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CHAPTER 4 
Random Walks, Risk and Arbitrage 

 
A. Market Efficiency and Random Walks 

 
 Market efficiency was characterized earlier as existing when market prices reflect 
information. Since information dissemination (news) occurs randomly, security price 
changes might be expected to occur randomly. Testing for market efficiency (the extent 
to which prices reflect information) generally involves testing for randomness in price 
changes. Tests of market efficiency are concerned with which types of information are 
reflected in security prices and the length of time required for new information to be 
reflected in security prices. Tests and studies of market efficiency are classified into three 
types: 
 
  1. Weak form efficiency: concerned with whether market prices reflect 

historical price sequences 
  2. semi-strong form efficiency: concerned with whether market prices reflect 

all publicly available information 
  3. strong form efficiency: concerned with whether security prices reflect all 

information, including publicly available and not publicly available 
information. 

 
Such tests are important for purposes of this class for several reasons: 
 
  1. It is important to determine whether apparent cycles (for example, booms and 

busts) in security prices are the result of predictable causes or the result of purely 
random behavior. 

  2. It is important to determine whether apparently unusual price behavior is the 
result of illicit trading behavior or the result of purely random behavior. 

  3. Understanding whether investors respond rationally to information requires that 
we be able to distinguish random price behavior from actual price behavior. 

 
 Perhaps the most important reason to study the efficiency of markets is that 
inefficiencies are the key to making stock market profits. That is, one of the primary 
objectives of investors is to find unpriced or underpriced qualities in stocks. However, 
this search is likely to be complicated by the searches of thousands or millions of other 
investors, all looking for an advantage. In his presidential address to the American 
Finance Association, Richard Roll [1988] discussed the ability of academics to explain 
financial phenomena: 
 

The maturity of a science is often gauged by its success in predicting important 
phenomena. Astronomy, the oldest science, is able to predict the positions of 
planets and the reappearance of comets with a high degree of accuracy... The 
immaturity of our science [finance] is illustrated by the conspicuous lack of 
predictive content about some of its most intensely interesting phenomena, 
particularly changes in asset prices. General stock price movements are 
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notoriously unpredictable and financial economists have even developed a 
coherent theory (the theory of efficient markets) to explain why they should be 
unpredictable. 

 
The theories of capital market efficiency quite powerful in that they are quite simple and 
do explain much of the behavior that is observed in capital markets. However, much 
empirical evidence exists which refutes capital markets efficiency. It should be noted that 
much of this evidence is contradictory and often reflects investors' desire to discover 
money making strategies, investment advisors' needs to sell their services and 
academicians' needs for publications. Furthermore, some evidence of market 
inefficiencies may simply be the result of data mining; one can always find or 
"demonstrate" an interesting pattern or relationship given enough data. An even greater 
difficulty for the opponents of capital market efficiency is that they are not able to offer a 
reasonably coherent and robust set of competing theories of capital markets behavior. 
Thus, it is reasonable to conclude based on prevailing theoretical and empirical research 
that the verdict is still out regarding the extent to which capital markets are efficient. 
Nonetheless, it is still important to discuss some of the many tests which have been 
conducted and suggest how further testing can still be accomplished. 
 
Random Walks and Submartingales1 
 A stochastic process is a sequence of random variables xt defined on a common 
probability space (Ω,Φ,P) and indexed by time t.2 The values of xt(ω) define the sample 
path of the process leading to state ω∈Ω. The terms x(ω,t), xt(ω) and x(t) are 
synonymous. A discrete time process is defined for a finite or countable set of time 
periods. This is distinguished from a continuous time process that is defined over an 
interval of an infinite number of infinitesimal time periods. The state space is the set of 
values in process {xt}: 
 

S = {x ∈ℜ: Xt(ω) for ω∈Ω and some t} 
 
The state space can be discrete or continuous. For example, if stock prices change in 
increments of eighths or sixteenths, the state space for stock prices is said to be discrete. 
The state space for prices is continuous if prices can assume any real value. 
 
 Consider an example of a particular stochastic process, a discrete time random 
walk, also known as a discrete time Markov process.3 A random walk is a process whose 
future behavior, given by the sum of independent random variables, is independent of its 
past. Let zi be a random variable associated with time i and let St be a state variable at 
time t such that St = S0 + z1 + z2 + ... + zt. Assume that random variables zi are 
independent. The discrete time random walk is described as follows: 
 

                                                 
1 The formal mathematical notation and definiti0ons offered here are not essential for purposes of this 
course. Skip them if you find it convenient to do so. 
2 In other words, a stochastic process is a random process through time. 
3 A Markov Process or random walk is a stochastic process whose increments are independent over time; 
that is, the Markov Process is without memory. 
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E[St S0,z1,z2,...,zt-1] = St-1 + E[zt] 
 
It is important to note that E[St] is a function only of St-1 and zt; the ordering of zi where i 
< t (the price change history) is irrelevant to the determination of the expected value of St. 
A specific type of Markov process, the discrete martingale process with E[zi] = 0, is 
defined with respect to probability measure P and history or filtration ℑt-1 = 
{S0,z1,z2,...,zt-1} as follows: 
 

EP[St S0,z1,z2,...,zt-1] = EP[St ℑt-1] = St-1 
 
which implies: 
 

EP[St S0,z1,z2,...,zi] = EP[St ℑi] = Si  ∀ i < t 
 
Note that E[zi] = E[zt] = 0. Thus, a martingale is a process whose future variations cannot 
be predicted with respect to direction given the process history.4 A martingale is said to 
have no memory and will not exhibit consistent trends. A submartingale is defined as: 
 

E[St S0,z1,z2,...,zt-1] ≥ St-1 
 
A submartingale will trend upward over time such that E[zi] > 0, and a supermartingale 
will trend downward over time.5 
 
Weiner Processes 
 One particular version of a continuous time/space random walk is a Wiener 
process. A Weiner process is a generalized form of a Brownian motion process. The 
Weiner process may allow for drift; the standard Brownian motion process does not. A 
process z is a standard Brownian motion process if: 
 
 1. changes in z over time are independent; COV(dzt,dzt-i) = 0 
 2. changes in z are normally distributed with E[dz] = 0 and E[(dz)2] = 1; dz  N(0, 1) 
 3. z is a continuous function of t 
 4. the process begins at zero, z0 = 0 
 
 Brownian motion has a number of unique and very interesting traits. First, it is 
continuous everywhere and differentiable nowhere under Newtonian calculus; the 
Brownian motion process is not smooth and does not become smooth as time intervals 
decrease. We see in Figure 1 that Brownian motion is a fractal, meaning that regardless 
of the length of the observation time period, the process will still be Brownian motion. 
Consider the Brownian motion process represented by the top graph in Figure 1. If a short 
segment of is cut out and magnified as in the middle graph in Figure 1, the segment itself 
is a Brownian motion process; it does not smooth. Further magnifications of cutouts as in 
the bottom graph continue to result in Brownian motion processes. Many other processes 
                                                 
4 A martingale has increments whose expected values equal zero. 
5 A submartingale has increments whose expected values exceed zero; expected values of increments of a 
supermartingale are less than zero. 
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smooth as segments covering shorter intervals are magnified and examined such that they 
can be differentiated under Newtonian calculus. Once a Brownian motion hits a given 
value, it will return to that value infinitely often over any finite time period, no matter 
how short. Over a small finite interval, we can express the change in z (∆z) over a finite 
period as follows: 

),0(~ tNtdZZ ∆∆=∆  
 

 A generalized Wiener process is defined as follows: 
bdzadtdSt +=  

 
where a represents the drift in the value of St and dz is a standard Brownian motion 
process. Because prices of many securities such as stocks tend to have a predictable drift 
component in addition to randomness, generalized Wiener processes may be more 
applicable than standard Brownian motion, which only includes a random element.6 

 
Figure 1: Weiner Process 
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Random Walks and Market Efficiency 
 In a perfectly efficient market, security prices always reflect all available 
information. Price changes result from the arrival of new information. New information 
arrives randomly; otherwise, it is not new. Since news arrives in a random manner, prices 
in a perfectly efficient market should fluctuate randomly. Thus, one type of test for 
market efficiency is to determine whether prices can be predicted or whether their 
movement is entirely random. 

                                                 
6 A Weiner Process is a a continuous time-space Markov Process with normally distributed increments. 
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B. Risk 
 
 In recent years, increased attention has been focused on forecasting security risk, 
as its measurement and computation is problematic. Generally speaking, the risk of an 
investment is simply the uncertainty associated with its returns or cash flows. Analysts 
typically use absolute risk measures such as variance and relative risk measures such as 
beta to quantify security risk. Although return variance is a quite simple mathematical 
construct with many desirable characteristics, its estimation is hampered by lack of ideal 
data. Suppose that we wish to estimate the risk or variance associated with a stock's 
returns over the next year. Consider the following discrete expression for ex-ante 
variance 2

Fσ  that considers all potential return outcomes Ri and associated probabilities Pi: 
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 While this expression for variance is, by definition correct, its computation 
requires that we delineate all potential returns for the security (which might range from 
minus infinity to positive infinity). This is actually practical when the list of potential 
returns is small or when we can ascertain a specific return generating process. However, 
associating probabilities with these returns is a greater problem. For example, what is the 
probability that the return for a given stock will range between five and six percent? In 
many instances, we will be forced to either make probability assignments of a somewhat 
subjective nature or define a joint return and probability generating process for the 
security. Availability of historical price data typically makes risk estimation based 
historical variances more practical.7 
 
Historical Volatility Indicators 
 Because it is frequently difficult to estimate the inputs necessary to estimate 
security ex-ante variance, analysts often use the volatility of historical returns as a 
surrogate for ex-ante risk: 
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where Rt represents the return realized during period t [(Pt - Pt-1)/Pt-1] in this n time 
period framework. Table 1 presents sample daily historical price data for a stock whose 
returns are given in the third column. The traditional sample daily variance estimator for 
this stock based on these returns equals .003172; the monthly variance (assuming 30 
trading days per month; with weekends there are normally 20-21 days), if we were able 
assume that returns follow a Brownian motion process is .095. Use of the traditional 
sample estimator to forecast variance requires the assumption that stock return variances 
are constant over time, or more specifically, that historical return variance is an 
appropriate indicator of future return uncertainty. While this can often be a reasonable 
assumption, firm risk conditions can change and it is well documented that market 
volatility does fluctuate over time (See for example Officer (1971)). In addition, note that 

                                                 
7 See the end-of-chapter Appendices A and B for a review of elementary statistics. 
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the sample variance estimator rather than the population estimator is proposed in 
Equation (2). This difference becomes more significant with smaller samples. Smaller 
samples intensify the need for a reliable mean. 
 
 

Table 1: Traditional Sample Estimators 
 

Time  Pricet    Returnt 
0   30.000       N.A. 

 1   30.125      0.00417 
 2    30.250      0.00415 
 3   30.125     -0.00413  
 4   32.000      0.06224 
 5   34.000      0.06250 
 6   31.000     -0.08824 
 7   32.000      0.03226 
 8   30.500     -0.04688 
 9   30.750      0.00820 
10   30.875      0.00407 
11   31.000      0.00405 
12   30.875     -0.00403 
13   31.000      0.00405 
14   31.125      0.00403 
15   30.250     -0.02811 
16   33.000      0.09091 
17   30.000     -0.09091 
18   35.125      0.17083 
19   33.000     -0.06050 
20   32.125     -0.02652 
21   32.250      0.00389 
22   32.375      0.00388 
23   32.125     -0.00772 
24   32.250      0.00389 
25   34.250      0.06202 
26   36.375      0.06204 
27   38.500      0.05842 
28   34.375     -0.10714 
29   33.875     -0.01455 
30   33.625     -0.00738 

2
Hσ    = .095154 

 Using Equation (2) to estimate security variance requires that the analyst choose a 
sample series of prices (and dividends, if relevant) at n regular intervals from which to 
compute returns. Two problems arise in this process: 
 
      1. Which prices should be selected and at what intervals? 
      2. How many prices should be selected? 
 
 First, since each of the major stock markets tend to close at regular times on a 
daily basis, closing prices will usually reflect reasonably comparable intervals, whether 
selected on a daily, weekly, monthly, annual or other basis. Those prices closer to the 
date of computation will probably better reflect security risk (e.g., Price volatility of a 
security thirty years ago hardly seems relevant today). On the other hand, longer-term 
returns such as those computed on a monthly or annual basis will more closely follow a 
normal distribution than returns computed on a daily or shorter-term basis. This is a 
highly desirable quality, since many of the statistical estimation procedures used by 
analysts assume normal (or lognormal) distribution of inputs; the characteristics of most 
non-normal distributions are not well known. 



 7

 Generally speaking, more prices or data points used in the computation process 
will increase the statistical significance of variance estimates. However, this leads to a 
dilemma: more data points, particularly pertaining to longer term returns will require 
prices from the more distant, but less relevant past. On the other hand, shorter estimation 
intervals may result in non-normal return distributions as well as autocorrelation issues. 
Hence, the analyst must balance the needs for a large sample to ensure statistical 
significance, recent data for relevance and longer-term data for independence and 
normality of distribution. These conflicting needs call for compromise. The convention 
that has developed over the years both in academia and in the industry is based on 
computations of five years of monthly returns. 
 

Nonetheless, numerous difficulties still remain with this estimation procedure. For 
example, as we discussed above, variances are not necessarily stable over time. In our 
numerical illustration, higher-volatility periods are clustered as are lower volatility 
periods, in a manner similar to actual return variances. Second, returns themselves may 
not be independently distributed. In our numerical illustration, returns are inversely 
correlated, leading to significant differences in our variance estimates. Both problems 
arise in our numerical illustration data in Table 1. In addition, non-trading may omit 
returns data for computations. 
 
Extreme Value Estimator 
 Two difficulties associated with the traditional sample estimator procedure, time 
required for computation and arbitrary selection of returns from which to compute 
volatilities may be dealt with by using extreme value estimators. Extreme value 
estimators are based on high and low values (and sometimes other parameters) realized 
by the security's price over a given period. 
 
 For example, consider the Parkinson Extreme Value Estimator (Parkinson 
(1980)). This estimating procedure is based on the assumption that underlying stock 
returns are log-normally distributed without drift. Given this distribution assumption, the 
underlying stock's realized high and low prices over a given period provide information 
regarding the stock's variance. Thus, if we are willing to assume that the return 
distribution is to be the same during the future period, Parkinson's estimate for the 
underlying stock return variance is determined as follows: 

(3)    
2

2 ln361. ⎥
⎦

⎤
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
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where HI designates the stock's realized high price for the given period and LO 
designates the low price over the same period.8  

                                                 
8 Accuracy of the Parkinson measure can be improved if the sample period can be subdivided into n equal 
sub-periods such that variance is estimated as follows: 

2
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Figure I: Sample Prices and Range
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 The Parkinson measure results in a variance estimate equal to .022465 for the 
stock whose historical prices are listed Table 1: 
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Clearly, this is likely to be a simple estimate to obtain when periodic high and low prices 
for a stock are regularly published as they are for NYSE and many other stocks listed in 
the Wall Street Journal. Furthermore, the efficiency of the Parkinson procedure is several 
times higher than the traditional sample estimation procedure. To understand why this 
might be the case, consider Figure I. Several sample prices from which periodic returns 
might be computed are plotted for a second security, along with the high and low prices 
of the distribution. One might expect that high and low prices over the life of a process 
will tell us more about the variance of the distribution than would open and close prices 
alone. Using the extreme value estimator might be as simple as inserting into Equation 
(3) the 52-week high and low prices from the Wall Street Journal. Note that the 
Parkinson estimate is significantly smaller than the monthly historical estimate. This 
difference draws largely from the negative autocorrelation in the returns series. 
 
Implied Volatilities9 
 A problem shared by both the traditional sample estimating procedures and the 
extreme value estimators is that they require the assumption of stable variance estimates 
over time; more specifically, that historical variances equal future variances. A third 
procedure first suggested by Latane and Rendleman (1976) is based on market prices of 
options that may be used to imply variance estimates. For example, the Black-Scholes 
                                                                                                                                                 
This is the more general form of the Parkinson Estimator. Each of the other extreme value estimators 
discussed in this paper can be generalized in a similar manner. The constant, .361 is the normal density 
function constant, π2/1 . 
9 See Appendix C to this chapter for a review of options and the Black-Scholes Option Pricing Model. 
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Option Pricing Model and its extensions provide an excellent means to estimate 
underlying stock variances if call prices are known. Essentially, this procedure 
determines market estimates for underlying stock variance based on known market prices 
for options on the underlying securities. Consider our stock example from Table 1 on day 
30 where the stock is currently trading for $33.625. Suppose that a one month (t =1) call 
on this stock with a striking price equal to $30 is currently trading for c0 = $4.50: 
 

  t = 1         rf = .005       c0 = $4.50 X = $30         S0 =  $33.625 
 
where rf equals the monthly riskless return rate and X is the option striking price. If 
investors use the Black-Scholes Options Pricing Model to evaluate calls, the following 
must hold: 
 

(7)    
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We find that this system of equations holds when 2σ = .027459. Thus, the market prices 
this call as though it expects that the variance of anticipated returns for the underlying 
stock is .027459. 
 
 Unfortunately, the system of equations required to obtain an implied variance has 
no closed form solution. That is, we will be unable to solve explicitly for variance; we 
must search or substitute for a solution. One can substitute values for σ2 until she finds 
one that solves the system. One may save a significant amount of time by using one of 
several well-known numerical search procedures such as the Method of Bisection or the 
Newton-Raphson Method. 
 
 

Measure Best used when 
Ex-Ante Measure 
Based on Probabilities 

(1) Ex-ante or future-oriented measure is needed such as when: 
      a. The asset's historical volatility does not properly indicate its future risk 
      b. The asset's risk characteristics have recently changed 
      c. The asset has no price or returns history 
(2) All potential future return or cash flow outcomes can be specified 
(3) Probabilities can be associated with each potential return or cash flow outcome 
(4) Instead of (2) & (3), there is a specific return generating process with known 
parameters 

Traditional Sample 
Estimator 

(1) Variances are expected to be constant between historical and future time periods 
(2) There are an appropriate number of sampling intervals where: 
      a. More periods increase statistical significance 
      b. More periods increase reliance on older, less relevant historical data 
(3) Appropriate interval lengths can be determined; longer periods approach normality 

Parkinson Extreme 
Value Estimator 

(1) The computationally simplest measure based on a minimum of data is desired 
(2) Asset returns are log-normally distributed without drift 
(3) Historical volatility is a good indicator of future risk 
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Implied Volatility: 
Analytical Procedures 

(1) Option prices on asset are readily available 
(2) Option pricing model assumptions hold in the relevant market 
(3) Can be used when historical volatility does not indicate future risk 
(4) User is able to use the appropriate analytical procedures 
(5) The market can be assumed capable of assessing risk 

Table 2: Basic Risk Measures
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C. Arbitrage 
 

Arbitrage, perhaps the single most important pricing tool in modern finance, is 
defined as the simultaneous purchase and sale of assets or portfolios yielding identical 
cash flows. Assets generating identical cash flows (certain or risky cash flows) should be 
worth the same amount. This is known as the Law of One Price. If assets generating 
identical cash flows sell at different prices, opportunities exist to create a profit by buying 
the cheaper asset and selling the more expensive asset. The ability to realize a profit from 
this type of transaction is known as an arbitrage opportunity. Rational investors in such a 
scenario will seek to purchase the underpriced asset, financing its purchase by 
simultaneously selling the overpriced asset. The arbitrageur will execute such arbitrage 
transactions, continuing to earn arbitrage profits until the arbitrage opportunity is 
eliminated. If markets are competitive, the arbitrageur’s purchases of the underpriced 
asset will bid its price up while the arbitrageur’s selling transactions will force down the 
price of the overpriced asset. These arbitrage transactions should continue until no assets 
are over- or under- priced. Hence, arbitrageurs should force assets that produce identical 
cash flow structures to have identical prices. 
 
 Classic arbitrage is the simultaneous purchase and sale of the same asset at a 
profit. For example, if gold is selling in London markets for $600 per ounce and in New 
York markets for $610 per ounce, a classic arbitrage opportunity exists. An investor 
could purchase gold in London for $600 per ounce and simultaneously sell it in New 
York for $610. This results in a $10 profit per "round trip" transaction. The transactions 
involve no risk since both the selling and purchase prices are known. Furthermore, no 
initial net investment is required because the transactions offset each other; the proceeds 
of the sale are used to finance the purchase. Thus, if a classic arbitrage opportunity exists, 
an investor will have the opportunity to make a riskless profit without investing any of 
his own money. If the laws of supply and demand are not impeded by market 
inefficiencies, investors will flock to exploit this opportunity. Their buying pressure in 
London markets will force the London price to rise; their selling pressure in New York 
markets will force the New York price down. Buying and selling pressure will persist 
until the prices in the two markets are equal. Thus, classic arbitrage opportunities are not 
likely to persist long in unimpeded free markets. More generally, arbitrage might refer to 
the near simultaneous purchase and sale of portfolios generating similar cash flow 
structures. 

 
The principle of arbitrage is the foundation underlying relative stock valuation. 

That is, we are able to price securities relative to one another when arbitrageurs are able 
to exploit violations of the Law of One Price. When The Law of One Price does not hold, 
one (or both) of the following will hold: 

 
1. There exist opportunities to secure riskless arbitrage opportunities by buying 

underpriced while selling overpriced assets. 
2. There exists some sort of market imperfection such as high transactions 

preventing arbitrageurs from exploiting arbitrage opportunities. 
 



 12

D. Limits to Arbitrage 
 
 Prospects of arbitrage will go far in making many markets respond more 
efficiently to information. However, despite potential profit opportunities, some markets 
are slow to react to arbitrage opportunities and some do not react at all. If trading is 
difficult or expensive, perhaps due to high transactions costs, price adjustments to 
arbitrage may be delayed or prevented. In recent years, hedge funds have led markets 
engaging in arbitrage strategies. However, they have not been entirely successful. 
 
 Consider the case of Long Term Capital Management (LTCM), which was in the 
early 1990s by John Meriwether, formerly head of the fixed income unit of Salomon 
Brothers, Inc. He brought in famed academics Myron Scholes and Robert Merton, 
developers of some of the most important derivatives and arbitrage strategies of the time, 
and the fund focused much of its trading activity on derivatives and fixed income. LTCM 
realized enormous returns and growth until 1998, when it lost $4 billion in one 
spectacularly disastrous quarter, forcing the fund into liquidation and threatening 
contagion with potential market-meltdown. 
 

One of LTCM’s equity markets arbitrage ventures involved the Royal Dutch/ 
Shell Group, a dual-listed company independently incorporated in the Netherlands and 
the U.K. This arrangement originated from a 1907 alliance agreement between Royal 
Dutch and Shell Transport in which the two companies agreed to merge their interests on 
a 60/40 basis. Royal Dutch trades primarily in the U.S. and the Netherlands while Shell 
trades primarily in London. After adjusting for foreign exchange rates, shares of the two 
firms’ stock should trade at a 1.5–1 ratio. However, deviations from this anticipated 
trading ratio have deviated from this ratio by more than 35%, well beyond levels of tax 
differentials and transactions costs. In the summer of 1997, Royal Dutch traded at an 8-
10% premium over its 1.5 expected level relative to Shell. To exploit this differential, 
LTCM had taken significant arbitrage positions on the two stocks. As the differential 
widened to 20% in 1998, LTCM increased its positions, until financial distress caused by 
trading activities elsewhere in the fund (related to the economic crisis in Russia) forced 
the firm to liquidate. The positions taken in Royal Dutch/Shell by LTCM were ultimately 
proven correct, but not until 2001 when the fund was no longer in existence. Rosenthal 
and Young [1990] argue that significant mispricing in dual-listed companies has 
prevailed over a long periods of time without satisfactory explanations. Nevertheless, 
instances, arbitrage can sometimes take significant amounts of time to equalize prices, 
causing arbitrageurs to maintain positions longer than they are able. 

 
 In another well-publicized failure of arbitrage dating from a March 2000 equity 
carve-out, 3Com spun off its Palm division, a maker of handheld computers. 3Com 
retained 95% of the shares of Palm and announced that each 3Com shareholder would 
ultimately receive 1.5 shares of Palm for each share of 3Com. The remaining 5% of Palm 
shares were issued at $38 per share, increasing to $165 by its first day of trading before 
closing at $95.06 (See Lamont [2002]). Remember, that ownership of one 3Com share 
implied ownership of 1.5 shares of Palm shares. The stocks of the two companies should 
have moved in tandem, but on the date of the IPO, 3Com actually decreased by 21% to 
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$81.81 as Palm increased. This $81.81 is substantially less than the $142.59 price implied 
by the 1.5 shares of Palm stock due to each 3Com shareholder (1.5 * $95.06 = $142.59), 
implying that the remainder of 3Com, on a per share basis, was worth -$60.78. This 
negative stub value (the whole is worth less than the sum of the parts; in particular, the 
parent and the subsidiary is worth less than the subsidiary alone) seems particularly 
unlikely, since 3Com had about $10 per share in cash and marketable securities alone.  In 
other words, what happened wasn’t rational, given the numbers, or just could not have 
been sustainable had investors been able to arbitrage. However, prospective arbitrageurs 
found themselves unable to short sell shares as the two stocks were under different 
national regulatory authorities. Thus, arbitrage and price correction could not be 
implemented because the short selling mechanism was not available for the Palm IPO. 
 

Such negative stub values are not uncommon. For example, in 1923, Benjamin 
Graham chronicled his purchase of shares of stock in Du Pont, a well-established firm 
that had negative stub value given its investment in the new company General Motors. 
Lamont and Thaler (2001) identified five other 1990s technology equity carve-outs with 
negative stub values: UBID, Retek, PFSWeb, Xpedior, and Stratos Lightwave. Arbitrage 
in each of these cases was impeded by the inability to short sell. Mitchell, Pulvino and 
Stafford [2002] found 82 instances in U.S. markets between 1985 and 2000. But in most 
cases, arbitrage was impeded by inability to short sell, high transactions costs and 
difficulty in getting reliable price quotes or other information. But, Mitchell, Pulvino and 
Stafford found that approximately 30% of negative stub values were never eliminated 
through arbitrage. Some of the spin-offs failed, and others may have faced this risk. But, 
this probably cannot explain particularly large negative stub values. 
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Exercises 
 
1.  Mack Products management is considering the investment in one of two projects 
available to the company. The returns on the two projects (A) and (B) are dependent on 
the sales outcome of the company. Mack management has determined three potential 
sales outcomes (1), (2) and (3) for the company. The highest potential sales outcome for 
Mack is outcome (1) or $800,000. If this sales outcome were realized, Project (A) would 
realize a return outcome of 30%; Project (B) would realize a return of 20%. If outcome 
(2) were realized, the company's sales level would be $500,000. In this case, project (A) 
would yield 15%, and Project (B) would yield 13%. The worst outcome (3) will result in 
a sales level of $400,000, and return levels for Projects (A) and (B) of 1% and 9% 
respectively. If each sales outcome has an equal probability of occurring, determine the 
following for the Mack Company: 
  a. the probabilities of outcomes (1), (2) and (3). 
  b. its expected sales level. 
  c. the variance associated with potential sales levels. 
  d. the expected return of Project (A). 
  e. the variance of potential returns for Project (A). 
  f. the expected return and variance for Project (B). 
  g. standard deviations associated with company sales, returns on Project (A) and 

returns on Project (B). 
 
2.  Which of the projects in Problem 1 represents the better investment for Mack 
Products? 
 
3.  Historical percentage stock returns for the McCarthy and Alston Companies are listed 
in the following chart along with percentage returns on the market portfolio: 
 
          Year     McCarthy    Alston   Market 
          1988          4              19           15 
          1989          7               4            10 
          1990         11             -4             3 
          1991          4              21           12 
          1992          5              13             9 
 
Calculate the following based on the preceding diagram: 
  a. mean historical returns for the two companies and the market portfolio. 
  b. variances associated with McCarthy Company returns and Alston Company 

returns as well as returns on the market portfolio. 
 
4.  Forecast a variance and a standard deviation of returns for both the McCarthy and 
Alston Companies based on your calculations in Problem 3. 
 
5.  The following table represents outcome numbers, probabilities and associated returns 
for stock A: 
  outcome (i)   return (Ri)  Probability (Pi) 
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   1            .05           .10 
   2            .15           .10 
   3            .05           .05 
   4            .15           .10 
   5            .15           .10 
   6            .10           .10 
   7            .15           .10 
   8            .05           .10 
   9            .15            ? 
   10          .10           .10 
Thus, there are ten possible return outcomes for Stock A. 
  a. What is the probability associated with Outcome 9? 
  b. What is the standard deviation of returns associated with Stock A? 
 
6.  The Durocher Company management projects a return level of 15% for the upcoming 
year. Management is uncertain as to what the actual sales level will be; therefore, it 
associates a standard deviation of 10% with this sales level. Managers assume that sales 
will be normally distributed. What is the probability that the actual return level will: 
  a. fall between 5% and 25%? 
  b. fall between 15% and 25%? 
  c. exceed 25%? 
  d. exceed 30%? 
 
7.  What would be each of the probabilities in Problem 6 if Durocher Company 
management were certain enough of its forecast to associate a 5% standard deviation with 
its sales projection? 
 
8.  Under what circumstances can the coefficient of determination (r-square) between 
returns on two securities be negative? How would you interpret a negative coefficient of 
determination? If there are no circumstances where the coefficient of determination can 
be negative, describe why. 
 
9.  Stock A will generate a return of 10% if and only if Stock B yields a return of 15%; 
Stock B will generate a return of 10% if and only if Stock A yields a return of 20%. 
There is a 50% probability that Stock A will generate a return of 10% and a 50% 
probability that it will yield 20%. 
 a. What is the standard deviation of returns for Stock A? 
 b. What is the covariance of returns between Stocks A and B? 
 
 
10.  An investor has the opportunity to purchase a risk-free treasury bill yielding a return 
of 10%. He also has the opportunity to purchase a stock that will yield either 7% or 17%. 
Either outcome is equally likely to occur. Compute the following: 
  a. the variance of returns on the stock. 
  b. the coefficient of correlation between returns on the stock and returns on the 

treasury bill. 
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11. The following daily prices were collected for each of three stocks over a twelve-day 
period. 
 
    Company X     Company Y     Company Z 
 DATE PRICE DATE PRICE DATE PRICE 
 1/09 50.125  1/09 20.000  1/09 60.375  
 1/10 50.125  1/10 20.000  1/10 60.500 
 1/11 50.250  1/11 20.125  1/11 60.250  
 1/12 50.250  1/12 20.250  1/12 60.125 
 1/13 50.375  1/13 20.375  1/13 60.000 
 1/14 50.250  1/14 20.375  1/14 60.125 
 1/15 52.250  1/15 21.375  1/15 62.625 
 1/16 52.375  1/16 21.250  1/16 60.750 
 1/17 52.250  1/17 21.375  1/17 60.750 
 1/18 52.375  1/18 21.500  1/18 60.875 
 1/19 52.500  1/19 21.375  1/19 60.875 
 1/20 52.375  1/20 21.500  2/20 60.875 
 
Based on the data given above, calculate the following: 
 
  a. Returns for each day on each of the three stocks. There should be a total of ten 

returns for each stock - beginning with the date 1/10. 
  b. Average daily returns for each of the three stocks. 
c. Daily return standard deviations for each of the three stocks. 
 

12.    Harlow Company stock realized a 52-week high of $50 per share and a 52-week 
low of $25. What is the Parkinson Extreme Value estimate for variance for this stock? 
What would be the corresponding standard deviation estimate? 
 
13.   Suppose that there is a six-month call currently trading for $8.20 while its 
underlying stock is currently trading for $75. Other details for this example are as 
follows: 
 t = .5 rf = .10   c0 = 8.20 X = 80     S0 =  75 
What is the volatility (standard deviation) implied by this call? 
 

14.    Emu Company stock currently trades for $50 per share. The current riskless return 
rate is .06. Under the Black-Scholes framework, what would be the standard deviations 
implied by six-month (.5 year) European calls with current market values based on each 
of the following striking prices: 
 a. X = 40;  c0 = 11.50 
 b. X = 45;  c0 =  8.25 
 c. X = 50;  c0 =  4.75 
 d. X = 55;  c0 =  2.50 
 e. X = 60;  c0 =  1.25 
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Solutions 
 

1.a. Each outcome has a one-third or .333 probability of being realized since the 
probabilities are equal and must sum to one. 
 
b. E[SALES] = ( 333.000,800 ⋅ )+( 333.000,500 ⋅ )+( 333.000,400 ⋅ ) 
   E[SALES] = 566,667 
 
c. var[sales] = [ (800,000 - 566,667)2 × .333  + (500,000 - 566,667)2 × .333  + (400,000 - 
566,667) ×.333 ] =    28,888,000,000 = σ2 

                          SALES 
 
d. Expected return of Project A = (.3×.333)+(.15×.333)+(.01×.333)     = .15333 
 
e. Variance of A's Returns = [ (.3-.1533)2 ×.333  + (.15-.1533)2  ×.333  + (.01-.1533)2 
×.333  ] = .0140222 = 2

Aσ  
 
f. Expected Return of Project B = (.2×.333)+(.13×.333)+(.09×.333)     = .14    . 
 
   Variance of B's Returns = [  (.2-.14)2 ×.333  + (.13-.14)2      
   ×.333  + (.09-.14)2 ×.333  ]  = .0020666 = 2

Bσ        . 
 
g. Standard deviations are square roots of variances. 
 
   σSALES  = 169,964 
 
   σA      = .1184154 
 
   σB      = .0454606 
  
2. Project A has a higher expected return; however, it is riskier.  Therefore, it does not 
clearly dominate Project B. Similarly, B does not dominate A. Therefore, we have 
insufficient evidence to determine which of the projects are better. 
         _ 
3. a.  RMc = .062 
    _ 
    RA  = .106 
    _ 
    RM  = .098 
b.  σ2   = .000696  (Remember to convert returns to percentages.) 
        Mc 
    σ2   = .008824  (Square roots of these variances are standard  
      A 
    σ2   = .001576   deviations.)  
      M 
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4. Assuming variance and correlation stability, the forecasted values would be the same 
as the historical values in Problem 3. 
 
5.a. Since probabilities must sum to one, the probability must equal .15. 
b.   First, note that there is a .25 probability that the return will be .05 (.10+.05+.10) and 
.20 and .55 probabilities that the return will be .15. Thus, the expected return is .05×.25 + 
.10×.20 + .15×.55 = .115.  The variance is  .25×(.05-.115)2 + .20×(.10-.115)2 + .55×(.15-
.115)2 = .001775, which implies a standard deviation equal to .04213. 
 
6. Standardize returns by standard deviations and consult "z" tables: 
      Ri- E[R]                  = z.  Only use positive values for z. 
 Standard Deviation 
 
a. .05 - .15 = z(low) = 1      .25 - .15   =   z(high) = 1 
      .10                                     .10             
 
    From the "z" table (See Appendix C to this chapter), we see that the probability that 
the security's return will fall between .05 and .15 is .34.  The value .34 is also the 
probability that the security's return will fall between .15 and .25. Therefore, the 
probability that the security's return will fall between .05 and .25 is .68.     
 
b. From (4.16.a.), we see that the probability is .34. 
c. .16 
d. .0668 
 
7. Simply reduce the standard deviations in the z scores in Problem (6) to .05. 
 
a. .95 
b. .47 
c. .0228 
d. .0013 
 
8. Never, because coefficient of determination is always a positive squared value. 
 
9.a. var = .0025; std.dev. = .05 
b.  -.00125 
 
10.a.  VAR = .0025 
b.  0 : The coefficient of correlation between returns on any asset and returns on a riskless 
asset must be zero. Riskless asset returns do not vary. 
11.  
  a.  Company X  Company Y  Company Z 
 Date  Return    Return    Return  
 1/09     -       -       - 
 1/10     0       0    .00207 
 1/11  .00249   .00625  -.00413 
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 1/12     0    .00621  -.00207 
 1/13  .00248   .00617  -.00207 
 1/14 -.00248      0    .00208 
 1/15  .03980   .04907   .04158 
 1/16  .00239  -.00584  -.02994 
 1/17 -.00238   .00588      0 
 1/18  .00239   .00584   .00205 
 1/19  .00238  -.00581      0 
 1/20 -.00238   .00584      0 
 b., c.      Average  Standard 
   Stock   Return   Deviation 
     X  .004064  .011479 
     Y  .006693  .014150 
     Z  .000869  .015537 
 
12.  The variance estimate is computed as follows: 

173444.
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 The standard deviation is the square root of this value, or .416466. 
 
13.  If investors have used the Black-Scholes Options Pricing Model to evaluate this call, 
the following should hold: 
 
  8.20 = 75×N(d1) - 80×e-.1×.5×N(d2) 
  d1 = {ln(75/80) + (.1 + .5σ2)×.5} ÷ σ√.5 
  d2 = d1 - σ√.5 
 
 Thus, we wish to solve the above system of equations for σ. There exists no 
closed form solution for σ. Thus, we will substitute and iterate to search for a solution. 
We first arbitrarily select σ1 =.35. We find that this estimate for sigma results in a value 
of 6.90 for c0. Since this call price is less than the market value 8.20, we know that σ is 
larger than .35. Thus, we try a larger value for σ, repeating the process until finding that σ 
= .411466. We have estimated the implied value with a greater degree of accuracy than is 
needed for most applications. 
 
14.  Implied volatilities are given as follows: 
 a. X = 40; σ = .2579 
 b. X = 45; σ = .3312 
 c. X = 50; σ = .2851 
 d. X = 55; σ = .2715 
 e. X = 60; σ = .2704 
These values are obtained through a process of substitution and iteration. That is, readers 
should select trial values for σ to substitute into the Blck-Scholes formula, then compute 
the trial call value. A closer trial value for the call to the actual market price leads to a 
closer computed volatility to its Black-Scholes implied value. Each reader will probably 
use a process that will differ at least slightly from those used by others. 
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Appendix A: Return And Risk Spreadsheet Applications  
 
 Table A.1 contains spreadsheet entries for computing stock variances, standard 
deviations and covariances. The table (See Problem 11) lists daily closing prices for 
Stocks X, Y and Z from January 9 to January 20 in Cells B3:B14, E3:E14 and H3:H14. 
From these prices, we compute returns in Cells B19:B29, E19:E29 and H19:H29. 
Variance, standard deviation and covariance statistics in Rows 30 to 38 are computed 
from formulas displayed in Table A.2. 
 

Table A.1: Stock Prices, Returns, Risk and Co-movement 
A B C D E F G H 

1           CORP. X CORP. Y               CORP. Z 
2            DATE         PRICE  DATE        PRICE  DATE         PRICE
3 9-Jan 50.125 9-Jan 20 9-Jan 60.375
4 10-Jan 50.125 10-Jan 20 10-Jan 60.5
5 11-Jan 50.25 11-Jan 20.125 11-Jan 60.25
6 12-Jan 50.25 12-Jan 20.25 12-Jan 60.125
7 13-Jan 50.375 13-Jan 20.375 13-Jan 60
8 14-Jan 50.25 14-Jan 20.375 14-Jan 60.125
9 15-Jan 52.25 15-Jan 21.375 15-Jan 62.625

10 16-Jan 52.375 16-Jan 21.25 16-Jan 60.75
11 17-Jan 52.25 17-Jan 21.375 17-Jan 60.75
12 18-Jan 52.375 18-Jan 21.5 18-Jan 60.875
13 19-Jan 52.5 19-Jan 21.375 19-Jan 60.875
14 20-Jan 52.375 20-Jan 21.5 20-Jan 60.875
15  
16              CORP. X      CORP. Y           CORP. Z 
17            DATE     RETURN  DATE    RETURN  DATE     RETURN
18 9-Jan N/A 9-Jan N/A 9-Jan N/A
19 10-Jan 0 10-Jan 0 10-Jan 0.00207
20 11-Jan 0.002494 11-Jan 0.00625 11-Jan -0.00413
21 12-Jan 0 12-Jan 0.006211 12-Jan -0.00207
22 13-Jan 0.002488 13-Jan 0.006173 13-Jan -0.00208
23 14-Jan -0.00248 14-Jan 0 14-Jan 0.002083
24 15-Jan 0.039801 15-Jan 0.04908 15-Jan 0.04158
25 16-Jan 0.002392 16-Jan -0.00585 16-Jan -0.02994
26 17-Jan -0.00239 17-Jan 0.005882 17-Jan 0
27 18-Jan 0.002392 18-Jan 0.005848 18-Jan 0.002058
28 19-Jan 0.002387 19-Jan -0.00581 19-Jan 0
29 20-Jan -0.00238 20-Jan 0.005848 20-Jan 0
30             Mean 0.004064 Mean0.006694 Mean 0.00087 
31        Variance 0.000145 Variance0.00022 Variance 0.000266 
32  Variance (P) 0.000132 Variance (P)0.0002 Variance (P) 0.000241 
33              St.D. 0.01204 St.D.0.014842 St.D. 0.016296 
34        St.D. (P) 0.011479 St.D. (P)0.014151 St.D. (P) 0.015538 
35    COV(X,Y)= 0.0001494    COV(Y,Z)= 0.000192 
36    COV(X,Z)= 0.000139  
37    CORR(X,Y)= 0.9196541    CORR(Y,Z)= 0.8733657 
38    CORR(X,Z)= 0.7791748  

 
 Formulas for computing returns are given in Rows 19 to 29 in Table A.2. Means, 
variances, standard deviations, covariances and correlation coefficients are computed in 
Rows 30 to 38. Row 30 computes the arithmetic mean return for each of the three stocks. 
Table A.2 lists formulas associated with the values in cells A30:H38. The =(Average) 
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function may be typed in directly as listed in Table A.2 Row 30 or obtained from the 
Paste Function button (fx) menu under the Statistical sub-menu. Entry instructions are 
given in the dialogue box obtained when the Average function is selected. The variance 
formulas in Row 31 are based on the Sample formula; the Variance (P) formulas in Row 
32 are based on the population formula. Standard deviation sample and population results 
are given in Rows 33 and 34. Covariances and correlation coefficients are given in Rows 
35 to 38. 
 
 

Table A.2: Stock Returns, Risk and Co-movement: Formula Entries 
   

 A B C D E F G H 
16           CORP. X 

CORP. Y
          CORP. 

Z
17 DATE RETURN  DATERETURN  DATERETURN 
18 9-Jan N/A 9-Jan N/A 9-Jan N/A
19 10-Jan =B4/B3-1 10-Jan =E4/E3-1 10-Jan =H4/H3-1
20 11-Jan =B5/B4-1 11-Jan =E5/E4-1 11-Jan =H5/H4-1
21 12-Jan =B6/B5-1 12-Jan =E6/E5-1 12-Jan =H6/H5-1
22 13-Jan =B7/B6-1 13-Jan =E7/E6-1 13-Jan =H7/H6-1
23 14-Jan =B8/B7-1 14-Jan =E8/E7-1 14-Jan =H8/H7-1
24 15-Jan =B9/B8-1 15-Jan =E9/E8-1 15-Jan =H9/H8-1
25 16-Jan =B10/B9-1 16-Jan =E10/E9-1 16-Jan =H10/H9-1
26 17-Jan =B11/B10-1 17-Jan =E11/E10-1 17-Jan =H11/H10-1
27 18-Jan =B12/B11-1 18-Jan =E12/E11-1 18-Jan =H12/H11-1
28 19-Jan =B13/B12-1 19-Jan =E13/E12-1 19-Jan =H13/H12-1
29 20-Jan =B14/B13-1 20-Jan =E14/E13-1 20-Jan =H14/H13-1
30 Mean =AVERAGE(B19:B29) Mean=AVERAGE(E19:E29) Mean=AVERAGE(H19:H29) 
31 Variance =VAR(B19:B29) Variance=VAR(E19:E29) Variance=VAR(H19:H29) 
32 Variance 

(P) 
=VARP(B19:B29) Variance 

(P)
=VARP(E19:E29) Variance 

(P)
=VARP(H19:H29) 

33 St.D. =STDEV(B19:B29) St.D.=STDEV(E19:E29) St.D.=STDEV(H19:H29) 
34 St.D. (P) =STDEVP(B19:B29) St.D. (P)=STDEVP(E19:E29) St.D. (P)=STDEVP(H19:H29) 
35    COV(X,Y)= =COVAR(

B19:B29,
E19:E29)

   COV(Y,Z)= =COVAR(E19:E29,H19:H29)

36    COV(X,Z)= =COVAR(
B19:B29,
H19:H29)

 

37    CORR(X,Y)= =CORRE
L(B19:B2
9,E19:E29

)

   CORR(Y,Z)= =CORREL(E19:E29,H19:H29)

38    CORR(X,Z)= =CORRE
L(B19:B2
9,H19:H2

9)
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Appendix B: A Brief Review Of Elementary Statistics Measures 
 
Mean, Variance and Standard Deviation 

The purpose of this appendix is to introduce the reader to several important, 
though elementary concepts from statistics. To begin with, suppose that we wish to 
describe or summarize the characteristics or distribution of a single population of values 
(or sample drawn from a population). Two important characteristics include central 
location (measured by average, mean, median, expected value or mode) and dispersion 
(measured by range, variance or standard deviation). 
 

In many instances, we will be most interested in the typical value (if it exists) 
drawn from a population or sample; that is, we are interested in the “location” of the data 
set. Mean (often referred to as average) or expected values (sometimes referred to as 
weighted average) are frequently used as measures of location (or central tendency) 
because they account for all relevant data points and the frequency with which they 
occur. The arithmetic mean value of a population µ is computed by adding the values xi 
associated with each observation i and dividing the result by the number of observations 
n in the population: 
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n

i
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µ  

 
Variance is a measure of the dispersion (variability and sometimes volatility or 

uncertainty) of values within a data set. In a finance setting, variance is also used as an 
indicator of risk. Variance is defined as the mean of squared deviations of actual data 
points from the mean or expected value of a data set. Deviations are squared to ensure 
that negative deviations do not cancel positive deviations, resulting in zero variances. 
High variances imply high dispersion of data. This indicates that certain or perhaps many 
data points are significantly different from mean or expected values. Population and 
sample variances are computed as follows: 
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Standard deviation is simply the square root of variance. It is also used as a 

measure of dispersion, risk or uncertainty. Standard deviation is sometimes easier to 
interpret than variance because its value is expressed in terms of the same units as the 
data points themselves rather than their squared values. High standard deviations and 
high variances imply high dispersion of data. Standard deviations for populations and 
samples are computed as follows: 
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Co-movement Statistics 

A joint probability distribution is concerned with probabilities associated with 
each possible combination of outcomes drawn from two sets of data. Covariance 
measures the mutual variability of outcomes selected from each set; that is, covariance 
measures the relationship between variability in one data set relative to variability in the 
second data set, where variables are selected one at a time from each data set and paired. 
If large values in one data set seem to be associated with large values in the second data 
set, covariance is positive; if large values in the first data set seem to be associated with 
small values in the second data set, covariance is negative. If data sets are unrelated, 
covariance is zero. Covariance between data set x and data set y may be measured as 
follows, depending on whether one is interested in covariance of a population, of a 
sample or expected covariance: 
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The sign associated with covariance indicates whether the relationship associated 

with the data in the sets are direct (positive sign), inverse (negative sign) or independent 
(covariance is zero). The absolute value of covariance measures the strength of the 
relationship between the two data sets. However, the absolute value of covariance is more 
easily interpreted when it is expressed relative to the standard deviations of each of the 
two data sets. That is, when we divide covariance by the product of the standard 
deviations of each of the data sets, we obtain the coefficient of correlation ρx,y as follows: 
 

(A.8)  

1

)(

1

)(

))((

1

2

1

2

1,
,

−

−
⋅

−

−

−−
==

∑∑

∑

==

=

n

yy

n

xx

yyxx

n

i
i

n

i
i

i

n

i
i

yx

yx
yx σσ

σ
ρ  

 
A correlation coefficient equal to 1 indicates that the two data sets are perfectly 

positively correlated; that is, their changes are always in the same direction, by the same 
proportions, with 100 percent consistency. Correlation coefficients will always range 
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between - 1 and +1. A correlation coefficient of - 1 indicates that the two data sets are 
perfectly inversely correlated; that is, their changes are always in the opposite direction, 
by the same proportions with 100 percent consistency. The closer a correlation 
coefficient is to -1 or +1, the stronger is the relationship between the two data sets. A 
correlation coefficient equal to zero implies independence (no relationship) between the 
two sets of data. 
 

The correlation coefficient may be squared to obtain the coefficient of 
determination (also referred to as r2 in some statistics texts and here as ρ2). The 
coefficient of determination is the proportion of variability in one data set that is 
explained by or associated with variability in the second data set. For example, ρ2 equal 
to .35 indicates that 35 percent of the variability in one data set is explained in a statistical 
sense by variability in the second data set. 
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Appendix C: A Primer on Option Pricing 
 
 First, we will introduce a few option basics. A stock option is a legal contract that 
grants its owner the right (though, not the obligation) to either buy or sell a given stock. 
There are two types of stock options: puts and calls. A call grants its owner to purchase 
stock (called underlying shares) for a specified exercise price (also known as a striking 
price) on or before the expiration date of the contract. In a sense, a call is similar to a 
coupon that one might find in a newspaper enabling its owner to, for example, purchase a 
roll of paper towels for one dollar. If the coupon represents a bargain, it will be exercised 
and the consumer will purchase the paper towels. If the coupon is not worth exercising, it 
will simply be allowed to expire. The value of the coupon when exercised would be the 
amount by which value of the paper towels exceeds one dollar (or zero if the paper towels 
are worth less than one dollar). Similarly, the value of a call option at exercise equals the 
difference between the underlying market price of the stock and the exercise price of the 
call. 
 
 Suppose, for example, that a call option with an exercise price of $90 currently 
exists on one share of stock. The option expires in one year. This share of stock is 
expected to be worth either $80 or $120 in one year, but we do not know which at the 
present time. If the stock were to be worth $80 when the call expires, its owner should 
decline to exercise the call. It would simply not be practical to use the call to purchase 
stock for $90 (the exercise price) when it can be purchased in the market for $80. The call 
would expire worthless in this case. If, instead, the stock were to be worth $120 when the 
call expires, its owner should exercise the call. Its owner would then be able to pay $90 
for a share that has a market value of $120, representing a $30 profit. In this case, the call 
would be worth $30 when it expires. Let T designate the options term to expiry, ST the 
stock value at option expiry and cT be the value of the call option at expiry. The value of 
this call at expiry is determined as follows: 
 
(1) 

],0[ XSMAXc TT −=  
 

When ST = 80, CT = MAX[0, 80 – 90] = 0 
When ST=120, CT = MAX[0, 120 – 90] = 30 

 
 A put grants its owner the right to sell the underlying stock at a specified exercise 
price on or before its expiration date. A put contract is similar to an insurance contract. 
For example, an owner of stock may purchase a put contract ensuring that he can sell his 
stock for the exercise price given by the put contract. The value of the put when exercised 
is equal to the amount by which the put exercise price exceeds the underlying stock price 
(or zero if the put is never exercised). 
 
 To continue the above example, suppose that a put option with an exercise price 
of $90 currently exists on one share of stock. The put option expires in one year. Again, 
this share of stock is expected to be worth either $80 or $120 in one year, but we do not 
know which at the present time. If the stock were to be worth $80 when the put expires, 
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its owner should exercise the put. In this case, its owner could use the put to sell stock for 
$90 (the exercise price) when it can be purchased in the market for $80. The put would be 
worth $10 in this case. If, instead, the stock were to be worth $120 when the put expires, 
its owner should not exercise the put. Its owner should sell for $90 for a share that has a 
market value of $120. In this case, the call would be worth nothing when it expires. Let 
pT be the value of the put option at expiry. The value of this put at expiry is determined as 
follows: 
 
 (2)     pT = MAX[0, X – ST] 
 

When ST=80,  pT = MAX[0, 90 – 80] = 10 
When ST=120,  pT = MAX[0, 120 – 80] = 0 

  
The owner of the option contract may exercise his right to buy or sell; however, 

he is not obligated to do so. Stock options are simply contracts between two investors 
issued with the aid of a clearing corporation, exchange and broker that ensure that 
investors honor their obligations to each other. The corporation whose stock options are 
traded will probably not issue and does not necessarily trade these options. Investors, 
typically through a clearing corporation, exchange and brokerage firm, create and trade 
option contracts amongst themselves. 

 
For each owner of an option contract, there is a seller or "writer" who creates the 

contract, sells it to a buyer and must satisfy an obligation to the owner of the option 
contract. The option writer sells (in the case of a call exercise) or buys (in the case of a 
put exercise) the stock when the option owner exercises. The owner of a call is likely to 
profit if the stock underlying the option increases in value over the exercise price of the 
option (he can buy the stock for less than its market value); the owner of a put is likely to 
profit if the underlying stock declines in value below the exercise price (he can sell stock 
for more than its market value). Since the option owner's right to exercise represents an 
obligation to the option writer, the option owner's profits are equal to the option writer's 
losses. Therefore, an option must be purchased from the option writer; the option writer 
receives a "premium" from the option purchaser for assuming the risk of loss associated 
with enabling the option owner to exercise. 
 
 Most stock options in the United States and Europe are traded on exchanges. The 
largest U.S. options exchange is the Chicago Board Options Exchange. The American 
and Philadelphia Exchanges also maintain stock options trading facilities. Options are 
also traded on several different commodities, currencies and other financial instruments. 
 
 Options may be classified into either the European variety or the American 
variety. European options may be exercised only at the time of their expiration; American 
options may be exercised any time before and including the date of expiration. Most 
option contracts traded in the United States (and Europe as well) are of the American 
variety. We will demonstrate in the next section that American options can never be 
worth less than their otherwise identical European counterparts. 
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 The simple terminal value examples we discussed above were based on a 
Binomial Distribution where there are two possible outcomes for a given future point in 
time. If we add more time periods and more trials, we would increase the number of 
possible terminal outcomes. As the number of trials in a binomial distribution approach 
infinity, the binomial distribution approaches the Normal Distribution. Black and Scholes 
provide a derivation for an option-pricing model based on the assumption that the natural 
log of stock price relatives will be normally distributed.1011 The assumptions on which the 
Black-Scholes Options Pricing Model and its derivation are based are as follows: 
 
  1. There exist no restrictions on short sales of stock or writing of call options. 
  2. There are no taxes or transactions costs. 
  3. There exists continuous trading of stocks and options. 
  4. There exists a constant riskless interest rate that applies for both 

borrowing and lending. 
  5. The range of potential stock prices is continuous. 
  6. The underlying stock will pay no dividends during the life of the option. 
  7. The option can be exercised only on its expiration date; that is, it is a 

European Option. 
  8. Shares of stock and option contracts are infinitely divisible. 
  9. Stock prices follow an Îto process; that is, they follow a continuous time 

random walk in two dimensional continuous space. This simply means 
that stock prices are randomly distributed (in a manner somewhat similar 
to a normal distribution) and can take on any positive value at any time. 

 
 From an applications perspective, one of the most useful aspects of the Black-
Scholes Model is that it only requires five inputs. All of these inputs with the exception 
of the variance of underlying stock returns are normally quite easily obtained:12 
 
  1. The current stock price (S0): Use the most recent quote. 
  2. The variance of returns on the stock (F2): Several methods will be 

discussed later. 
  3. The exercise price of the option (X): Given by the contract 
  4. The time to maturity of the option (T): Given by the contract 
  5. The risk-free return rate (rf): Use a treasury issue rate with an appropriate 

term to maturity. 
 
It is important to note that the following less easily obtained factors are not required as 
model inputs: 
 
  1. The expected or required return on the stock or option and 
                                                 
 
11The stock price relative for a given period t is defined as (Pt-Pt-1)÷Pt. Thus, the log of the stock price 
relative is defined as ln[(Pt-Pt-1)÷Pt]. 

12These five inputs are the only that are necessary if the assumptions underlying the model hold. The 
sample sources for deriving input values may or may not be the most appropriate for a given contract. 
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  2. Investor attitudes toward risk 
 
 If the assumptions given above hold, the Black-Scholes model specifies that the 
value of a call option is given as follows: 
 
(3) 
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where N(d*) is the cumulative normal distribution function for (d*). This is function 
frequently referred to in a statistics setting as the "z" value for (d*). From a 
computational perspective, one would first work through Equation (4), then Equation (5) 
before valuing the call with Equation (3). 
 
 N(d1) and N(d2) are areas under the standard normal distribution curves (z-
values). Simply locate the z-value on an appropriate table (see Table C.1) corresponding 
to the N(d1) and N(d2) values. Consider the following simple example of a Black-Scholes 
Model application: An investor has the opportunity to purchase a six month call option 
for $7.00 on a stock which is currently selling for $75. The exercise price of the call is 
$80 and the current riskless rate of return is 10% per annum. The variance of annual 
returns on the underlying stock is 16%. 
 

 At its current price of $7.00, does this option represent a good investment? First, 
we note the model inputs in symbolic form: 
 
  t = .5         rf = .10     F = .4        S0 = 75 
  X = 80      F2 = .16    e . 2.71828 
   
Our first steps are to find d1 from Equation (4) and d2 from Equation (5): 
 

1928.2828.09.5.4.12 −=−=⋅−= dd  
 
Next, by either using a z-table (see Table C.1) or by using an appropriate estimation 
function from a statistics manual, we find normal density functions for d1 and d2: 
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Finally, we use N(d1) and N(d1) in Equation (3) to value the call: 

 
23.8)420(.)9512.80()536(.750 =⋅⋅−⋅=c  

 
Since the 8.23 estimated value of the call exceeds its 7.00 market price, the call should be 
a worthy purchase. 
 
Table C.1: 
The z-Table 
 
  z             0.00       0.01       0.02        0.03       0.04       0.05        0.06      0.07        0.08       0.09  
  0.0   .0000   .0040   .0080   .0120   .0159   .0199   .0239   .0279   .0319   .0358  
  0.1   .0398   .0438   .0478   .0517   .0557   .0596   .0636   .0675   .0714   .0753  
  0.2   .0793   .0832   .0871   .0909   .0948   .0987   .1026   .1064   .1103   .1141  
  0.3   .1179   .1217   .1255   .1293   .1331   .1368   .1406   .1443   .1480   .1517  
  0.4   .1554   .1591   .1628   .1664   .1700   .1736   .1772   .1808   .1844   .1879  
  0.5   .1915   .1950   .1985   .2019   .2054   .2088   .2123   .2157   .2190   .2224  
  0.6   .2257   .2291   .2324   .2356   .2389   .2421   .2454   .2486   .2517   .2549  
  0.7   .2580   .2611   .2642   .2673   .2703   .2734   .2764   .2793   .2823   .2852  
  0.8   .2881   .2910   .2939   .2967   .2995   .3023   .3051   .3078   .3106   .3133  
  0.9   .3159   .3186   .3212   .3238   .3264   .3289   .3315   .3340   .3365   .3389  
  1.0   .3413   .3437   .3461   .3485   .3508   .3531   .3554   .3577   .3599   .3621  
  1.1  .3643   .3665   .3686   .3708   .3729   .3749   .3770   .3790   .3810   .3830  
  1.2   .3849   .3869   .3888   .3906   .3925   .3943   .3962   .3980   .3997   .4015  
  1.3   .4032   .4049   .4066   .4082   .4099   .4115   .4131   .4147   .4162   .4177  
  1.4   .4192   .4207   .4222   .4236   .4251   .4265   .4279   .4292   .4306   .4319  
  1.5   .4332   .4345   .4357   .4370   .4382   .4394   .4406   .4418   .4429   .4441  
  1.6   .4452   .4463   .4474   .4484   .4495   .4505   .4515   .4525   .4535   .4545  
  1.7   .4554   .4564   .4573   .4582   .4591   .4599   .4608   .4616   .4625   .4633  
  1.8   .4641   .4649   .4656   .4664   .4671   .4678   .4686   .4693   .4699   .4706  
  1.9   .4713   .4719   .4726   .4732   .4738   .4744   .4750   .4756   .4761   .4767  
  2.0   .4772   .4778   .4783   .4788   .4793   .4798   .4803   .4808   .4812   .4817  
  2.1   .4821   .4826   .4830   .4834   .4838   .4842   .4846   .4850   .4854   .4857  
  2.2   .4861   .4864   .4868   .4871   .4875   .4878   .4881   .4884   .4887   .4890  
  2.3   .4893   .4896   .4898   .4901   .4904   .4906   .4909   .4911   .4913   .4916  
  2.4   .4918   .492   .4922   .4925   .4927   .4929   .4931   .4932   .4934   .4936  
  2.5   .4938   .4940   .4941   .4943   .4945   .4946   .4948   .4949   .4951   .4952  
  2.6   .4953   .4955   .4956   .4957   .4959   .4960   .4961   .4962   .4963   .4964  
  2.7   .4965   .4966   .4967   .4968   .4969   .4970   .4971   .4972   .4973   .4974  
  2.8   .4974   .4975   .4976   .4977   .4977   .4978   .4979   .4979   .4980   .4981  
  2.9   .4981   .4982   .4982   .4983   .4984   .4984   .4985   .4985   .4986   .4986  
  3.0   .4986   .4987   .4987   .4988   .4988   .4989   .4989   .4989   .4990   .4990  
 
Put-Call Parity 
Before proceeding with pricing models applicable to the valuation of call options, we will 
first discuss a simple model concerning the relationship between put and call values. 
When this relationship holds, one is able to value a put based on knowledge of a call with 
exactly the same terms. First, assume that there exists a European put (with a current 
value of p0) and a European call (with a value of c0) written on the same underlying stock 
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that currently has a value equal to X. Both options expire at time T and the riskless return 
rate is rf. The basic Put-Call Equivalence Formula is as follows: 
 
(1) 

000 pSXec Trf +=+ −

 
 

That is, a portfolio consisting of one call with an exercise price equal to X and a pure 
discount riskless note with a face value equal to X must have the same value as a second 
portfolio consisting of a put with exercise price equal to X and one share of the stock 
underlying both options. 
 
A very useful implication of the put call parity relation, we can easily derive the price of 
a put given a stock price, call price, exercise price and riskless return: 
 
(2) 

    000 SXecp Trf −+= −

 
 

 
Appendix Exercises 

 
1.  Call and put options with an exercise price of $30 are traded on one share of Company 
X stock. 
  a. What is the value of the call and the put if the stock is worth $33 when the options 

expire? 
  b. What is the value of the call and the put if the stock is worth $22 when the options 

expire? 
  c. What is the value of the call writer's obligation stock is worth $33 when the 

options expire? What is the value of the put writer's obligation stock is worth $33 
when the options expire? 

  d. What is the value of the call writer's obligation stock is worth $22 when the 
options expire? What is the value of the put writer's obligation stock is worth $22 
when the options expire? 

  e. Suppose that the purchaser of a call in part a paid $1.75 for his option. What was 
his profit on his investment? 

  f. Suppose that the purchaser of a call in part b paid $1.75 for his option. What was 
his profit on his investment? 

 
2.  Evaluate calls and puts for each of the following European stock option series: 
 
   Option 1       Option 2      Option 3     Option 4 
    T = 1          T  = 1      T = 1         T = 2 
    S = 30         S  = 30     S = 30        S = 30 
    F  = .3         F  = .3  F = .5         F = .3 
    r  = .06        r  = .06  r = .06        r = .06 
    X = 25        X = 35    X = 35        X = 35 
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Appendix Exercise Solutions 

 
1. a. cT = $33 - $30 = $3; pT = 0 
    b. cT = 0; pT = $30 - $22 = $8 
    c. cT = -$3; pT = 0 
    d. cT = 0; pT = -$8 
    e. $3 - $1.75 = $1.25 
    f. $0 - $1.75 = -$1.75 
 
2. The options are valued with the Black-Scholes Model in a step-by-step format in the 
following table: 
 
       OPTION 1       OPTION 2       OPTION 3       OPTION 4 
d(1)       .957739          -.163836            .061699         .131638 
d(2)       .657739          -.463836           -.438301        -.292626  
N[d(1)]      .830903           .434930            .524599         .552365 
N[d(2)]      .744647           .321383            .330584         .384904 
 
 
Call        7.395               2.455                   4.841                4.623 
Put              0.939              5.416                    7.803                5.665 
 
 


