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The small open economy under uncertainty

We now extend our small open endowment economy to allow for shocks.

A. Two-period example

Let there be two dates, t = 0, 1 and let there be S possible states of nature that may be realized at

date t = 1. Index the states by s ∈ S = {1, 2, ..., S} and let the probability of state s be π(s).

• Preferences: The representative consumer has a time and state separable utility function over
consumption c0 and c1(s). The consumer maximizes expected utility

u(c) = U(c0) + β
X
s

U [c1(s)]π(s)

with constant time discount factor 0 < β < 1. The period utility function U(c) is assumed

to be strictly increasing and concave. Consumption at date t = 1 is indexed by which of the

S possible states realizes.

• Endowments: There is no production. Instead, there is simply an exogenously given supply
of the consumption good at each date and state, y0 and {y1(s)}Ss=1. As of date t = 0, the

second period endowment is random because the consumer does not know which state will

realize.

• Market structure: We will assume that the consumer can freely borrow or lend in a complete
set of asset markets. Specifically, we assume the existence of S securities {B1(s)}Ss=1 that pay
one unit of consumption if and only if state s is realized at date t = 1. These are sometimes

known as Arrow securities. Let the price of an Arrow security be q1(s).

• Flow budget constraints: In the first period the consumer has initial endowment y0 and can
consume or buy securities so that

c0 +
X
s

q1(s)B1(s) = y0

In the second period, if state s is realized, the consumer will have B1(s) from the Arrow
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securities that pay off, random endowment y1(s) and can uses this to consume. Hence

c1(s) = B1(s) + y1(s)

• Intertemporal budget constraint : Plugging the set of t = 1 state s budget constraints into the
date t = 0 budget constraint gives the single intertemporal budget constraint

c0 +
X
s

q1(s)c1(s) = y0 +
X
s

q1(s)y1(s)

Note that no probabilities enter this constraint: budget constraints have to hold at every

date and state.

• Optimization: The consumer chooses a complete contingent plan of consumption, c0 and
c1(s) for each s . There is a single Lagrange multiplier λ ≥ 0 to go along with the single

intertemporal budget constraint so that

L = U(c0) + β
X
s

U [c1(s)]π(s) + λ

"
(y0 − c0) +

X
s

q1(s)[y1(s)− c1(s)]

#

The key first order condition for consumption c0 is

∂L
∂c0

= 0⇐⇒ U 0(c0) = λ

And similarly for each state that may occur at date t = 1,

∂L
∂c1(s)

= 0⇐⇒ βU 0[c1(s)]π(s) = λq1(s)

Hence the marginal rate of substitution between consumption today and consumption in any

state tomorrow is

β
U 0[c1(s)]
U 0(c0)

π(s) = q1(s) (1)

and similarly for the marginal rate of substitution between consumption in any two states s

and z,
U 0[c1(s)]π(s)
U 0[c1(z)]π(z)

=
q1(s)

q1(z)

Notice that this implies c1(s) = c1(z) if and only if
π(s)
π(z) =

q1(s)
q1(z)

, otherwise, if the relative
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probabilities do not line up with the relative prices, consumption tilts towards one state or

the other.

• Safe real returns : A portfolio of Arrow securities that pays one unit of consumption for sure
(irrespective of s) can be constructed by buying one of each separate security. Since it involves

buying one of each security, this portfolio – a Bond – has a price

p1 =
X
s

q1(s)

and we can define the real interest rate r1 associated with this bond by

p1 =
1

1 + r1

(the subscript 1 used here is in anticipation of multi-period uncertainty, which we’ll turn to

shortly). The stochastic consumption Euler of a consumer is found by summing the formula

(1) over all the states X
s

β
U 0[c1(s)]
U 0(c0)

π(s) =
X
s

q1(s) = p1

or

U 0(c0) = β(1 + r1)
X
s

U 0[c1(s)]π(s)

You will sometimes see this as written

U 0(c0) = β(1 + r1)E0{U 0(c1)}

where E0{} denotes expectations conditional on date t = 0 information and the notation

indicates that c1 (and hence U 0(c1)) is a random variable.

• Notation: Let’s introduce some dummy variables. Index all date t = 0 variables by s0 and all
date t = 1 variables by s1. Since there is no uncertainty at date t = 0, let π0(s0) = 1 for

some s0 and let π1(s1) denote the probabilities of the states in the second period. Also, let

q0 = 1. Then we can write the consumer’s utility function and budget constraint in terms of

the double-summation formulas

u(c) =
1X

t=0

X
st

U [ct(st)]πt(st) (2)
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and
1X

t=0

X
st

qt(st)ct(st) =
1X

t=0

X
st

qt(st)yt(st) (3)

These have direct multi-period analogues.

B. Dynamic stochastic models

The many period generalization of this model is quite straightforward. We keep a fixed state space

S = {1, 2, ..., S} and let t = 0, 1, 2, .... A history of states, denoted st, is a vector

st = (s0, s1, ..., st) = (s
t−1, st)

The unconditional probability of a history st being realized as of date zero is denoted πt(s
t). The

conditional probability of a state st+1 given st is πt+1(st, st+1)/πt(st). We will always assume that

the initial state s0 is known. The endowments of individuals are given by y = {yt(st)}∞t=0 while
preferences are over consumption plans c = {ct(st)}∞t=0.

The time and state separable utility function is now

u(c) =
∞X
t=0

X
st

βtU [ct(s
t)]πt(s

t)

(compare this to equation (2)). Sometimes this is written more simply as

u(c) = E0

( ∞X
t=0

βtU(ct)

)

where E0 denotes expectations conditional on date t = 0 information.

We again assume a complete set of Arrow securities with qt(s
t) denoting the price as of date

zero of a unit of consumption delivered in date t state st. The intertemporal budget constraint is

then ∞X
t=0

X
st

qt(s
t)ct(s

t) =
∞X
t=0

X
st

qt(s
t)yt(s

t)

(compare this to equation (3)).

The Lagrangian of a consumer is, then,

L =
∞X
t=0

X
st

βtU [ct(s
t)]πt(s

t) + λ
∞X
t=0

X
st

qt(s
t)[yt(s

t)− ct(s
t)]
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The key first order conditions are given by the choice of ct(st) for each date and state

∂L
∂ct(st)

= 0⇐⇒ βtU 0[ct(st)]πt(st) = λqt(s
t)

Now consider consumption choices at different dates and states

βtU 0[ct(st)]πt(st) = λqt(s
t)

βt+1U 0[ct+1(st+1)]πt+1(st+1) = λqt+1(s
t+1)

Recalling that st+1 = (st, st+1) and rearranging

β
U 0[ct+1(st, st+1)]

U 0[ct(st)]
πt+1(s

t, st+1)

πt(st)
=

qt+1(s
t, st+1)

qt(st)

At date t, the history st is known, but which event st+1 will realize next is unknown. A unit of

consumption for sure can be obtained by buying one of each Arrow security that pays off at t+ 1.

As of date zero these securities have price qt+1(st, st+1) but as of date t they have price

Qt(s
t, st+1) ≡ qt+1(s

t, st+1)

qt(st)
(4)

Hence the price at date t of a bond that delivers one unit of consumption for sure in date t+ 1 is

pt(s
t) =

X
st+1

Qt(s
t, st+1) =

X
st+1

qt+1(s
t, st+1)

qt(st)

The one-period real interest rate rt(st) on this bond is given by

pt(s
t) =

1

1 + rt(st)

The stochastic Euler equation for the consumer is therefore

U 0[ct(st)] = β[1 + rt(s
t)]
X
st+1

U 0[ct+1(st, st+1)]
πt+1(s

t, st+1)

πt(st)

which is sometimes simplified to

U 0(ct) = β(1 + rt)Et
©
U 0(ct+1)

ª
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where Et{} denotes expectations conditional on date t information and it is understood that ct is
known at date t but ct+1 is random.

C. Streamlined notation

Having introduced the cumbersome state-contingent notation, we’ll often suspend it’s use and do

things more simply. For example, we might write the utility function as

u(c) = E0

( ∞X
t=0

βtU(ct)

)

with flow constraints

ct +
X
s0

Qt(s
0)Bt+1(s

0) = yt +Bt

where the dependence of consumption, bond holdings, etc, on the underlying history st is suppressed.

D. Linear-quadratic permanent income model

As a simple example, let’s consider a small open economy perfectly integrated into world capital

markets facing constant world real interest rate r > 0 with an exogenous random supply of goods

yt (the stochastic process for yt will be discussed below). Also, suppose that the representative

consumer can only trade in one-period riskless bonds – bonds that pay a unit of consumption no

matter which state realizes. Then the flow budget constraint can be written

ct +Bt+1 = yt + (1 + r)Bt

Substituting this into the consumer’s utility function gives

L = E0
( ∞X

t=0

βtU [yt + (1 + r)Bt −Bt+1]

)

and the key first order condition for bond holdings Bt+1 can be written

∂L
∂Bt+1

= 0⇐⇒ E0
©−βtU 0(ct) + βt+1U 0(ct+1)(1 + r)

ª
= 0

or

U 0(ct) = β(1 + r)Et{U 0(ct+1)}
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From the point of view of date t, the only thing that is random is the marginal utility of consumption

tomorrow.

Now suppose that period utility is quadratic

U(c) = c− a

2
c2, a > 0

Then marginal utility is linear in consumption, U 0(c) = 1 − ac and we can write the consumption

Euler equation as

1− act = β(1 + r)− β(1 + r)aEt{ct+1}

or

Et{ct+1} = β(1 + r)− 1
aβ(1 + r)

+
1

β(1 + r)
ct

In the special case that β(1 + r) = 1, consumption is a random walk (cf. Hall 1978). In this

special case,

Et{ct+1} = ct ⇐⇒ ct+1 = ct + noise

and then by the law of iterated expectations,

Et{ct+k} = ct, t, k ≥ 0

To see that this implies about the level of consumption, recall the intertemporal budget constraint

and take date t = 0 conditional expectations on both sides

E0

( ∞X
t=0

µ
1

1 + r

¶t

ct

)
= (1 + r)B0 + E0

( ∞X
t=0

µ
1

1 + r

¶t

yt

)

And on simplifying

c0 = rB0 +
r

1 + r

∞X
t=0

µ
1

1 + r

¶t

E0{yt}

The linear-quadratic setup gives rise to a "certainty-equivalence" result.

We can go a bit further if we specify a particular stochastic process for yt. Suppose yt is an

autoregression with mean ȳ > 0, specifically

yt+1 = (1− φ)ȳ + φyt + �t+1, 0 < φ < 1
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where �t+1 is white noise. Then the conditional expectations satisfy

Et{yt+k − ȳ} = φk(yt − ȳ), t, k ≥ 0

So the initial level of consumption is therefore

c0 = rB0 +
r

1 + r

∞X
t=0

µ
1

1 + r

¶t

E0{yt − ȳ + ȳ}

= rB0 + ȳ +
r

1 + r

∞X
t=0

µ
1

1 + r

¶t

φt(y0 − ȳ)

= rB0 + ȳ +
r

1 + r − φ
(y0 − ȳ)

or at any date t ≥ 0 (there is nothing special about t = 0)

ct = rBt + ȳ +
r

1 + r − φ
(yt − ȳ)

If output were a constant ȳ in all dates and states, consumption would be rB0 + ȳ. With random

yt, there is a correction term that raises or lowers consumption depending on whether yt is bigger

or smaller than its mean.

The impact of a transitory shock to output is

0 <
∂ct
∂yt

=
r

1 + r − φ
< 1

The more persistent the shock process (i.e., φ → 1) the closer the impact effect is to one. If the

shock process is close to white noise (φ → 0), the impact effect is only r
1+r which is a number like

0.05 or so. Hence transitory shocks to output have a small effect on consumption, permanent shocks

have a big (nearly one-for-one) effect on consumption. This leads to an important implication of

the small open economy model: the trade balance yt− ct is pro-cylical. When output is unusually

high, consumption increases by less than the movement in output so the trade balance increases.

This is counter-factual for most countries. In the data a boom tends to be associated with a trade

deficit, not a trade surplus.

Chris Edmond

25 July 2004
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