of productivity. So for
instance the firm’s capital choice is determined by:

Kit = [
p exp(ω)βk

r
Lβlit ]

1
1−βk (9)

and thus there is a positive correlation between ω and K induced by the fact
that the firm will respond to changes in unobserved productivity. This is
called the endogeneity bias.

Likewise, the fact that firms choose whetever they will exit in the next
period also introduce a selection bias. A firm decides on remaining in the
industry based on the following decision:

χ(ωit, kit, xit) = 1 {V (ωit, kit, xit) > Ψ} (10)

Now of course, we don’t know what ω is, which make this a relationship
we can only estimate. If you look at the probits reported in Tables 1 and
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2, larger plants and more productive plants are less likely to exit. Thus a
big plant can remain in operation with a productivity level that would have
caused the smaller plant to exit the industry, and thus E[ωk|χ = 1] < 0.
One way of solving this problem is to use the tradional Heckman Selection
approach, with an explicit formulation for the selection equation assuming
that ω is normally distributed:

χ(ωit, kit, xit) = αkkit + αxxit + ωit

Pr[χ = 1] = Φ(αkkit + αxxit)
(11)

We can estimate this equation as a simple probit. To correct for the selection
problem, note that under the assumption that ω has a normal distribution,
E[ω|χit = 1, kit, xit] = φ(α̂kkit+α̂xxit)

Φ((α̂kkit+α̂xxit)
. So the production function regression

becomes:

yit = βkkit + βllit +
φ(α̂kkit + α̂xxit)

Φ((α̂kkit + α̂xxit)
+ ηit (12)

3.1 Fixed Effects, Quasi-Differencing

The first application of fixed effect techniques comes from the estimation
production functions in agricultural economics. Suppose that the anticipated
component of productivity ω is fixed for each firm across time, i.e. ωit = ωi.
Then if I take first differences, we obtain:

yit − yit−1 = βk(kit − kit−1) + βl(lit − lit−1) + ηit − ηit (13)

The only issue is where is the variation in capital and labour usage coming
from? In particular, I am tossing out all the cross-sectional variation in cap-
ital and labour usage which could help identify coefficients. For example,
suppose I am looking at the relationship between studying and exam perfor-
mance. If I look across individuals I would find that people who study more
have higher performance on exams. However, if I look within a class, I would
find that exams for which I study less are easier exams on which I will get a
higher grade.

If you take a look at Table 3.1, you can see that including fixed effects
reduces the capital coefficient dramatically. Thus, eliminating cross-sectional
variation reduces the variation in capital that we can use in order to identify
βk.
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Alternatively, one can use quasi-differences, so suppose unobserved pro-
ductivity follows an AR(1) process, i.e. ωit = ρωt−1

i + ζit. Then we can take
quasi-difference instead of a first-difference:

yit − ρyit−1 = βk(kit − ρkit−1) + βl(lit − ρlit−1) + ηit − ηit + ζit (14)

Here I can keep more of the cross-sectional variation to identify the param-
eters of the production function.

3.2 Instrumental Variables

One approach is to find instrumental variable, i.e. a Z such that E[y|X,Z]
does not vary with Z, but E[X|Z] does vary with Z. Typically, we use the
following moment condition:

E[{K,L}Z] > 0

E[εZ] = 0
(15)

However, in practice it is often difficult to find a good instrument. Certain
variables such as the price of goods in other markets may be plausibly uncor-
related with ε. However, we have no reason to believe that these Z’s will also
be correlated with firms capital and labour choices. Syverson (2004) uses
local demand shocks for ready-mix concrete as an instrument, since these
will be correlated with labour and materials choices (since firms react to
changes in demand by lowering their use of inputs) but won’t be correlated
the underlying unobserved productivity.

3.3 Olley-Pakes

Olley and Pakes (1996) study the effect of opening up the market for long-
distance telecommunications by breaking up AT&T on the productivity of
telecommunications equipment manufacturers, which went from being a monopoly
supplier to operating in a competitive international market.

One of the issues in this litterature is how to deal with the presence
of an anticipated unobserved productivity ω. Olley and Pakes (1996) use
the fact that investment is increasing in unobserved productivity to proxy
for the effect of ω. The timing in this model is as follows: firms need to
choose their capital stock one period ahead of production. Then their current
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period’s productivity shock is realized and they choose labour and materials
accordingly.

The firm’s investment decision is based on the solution to a fairly com-
plicated dynamic programming problem:

max
χ∈{0,1}

{max
i
E[V (δk + i, ω′, x′)|ω, x],Ψ} (16)

Under certain fairly plausible conditions (covered by Ericson and Pakes
(1995)), the investment policy function i = i(ω, k, x) is stricly increasing
in ω. This allows us to invert out the ω term: ωit = h(iit, kit, xit). Now here
comes the really interesting part. I don’t need to compute the investment
policy function from equation 16 and then invert it! Instead I can simply
estimate the h(., ., .) function directly from the data. This insight that pol-
icy function can be recovered “non-parametrically” from the data is a very
powerfull idea in modern empirical I.O.. This type approach also allows
us to recover other objects like bid functions in the context of auctions or
investment policy functions in dynamic oligopoly. Oddly enough, it is some-
times easier to estimate a model in modern I.O. than solve their theoretical
counterparts since we can recover the firm’s policy functions directly.

In the first stage, we estimate the following model:

yit = βllit + βkkit + h(iit, kit, xit) + ηit

= βllit + φ(iit, kit, xit) + ηit
(17)

From this equation you can get estimates of both the labour coefficient β̂l
and of the hybrid function φ̂(., ., .). In the second stage, note that:

ωit = E[ωit|ωt−1
i , kt−1

i , xit] + ζit

= g(ωt−1
i ) + ζit

= g(h(it−1
i , kt−1

i , xt−1
i )) + ζit

= g( ˆφt−1
i − βkkt−1

i ) + ζit

(18)

where g(.) is simply another one dimensional polynomial function. Suppose
that ω was simply an AR(1) process. In this case, the process for ω would
simply be:

ωit = ρωt−1
i + ζit

= ρh(it−1
i , kt−1

i , xt−1
i ) + ζit

(19)
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We can substitute equation 25 into the production function regression
instead of ωit:

yit = β̂llit + βkkit + g( ˆφt−1
i − βkkt−1

i ) + ζit + ηit (20)

This equation can be estimated quite easily.
We can also incorporate selection into the Olley-Pakes framework.

3.4 Levinsohn-Petrin

One of the problems with the Olley and Pakes (1996) setup is the fact that
in most years plants make zero investment. To counter this issue, Levinsohn
and Petrin (2003) use a different proxy for productivity based on a plant’s
use of materials. Materials can be used as a proxy since the plant is assumed
to order materials once it’s productivity shock has been realized, and thus
these are strictly endogenous variables.

As before the materials demand equation is:

mit = m(kit, ωit, xit) (21)

which can be inverted if the materials decision is strictly increasing in ωit,
which is easy to show since the choice of how much materials to purchase is
a strictly static decision. To see this, note that the first order condition for
materials and labour given a fixed level of capital is:

∂Π

∂M
= βmexp(ω)Kβ

kL
β
lM

βm−1 = pm

∂Π

∂L
= βlexp(ω)Kβ

kL
βl−1Mβ

m = w

(22)

And thus:
ωit = h(mit, kit, xit) (23)

Plug this in to the production function as before:

yit = βllit + βkkit + h(mit, kit, xit) + ηit

= βllit + φ(mit, kit, xit) + ηit
(24)

In the first stage we get estimates for β̂l and φ̂it. As before:

ωit = E[ωit|ωt−1
i , kt−1

i , xit] + ζit

= g(ωt−1
i ) + ζit

= g(h(it−1
i , kt−1

i , xt−1
i )) + ζit

= g( ˆφt−1
i − βkkt−1

i ) + ζit

(25)
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Then the second stage estimating equation is:

yit = β̂llit + βkkit + βmmit + ωit + ηit

= β̂llit + βkkit + βmmit + g( ˆφt−1
i − βkkt−1

i ) + ζit + ηit
(26)

Note that there is a problem with estimating this regression since materials
are correlated with the innovation ζit in today’s unobserved productivity
ωit. However, we can find an instrument for this regression, which is a Z
which is correlated with the dependant variables but uncorrelated with the
unobservables: ζit + ηit. This is the case for lagged materials since there are
uncorrelated with the innovation in productivity, and yet they are correlated
with materials and labour through the persistence in ωit and with capital
directly since they are correlated directly with ωt−1

i .

3.5 Ackerberg-Caves-Frazer

Ackerberg, Frazer, and Caves (2006) investigate the potential for collinearity
in the various proxy for productivity techniques we have been investigating.
In particular, once we put in productivity and fixed capital into the regres-
sion, why should there be any variation left over from labour and materials?

To see this, note that since the labour decision is purely static, then it
depends on the state of the firm sit = {ωit, kit, xit}. Thus the labour demand
equation is given by:

lit = l(ωit, kit, xit) (27)

And likewise for the materials decision:

mit = m(ωit, kit, xit) (28)

Thus the production function regression becomes:

yit = βllit + βkkit + βmmit + ωit + ηit

= βllit + βkkit + βmmit + h(mit, kit, xit) + ηit

= βll(ωit, kit, xit) + βkkit + βmm(ωit, kit, xit) + h(mit, kit, xit) + ηit

(29)

Thus it is impossible to separate labour demand, materials demand and
unobserved productivity in the first stage. The way this model is speficied,
it is not possible for labour or materials to have any variance separate from
the firm’s state.

Note that we would not have this collinearity problem if labour were
also determined a period ahead (say because of a Union’s labour contract).
However, this would introduce labour into the firm’s state space.
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Table 3: Production Function Estimates from Pavcnik (2002)∗

OLS Fixed Effects Olley-Pakes

Unskilled Labor 0.178 0.210 0.153
(0.006) (0.010) (0.007)

Skilled Labor 0.131 0.029 0.098
(0.006) (0.007) (0.009)

Materials 0.763 0.646 0.735
(0.004) (0.007) (0.008)

Capital 0.052 0.014 0.079
(0.003) (0.006) (0.034)

∗ From Pavcnik, N. (2002) ”Trade Liberalization, Exit, and Productivity Improvements:
Evidence from Chilean Plants,” The Review of Economic Studies 69, January, pp. 245-76

then those generated by OLS, but, as might be expected, standard errors for the capital
coefficient do increase (though much less so in the OP results than in Pavcnik’s).

2.3.4 Zero Investment Levels.

For simplicity, we assumed above that investment levels for all observations were non-
zero. This allowed us to assume that the investment equation was strictly monotonic
in ωjt everywhere (and hence could be inverted to recover ωit for every observation).
Observations with zero investment call into question the strict monotonicity assumption.
However, the OP procedure actually only requires investment to be strictly monotonic in
ωjt for a known subset of the data. OP themselves take that subset to be all observations
with it > 0, i.e. they simply do not use the observations where investment equals 0.

Even with this selected sample, first stage estimation of (29) is consistent. Since ωjt

is being completely proxied for, the only unobservable is ηjt, which is by assumption
uncorrelated with labor input and with the selection condition iit > 0. Second stage
estimation of (43) is also consistent when OP discard the data where ijt−1 = 0 (φ̂jt−1 −
β0 − βkkjt−1 − βaajt−1 is not computable when ijt−1 = 0). The reason is that the
error term in (43) is by construction uncorrelated with the information set Ijt−1, which
contains the investment level ijt−1. In other words, conditioning on ijt−1 = 0 doesn’t
say anything about the unobservable ζjt.

While the OP procedure can accommodate zero investment levels, this accommodation is

58

3.6 Productivity Dispersion

To display productivity dispersion more “concretely”, I generate the pre-
dicted output for each plant as if it were using mean levels of capital, labor
and materials, but brings its own productivity residual:

ŷti(predicted) = exp(βl l̄ + βkk̄ + βmm̄+ ρ̂ti) (30)

where l̄,k̄ and m̄ are respectively the mean level of salaries, capital and

materials over the entire period and ρ̂ti is the residual from the production
function regression

4 Cost and Production Functions: Duality

Cost functions are closely related to production functions. In fact the cost
function is the solution to the following cost minimization problem:

C(Q,w, r) = min
K,L

rK + wL

s.t.

Q = exp(ω)KβLα

(31)
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Under this assumption of a Cobb-Douglas production function, the Cost
function has the following form:

C(Q,w, r) = ω̄ +
α

α + β
wit +

β

α + β
rit +

1

α + β
qit −

1

α + β
(ω̄ − ωit) (32)

So notice that the original unobserved productivity term ωit is still in the
cost equation. Moreover, more productive firms are likely to produce more
output and thus qit and ωit are negatively correlated! This would lead us to
conclude that firms have decreasing returns to to scale since we would see
bigger firms have lower unit costs. So you need to use some instruments.

There is some famous work by Nerlove on cost function estimation where
he looks the electric power industry and uses the fact that regulators usually
tell the utility how much to produce. This is a plausibly exogenous shifter of
qit, unless less productive utilities are also allowed to charge higher prices.

5 Reallocation

A principle policy issue are the causes of productivity growth. There is
a famous quote by Bob Lucas which states that “Once you start thinking
about productivity growth, it is hard to think about much else”. Indeed, in
the long-run, there is little that is more important than long-run productivity
growth to economic outcomes.

An important change in the last 20 to 30 years is the interest in using
micro (or establishment level) data to understand the sources of aggregate
productivity growth rather than industry or national aggregates. In other
words the compositional differences in establishment performance might be
important to understand productivity growth. For instance, there is much
interest on where the large increases in Chinese productivity are coming from.
In particular are they due to the increased importance of the private sector
(versus state owned sector) which is composed of more productive establish-
ments, or are all establishments becoming more productive (or perhaps just
the ones that export).

Nick Bloom describes the major changes in the micro-view on productiv-
ity as:

• High levels of turnover

About 15% of jobs are destroyed and 20% created in the private sector
every year. About 80% of this turnover occurs within the same SIC-4
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digit industry. A job is the number of position at an establishments,
about 3 times more workers arrive and leave an establishment. (think
about turnover at the places where you had summer jobs as a teenager)
Davis and Haltiwanger (1991) discuss job creation and destruction in
more detail.

• Heterogeneity within industries

Only about 10% of cross-establishment spread in output, employment,
capital and productivity growth is explained by SIC 4-digit controls.
Typical gap between 10th and 90th percentiles of productivity within
same 4-digit SIC industry is 50%.

• The lumpiness of micro-economic activity

Many establishments have zero or small levels of investment.

• The importance of reallocation in driving productivity

5.1 Olley-Pakes Decomposition

Olley and Pakes use a decomposition of aggregate productivity to understand
where how aggregate productivity growth occurred in the telecommunica-
tions industry. Specifically, before ATT was broken up, it’s telecommuni-
cation equipment manufacturing arm Western Electric had a large share of
the sales in the industry, essentially because it was the sole supplier to ATT.
However, other telecommunication manufacturing firms may have been more
productive, but were prevented from increasing their market share. Table 4
shows this:

Denote industry productivity as Ωt =
∑

i sitωit, where sit is the plant’s
market share, i.e. sit = rit/Rt where Rt is industry level sales. The OP
decomposition comes from the identity:

Ωt =
∑

i

sitωit

= ω̄t︸︷︷︸
Mean Productivity

+
∑

i

sit(ωit − ω̄t)
︸ ︷︷ ︸

Covariance of productivity and market share

i.e. the average productivity level in the industry plus the covariance of
market share and productivity.
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In the Olley-Pakes paper itself, instead of using ω the authors use pit =
exp(ωit), i.e. the exponentiated version. Table 5 show their decomposition
of productivity.

While there is some evidence of reallocation to more productive producers,
it is not clear how significant this effect is.

5.2 Dynamic Decomposition

Another way to decompose productivity growth is to look at covariance based
analysis based on changes in productivity. To make this analysis easier, let’s
first focus on the balanced panel case. The dynamic decomposition is given
by:

∆Ω =
∑

i

sitωit −
∑

i

sit−1ωit−1

=
∑

i

sit(ωit − ωit−1) (within)

+
∑

i

(sit − sit−1)ωit (between)

+
∑

i

(sit − sit−1)(ωit − ωit−1) (cross)

Now we can also add the role of entrants (henceforth E) and exitors
(henceforth χ). Notice, that entrants have sit−1 = 0 by definition, and en-
trants have sit = 0 by definition. This gives us the expanded decomposition:

∆Ω =
∑

i∈I
sit(ωit − ωit−1) (within)

+
∑

i∈I
(sit − sit−1)ωit (between)

+
∑

i∈I
(sit − sit−1)(ωit − ωit−1) (cross)

+
∑

i∈E
(sit)(ωit−1 − ω̄t) (entry)

−
∑

i∈χ
sit−1(ωit−1 − ω̄t) (exit)
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Table 6 shows the importance of the within component in manufacturing,
taken from Foster, Haltiwanger, and Krizan (2001).

Table 7 from Foster, Haltiwanger, and Krizan (2006) shows that the net
entry component is very important component of productivity growth in
retail, but not manufacturing.
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Marginal Effect from Probit
I II III IV

(preferred)

2nd Quintile of Productivity 2.55% -0.29% -0.34% 1.63%
(0.47%) (0.31%) (0.31%) (0.42%)

3rd Quintile of Productivity 1.46% -1.25% -1.40% 0.77%
(0.42%) (0.29%) (0.29%) (0.38%)

4th Quintile of Productivity -0.28% -1.77% -1.74% -0.59%
(0.39%) (0.30%) (0.30%) (0.38%)

5th Quintile of Productivity -1.07% -2.21% -2.26% -1.33%
(0.44%) (0.31%) (0.30%) (0.37%)

Multi-Unit Status -4.17% -4.32% -4.31% -4.26%
(0.26%) (0.26%) (0.26%) (0.26%)

Employment -0.09% -0.10% -0.10% -0.10%
(0.01%) (0.01%) (0.01%) (0.01%)

No AR Records X
No Hot Imputes X
No ASM Years X

Pseudo-R2 7.28% 6.95% 6.98% 7.00%
Log Likelihood -4480.19 -4495.71 -4492.29 -4492.55
Observations 24393 24393 24393 24393
Baseline Exit Probability 3.73% 3.76% 3.75% 3.75%

Table 1: The relationship between productivity and exit is monotonic even
after controlling for plant characteristics and imputed data.
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Probit on Exit Decision

Baseline Exit Probability = 2.98%

Marginal Effect Standard Error
Plant Employees -0.13% 0.02%
Less than 5 employees 2.38% 0.29%
Multi-Unit Firm -2.98% 0.20%
1-5 year old plant 1.66% 0.25%
1 year old plant 0.28% 0.28%
Percentile of Productivity -2.66% 0.47%
Employees*Percentile of Productivity 0.03% 0.01%
Employees*Construction Employment 0.01% 0.00%
Percentile of Productivity*Construction Employment 0.03% 0.03%
Year Fixed Effects Yes

Number of Observations 34503
Pseudo-R2 8.41%
Log-Likelihood -5716

Table 2: A plant at the lowest percentile of productivity has twice the prob-
ability of exiting as a plant in the highest percentile of productivity.
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Table 3: Production Function Estimates from Olley and Pakes (1996).

Table 4: ATT Purchases from Western Electric
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Table 5: Olley-Pakes’s OP Decomposition

Table 6: In manufacturing, the within component has an important role in
productivity growth.
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Table 7: In retail, most productivity growth can be traced to the entry of
new manufacturing plants.
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