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AN ADAPTIVE REGRESSION MODEL*

By THomAs F. CooLEY AND EDWARD C. PRESCOTT!

EcoNOMETRICIANS frequently approximate complex behavioral and technolog-
ical relationships using equations that are linear in a small number of unknown
parameters. The effect of omitted variables, aggregation errors, and other errors
in specification are included in the additive disturbance which is assumed, among
other things, to be temporally uncorrelated. Utilizing time series data, linear
regression analysis is then used to estimate parameters. The adaptive regression
model developed in this paper would be used in the same manner, but it does
not assume the disturbances are independent. Instead, it assumes the distur-
bances are the sum of not only a transitory element that has effect in the current
period but also a permanent component whose effect persists into the future. If
for example, omitted variables are subject to permanent and transitory changes,
as is sometimes assumed in economic theory [4] and by the widely used adaptive
forecasting model [6], these disturbances will have both permanent and transi-
tory components. In the adaptive regression model the transitory disturbance
can be thought of as the usual additive error term, while the permanent com-
ponent causes random changes in the intercept value.

It is common practice in econometric research to test for serial correlation in the
residuals. If the test indicates serial correlation is present it is typically assumed
that the disturbances are subject to a first order auto-regressive process. In fact,
such processes are likely to describe the true distribution of the disturbances only
in rare instances. An auto-regressive error process implies that the effects of
omitted factors all decay exponentially with time and at the same rate. This is
an unreasonable assumption for most economic applications. Some omitted
factors, such as labor union strikes or the vagaries of the weather, will have only
transitory effects while other factors, like changes in tastes or technological
developments, will have effects which persist into the future without decay.
The auto-regressive assumption is often justified by the argument that omitted
varibles are subject to an auto-regressive process. This argument holds, however,
only if all omitted factors contributing to the additive disturbance are subject
to auto-regressive processes with the same parameter. The widespread use of the
auto-regressive correction in econometrics is explained by the fact that it ac-
counts for serial correlation and is computationally efficient. The adaptive
regression also explains serial correlation, is computationally efficient, and assumes
an error structure which, in many situations, provides a better approximation of
reality.

Of particular methodological interest is the proof of consistency of the max-
imum likelihood estimator for a subset of the unknown parameters when the

* Manuscript received August 16, 1972; revised January 5, 1973.
! The authors acknowledge helpful comments of Professors F. Gerard Adams, Michael D.
McCarthy and Melvin Hinich.
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observations are not identically and independently distributed and a consistent
estimator does not exist for the entire parameter set.’

2. THE MODEL
The assumed structure is
(1.1) J’=‘801+X;‘8*+u1

where y, is the z-th observation of the dependent variable, 8,, the random inter-
cept parameter for period ¢, x; a (k — 1) component vector of predetermined
explanatory variables, §* a vector of unknown slope coefficients, and u, the
additive transitory disturbance. The elements 3y, are subject to permanent
changes v,:

(1.2) Bo.rv1 = Bo + Ve
The u, and v, are all independent normal variates with mean 0 and variances
(1.3) var (u;) = (1 — 7)o? and var (v,) = yo?,

with 0 < y < 1. The unknown parameter y measures the relative importance
of the permanent component, the larger its value the greater the importance of
permanent change.

If y = 0, the above structure is the multiple regression model with an un-
changing intercept. On the other hand, if 8* equals the zero vector, this system
reduces to the adaptive forecasting structure of [6]. Thus, the model is a genera-
lization of both regression analysis and adaptive forecasting.?

The process generating the intercepts is not stationary and writing down the
likelihood function is impossible. The likelihood function conditional on the
value of the process at some point in time, however, is well defined for any
finite set of these elements. One approach is to treat Sy as an unknown param-
eter and the other 8, as realizations of the random process, but, a more
convenient selection for forecasting is the value of the intercept one period
subsequent to the sample, 8y r+;. Defining 8, to be By 1, and using (1.3)

(1:4) R

Substituting for By, in (1.1) yields

(1.5) ye= By xiBF 4w, ——Y:i v, .

Except for the the dependence of the error terms, this is the usual linear regres-

2 In a subsequent paper |2], we compared the predictive and estimation efficiencies of adap-
tive and conventional regression analysis with and without the auto-regressive correction. A
Fortran Program for adaptive regression is available upon request.

3 The structure is related to those considered by [1] and [7] from a Bayesian point of view.
Our estimation procedure is computationally more efficient and we are able to develop as-
ymptotic properties of the estimators.
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sion structure.
To simplify notation let y be the 7' component vector of the y,, 8 the k com-
ponent vector

(1.6) B =B BY. BY, - -+, Bl
and X the T X k matrix

Voxy o o - Xl ]

Loxp oo o0 0 X
(1.7) X =

oxar - 0 Xear

Define the 7 X T matrix Q, to be
(1.8) 0, = —7)1+7rR,
where the T X T matrix R has (i,j)-th element
(1.9) rp=min[T—i+1,T—j+1].

With this notation along with (1.5), it is easily verified that
(1.10) y ~ N[XB, ¢%Q,].

If 7 were known, Q, would be known and estimation would be a simple
application of Aitken’s generalized least squares analysis. The maximum likeli-
hood estimator of 8 would be

(1.11) B(y) = (X'0;'X)"'XQ; 'y,
and of ¢?
(1.12) s5(r) = Ty — XB(n)YQ; [y — XB(1)].

Since y is not known, search techniques must be utilized to determine the
parameter set with maximum likelihood. The log likelihood function of the
observations is (except for a constant)

. T l
(1.13) L(y; B0t 7, X) = — ?ln a? - ~é—ln 10,

| 10)-1
- %2—()* - XB)YO7'(y — XB) .

Inserting the conditional maximum likelihood estimators of 8 and ¢? yields the
concentrated likelihood function (except for a constant)

(1.14) Liy;7) = — —g-lnszm - %ln 10,1
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The estimation strategy is to search over the interval 0 < 7 < 1 and choose as
the estimator of 7 that value, say g, such that

(1.15) L(y;8) = L(y;7) all y €0, 1].

The corresponding maximum likelihood estimates of 3 and ¢? are then B(g) and
s*(g) respectively.

The above procedure is straight-forward but excessively expensive, given cur-
rent computer technology, because the 7 X T matrix O, must be inverted for
each value of 7 that is searched in the interval [0, 1]. Fortunately, the variables
can be transformed so the covariance matrix is diagonal and the transformation

- does not depend upon 7.

Let P be the matrix whose rows are the set of orthonormal eigenvectors for

R. Then Py ~ N[PXB, 6*P[(1 — 7)I + 7R]P’'] or

(1.16) Py ~ N[PXB, a*D(r)]

where D(7) is diagonal. Letting r; be the eigenvalue corresponding to the i-th
row of P and d, the (i, i)-th element of D(y),

(1.17) d(r) =0 =71 +irn.
The analytic expressions for the r; and p;; are given by the following:

Result

(1.18) =124 2cos 2a(T — i + 1)/2T + D}]!

and

(1.19) pi; = (= 1)2QT + 1)"2sin[22(T — i + 1)(T — j + 1)JT + 1)].

ProoF. The inverse of R is a tridiagonal matrix with 2’s down the main
diagonal except for a 1 in the first position, and — 1 for the elements one posi-
tion off the main diagonal. It is readily verified that the i-th row of P is an
eigenvector corresponding to r;! of the matrix R~!. But, the eigenvectors of a
symmetric matrix are the same as those of the inverse and the eigenvalues are
the reciprocals. Thus, the rows of P are a set of orthonormal elgenveclors of R
and the eigenvalue corresponding to row i is r;.

Thus, the elements of D(y) are defined by

1242 Los(%ﬁ&f;:lui;ll ]

(120)  dfr) = (1 -7) | T

No T X T matrix need be inverted, and estimation costs are comparable those
of ordinary least squares with auto-regressive correction.

2. LARGE SAMPLE ANALYSIS

The intercept cannot be estimated consistently because it is continually subject
to random changes. But, if 7 where known, the maximum likelihood estimator
of 8 would be efficient in the sense that it would have minimum variance in the
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class of unbiased estimators. In this section we prove that g, the m.Le. of 7, is
consistent implying B(g), the m.l.e. of S, is asymptotically efficient. Further,
the asymptotic distribution of B(g) is normal with mean S and covariance
(X107 1x)L ’

Subsequently (7, 02) will denote the true value of (7, ¢2) and the T subscript
will be implied for those elements depending upon the sample size. Letting S
be the generalized sum of squared residuals condition on 7, the concentrated log
likelihood function, (1.15), divided by T/2 is

2.1) LG;T) = —InS/T — T-'In|D,|.
LEMMA A. For y €0, 1]
(2.2) plim L(7; T) = — Info§ X d(ro)/dly)] — T ' In|D,| = f(1; T)

where here and subsequently summations are from 1 to T.

PROOF. Assuming the variables have been transformed via transformation P,
the generalized sum of squared residuals is

(2.3) S =w[l— M]w
where w ~ N(0, 03D; 'Dy) and M, = D; V2X(X'D;'X)~'X'D; . But from (1.20)
(2.4) 0 <dlro)/dlr) <4 + rolr l

which uniformly bounds the variances and fourth moments of w, for y > 0.
This along with the fact M, is idempotent of rank k implies w’M,w/T converges
in mean to 0 and w'w/T to 63 3 d,(70)/d(y). As convergence in mean implies
convergence in probability the result is proven for y > 0.

Ify =0and 7, >0

L(p;T) — f(r; T) = — In[X wiod 2 di(70)] -
The variance of the term in brackets is

3052 2 d(ro)X LT di(70)] -

Using well-known properties of eigenvalues [5, (273)], the numerator is of order
T3 as it equals the sum of all the elements of Q, squared while the denominator
is of order T* as it is the square of the sum of the diagonal elements of Q,. Thus,
the variance is of order 7~! implying convergence of the random variable to its
mean in probability. If y = 0 and yy = 0, the result is trivial. Thus,

plim [L(7: T) — f(r; T)] = — In [ Ewilof X di(r)] = 0,
completing the proof.

REMARK. Pointwise convergence in probability does not imply convergence
uniform in 7 in probability. Uniform convergence (that is convergence in the
L.-norm) is needed to conclude L(y; T) and f(y, T) have the same maximum
in the limit. Lemma B establishes a continuity condition for the L(y; T) and
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f(r;T) which implies uniform convergence given pointwise convergence. The
final step in the proof is to show that lim f(y;T) is continuous and has a unique
maxima at 7,. Then one can conclude that g converges in probability to 7.

LEMMA B. The convergence of L(7;T) to f(y;T) is uniform in probability; that is
(2.5) plim sup | L(r;T) —f(r;T)|=0.

ProoF. Letting e(y) = Py — PXB(y), then for v, > 714
S(7;) < e(ry)'Dile(ry) <[1 4+ 3(r, — 71)le(r1)'Di'e(r1)
=14+ 30, — r)IS(r)

because [1 + 3(y, — 71)1D7! — D5!is positive definite, a result following from
(1.20). Using this result

[S(r2) — SG01SGry) < 3(r2 — 710

which implies

(2.6) LLGT) — (D> — 3.
dr

Similarly,

2.7) LG~ iD= =3

If|L(yi; T) — f(r:: T)| < /3 for i = 1, 2, then given (2.6) and (2.7)
(2.8) IL(; T) — f(r; T < 3(r1 — 72) + 2¢/3

forall y; <7y <7, ByLemma A for any d,¢ > 0 and N, there is a T* such
that forall T> T*

(2.9) Pr{|f(i/N;T) — L(i/N; T)| < ¢[3} =1 — /(N + 1)
fori=0,1,..., N. This implies
Pr {mgxlf(i/N; T) — L(IN; T)| <el3}>1—a.

But, by (2.8) and (2.9), for T > T*
Prisup | f(r; T) — L(r; T)| = 2/3e + 3/(N+ 1)} <1 — 0.
Selecting N > 8/¢, we find
Prisup [f(r; T) — L(r; T) [ = e} <1 0.

7€

This proves the Lemma.

LEmMA C. Thereis a K(y; T) > K > 0 such that
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STy =K@ T)(ro — 1) for 7€ (0, 1].
Proor. Differentiating f(y; T') yields

1 (o _ | d;()dry) |1 di(70) 1 a,(y)
7)) = — L — AL ¥ —_ .
f (T, ) T Z dr(r)z iT L d,()‘) TZ d,()’)

Observe

tiwe 7y — | L (7o) _‘_J__ dildi(ro)d;(r) — di(ro)di(7)]
e =[2G ] 5y a0
[l sdG) e —71  Id@) — 4T
[T z d(r) ! 2T% ZJ di(n)dr)*

From (1.20) d,(y) > 1/4, which implies the leading term exceeds 1/4. Thus,
with some additional algebra,

Ty =K@ T)Y[T"Zd(y) > — (T 2 dr) ) Wro — 7)

with K(y; T) > 1/3. Using the definition of d,(y), a positive lower bound can
be obtained for the average squared deviation of the d,(7)~! from their average
which holds for all T sufficiently large.

Lemma C implies that the functions f(7: T) have a unique maximum of .
Furthermore, if |7 — 74] > ¢, then | f(yo: T) — f(r; T)| > ¢/K. By Lemma B
the probability that L(y; T) will be arbitrarily close to f(y, T) for all values of
7 approaches one as T goes to infinity. Thus, the 7 which maximize L(y:T)
converges in probability to y,. This discussion can be summarized by the follow-
ing theorem:

THEOREM. The maximum likelihood estimator g of 7 converges in probability
10 74, the true parameter value.

Following the usual analysis, but using the log likelihood function concentrated
on B, the asymptotic distribution of 6 = (7, ¢?) can be derived (c.f. [3]). The
basic result is that 4/ T(8 — 0y) is asymptotically normal with mean 0 and
covariance equal to the inverse of the information matrix,

Z(ﬂ_f.o)> U dir)

10,) = _L d(70) a3 d;(10) ‘
T sdiy 1
_05 di(ro) 75

REMARK. It is of interest to note that the only use of normality in the con-
sistency proof was to insure the existence of the fourth moment of the w,. The
normality assumption merely provided a convenient function to be maximized.

Tufts University, U.S.A.,
Carnegie-Mellon University, U.S.A.
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