316-632 International Monetary Economics — Note 1

Let me briefly recap on the dynamics of current accounts in small open economies. Consider the problem of a representative consumer in a country that is perfectly integrated with world capital markets and that takes as given a constant world real interest rate r > 0. The consumer is born at date t = 0 and lives until t = T with preferences U(c) over the consumption vector

$$c = (c_0, c_1, \cdots, c_T)$$

For simplicity, I assume that the consumer discounts the future at a geometric rate and has time-separable preferences of the form

$$U(c) = u(c_0) + \beta u(c_1) + \beta^2 u(c_2) + \dots + \beta^T u(c_T)$$
$$= \sum_{t=0}^T \beta^t u(c_t)$$

This consumer faces a sequence of *flow budget constraints*, each of the form

$$B_{t+1} - B_t = rB_t + y_t - c_t - i_t - g_t$$

The change in net foreign assets $B_{t+1} - B_t$ is the country's current account balance. If $B_{t+1} > B_t$, the country runs a current account surplus in date t while if $B_{t+1} < B_t$, the country runs a current account deficit. Government expenditure $\{g_t\}$ is a known exogenous sequence. The sum $rB_t + y_t$ is Gross National Product (GNP) with Gross Domestic Product (GDP) denoted by y_t . GDP is determined by the physical capital stock (labor is not a factor of production) according to a production function

$$y_t = F(k_t)$$

Investment is the change in the capital stock net of depreciation, $i_t = k_{t+1} - k_t - \delta k_t$ where δ denotes the depreciation rate. I will assume that $\delta = 0$ so that physical capital never depreciates. This implies that

$$i_t = k_{t+1} - k_t$$

The initial capital stock $k_0 > 0$ is a given parameter of the model. Choosing an investment plan is equivalent to choosing a sequence of capital installations $\{k_{t+1}\}$.

Intertemporal budget constraint

The sequence of flow budget constraints can be integrated to give a single *intertemporal* (or *present value*) *budget constraint*. This is done by recursive substitution. The basic idea is to continuously eliminate the future asset terms, B_{t+1} , from the constraints. Mechanically,

$$B_1 = (1+r)B_0 + y_0 - c_0 - i_0 - g_0$$

$$B_2 = (1+r)B_1 + y_1 - c_1 - i_1 - g_1$$

Substituting B_1 into the second equation gives

$$B_2 = (1+r)[(1+r)B_0 + y_0 - c_0 - i_0 - g_0] + y_1 - c_1 - i_1 - g_1$$

Now write out an expression for B_3

$$B_{3} = (1+r)B_{2} + y_{2} - c_{2} - i_{2} - g_{2}$$

= $(1+r)\{(1+r)[(1+r)B_{0} + y_{0} - c_{0} - i_{0} - g_{0}] + y_{1} - c_{1} - i_{1} - g_{1}\} + y_{2} - c_{2} - i_{2} - g_{2}$

More generally, for any t

$$B_{t+1} = (1+r)^{t+1} B_0 + \sum_{s=0}^{t} (1+r)^{t-s} (y_s - c_s - i_s - g_s)$$

Dividing throughout by the common factor $(1+r)^t$, evaluating at t = T and rearranging gives the intertemporal budget constraint

$$\sum_{t=0}^{T} \left(\frac{1}{1+r}\right)^{t} c_{t} + \left(\frac{1}{1+r}\right)^{T} B_{T+1} = (1+r)B_{0} + \sum_{t=0}^{T} \left(\frac{1}{1+r}\right)^{t} (y_{t} - i_{t} - g_{t})$$

Intertemporal optimization

The consumer's problem is to choose a consumption vector c and an investment plan to maximize her utility function subject to the budget constraint, the production function, and the definition of investment. The Lagrangian for this problem is

$$L = \sum_{t=0}^{T} \beta^{t} u(c_{t}) + \lambda \left[(1+r)B_{0} + \sum_{t=0}^{T} \left(\frac{1}{1+r} \right)^{t} (y_{t} - i_{t} - g_{t} - c_{t}) - \left(\frac{1}{1+r} \right)^{T} B_{T+1} \right]$$

$$= \sum_{t=0}^{T} \beta^{t} u(c_{t}) + \lambda \left[(1+r)B_{0} + \sum_{t=0}^{T} \left(\frac{1}{1+r} \right)^{t} (F(k_{t}) - (k_{t+1} - k_{t}) - g_{t} - c_{t}) - \left(\frac{1}{1+r} \right)^{T} B_{T+1} \right]$$

where λ denotes a Lagrange multiplier. The first order conditions that characterize this problem include

$$\frac{\partial L}{\partial c_t} = 0 \qquad \Leftrightarrow \qquad \beta^t u'(c_t) - \lambda \left(\frac{1}{1+r}\right)^t = 0 \qquad \text{each } t$$
$$\frac{\partial L}{\partial k_{t+1}} = 0 \qquad \Leftrightarrow \qquad -\lambda \left(\frac{1}{1+r}\right)^t + \lambda \left(\frac{1}{1+r}\right)^{t+1} F'(k_{t+1}) = 0 \qquad \text{each } t$$

(We can also derive the obvious conclusion that $B_{T+1} = 0$ by noting that there is a cost to acquiring assets in the last period but no offsetting benefit). The optimality conditions can be rearranged to give the familiar consumption-smoothing condition and the requirement that investment take place up to the point where the marginal product of capital equals the given world real interest rate. In this notation,

$$u'(c_t) = \beta(1+r)u'(c_{t+1})$$

 $r = F'(k_{t+1})$

We can invert the last condition to solve for the capital stock in terms of r. When r is constant, k_{t+1} is constant at some $k = (F')^{-1}(r)$ too. With a constant exogenous world real interest rate, capital accumulation is not determined simultaneously with consumption.

The consumption function

To solve for consumption, we have to combine the first order condition

$$u'(c_t) = \beta(1+r)u'(c_{t+1})$$

with the budget constraint

$$\sum_{t=0}^{T} \left(\frac{1}{1+r}\right)^{t} c_{t} = (1+r)B_{0} + \sum_{t=0}^{T} \left(\frac{1}{1+r}\right)^{t} (y_{t} - i_{t} - g_{t})$$

(I have used the fact that $B_{T+1} = 0$).

Example 1.

Suppose that $\beta(1+r) = 1$ so that the discount rate $\rho \equiv \beta^{-1} - 1$ is equal to the world real interest rate r. Then

$$u'(c_t) = u'(c_{t+1})$$

implies that

$$c_t = c_{t+1} = \bar{c} \qquad \text{each } t$$

We still need to solve for this level \bar{c} of consumption. Substituting into the budget constraint

$$\sum_{t=0}^{T} \left(\frac{1}{1+r}\right)^{t} \bar{c} = (1+r)B_{0} + \sum_{t=0}^{T} \left(\frac{1}{1+r}\right)^{t} (y_{t} - i_{t} - g_{t})$$

Since \bar{c} is the same for all t we can pull it outside of the sum

$$\bar{c}\sum_{t=0}^{T} \left(\frac{1}{1+r}\right)^{t} = (1+r)B_0 + \sum_{t=0}^{T} \left(\frac{1}{1+r}\right)^{t} (y_t - i_t - g_t)$$

Now evaluating the sum on the left hand side gives (from a standard formula for geometric series, $\sum_{i=0}^{n} x^{i} = \frac{1-x^{n+1}}{1-x}$ for 0 < x < 1),

$$\sum_{t=0}^{T} \left(\frac{1}{1+r}\right)^{t} = \frac{1 - \left(\frac{1}{1+r}\right)^{T+1}}{1 - \left(\frac{1}{1+r}\right)} = \left[1 - (1+r)^{-(T+1)}\right] \left(\frac{1+r}{r}\right)$$

So our consumption function is

$$\bar{c} = \frac{1}{1 - (1+r)^{-(T+1)}} \frac{r}{1+r} \left[(1+r)B_0 + \sum_{t=0}^T \left(\frac{1}{1+r}\right)^t (y_t - i_t - g_t) \right]$$

(Recall that $k = (F')^{-1}(r)$ so that everything on the right hand side can be written in terms of exogenous variables). This is a version of the permanent income hypothesis. The

main determinant of consumption is intertemporal wealth (or "permanent income"). The marginal propensity to consume out of wealth depends on T As T become large,

$$\bar{c} = \lim_{T \to \infty} \left\{ \frac{1}{1 - (1+r)^{-(T+1)}} \frac{r}{1+r} \left[(1+r)B_0 + \sum_{t=0}^T \left(\frac{1}{1+r} \right)^t (y_t - i_t - g_t) \right] \right\}$$
$$= \frac{r}{1+r} \left[(1+r)B_0 + \sum_{t=0}^\infty \left(\frac{1}{1+r} \right)^t (y_t - i_t - g_t) \right]$$

Thus in the long-horizon limit, consumption is simply proportional to intertemporal wealth.

The infinite-horizon model

In this case, the consumer's preferences are ordered by

$$U(c) = u(c_0) + \beta u(c_1) + \beta^2 u(c_2) + \cdots$$
$$= \sum_{t=0}^{\infty} \beta^t u(c_t)$$

which is well defined if $0 < \beta < 1$ and the period utility function is either i) bounded, or ii) such that consumption does not grow too fast. The natural infinite-horizon budget constraint is

$$\sum_{t=0}^{\infty} \left(\frac{1}{1+r}\right)^t c_t + \lim_{T \to \infty} \left(\frac{1}{1+r}\right)^T B_{T+1} = (1+r)B_0 + \sum_{t=0}^{\infty} \left(\frac{1}{1+r}\right)^t (y_t - i_t - g_t)$$

In order to make this well defined, it is standard practice to impose a "no-Ponzi-game" constraint of the form

$$\lim_{T \to \infty} \left(\frac{1}{1+r}\right)^T B_{T+1} \ge 0$$

to ensure that the consumer cannot roll-over debt continuously. This leads to the requirement that the present value of consumption satisfy

$$\sum_{t=0}^{\infty} \left(\frac{1}{1+r}\right)^t c_t \le (1+r)B_0 + \sum_{t=0}^{\infty} \left(\frac{1}{1+r}\right)^t (y_t - i_t - g_t)$$

(Of course, if $u(c_t)$ is strictly increasing in c_t this will always hold with equality). The same first order conditions can be obtained, namely,

$$u'(c_t) = \beta(1+r)u'(c_{t+1})$$

 $r = F'(k_{t+1})$

Example 2.

Now suppose that period utility has the isoelastic form

$$u(c) = \frac{c^{1-\frac{1}{\sigma}} - 1}{1 - \frac{1}{\sigma}}$$

where $\sigma > 0$ denotes the constant intertemporal elasticity of substitution of the consumer. Then the marginal utility of consumption at date t is $u'(c_t) = c_t^{-\frac{1}{\sigma}}$ so that the consumption smoothing condition can be written

$$c_t^{-\frac{1}{\sigma}} = \beta (1+r) c_{t+1}^{-\frac{1}{\sigma}}$$

or

$$c_{t+1} = \beta^{\sigma} (1+r)^{\sigma} c_t$$

If $\beta(1+r) = 1$ we again have that $c_{t+1} = c_t$. More generally, we have

$$c_t = \left[\beta^{\sigma} (1+r)^{\sigma}\right]^t c_0$$

so that consumption at any date is a scaled up or down version of consumption at date zero. As before, if the consumer is relatively patient — so that she discounts less than the world interest rate — she has a growing consumption path, while if the consumer is relatively impatient she has a shrinking consumption path.

Now combine the formula $c_t = [\beta^{\sigma}(1+r)^{\sigma}]^t c_0$ with the intertemporal budget constraint

$$\sum_{t=0}^{\infty} \left(\frac{1}{1+r}\right)^t c_t = (1+r)B_0 + \sum_{t=0}^{\infty} \left(\frac{1}{1+r}\right)^t (y_t - i_t - g_t)$$

to determine the initial consumption c_0 . Obviously,

$$c_0 \sum_{t=0}^{\infty} \left[\beta^{\sigma} (1+r)^{\sigma-1}\right]^t = (1+r)B_0 + \sum_{t=0}^{\infty} \left(\frac{1}{1+r}\right)^t (y_t - i_t - g_t)$$

But

$$\sum_{t=0}^{\infty} \left[\beta^{\sigma} (1+r)^{\sigma-1} \right]^t = \frac{1}{1-\beta^{\sigma} (1+r)^{\sigma-1}} = \frac{1+r}{1+r-\beta^{\sigma} (1+r)^{\sigma}}$$

(Assuming that $0 < \beta^{\sigma}(1+r)^{\sigma-1} < 1$). Hence

$$c_0 = \frac{r+v}{1+r} \left[(1+r)B_0 + \sum_{t=0}^{\infty} \left(\frac{1}{1+r} \right)^t (y_t - i_t - g_t) \right]$$

where the number v is

$$v \equiv 1 - \beta^{\sigma} (1+r)^{c}$$

v summarizes the influence of σ and of $\beta(1+r) \neq 1$. If $\beta(1+r) = 1$, we have the same consumption function as in Example 1 with v = 0.

Dynamics of the current account

Let me introduce some notation which is helpful for discussing present value budget constraints. For any variable x, let \tilde{x}_t denote the *permanent value* of x at date t. This is the solution to

$$\sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} \tilde{x}_t = \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} x_s$$

For a given world real interest rate r > 0, this is a mapping from the sequence $\{x_s\}$ to the single number \tilde{x}_t . Specifically,

$$\tilde{x}_t = \frac{r}{1+r} \sum_{s=t}^{\infty} \left(\frac{1}{1+r}\right)^{s-t} x_s$$

(Using $\sum_{i=0}^{\infty} z^i = (1-z)^{-1}$ for 0 < z < 1 and rearranging). Hence the permanent value is a measure of the central tendency of the sequence $\{x_s\}$ weighted by the discount factors.

Now suppose that $\beta(1+r) = 1$ as in Example 1. Then as in that example, the consumption function is

$$c_0 = \frac{r}{1+r} \left[(1+r)B_0 + \sum_{t=0}^{\infty} \left(\frac{1}{1+r} \right)^t (y_t - i_t - g_t) \right]$$

Or at any initial date t,

$$c_t = \frac{r}{1+r} \left[(1+r)B_t + \sum_{s=t}^{\infty} \left(\frac{1}{1+r} \right)^{s-t} (y_s - i_s - g_s) \right]$$

(This follows using the changes of variable $0 \mapsto t$ and $t \mapsto s - t$). In terms of permanent values, this is just

$$c_t = rB_t + \tilde{y}_t - \tilde{i}_t - \tilde{g}_t$$

Now recall the flow budget constraint

$$B_{t+1} - B_t = rB_t + y_t - c_t - i_t - g_t$$

and eliminate consumption using $c_t = rB_t + \tilde{y}_t - \tilde{i}_t - \tilde{g}_t$. This gives

$$B_{t+1} - B_t = (y_t - \tilde{y}_t) - (i_t - \tilde{i}_t) - (g_t - \tilde{g}_t)$$

In this example, the current account $B_{t+1} - B_t$ is the sum of three terms, each the difference between a variable and its permanent value. If y_t is relatively high, so that $y_t > \tilde{y}_t$, there will (*ceteris paribus*) be a current account surplus, $B_{t+1} > B_t$. Similarly, if i_t or g_t is relatively, high, there will be a current account deficit. Over time, of course, the present value of current accounts must be zero.

CHRIS EDMOND, 11 AUGUST 2003