
316-406 ADVANCED MACRO TECHNIQUES Midterm Solutions

Chris Edmond hcpedmond@unimelb.edu.aui

This exam lasts 90 minutes and has three questions, each of equal marks. Within each question

there are a number of parts and the weight given to each part is also indicated. You have 10

minutes perusal before you can start writing answers.

Question 1. Stochastic Solow Growth Model (30 marks): Let time be discrete, t = 0, 1, ..... Let the

national resource constraint be

ct + it = yt = ztf(kt)

where ct denotes consumption, it denotes investment, yt denotes output, and kt denotes

capital. The production function has the properties

f(0) = 0

f 0(k) > 0, f 00(k) < 0

lim
k→0

f 0(k) = ∞, lim
k→∞

f 0(k) = 0

The production function is buffeted by random IID technology shocks {zt} with properties to
be described below and with a given initial condition z0. Let capital accumulation be given

by

kt+1 = it, k0 given

(i.e., there is "full depreciation"). Finally, let consumption be a fixed fraction of national

output

ct = (1− s)yt, 0 < s < 1

where s denotes the national saving rate.

(a) (6 marks): Show that this model can be reduced to a single non-linear stochastic difference

equation in kt and zt, i.e., that you can write the model as

kt+1 = ψ(kt, zt), k0 and z0 given

Provide an explicit formula for the function ψ.
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Solution: Straightforward manipulations give

kt+1 = it = ztf(kt)− ct

= ztf(kt)− (1− s)ztf(kt)

= sztf(kt)

So we have a single non-linear difference equation

kt+1 = sztf(kt) ≡ ψ(kt, zt)

with given initial conditions k0 and z0.

(b) (6 marks): Let zt = z̄ = 1 always and let k̄ denote a solution to

k̄ = ψ(k̄, 1)

How many such k̄ are there? Linearize the function ψ(kt, 1) around each of these points and

determine the local stability or instability of each such point.

Solution: Let k̄ denote a solution to

k̄ = ψ(k̄, 1) = sf(k̄)

There a two such points one is k̄ = 0, since 0 = sf(0) = 0 and the other is interior, k̄ > 0.

The interior point is found as the intersection of the 45-degree line through the origin with

the concave function sf(k) (concave since f(k) is concave and s is a positive constant). The

linearization is

kt+1 ' k̄ + sf 0(k̄)(kt − k̄)

Since limk̄→0 f 0(k̄) = ∞, the trivial steady state is unstable. Since sf(k) cuts the 45-degree
line from above, 0 < sf 0(k̄) < 1, so the interior steady state is (locally) stable.

(c) (6 marks): Suppose that the production function is Cobb-Douglas with capital share α,

f(k) ≡ kα, 0 < α < 1
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Provide an explicit solution for each k̄ (continuing to hold zt = z̄ = 1). Explain how the fixed

points depend on the parameters α and s. Given economic interpretations.

Solution: Clearly one solution is the trivial k̄ = 0 which does not depend on any parameters and

can be ignored. The other is the solution to

k̄ = sk̄α

or

log(k̄) =
1

1− α
log(s)

Clearly the steady state capital stock is higher when national savings, s, is higher and is higher

the more intensively capital is used in production.

(e) (12 marks): Suppose that log(zt) are IID Gaussian with mean 0 and variance σ2. Let

x̂t = log

µ
xt
x̄

¶

be the log deviation of some variable from its "non-stochastic steady state". Log-linearize

ψ(kt, zt) to derive an approximate linear stochastic difference equation in the state k̂t and the

shocks ẑt (assume as above that f(k) is Cobb-Douglas). Solve for the stationary distribution

of k̂t and explain how its mean and variance depend on the parameters α, s and σ. Give

economic interpretations.

Solution: Write the stochastic difference equation as

kt+1 = sztk
α
t ≡ ψ(kt, zt)

There’s actually no need to approximately log-linearize this. The model is already exactly

log-linear! Take logs to get

log(kt+1) = log(s) + log(zt) + α log(kt)

Now subtract log(k̄) from both sides

log(kt+1)− log(k̄) = log(s) + log(zt) + α log(kt)− log(k̄)
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= log(s) + log(zt) + α[log(kt)− log(k̄)]− (1− α) log(k̄)

= log(s) + log(zt) + α[log(kt)− log(k̄)]− (1− α)
1

1− α
log(s)

= log(zt) + α[log(kt)− log(k̄)]

or

k̂t+1 = αk̂t + ẑt

(which uses log(z̄) = 0 so ẑt = log(zt)). If you had log-linearized you would get the same

result. Standard calculations then give that the stationary distribution for the log deviation

k̂t is normal with mean

E{k̂t} = 1

1− α
E{ẑt} = 0

and variance

Var{k̂t} = 1

1− α2
Var{ẑt} = σ2

1− α2

On average, the log-deviations of the capital stock from their steady state value are zero:

remember that these are deviations and if the deviations from the steady state are not zero

on average, maybe we should focus our attention elsewhere. The variance around this mean

is increasing both in the variance σ2 of the technology shocks but also in the persistence of

the capital stock. That is, when α → 1, the production function becomes nearly linear and

deviations from steady state are slow to die out. The more persistent these deviations, the

higher the long run variance of the distribution of the capital stock.
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Question 2. Stochastic Labor Demand (30 marks): Suppose that a firm faces a stochastic real wage

rate each period which follows an m-state Markov chain (w,P, µ0) where w is an m-vector,

P is a transition matrix and µ0 is an initial distribution. Suppose that each period, the firm

solves the static profit maximization problem over employment

π(w) = max
n
{f(n)− wn}

where w is this period’s random wage realization and n is the firm’s labor force. Suppose

that f(n) is strictly increasing and strictly concave in n.

(a) (5 marks): Explain how a labor demand schedule of the form

n = ϕ(w)

can be derived from the optimization problem. Explain how you characterize the function ϕ.

What is the sign of ϕ0(w)? Why?

Solution: The firm’s problem is to maximize a strictly concave function. The necessary and

sufficient first order condition is

f 0(n) = w

For each w, this implicitly determines a unique n = ϕ(w). (Well defined since f 0(n) is strictly

decreasing in n). Write this implicit function as

f 0[ϕ(w)] = w

So on differentiating with respect to w

f 00[ϕ(w)]ϕ0(w) = 1

or

ϕ0(w) =
1

f 00[ϕ(w)]
< 0

When an additional unit of labor produces less at the margin, a rise in the wage rate will

reduce the firm’s demand for labor.

(b) (5 marks): Explain the stochastic dynamics that nt exhibits. Carefully explain how you could
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simulate the optimal labor demand choices.

Solution: Clearly nt = ϕ(wt) inherits the stochastic dynamics of the Markov chain for wt

(since nt = ϕ(wt) is monotonic). We can say that nt itself follows a Markov chain, namely

(ϕ(w), P, µ0). We could simulate {nt} by simulating {wt} and for each t calculate nt = ϕ(wt).

In particular, we use the initial distribution µ0 to determine initial wages and employment,

and then use the transition matrix P (and a random number generator) to iterate forward.

(c) (10 marks): Suppose that the production function is

f(n) ≡ nγ, 0 < γ < 1

Provide an explicit solution for n = ϕ(w) and for profits π(w). What pattern of labor supply

would one observe given the fluctuations in w? How does your answer depend on the labor

share γ? What is the elasticity of labor demand?

Solution: The first order condition can be written

γnγ−1 = w

or

log(n) = − 1

1− γ
[log(w)− log(γ)]

n =

µ
w

γ

¶− 1
1−γ ≡ ϕ(w)

The elasticity of labor demand is

d log(n)

d log(w)
= − 1

1− γ
< 0

Plugging the solution for labor demand back into the objective function, we have

π(w) = f [ϕ(w)]− wϕ(w)

=

µ
w

γ

¶− γ
1−γ − w

µ
w

γ

¶− 1
1−γ
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We can easily deduce the following relationships between log wages and log labor demand

E{log(nt)} = − 1

1− γ
[E{log(wt)}− log(γ)]

and

Var{log(nt)} = 1

(1− γ)2
Var{log(wt)}

Hence if γ is large (γ → 1) we should see low average employment. Also, since 0 < γ < 1 we

should see that employment is less volatile than wages.

(d) (5 marks). Let the production function be as in part (c). Suppose that the Markov chain has

m = 2 states with

w =

µ
wL wH

¶
and transition matrix

P =

 1− p p

q 1− q

 , 0 < p, q < 1

Finally, the initial distribution is

µ0 =

µ
0 1

¶
Solve for the stationary distribution of wages. Explain how the mean and variance of the

stationary distribution of wages depends on the transition probabilities p and q.

Solution: This Markov chain has a unique invariant distribution π̄ which solves

0 = (I − P 0)π̄

or  0

0

 =
 p −q
−p q


 π̄L

π̄H


Carrying out the calculations, we see that

π̄L =
q

p
π̄H
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But we also know that these elements must satisfy

π̄L + π̄H = 1

So we can solve these two equations in two unknowns to get

π̄L =
q

p+ q
, π̄H =

p

p+ q

As q → 0, the state wL becomes a transient state and the state wH becomes an absorbing

state: once the chain leaves wL, it never returns. Since this happens with probability 1 if

we run the chain long enough, the stationary distribution will be degenerate with π̄ → (0, 1).

Similarly, as p → 0, the state wH becomes a transient state and the state wL becomes an

absorbing state and π̄ → (1, 0).

(e) (5 marks). Suppose further that we have p = q and wL = ω − 1, wH = ω + 1 for some

ω > 1. Compute the mean and variance of the implied stationary distribution of labor demand.

Explain how your answers depend on the parameters ω and γ. Give economic intuition.

Solution: If p = q the stationary distribution is just

 π̄L

π̄H

 =
 1

2

1
2


So the stationary mean is just

E{ϕ(w)} =
X
i

ϕ(wi)π̄i

=
1

2
ϕ(ω − 1) + 1

2
ϕ(ω + 1)

=
1

2

µ
ω − 1
γ

¶− 1
1−γ

+
1

2

µ
ω + 1

γ

¶− 1
1−γ

Notice that because ϕ(w) is convex,

E{ϕ(w)} > ϕ(E{w}) = ϕ(ω)
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The stationary variance is

Var{ϕ(w)} = E{ϕ(w)2}− E{ϕ(w)}2

The second moment is

E{ϕ(w)2} =
X
i

ϕ(wi)
2π̄i

=
1

2
ϕ(ω − 1)2 + 1

2
ϕ(ω + 1)2

=
1

2

µ
ω − 1
γ

¶− 2
1−γ

+
1

2

µ
ω + 1

γ

¶− 2
1−γ

and we can now calculate the variance (the second centered moment) by subtracting E{ϕ(w)}2.
I did not expect you to grind out the algebra of these expressions, only to provide the gen-

eral formulas, especially to recognize that you computed the mean labor supply as E{n} =
E{ϕ(w)} =P

i ϕ(wi)π̄i.
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Question 3. Cake Eating (30 marks): Consider a consumer with utility function

∞X
t=0

βtU(ct), 0 < β < 1

The consumer is endowed with a cake of size x0 at time t = 0. Each period, she has cake xt

and can either consume some, ct, or hold some cake over to next period, xt+1.

(a) (10 marks): Provide a dynamic programming representation of this problem. In your answer,

let V (x) denote the utility value of a cake of size x.

Solution: The Bellman equation for this problem is

V (x) = max
x0≥0

©
U(c) + βV (x0)

ª
where the maximization is subject to the constraint

c+ x0 ≤ x

(b) (15 marks): Let the period utility function be

U(c) ≡ c1−σ

1− σ
, σ > 0

Guess that the value function V (x) and policy function g(x) for your dynamic programming

problem have the forms

V (x) = α
x1−σ

1− σ

g(x) = θx

for some unknown coefficients α > 0 and 0 < θ < 1. Solve for the unknown coefficients.

Solution: The first order and envelope conditions for this problem are

U 0(x− x0) = βV 0(x0)

and

V 0(x) = U 0(c)
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Using the budget constraint c = x− x0 and the guess for the policy function x0 = θx we have

c = (1− θ)x and so the Euler equation can be written

U 0[(1− θ)x] = βU 0[(1− θ)xθ]

With the assumed utility function, U 0(c) = c−σ and so

[(1− θ)x]−σ = β[(1− θ)xθ]−σ

Simplifying, this gives

θ = β
1
σ

(Clearly, 0 < β
1
σ < 1). Now from the envelope condition

V 0(x) = U 0[(1− θ)x]

and so using the guess for the value function, we have

αx−σ = [(1− θ)x]−σ

Simplifying gives

α = (1− θ)−σ

= (1− β
1
σ )−σ > 0

(c) (5 marks): Verify that over the infinite time horizon, the consumer eats all the cake, namely

∞X
t=0

ct = x0

At what rate does the cake diminish? Provide a formula that calculates how long it takes for

there to only be ε > 0 crumbs of cake left. How does this rate of consumption depend on the

parameters β and σ? Give economic intuition.

Solution: Clearly,

ct = (1− θ)xt
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and

xt+1 = θxt, x0 given

So solving the difference equation gives the consumption function

ct = (1− θ)θtx0

and over time

∞X
t=0

ct =
∞X
t=0

(1− θ)θtx0 = (1− θ)x0

∞X
t=0

θt =
(1− θ)

(1− θ)
x0 = x0

(which is well-defined since θ = β
1
σ and 0 < β

1
σ < 1). The cake diminishes geometrically at

rate β
1
σ − 1. The more patient the consumer (higher β) the more slowly the cake diminishes.

As σ → 0, the utility function becomes nearly linear in consumption and consumption at

different dates are perfect substitutes (modulo β). So as σ → 0, the consumer gorges all

the cake in a binge at date t = 0. As σ → ∞, consumption at different dates are perfect
complements and the consumer tries to have a very flat consumption profile over time. Now

call T > 0 the date at which there are ε > 0 crumbs left. This date solves the equation

ε = θTx0

Taking logs and rearranging gives

T =
log( ε

x0
)

log(θ)
=
log( ε

x0
)

log(β
1
σ )
= σ

log( ε
x0
)

log(β)

Although log(β) < 0 since β < 1, we also have log( ε
x0
) < 0 since ε < x0. So T ≥ 0. Notice

that T → 0 as σ → 0 and T →∞ as σ →∞, in line with the perfect substitutes/complements
discussion above.
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