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Digression on log-linearization

A simple method for approximating the solution to a dynamic stochastic model is to: (i) computing

the non-stochastic steady state, (ii) log-linearize the model around the steady state, and (iii) solving

the resulting system of difference equations. To illustrate this procedure, suppose we have a closed

economy RBC model. In what follows, I assume that you are comfortable enough with the event-tree

notation that you could make this exposition more rigorous if you were so inclined.

Consider the social planning problem of maximizing utility

E0

( ∞X
t=0

βt[U(ct) + V (ct)]

)

subject to a resource constraint

ct + kt+1 = ztF (kt, nt) + (1− δ)kt

with time constraint

nt + ct = 1

I assume that period utility is separable between consumption and leisure for expository convenience.

Finally, let log technology follows an AR(1),

log(zt+1) = φ log(zt) + εt+1, 0 < φ < 1

where εt+1 is Gaussian white noise. Since this process has unconditional mean of zero, the long run

average productivity level is z = 1. (I will use unadorned letters to denote steady state values).

The first order conditions associated with this problem include the consumption Euler equa-

tion

1 = Et

½
β
U 0(ct+1)
U 0(ct)

[1 + zt+1Fk(kt+1, nt+1)− δ]

¾
and the labor supply condition

V 0(1− nt)

U 0(ct)
= ztFn(kt, nt)

along with the resource constraint.
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Non-stochastic steady state

Suppose that we turn off the shocks. Let z = 1 and solve for steady state capital, consumption and

employment (k, c, n). These satisfy the Euler equation

1 = β[1 + Fk(k, n)− δ]

the labor supply condition
V 0(1− n)

U 0(c)
= Fn(k, n)

and the resource constraint.

c+ δk = F (k, n) = y

These constitute three non-linear equations in three unknowns. In principle, we could solve them

on a computer.

Log-linearization

Define the log-deviation of a variable xt from its steady state value as

x̂t = log
³xt
x

´
With this notation, a variable is at steady state when its log-deviation is zero. The popularity

of this method comes from the units-free nature of the variables. Log-deviations are approximate

percentage deviations from steady state and the coefficients of log-linear models are elasticities.

Suppose that we have a production function

yt = F (kt, nt)

Then the log-linear approximation around
³
k̂t, n̂t

´
= 0 is

yŷt = Fk(k, n)kk̂t + Fn(k, n)nn̂t

which is often written

ŷt =
Fk(k, n)k

F (k, n)
k̂t +

Fn(k, n)n

F (k, n)
n̂t
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so that the coefficients on the log-deviations k̂t, n̂t are elasticities. A 1% increase in k̂t near the

steady-state gives approximately a Fk(k,n)k
F (k,n) 100% increase in ŷt.

Let the production function be y = F (k, n) = kθn1−θ so that

ŷt = θk̂t + (1− θ)n̂t

Now let the utility functions be

U(c) =
c1−σ

1− σ
=⇒\U 0(ct) =

U 00(c)c
U 0(c)

ĉt = −σĉt

V (c) =
c1−η

1− η
=⇒\V 0(ct) =

V 00(c)c
V 0(c)

ĉt = −ηĉt

Using the time constraint, we also know that c = 1− n and that

(1− n)ĉt + nn̂t = 0

so that we can also write

\V 0(1− nt) =
n

1− n
ηn̂t

This means that the log-linear versions of our equations are

0 = Et

½
−σ(ĉt+1 − ĉt) +

1

β
[ẑt+1 + (θ − 1)(k̂t+1 − n̂t+1)]

¾
0 =

µ
n

1− n
η + θ

¶
n̂t + σĉt − ẑt − θk̂t

0 = cĉt + kk̂t+1 − yẑt − [θy + (1− δ)k]k̂t − (1− θ)yn̂t

ẑt+1 = φẑt + εt+1

Method of undetermined coefficients

We now have a system of linear difference equations. Let me introduce the notation

Xt = k̂t+1, Yt =

 ct

nt

 , Zt = ẑt
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(Notice the timing convention! This is because k̂t+1 is chosen at date t). Following the notation in

Uhlig (1999), we have the system of equations

0 = AXt +BXt−1 + CYt +DZt

0 = Et{FXt+1 +GXt +HXt−1 + JYt+1 +KYt + LZt+1 +MZt}
Zt+1 = NZt + εt+1

where the first equation captures the "static" resource constraint and labor supply conditions so that

A and B are 2-by-1, C is 2-by-2, D is 2-by-1. The second equation captures the "forward-looking"

consumption Euler equation, and the last is the law of motion for the exogenous shocks.

This notation is a little too general. For this particular model, the coefficients G,H and M

are all zero so that in what follows I will simply write the forward looking equation as

0 = Et{FXt+1 + JYt+1 +KYt + LZt+1}

The key step in this procedure is to "guess" that solutions to the model take the form

Xt = PXt−1 +QZt

Yt = RXt−1 + SZt

for unknown coefficient matrices P,Q,R, S. For this model, P and Q are scalars while R and S

are 2-by-1. We now establish what restrictions the RBC model puts on these unknown coefficient

matrices. To do this, plug the guesses into the system of static equations to get

0 = A(PXt−1 +QZt) +BXt−1 +C(RXt−1 + SZt) +DZt

= (AP +B + CR)Xt−1 + (AQ+D + CS)Zt

But for this to hold identically for any state Xt−1 and any shock Zt, it must be the case that

0 = AP +B + CR

0 = AQ+D + CS
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Supposing that the 2-by-2 matrix C is invertible, this is the same as

R = −C−1(AP +B)

S = −C−1(AQ+D)

So once we have solved for the coefficients for the evolution of the endogenous state variables, namely

P and Q, we can easily back out the coefficients for the evolution of the control variables. Now

plugging our guesses into the system of Euler equations gives

0 = Et{FXt+1 + JYt+1 +KYt + LZt+1}
= Et{F (PXt +QZt+1) + J(RXt + SZt+1) +K (RXt−1 + SZt) + LZt+1}
= Et{F (P (PXt−1 +QZt) +QZt+1) + J(R(PXt−1 +QZt) + SZt+1) +K (RXt−1 + SZt) + LZt+1}
= Et{FP 2Xt−1 + FPQZt + FQZt+1 + JRPXt−1 + JRQZt + JSZt+1 +KRXt−1 +KSZt + LZt+1}

Now taking the conditional expectations

0 = FP 2Xt−1 + FPQZt + FQNZt + JRPXt−1 + JRQZt + JSNZt +KRXt−1 +KSZt + LNZt

And on collecting terms

0 = (FP 2 + JRP +KR)Xt−1 + (FPQ+ FQN + JRQ+ JSN +KS + LN)Zt

Hence our restrictions are

0 = FP 2 + JRP +KR

0 = FPQ+ FQN + JRQ+ JSN +KS + LN

Now plug the equation R = −C−1(AP +B) into the first set of restrictions to get

0 = FP 2 − J(C−1(AP +B))P −K(C−1(AP +B))

=
¡
F − JC−1A

¢
P 2 − ¡JC−1B +KC−1A

¢
P −KC−1B

This is a quadratic equation in the unknown P . We solve it and choose the stable root (this is
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equivalent to imposing a transversality condition). Once we have determined P , we also have

R = −C−1(AP +B).

Turning now to the second set of restrictions from the forward-looking equation, we use the

fact that Q is a scalar and that S = −C−1(AQ+D) to write

0 = (FP + FN + JR)Q− J(C−1(AQ+D))N −KC−1(AQ+D) + LN

= (FP + FN + JR− JC−1AN −KC−1A)Q− JC−1DN −KC−1D + LN

or

Q =
JC−1DN +KC−1D − LN

FP + FN + JR− JC−1AN −KC−1A

which we can compute because we have already solved for P and R and all the other coefficients

were known to begin with. Finally, we can recover the remaining coefficient via S = −C−1(AQ+D).
So, after all that, we have a method for solving for the unknown coefficients. To recap: we

solve for the non-stochastic steady state and construct the known matrices of coefficients. We then

solve a quadratic equation for the critical P . We then back out the associated R so that we have

all the coefficients on the endogenous state variables. Using P and R we solve for the coefficients

on the shocks, Q and S. And then we’re done and ready to do interesting things like simulating the

model by iterating on the linear laws of motion

Xt = PXt−1 +QZt

Yt = RXt−1 + SZt

Zt+1 = NZt + εt+1

Chris Edmond

16 August 2004
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