
316-466 Monetary Economics – Note 3

In this note, I discuss some handy facts about steady states and local approximations to
them in the context of the Solow (1956) growth model.

Setup

Consider the Solow growth model in its most stripped down form. This consists of a re-
source constraint, a production function, a law of motion for capital accumulation, and the
behavioral assumption that a constant fraction 0 < s < 1 of output is saved and invested.
In standard notation

ct + it = yt = f(kt)

kt+1 = (1− δ)kt + it

ct = (1− s)yt

for some constant depreciation rate 0 < δ < 1 and given initial condition k0.
The following assumptions are made about the production function: It is strictly in-

creasing, strictly concave, needs some capital to produce anything, and satisfies the Inada
conditions

f(k) ≥ 0, f(0) = 0

f 0(k) > 0, f 00(k) < 0

f 0(0) = ∞, f 0(∞) = 0

Scalar difference equation

Putting this together gives a first order non-linear difference equation

kt+1 = H(kt) ≡ sf(kt) + (1− δ)kt

Given the assumptions about f , the function H is also strictly increasing, strictly concave,
etc

H(0) = sf(0) + (1− δ)0 = 0

H 0(k) = sf 0(k) + (1− δ) > 0

H 00(k) = sf 00(k) < 0
H 0(0) = sf 0(0) + (1− δ) =∞
H 0(∞) = sf 0(∞) + (1− δ) = (1− δ) < 1

This model has a single state variable, the capital stock kt. Given the capital stock, it’s
trivial to find output yt = f(kt), consumption ct = (1− s)f(kt), and investment it = sf(kt).
A solution to a difference equation is a function that expresses the capital stock as

a function of time, t an initial condition, k0 and other parameters of the model. Linear
difference equations are trivial to solve. For example, suppose

xt+1 = Axt
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Then the solution is found by recursive substitution

x1 = Ax0

x2 = Ax1 = AAx0 = A2x0
...

xt = Atx0

Unfortunately, non-linear difference equations are not so easy to solve. It’s traditional to
analyze their qualitative behavior in terms of steady states and phase diagrams.

Steady states

A steady state is a fixed point of the mapping kt+1 = H(kt). Put differently, it is a situation
where the state variable is unchanging so that kt+1 = kt = k. The Solow model has two
fixed points. A steady state has to satisfy

k = H(k) = sf(k) + (1− δ)k

One solution is k = 0

0 = H(0) = sf(0) + (1− δ)0

another is the unique positive solution to

δk = sf(k)

The left hand side is a straight line through the origin with positive slope 0 < δ < 1. This is
the steady state level of investment, the amount of investment required to keep the capital
stock constant. The right hand side is a strictly increasing strictly concave function that is
exactly a scalar multiple of the production function f(k). Given the Inada conditions, there
is a unique positive k̄ > 0 determined by the intersection of the two curves δk̄ = sf(k̄).

Local stability

Consider the first order Taylor series approximation to the function H at some point k̃

H(kt) ∼= H(k̃) +H 0(k̃)(kt − k̃)

A natural point around which to approximate H is a fixed point. In this case,

H(kt) ∼= H(k̄) +H 0(k̄)(kt − k̄)

= k̄ +H 0(k̄)(kt − k̄)

where the second line follows because of the definition of k̄ as a point that satisfies k̄ = H(k̄).
If we treat this approximation as exact, we have the linear difference equation

kt+1 = k̄ +H 0(k̄)(kt − k̄)

An intuitive understanding of whether a fixed point is locally stable can be obtained by
considering what would have to be true in order for sequences of kt that satisfy this linear
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difference equation to converge to k̄. Writing xt+1 = kt+1 − k̄ so that xt+1 = H 0(k̄)xt, it is
clear that this linear difference equation has the solution

xt = H 0(k̄)tx0

or

kt = k̄ +H 0(k̄)t(k0 − k̄)

Clearly, kt −→ k̄ if and only if H 0(k̄)t −→ 0 and this in turn requires that
¯̄
H 0(k̄)

¯̄
< 1.

Thus in order for a fixed point to be locally stable, we need the absolute value of the slope
of H at the fixed point to be less than one. If 0 < H 0(k̄) < 1, the convergence to the fixed
point is monotone. If −1 < H 0(k̄) < 0, the convergence to the fixed point takes the form of
dampened oscillations.
Consider the Solow model. The trivial fixed point k̄ = 0 is locally unstable – it repels

capital sequences – because the derivative at this point is H 0(0) = ∞. On the other
hand, the interior fixed point is locally stable – it attracts capital sequences – because the
derivative at this point is positive but less than one.
Of course, just because a fixed point is locally stable, doesn’t mean that it is globally

stable (that would require kt −→ k̄ for all initial conditions k0 in the domain of the original
non-linear map H).

Log-linearizations

Log-linearizing a model has the convenience of providing coefficients that are readily inter-
pretable as elasticities. The log deviation of a variable xt from a steady state level x̄ is just
x̂t ≡ log(xt/x̄). Multiplied by 100, this is approximately the percentage deviation of xt from
x̄. Mechanically, the log linearization of a model proceeds by replacing xt with x̄ exp(x̂t) and
then linearizing the equations of the model with respect to x̂t in a neighborhood of zero.
To illustrate, consider the fundamental non-linear difference equation of the Solow model

kt+1 = H(kt) ≡ sf(kt) + (1− δ)kt

Replace kt by k̄ exp(k̂t) to get

k̄ exp(k̂t+1) = H[k̄ exp(k̂t)] ≡ sf [k̄ exp(k̂t)] + (1− δ)k̄ exp(k̂t)

A first order Taylor series approximation around zero of the term on the far left gives

k̄ exp(k̂t+1) ∼= k̄ exp(0) + k̄ exp(0)k̂t+1 = k̄ + k̄k̂t+1 (1)

Similarly

H[k̄ exp(k̂t)] ∼= H[k̄ exp(0)] +H 0[k̄ exp(0)]k̄ exp(0)k̂t
= H(k̄) +H 0(k̄)k̄k̂t
= k̄ + [sf 0(k̄) + (1− δ)]k̄k̂t (2)

Equating (1) and (2) and simplifying gives

k̂t+1 ∼= [sf 0(k̄) + (1− δ)]k̂t

Here are some rules that make taking log-linearization easier (you should derive these
results yourself to test your understanding).
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1. MULTIPLICATION

zt = xtyt

=⇒ ẑt = x̂t + ŷt

Application: A consumer’s first order condition is often

1 = β
U 0(ct+1)
U 0(ct)

Rt+1

This implies the log linearization

1̂ = β̂ + dU 0(ct+1)− dU 0(ct) + R̂t+1

But since the log deviations of constants are zero, this is just

0 = dU 0(ct+1)− dU 0(ct) + R̂t+1

2. DIVISION

zt = xt/yt

=⇒ ẑt = x̂t − ŷt

Application: The law of motion for money supply is often written

Mt+1 = µtMt

This implies the law of motion for real balances

mt+1 ≡ Mt+1

Pt
= µt

Mt

Pt−1

1

πt

(where πt = Pt/Pt−1). So we have the log linearization

m̂t+1 = µ̂t + m̂t − π̂t

3. ADDITION/SUBTRACTION

zt = xt + yt

=⇒ z̄ẑt = x̄x̂t + ȳŷt

Applications: The resource constraint is often

ct + it = yt

This implies the log linearization

c̄ĉt + ı̄̂ıt = ȳŷt
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Another example is that gross returns are often written as one plus net returns

Rt+1 = 1 + rt+1

This implies

R̄R̂t+1 = r̄r̂t+1

or

R̂t+1 =
r̄

1 + r̄
r̂t+1

4. SMOOTH FUNCTIONS

zt = f(xt)

=⇒ z̄ẑt = f 0(x̄)x̄x̂t

Applications: The marginal utility of consumption may be U 0(c).This implies the log
linearization

U 0(c̄) dU 0(ct) = U 00(c̄)c̄ĉt

As a leading example, if we have constant relative risk aversion preferences with coef-
ficient σ > 0, this implies

dU 0(ct) =
U 00(c̄)c̄
U 0(c̄)

ĉt = −σĉt

As a further example, if we have the rental rate of capital equal to its marginal product

rt = F 0(kt)

this implies

r̂t =
F 00(k̄)k̄
F 0(k̄)

k̂t

5. MULTIVARIATE SMOOTH FUNCTIONS

zt = f(xt, yt)

=⇒ z̄ẑt = fx(x̄, ȳ)x̄x̂t + fy(x̄, ȳ)ȳŷt

Applications: The production function might be y = F (k, n). This implies the log
linearization

ȳŷt = Fk(k̄, n̄)k̄k̂t + Fn(k̄, n̄)n̄n̂t

5



or

ŷt =
Fk(k̄, n̄)k̄

F (k̄, n̄)
k̂t +

Fn(k̄, n̄)n̄

F (k̄, n̄)
n̂t

As a leading example, if we have a Cobb-Douglas production function F (k, n) = kαn1−α

for 0 < α < 1, this is

ŷt = αk̂t + (1− α)n̂t

As a further example, if we have the marginal utility of consumption Uc(c, c), the
associated log linearization is

dUc(ct, ct) =
Ucc(c̄, c)c̄

Uc(c̄, c)
ĉt +

Ucc(c̄, c)c

Uc(c̄, c)
ĉt

And if we use the approximation implied by Rule 3 to write n̄n̂t+cĉt = 0 with c = 1−n̄,
we can also write

dUc(ct, ct) =
Ucc(c̄, 1− n̄)c̄

Uc(c̄, 1− n̄)
ĉt − Ucc(c̄, 1− n̄)n̄

Uc(c̄, 1− n̄)
n̂t

Chris Edmond, 9 September 2003
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