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Aside on quantity and price indices with CES utility

Consider a static 2-good utility maximization problem of the form: maximize utility

U(c1, c2) = V (C(c1, c2))

where
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subject to the budget constraint

p1c1 + p2c2 ≤ y

The function C is a constant elasticity of substitution aggregator and overall utility U is some

monotonic increasing transformation V of C. The parameter θ > 0 is the elasticity of substitution

between c1 and c2. When θ → ∞ the two goods are perfect substitutes, when θ → 0 the two

goods are perfect complements, and when θ → 1 the utility function is Cobb-Douglas. (You

need to use l’Hôpital’s rule to show this last claim). The parameter α will turn out to measure an

expenditure share.

Let’s solve this problem. The first order conditions are
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for some unknown Lagrange multiplier λ. Computing the marginal utilities on the left hand side
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The marginal rate of substitution at an optimum is therefore
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Notice that this implies

d log( c1c2 )
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= −θ

which justifies the name given to the aggregator.

Now we can solve for the demand functions by combining this tangency condition with the

budget constraint. That is,
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Computing the price index

We now want to find functions C(ĉ1, ĉ2) and P (p1, p2) such that

p1ĉ1 + p2ĉ2 = P (p1, p2)C(ĉ1, ĉ2)

and

U(ĉ1, ĉ2) = V (C(ĉ1, ĉ2))

at the utility maximizing demands ĉ1, ĉ2. Mechanically, we do this by minimizing expenditure PC

subject to the constraint that C = 1.

Now C = 1 if and only if
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Plugging in the demand functions with y = PC = P gives
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We need to solve this expression for P as a function of p1 and p2. Write
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After all that algebra, we see that the price index is itself a CES aggregate of the individual prices

p1 and p2. We will use this result in our model of complete markets with non-traded goods (see

Note 4a).
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