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In this paper we consider the problem of generating multi-period predictions from two simple 
dynamic models, an autoregressive model and a geometric random walk. The autoregressive model 
constitutes a useful paradigm for many of the practical problems of prediction because it 
possesses a number of features that differentiate it sharply from the standard linear regression 
model. The geometric random walk model is widely used in macroeconomics and finance and is 
fundamentally non-normal. 

The ideal situation for the prediction problem would be to know the true density of the future 
observations. Unfortunately, that density depends on parameters that are unknown and must be 
estimated. We analyze six prediction functions- approximations of the true density- that 
attempt to circumvent this problem. We contrast the theoretical properties of the likelihood 
prediction function proposed by Cooley and Parke (1986) with certainty equivalence prediction 
functions and mean-squared error prediction functions. The results of a Monte Carlo study 
illustrate the relative performance of the alternative prediction functions for conditional predic- 
tions and for the analysis of policy interventions. The results confirm the importance of 
accounting for parameter uncertainty and approximating the true shape of the future density. 

1. Introduction 

In this paper we first consider the problem of generating multi-period 
predictions from simple autoregressive models of the form 

yt=a+'yyt_l+et, t=l , . . . ,m+n,  (1) 

where the true parameter vector 0 ° = (a °, y0) is unknown. The autoregressive 
model constitutes a useful paradigm for many practical prediction problems 
because it possesses a number of features that differentiate it sharply from 
standard linear regression models. Important characteristics that are high- 
lighted by this model are: (1) the sample period realizations and the unknown 
future realiTations are not independent; (2) the role of parameter uncertainty 
is compounded in predictions beyond one period; and (3) the distribution of 
forecast errors will be non-normal even if the underlying sources of uncer- 
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tainty are normally distributed. Perhaps equally important, the autoregressive 
model is one of the few settings in which both Bayesian and mean squared 
error analyses of predictive distributions have been attempted, x 

The second model we consider compares various prediction functions in a 
related, but different setting. Suppose that Yt follows a geometric random 
walk ,  

y t / y t + l = a + e t ,  t = l  . . . .  , m + n ,  (2) 

where the growth rate error terms et are independent. The model is of 
substantive interest because it occurs naturally in finance and macroeconom- 
ics. We also consider an extension of (2) in which these error terms arise from 
an AR(1) process. The geometric random walk model differs from (1) for our 
purposes in that the forecast errors are not approximately normally distributed 
even if the true coefficients are known. Good forecasting performance requires 
a technique that both accounts for uncertainty in the parameter values and 
non-normality in the effects of the error terms. 

For any model, interest in predictions of the future focuses attention on the 
probability density generating the vector of future observations y /=  (Y  t: 
t = m + 1, . . . ,  m + n}, with forecasts conditioned in some way on the data 
period observations Yd = { Yt: t = 1 . . . .  , m ). The most informative summary of 
y/  is given by the density f(YflYa, 0°) • For model (1) with normally distributed 
errors this has the form 

m+n I f ( y / l yd ,  OO)¢xexp _ 1  ~_, ( y t _ a O + y O y t + t ) 2 / o  2 " (3) 
t = m + l  

Unfortunately, since 0 ° is unknown, the practical problem is to obtain 
prediction funct ions-  approximations to f(Y/lYa, 0°) - that have good char- 
acteristics, but do not depend on 0 °. 

One objective of this paper is to use the context of the autoregressive and 
geometric random walk models to compare the performances of a predictive 
likelihood function [Cooley and Parke (1986)] and other prediction functions 
that approximate f(YIlYa, 0°) • The most important characteristics of a predic- 
tion function are that it reveal, as closely as possible, the shape of the true 
density and that it account for parameter uncertainty. The former is important 
to obtaining either predictive confidence intervals for y/, estimates of probabil- 
ities of the sort Pr(yf< k) for prespecified values of k, or estimates of k such 
that Pr(y/< k) = p  for prespecified values of p. The latter ensures that one 
does not ignore a potentially important source of uncertainty. 

1See Miller and Thompson (1986) for the former, and Baillie (1979), Box and Jenkins (1976, p. 
269), Fuller and Hasza (1981), Yamamoto (1976) and Spitzer and Baillie (1983) for the latter. 
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We report the results of three numerical prediction experiments for the 
autoregressive model (1). The first problem is a basic forecast given both 
parameter and error term uncertainty and a known value for the last observa- 
tion in the data period. The second problem is an intervention analysis that 
focuses on forecasting the marginal effects of a change in the intercept a ° in 
the presence of both parameter uncertainty and error term uncertainty. The 
third problem is similar to the second, but highlights parameter uncertainty by 
setting the error term uncertainty to zero. We view the results of these three 
experiments not as a comprehensive or conclusive analysis of dynamic models, 
but rather as providing an indication of the issues that arise in complex 
forecasting problems. The intent here is to be expository and provide some 
evidence about the importance of the assumptions about functional form and 
sources of uncertainty that are commonly made in practical forecasting 
exercises. 

For the geometric random walk model, we focus analytically on the issue of 
implementation rather than on numerical experiments. We do this for two 
reasons. First, it will turn out that the predictive likelihood approach yields a 
well-known optimal solution to the problem. Second, a mean squared analysis 
not only misses the fundamentally non-normal distribution of Ym+n condi- 
tional on Yd, but is also difficult to implement. 

In the next section we outline the prediction functions we consider. These 
are shown to be nested in a logical way that facilitates the implementation of 
the simulation study. Section 3 describes the structure of the numerical 
prediction experiments for the AR(1) model (1) and the choice of summarizing 
statistics. Section 4 then analyzes the geometric random walk model (2). 

2. Alternative prediction functions 

When 00 is known, the best summary of the future is the density f(y/[yd, 00). 
In practical situations we have to employ prediction functions that are free of 
0 °. There are two formal approaches to removing 00 from the predictive 
density. One can specify a prior density for 00 and integrate to obtain a 
posterior density free of 0 ° [Zellner (1971)]. Alternatively, one can replace 0 ° 
by sufficient statistics [Lauritzen (1974), Hinkley (1979), Cooley, Parke and 
Chib (1986)]. Practical implementation of either of the above approaches 
involves the introduction of sample estimates of 00 and there are a variety of 
less formal approaches based on the use of such estimates. We consider here 
six prediction functions that can be computed using only sample estimates of 
0o. 2 We illustrate each of them for the AR(1) model. 

2Our exposition assumes 0 2 is known for convenience. Obviously, this is easily relaxed. 
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The certainty equivalence prediction function, 

rn+n ) 
f ( y l ; ~ a )  O : e x p - ½  ~.~ (y t - -~a--~ayt_x)2 /o  2 , (4) 

t = m + l  

can be obtained by substituting the least squares parameter estimates 0d for 0 ° 
in the multivariate normal density for yr. The term 'certainty esuivalence' is 
hopeful rather than based on any formal equivalence. Treating 0 d as the true 
parameter ignores the effects of parameter uncertainty. This prediction func- 
tion has the advantage that it is simple and should capture the correct shape of 
the density. Further, it is the prediction function that should result from a 
'draw the errors' Monte Carlo approach as described by Brown and Mariano 
(1983). We now consider four distinct approaches to modifying (4) to incorpo- 
rate parameter uncertainty: predictive likelihood analysis, mean squared error 
analysis, Monte Carlo simulation, and Bayesian analysis. 

2.1. Predictive fikelihood analysis 

Because the predictive likelihood idea is somewhat new we introduce its 
definition at some length here. A more complete exposition is contained in 
Cooley and Parke (1986a, b). 

The original definition of predictive likelihood is due to Lauritzen (1974) 
and Hinkley (1979). The Lauritzen-Hinkley concept recognizes the central 
importance of f ( y / ;  # °) for problems of prediction, but uses sufficient statis- 
tics to eliminate the unknown parameter 0 °. Let s d, sf and Sd+ f be sufficient 
reductions of Yd, Yf and their union, respectively. Sufficiency ensures that the 
density f(Yd; 00) can be factored as 

I(y ; e °) o°), 

where f(ya[sa) does not depend on 0 °. The Lauritzen-Hinkley definition of 
predictive likelihood exploits the fact that sa+ f is a function of sf and s a that 
does not depend on 0 °. 

Definition 1 (Lauritzen-Hinkley). The predictive likelihood function is 

p (y, ly,<) =/(y,, i(y ; oo) 
oo) 

This definition envisions treating plik(yilYd) as a likelihood function for the 
future observations yr. In practical applications the plik could be used to 
order future values by their plausibility and to obtain confidence intervals for 
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y/. This definition has been applied to several econometric problems by 
Cooley, Parke and Chib (1986), but its applicability is limited. There are some 
problems for which there is no sufficient reduction of the data and others 
where minimal sufficient statistics exist but have unworkably complex distribu- 
tions. 

The first step in resolving the shortcomings of Definition 1 exploits the fact 
that well-behaved maximum likelihood estimates are asymptotically sufficient 
[Cox and Hinkley (1974)]. This suggests replacing the sufficient statistics s a 
and sa+ / in Definition 1 by Od and ~a+/, where the latter represent asymptoti- 
cally sufficient maximum likelihood estimates. The second step is to use 
asymptotically valid densities. This leads to the following definition. 

Definition 2. The asymptotic predictive likelihood function will be taken to 
be 

plik'(y/[ya) = f (Y / ;  O°) f ' (Oa; 0 °) 
' 

where fa ( . ;  .) denotes an asymptotically valid density. 

Definition 2 will be applicable in situations where Definition I breaks down 
and, as the following proposition establishes, it has an easily usable form. 

Proposition 1. Definition 2 can be expressed as 

plika( y/lYd ) = f ( Y/ ; ~ d ) " w l " w 2 " exp { Op( m - 3 /2 ) } , 

where 

and 

w 1 = e x p { -  ½V/(y/; ~a)H;+l/(Ya+/; Oa)v/(  Yl; Oa)}, 

(5) 

w2 = exp( ½tr[Ha'l(Yd; ~d)HI(Yl; ~d)l }" 

gr/(y/; Oa) is the log gradient function o f f (y / ;  O) evaluated at y/ and Oa, and 
Ha+/(Ya+/; ~a) is the log Hessian of f(ya+/; 0). 

Proof. Cooley and Parke (1986a, b). 

For present purposes (5) can be thought of as (4) adjusted for parameter 
uncertainty. In the models considered in this paper we take w 2 to be constant 
over variations in y/. For the model (1) with normally distributed errors, the 
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predictive likelihood function is 

where 

^ ! 

1 y~ 
° 

Z f =  

1 Y~+n-1 

(6) 

and V(~d) is the asymptotic variance-covariance matrix of 0~. This functional 
form resembles a multivariate normal density, but differs from that density 
because, for forecasts two or more observations into the future, lagged 
endogenous values of y! appear in the covariance matrix ZfV(Od)Z/. 

An important advantage of the predictive likelihood function is that, even if 
the errors are not taken to be normally distributed, (5) can easily be computed. 
Although (6) does not then follow from (5), straightforward simulation tech- 
niques yield the desired prediction functions. The appendix gives the details of 
these techniques. 

2.2. Mean squared error analysis 

Mean squared error analysis of the lagged dependent variable model can be 
characterized as a two-step process. First, replacing O ° by 0d and recursively 
substituting for unknown lagged values of Yt yields 

MSE'(YflYd) ~x exp{ - ½(y/-  )3!)'( A f ) - t ( y f -  )31)}, (7) 

where )3,~ is the known value y,,, )3t=~d+$d)3t_l recursively defines 
(tim+i,-..,)3,,+~), and the i, j element of Ap for i > j ,  is given by (AI),, j = 
o27i-j(1 + .~2 + . . .  +.~20. This expression is simply another version of the 
certainty equivalence prediction function (4). The equivalence between the 
expressions holds only for models with normally distributed, additive error 
t e r m s .  

The second step in deriving the MSE prediction function is to account for 
the uncertainty in /~a in the mean (but not the variance) of (7) by the 
linearization 

)3m+. = E(ym+n) + 0°), 

where D n = 3f im+J3~ d. For example, for the third observation in the forecast 
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period, 

y,,,÷ - -  + "r + + + + + "r 

The vector of derivatives, given by 

D 3 , 1 = 1 + ? + 7 2  and D3, 2 = ~ ( 1 + 2 7 ) + 3 7 2 y m ,  

is a row in the matrix of derivatives D. This approach yields the mean squared 
error A/+DV(Od)D', where A/ represents error term uncertainty and 
DV(~d)D' represents parameter uncertainty. 

While a mean squared error analysis does not obviously yield a prediction 
function, we have adopted the normal density, 

MSE"°(yflya) ocexp{-½(y / -~ / ) ' [A/+ DV(Oa)D']-l(yf-~Pf)). 

(8 )  

This prediction function accounts for parameter uncertainty by adding to the 
variance-covariance matrix in (7). It intentionally does not account for the 
non-linear relationship between the estimation errors 0d-  00 and the forecast 
errors yf-- .~/.3 

The relation between predictive likelihood analysis (6) and mean squared 
error analysis (8) can be understood by noting that (8) could be obtained from 
(6) by replacing lagged values of y, in the factors Z / o f  Z/V(Od)Z / with the 
plug-in point forecasts )~t. This substitution eliminates the conditionality of the 
variance-covariance matrix by ignoring the interaction between error term 
uncertainty and parameter uncertainty for forecasts more than one period into 
the future. For example, the forecast error for Ym + 2 depends upon the product 
of the error in ~d and (through Y,.+I) the realization of era+l- The predictive 
likelihood function (6) includes this interaction between era+ ~ and 0 a - 0 °, but 
the mean squared error prediction function takes it to equal zero. 

2.3. The "draw the error terms, draw the coefficients" Monte Carlo technique 

A common empirical forecasting technique relies on Monte Carlo draws e! 
from the estimated distribution of ~I" Substituting these draws into the model's 
equations yields draws from the CEQ prediction function f(yf; ~d)- This 
procedure, which we will refer to as MC ', has been analyzed extensively by 
Fair (1980) and Mariano and Brown (1983,1984). Sometimes these draws are 
augmented with Monte Carlo draws .0 from the approximate distribution 

3Fuller and Hasza (1981) show this interaction term to be of O(m=2). 
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0 - N(~a, V(~a) ). This technique, which we will refer to as MC ''°, is equivalent 
to taking draws from a mixture if(y/;  O)fa(O; Oe)O0. While the latter function 
may or may not have a theoretical basis as a numerical implementation of 
some other technique, its position in econometrics is well established. For that 
reason, we include it here as a practical approach to the prediction problem. 

2.4. Bayesian analysis 

To this point, predictive likelihood analysis has been given a completely 
frequentist treatment. One virtue of the methodology is that it has a reason- 
able interpretation from a Bayesian viewpoint as well. Hinkley (1979) shows 
that the Bayesian predictive posterior f(Y/[Yd) can be factored as 

f ( Y/lYa ) cx plik( y/lya ) . f ( s a+ i ) , (9) 

where f(sa++t ) is a prior for the sufficient statistic sa+ i. Eq. (9) implies that the 
predictive likelihood function is a predictive posterior for a uniform prior on 

Sd+f" 
In the present case of dependent observations, there arise two complications 

to this Bayesian view of plik(yflya) and to a Bayesian analysis itself. First, the 
notion of a non-informative prior is deficient because forecasts for this model 
involve powers of y and it is impossible to specify uniform priors for .y0, 
(y0)2, and (~,0)3 simultaneously. Equivalently, any prior will be informative 
for all but at most one future value of YmT"" Second, the usual uniform prior 
on 00 weights parameter regions of explosive behavior too heavily. When 
f(O 0) is constant the parameter region associated with non-explosive behavior 
has pseudo-measure zero. 

Miller and Thompson (1986) implement a Bayesian analysis of an autore- 
gressive model [AR(2) in their case] using a uniform prior for the parameters. 
This yields a normal-gamma form for the posterior distribution of the parame- 
ters. They then draw from this normal-gamma distribution, simulating future 
draws to build up a predictive posterior. Numerically, their procedure is very 
similar to a Monte Carlo analysis based on drawings of both error terms and 
coefficients. Because the principal difference between the two techniques, for 
this model at least, is in terms of interpreting the numerical results and not in 
terms of numerical results themselves, we will focus on the Monte Carlo 
procedure as representative of a Miller and Thompson style Bayesian analysis 
and do not provide a separate analysis based on such normal-gamma draws. 

2.5. Summary 

It is useful at this point to summarize the strengths and weaknesses of the 
alternative prediction functions as we see them. The certainty equivalence 
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prediction function (CEQ) has the functional form of the true density, but 
ignores parameter uncertainty. The predictive likelihood function (PLIK) is 
based on an asymptotic approximation to the correct functional form and 
incorporates parameter uncertainty. 

The mean squared error prediction function (MSE ' '°) has the virtue that it 
accounts for parameter uncertainty although it neglects the true shape of the 
forecast error density by employing a normal approximation. Note also that 
computing the MSE ~'° function is not to be confused with minimizing the 
mean squared error. Even under quadratic loss, minimizing mean squared 
error is a formidable task [Chow (1975)] that is not likely to generalize to more 
complicated models. Finally, note that confidence intervals based on MSE ~'° 
are strictly appropriate only if they are based on Chebyshev's inequality. 

Bayesian posterior predictive densities face conceptual problems only when 
based on uniform priors as noted above. Bayesian analysis based on informa- 
tive priors are computationaUy difficult for problems of modest complexity 
unless based on a Monte Carlo simulation. 

3. Monte Carlo analysis of sample realized prediction functions 

The relative merits of these techniques and the practical significance of the 
theoretical advantages and shortcomings are in part an empirical matter. To 
shed some light on the significance of the theoretical arguments, we analyze 
the prediction functions discussed above in three Monte Carlo experiments. 
Tables 1-3 present the results of these experiments, and figs. 1-4  illustrate 
typical realized prediction functions for each experiment. 

3.1. The three experiments 

Experiment 1 is a conditional forecasting problem highlighting the effects of 
the last known observation y,,. We set y,, = 5 for a true model with a = 0, 
7 = 0.9, and E 1 -- N ( 0 ,  1), t = 1 . . . .  , m + n. This forecasting problem differs 
from the linear-normal paradigm in that the conditional expected value, 

E(ym+.ly,.)  =y. , (V°)  ~, 

is a non-linear function of  7 °. As a consequence the error, 

n, 

is a non-linear function of the estimation error Sd--70. The mean squared 
error (MSE"e) ,  Monte Carlo (MC~'¢), and predictive likelihood approaches 
will differ for this experiment to the extent that they treat this non-linearity 
differently. All three approaches incorporate essentially the same measures of 
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Table 1 

Experiment 1. a 

Percentile probabilities Moments 

p = 0.10 p = 0.25 p = 0.50 p = 0.75 p = 0.90 Mean Std. dev. Skew. Kurt. 

n = l  

TRUTH 0.10 0.25 0.50 0.75 0.90 4.50 1.00 0.00 3.00 
MSE',  MC ", CEQ 0.08 0.21 0.43 0.68 0.85 4.32 1.00 0.00 3.00 
MSE ~, o 0.08 0.20 0.43 0.69 0.86 4.32 1.04 0.00 3.00 
MC ' ' °  0.08 0.20 0.43 0.69 0.87 4.32 1.04 0.00 2.94 
PLIK 0.07 0.20 0.43 0.69 0.86 4.32 1.04 0.00 2.93 

n = 5  

TRUTH 0.10 0.25 0.50 0.75 0.90 2.95 1.85 0.00 3.00 
MSE ~, MC ~, CEQ 0.09 0.21 0.42 0.64 0.80 2.51 1.76 0.00 3.00 
MSE ~,o 0.07 0.20 0.42 0.66 0.83 2.51 1.94 0.00 3.00 
MC e, e 0.08 0.20 0.42 0.67 0.84 2.59 1.96 0.21 3.16 
PLIK 0.08 0.21 0.43 0.68 0.85 2.63 1.96 0.14 2.93 

n =  10 

TRUTH 0.10 0.25 0.50 0.75 0.90 1.74 2.15 0.00 3.00 
MSE e, MC ~, CEQ 0.10 0.23 0.44 0.65 0.80 1.36 2.00 0.00 3.00 
MSE ~, 0 0.08 0.21 0.44 0.67 0.83 1.36 2.21 0.00 3.00 
MC ~,° 0.09 0.22 0.45 0.69 0.86 1.55 2.33 0.38 3.64 
PLIK 0.09 0.23 0.46 0.70 0.86 1.62 2.31 0.17 2.87 

n=15  

TRUTH 0.10 0.25 0.50 0.75 0.90 1.03 2.25 0.00 3.00 
MSE ~, MC ~, CEQ 0.11 0.25 0.46 0.67 0.81 0.78 2.07 0.00 3.00 
MSE ~, 0 0.09 0.23 0.46 0.69 0.84 0.78 2.29 0.00 3.00 
MC ~'° 0.10 0.24 0.47 0.71 0.87 1.03 2.51 0.49 4.24 
PLIK 0.11 0.25 0.49 0.72 0.87 1.07 2.43 0.11 2.85 

n = 20 

TRUTH 0.10 0.25 0.50 0.75 0.90 0.61 2.28 0.00 3.00 
MSE ~, MC ~, CEQ 0.12 0.26 0.48 0.69 0.83 0.46 23.10 0.00 3.00 
MSE ~, o 0.10 0.25 0.48 0.71 0.85 0.46 2.31 0.00 3.00 
MC ~'° 0.12 0.26 0.49 0.73 0.88 0.74 2.62 0.63 5.37 
PLIK 0.11 0.27 0.51 0.74 0.87 0.79 2.49 0.07 2.83 

aAll figures are averages over 200 data period simulations. For each data period simulation, the 
numeric integrations use 400 forecast draws. 

the error term uncertainty, 

o 2 ~ ( 7 o )  ~-~, 
i--1 

which is a linear sum of normal components. 
The second and third experiments examine the non-linearity induced by a 

stylized policy intervention. For experiment 2, we set Ym = 0 and e t - N ( 0 , 1 ) ,  
t = 1 . . . . .  m + n ,  b u t  w e  a d d  1.0  to  the  e s t i m a t e d  c o n s t a n t  t erm in  al l  f u t u r e  
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Table 2 

Experiment 2." 

129 

Percentile probabilities Moments 

p - 0.10 p - 0.25 p - 0.50 p - 0.75 p - 0.90 Mean Std. dev. Skew. Kurt. 

n = l  
TRUTH 0.10 0.25 0.50 0.75 0.90 1.00 1.00 0.00 3.00 
MSE", MC' ,CEQ 0.10 0.25 0.50 0.75 0.90 0.99 1.00 0.00 2.00 
MSE'.° 0.10 0.25 0.50 0.75 0.90 0.99 1.01 0.00 3.00 
MC ~,o 0.10 0.25 0.50 0.75 0.90 0.99 1.01 0.00 2.95 
PLIK 0.10 0.24 0.49 0.75 0.90 0.99 1.01 0.00 2.95 

n=5 

TRUTH 0.10 0.25 0.50 0.75 0.90 4.10 1.85 0.00 3.00 
MSE', MC ',CEQ 0.10 0.23 0.45 0.68 0.84 3.83 1.76 0.00 3.00 
MSE ~,o 0.09 0.22 0.45 0.69 0.85 3.83 1.85 0.00 3.00 
MC "'° 0.09 0.22 0.44 0.69 0.86 3.85 1.87 0.11 3.09 
PLIK 0.09 0.22 0.45 0.70 0.86 3.89 1.87 0.09 3.00 

n = I0 

TRUTH 0.i0 0.25 0.50 0.75 0.90 6.51 2.15 0.00 3.00 
MSE',MC ",CEQ 0.09 0.21 0.40 0.60 0.75 5.83 2.00 0.00 3.00 
MSE"° 0.06 0.18 0.40 0.64 0.80 5.83 2.36 0.00 3.00 
MC "° 0.07 0.19 0.40 0.65 0.83 5.99 2.47 0.44 3.58 
PLIK 0.08 0.20 0.42 0.67 0.83 6.11 2.42 0.19 2.74 

n = 15 

TRUTH 0.10 0.25 0.50 0.75 0.90 7.94 2.25 0.00 3.00 
MSE' ,MC' ,CEQ 0.10 0.21 0.38 0.55 0.69 6.96 2.07 0.00 3.00 
MSE ,,e 0.04 0.16 0.38 0.61 0.77 6.96 2.83 0.00 3.00 
MC ~,0 0.06 0.17 0.38 0.63 0.82 7.33 3.09 0.81 4.60 
PLIK 0.07 0.19 0.42 0.66 0.81 7.48 2.79 0.13 2.43 

n = 20 

TRUTH 0.10 0.25 0.50 0.75 0.90 8.78 2.28 0.00 3.00 
MSE ~, MC ~,CEQ 0.11 0.22 0.37 0.52 0.65 7.63 2.10 0.00 3.00 
MSE ~,o 0.03 0.14 0.37 0.60 0.75 7.63 3.23 0.00 3.00 
MC ~,° 0.06 0.16 0.37 0.63 0.81 8.25 3.75 1.24 6.61 
PLIK 0.07 0.20 0.41 0.63 0.76 8.24 2.98 0.07 2.33 

"All figures are averages over 200 data period simulations. For each data period simulation, the 
numeric integrations use 400 forecast draws. 

pe r iods .  T h e  c o n d i t i o n a l  expec t ed  value ,  

n 

I~'(Ym+n[Ym) = E (YO) i - I ,  
i - I  

i n c r e a s e s  t o w a r d  the  l imi t  I / ( 1 -  y ° ) ,  a n d  the  n o n - l i n e a r i t y  b e c o m e s  m o r e  

i m p o r t a n t  as  t he  fo recas t  h o r i z o n  n increases .  
T h e  t h i rd  e x p e r i m e n t  cons ide r s  the  s a m e  i n t e r v e n t i o n  in  t he  a b s e n c e  o f  

f u t u r e  e r r o r  t e r m  unce r t a in ty ,  h igh l igh t ing  the  effect  o f  p a r a m e t e r  u n c e r t a i n t y  
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Table 3 

Experiment 3. a 

Percentile probabilities Moments 

p=0 .10  p=0.25 p=0 .50  p=0.75 p=0.90  Mean Std. dev. Skew. Kurt. 

n = I b 
n = 5  

TRUTH 4.10 0.00 - -  - -  
CEQ 0.28 0.28 0.28 0.28 0.28 3.82 0.00 - -  - -  
MSE ~, o 0.03 0.10 0.28 0.53 0.72 3.82 0.37 0.00 3.00 
MC~'°,PLIK 0.03 0.10 0.28 0.53 0.76 3.84 0.38 0.32 3.16 

n = 10 

TRUTH 6.51 0.00 - -  - -  
CEQ 0.28 0.28 0.28 0.28 0.28 5.77 0.00 - -  - -  
MSE ~. o 0.02 0.09 0.28 0.51 0.69 5.77 1.08 0.00 3.00 
MC*'e, PLIK 0.03 0.10 0.28 0.53 0.76 5.92 1.14 0.82 4.22 

n = 1 5  

TRUTH 7.94 0.00 - -  - -  
CEQ 0.28 0.28 0.28 0.28 0.28 6.84 0.00 - -  - -  
MSE ~, e 0.01 0.09 0.28 0.51 0.66 6.84 1.72 0.00 3.00 
MC~'O, PLIK 0.03 0.10 0.28 0.53 0.76 7.19 1.95 1.30 6.26 

n = 20 

TRUTH 8.78 0.00 - -  - -  
CEQ 0.28 0.28 0.28 0.28 0.28 7.46 0.00 - -  - -  
MSE ~, o 0.00 0.09 0.28 0.50 0.64 7.46 2.23 0.00 3.00 
MC ,. o, PLIK 0.03 0.10 0.28 0.53 0.76 8.05 2.75 1.81 9.54 

aAll figures are averages over 1000 data period simulations. For each data period simulation, the 
numeric integrations use 400 forecast draws. 

bFor n = 1, there is no forecast uncertainty for this experiment. 

b y  i tse l f .  W e  a g a i n  set  y, ,  = 0 a n d  a d d  o n e  to  the  c o n s t a n t  t e r m  for  e a c h  f u t u r e  

p e r i o d ,  b u t  m o d i f y  the  p r e v i o u s  e x p e r i m e n t  by  s e t t i n g  e t = 0, t = m + 1 . . . .  , 

m + n.  T h i s  e x p e r i m e n t  focuses  a t t e n t i o n  o n  the  n o n - l i n e a r i t y  in  p a r a m e t e r s  

b e c a u s e  t h e  f o r e c a s t  p r o b l e m  d o e s  n o t  i n c l u d e  the  n o r m a l l y  d i s t r i b u t e d  e r r o r  

t e r m  u n c e r t a i n t y .  I t  is t he  on ly  o n e  o f  t he  t h r e e  fo r  w h i c h  the  u n k n o w n  f u t u r e  

q u a n t i t y  is a n o n - s t o c h a s t i c  p o i n t  f u n c t i o n  o f  the  t rue  p a r a m e t e r s .  E v e n  fo r  

e x p e r i m e n t  3, a p r e d i c t i o n  f u n c t i o n  tha t  ref lects  p a r a m e t e r  u n c e r t a i n t y  will  

y i e l d  a n o n - d e g e n e r a t e  p r e d i c t i v e  d e n s i t y  w i t h  a n o n - z e r o  d i s p e r s i o n .  4 

F ina l l y ,  w e  n o t e  tha t  the re  a re  m a n y  w a y s  to  s u m m a r i z e  a n d  d e s c r i b e  a 

r e a l i z e d  p r e d i c t i o n  func t ion ,  a n d  n o  o n e  s u m m a r y  will  be  un ive r sa l ly  a p -  

4The limit of (6) as the future term variance goes to zero (but the data period error term 
variance remains unchanged) is 

z , ) ]  - (y,-¢z,). 
We note that this equation and a 'draw the coefficients' Monte Carlo technique axe equivalent in 
this case and so use the latter as an implementation technique. 
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TYPICAL REALIZED PREDICTION FUNCTIONS 
FOR A NORMAL DENSITY 

i'"'"'"'" '"""'"'lq 

j i I i I I 

........... '.::::: ........... ,,, 

TRUE DENSITY 

............ TYPICAL REALIZED PLIK 

Fig. 1 

propriate. [Edwards (1972) makes this point in some detail for parametric 
likelihood functions.] For a given forecasting problem, it may be appropriate 
to compute moments, quartiles, modal points, values at specific points, etc. 
More sophisticated measures might include information measures of differences 
among probability densities. Here we focus on two basic measures of forecast 
performance: the accuracy of nominal percentiles as probability forecasts and 
the accuracy of mean values as forecasts of the future expected value. 

3. 2. Percentiles probability 

We compute nominal percentiles for a given prediction function, say 
pfik(ym+.lyd), by finding a value )m~+. such that 

fYg~o"Plik(Y.+.lYa)O,m+./f~=plik(Ym+.lya)OY.+. =a. 

The value ~0.50 y,.+. is then the median, and ¢ ~0.10 ~0.90. ~y.+., Ym+.) is a natural 80% forecast 
confidence interval for Ym+.. (Figs. 2, 3 and 4 depict typical realized con- 
fidence intervals for each prediction function in terms of the 10th, 25th, 50th, 
75th and 90th percentiles.) Although it would be possible, using a variant of 
the Neyman-Pearson lemma, to compute a shorter 80% confidence interval, 
the interval t ~0.10 ~0.90 ~y,.+., ym+.) is easier to compute and treats positive and negative 
forecast errors symmetrically. Furthermore, symmetric probability levels (and 
one-sided confidence intervals) may be of some importance if, as is common, 
forecast errors of one sign are taken as bad news, but forecast errors of the 
opposite sign are actually viewed favorably. 

To evaluate these nominal percentiles, we compute P(Ym+. <~P~+.l~a) for 
each realized prediction function. The average of these probabilities over the 
successive data period simulations gives a Monte Carlo estimate of the 
unconditional probability P(y=+. <)3m*+. ). These latter figures are referred to 
as percentile probabilities in tables 1, 2, and 3. 
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EXPERIMENT 1 
TYPICAL REALIZED CONFIDENCE INTERVALS 
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The results in table 1 for experiment 1 and the typical confidence intervals 
in fig. 2 show that, for experiment 1, the practical differences among the 
predictions for the predictive likelihood, Monte Carlo, and mean squared error 
approaches are not large. For the right-hand tail as reflected in the 0.75 and 
0.90 percentiles, the MC ~,° and PLIK probabilities are a bit closer to the 
desired figures although the differences among techniques are fairly small. For 
the left-hand tail, the differences among techniques are even smaller. 

Experiments 2 and 3 exhibit somewhat greater differences among the 
percentile probabilities for the various techniques. For experiment 2, the 
MC e'° and PLIK figures are noticeably closer to the desired values than 
the corresponding figures for MSE e' 0. This outcome, which is even clearer for 
experiment 3, reflects the symmetry imposed by the normality assumption 
underlying the MSE ',° prediction function. In the absence of the normally 
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EXPERIMENT 2 
TYPICAL REALIZED CONFIDENCE INTERVALS 
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distributed error term uncertainty in experiment 3, the left-hand tail for the 
MSE ''° prediction function is too large to the extent that the nominal 0.10 
percentile for n ffi 20 has a true probability of including Y,,+20 that rounds to 
0.00. The right-hand tail, on the other hand, is too short in that the 0.90 
percentile is to the right of Y,,+2o only with probability 0.64. The results for 
MC "° and PLIK are, of course, not nearly as good as one might hope either, 
and we find that these prediction experiments reveal several problems common 
to all the prediction functions. 

These results a~ppear to reflect three principal deviations between the actual 
distribution of 0 d for the sample used here (m = 100) and the asymptotic 
distribution that underlies all the prediction functions: 

(1) The estimate of 7 o is subject to a downward bias. For the sample size, 
m = 100, used here, the bias -0 .038 is a substantial fraction of the 
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EXPERIMENT 3 
TYPICAL REALIZED CONFIDENCE INTERVALS 
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standard error 0.057. The effect of this bias tends to be magnified for 
forecasts far into the future. 

(2) The distribution of 7a is substantially skewed, with a long left-hand tail. 
The negative skewness in "Yd--70 operates in a direction that partially 
offsets the non-lineafities in ('~d)" -- (70)" and 1/(1 - 7d) -- 1/(1 -- 70). 

(3) The estimate of V(qd) is not even approximately constant. In particular, 
the estimated standard error of 7d is substantially smaller for overesti- 
mates of T° than for underestimates. 

Because all these factors combine with the differences among prediction 
functions, the conclusions drawn must be qualified. 

One clear lesson to be drawn from the results of experiment 1 is the 
importance of accounting for parameter uncertainty. Although the techniques 
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that ignore parameter uncertainty (CEQ, MSE e and MC e) do well for the 
short-term forecasts, their percentile probabilities are severely biased as the 
forecast horizon gets larger. The percentile probability biases for these tech- 
niques are substantially greater than those for the methods (MSE ~,°, MC ~,° 
and PLIK) that do account for parameter uncertainty. 

3.3. Point forecasts and moments of prediction functions 

The emphasis in this paper is on prediction functions rather than on point 
forecasts, but it is quite reasonable to use a summary measure of a prediction 
function as a point forecast of some aspect of the unknown future. For 
example, the 0.50 percentile computed in tables 1, 2 and 3 is a natural point 
forecast for the median of the future density. In a similar way, the mean of a 
prediction function (normalized to integrate to one) is the natural forecast of 
the future conditional expected value. In practice, this integration involves 
computing the average of the Monte Carlo draws for MC ~' 0 and computing a 
weighted average of another set of draws for PLIK. Details of these calcula- 
tions are given in the appendix. 

The expected value forecasts for the CEQ, MSE ~ and MSE ~'° techniques 
enjoy the advantage of computational simplicity because they all equal y,.('~d) n 

n ^ i - 1  for experiment 1 and ~i-l(~d) for experiments 2 and 3. There is no claim 
here that these naive 'plug-in' forecasts are unbiased. The only claim is that 
MSE e, 0 uses an asymptotically valid approximation to the mean squared error 
of the naive 'plug-in' forecast used for a given forecasting problem. 

This fact is evident in tables 1, 2 and 3. In nearly every case, the bias of the 
expected value PLIK and MC ~' 0 forecasts is smaller in absolute value than the 
bias of the MSE ~' 0 forecast. For example, in experiment 3 at n = 20, the bias 
for MSE ~'° is 1.32, but the bias for MC ~'¢ and PLIK is only 0.73. The 
corresponding figures for experiment 2 at n = 2 0  are -1.15 for MSE ~,°, 
-0 .53  for MC ~,e, and -0.54 for PLIK. Both the MC ~,° and PLIK point 
forecasts benefit, in this comparison, from skewness in the two prediction 
functions that offsets skewness in the distribution of ~d" The negative bias in 
"td is also partially offset by the larger right-hand tails in the two prediction 
functions. 

The differences among the various prediction functions are evident in the 
higher moments given in tables 1, 2 and 3. (These figures are the averages over 
the data period draws of the realized prediction function moments.) The 
MC ~,0 draws exhibit larger variance and much larger skewness and kurtosis 
than plik(y,,+n[yd) even though the corresponding percentiles do not differ 
greatly. We can attribute this to the fea*.ure of the Monte Carlo technique that 
the ~/draw can and will occasionally be greater than one, producing a forecast 
draw with the properties of a non-stationary process. The PLIK kurtosis 
figures are somewhat harder to interpret. Even though the PLIK right-hand 
tail is also larger than the fight-hand tail of a normal density, the left-hand tail 
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is sufficiently smaller than a normal tail to produce a kurtosis less than 3.00. 
Overall, these results hint at potential problems with moments as summary 
measures of non-normal prediction functions and lend support to the use of 
nominal percentiles in making forecast statements. 

4. The geometric random walk model 

The numerical results for the AR(1) model suggest, in a setting naturally 
favorable to mean squared error analysis, two basic qualitative conclusions. 
First, accounting for parameter uncertainty can be important. Second, for 
those techniques that do account for parameter uncertainty, the differences do 
not appear as striking as the similarities. We attribute this to the normal 
density f(Yf{Yd; 00) that all three techniques reproduce faithfully if 00 is 
known. The probability density f(YflYd, 00) is not a normal density, however, 
for many important econometric models. 

We illustrate the effects of a non-normal true density using the simple 
geometric random walk of eq. (2), 

y t / Y t _ l = 0 / + e t ,  t = l  . . . .  , r e + n ,  

where e t - N(0, o2). For we suppose that the sample is large enough to allow 
us to focus on uncertainty in 0/, but not in o 2. We also note that adding a term 
Xtfl  to (2) allow for exogenous variables poses no problems. 

The difficulties of a mean squared error analysis are apparent for the 
two-period-ahead forecast error: 

Ym+2 --Ym+2 = 0/2 -- t~2 + 0/(Em+l + era+2) + /~m+lEm+2, (lo) 

where tim+2--m'Ym ~t2" A linearization would yield a mean square measure of 
parameter uncertainty in this case. An asymptotic argument would justify the 
approximation mt/2(a2-&2)- - ,dN(O,40/2V(~d)) ,  and the expectation of 
a(e,,,+ 1 + era+2) is zero. The term era+tern+ 2 is not normally distributed, and 
its mean and variance, which are 0 and 04, are hardly a complete description 
of its shape. For n periods ahead, e,~+l × "'" ×E,.+n presents even more 
formidable problems, First one would have to determine the mean squared 
error of the product of normals which is itself a non-normal density. More 
importantly, this is the only term that does not diminish with larger data 
period sample sizes. 

The predictive likelihood approach, on the other hand, is even simpler than 
for the AR(1) model. For (2), the statistic Sd= Y"t-lYt/Yt-1 is sufficient, and 
Definition 1 can be applied directly using a change of variables between s! 
and y/. We can also obtain an identical predictive likelihood function using 
Definition 2, avoiding reliance on the existence of sufficient statistics. The true 
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density is 

m+n I 2 2 f (yl lya,  O) o~exp - t  2 Y'. ( y t / y t _ t - a )  / o  . 
t--m+1 I 

(11) 

The first and second log derivatives are then 

and 

m+n 
V/= ~., (Y,/Y,-I - a) /o2,  (12) 

t--m+ l 

-(m +,,)/,, (13) 

Applying Definition 2 to matrix expressions for (11), (12) and (13) and using 
Rao (1973, p. 33) then yields 

plik(y/lya) oc exp( - 12(r/- adl) '  { o21 + m-to211']-X(r/-  adl),  (14) 

where r t = y t / y t _  1 and 1 =(1, . . . ,1) ' .  The covariance matrix in this normal 
density is the sum of the error term variance o 21 and the parameter variance 
m-lo211,. 

The predictive likelihood function (14) takes on the familiar form of the 
probability density for the forecast errors r ! -  ~dl. Confidence intervals for y/ 
based on (14), unlike confidence intervals based on mean squared errors, lie by 
construction entirely within the positive support of f(yllya, O °) and are 
asymmetric in accord with the asymmetry inherent in the true density. 
Further, it is well known that '~d is an optimal predictor of r/. 

A slight extension allows us to further distinguish the Lauritzen-Hinkley 
definition, our definition, and Monte Carlo techniques for a simple extension 
of the geometric random walk model. Suppose that the growth rate errors e t 

a re  generated by an AR(1) process, 

e, = pet_ I + 71,, T/,-  N(0, o2), (15) 

where ~,, t = 1 . . . . .  m + n, are independent. Although Definition 1 is not 
applicable to this model, our extended definition (5) can be applied in a 
straightforward manner. The true density is 

(16) 
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Differentiating (16) with respect to a and p is straightforward as is applying 
(5). Weighting draws from f(YflYd, ~d) by exp{ - 1 -1 , 5V/Hd+/V j } as described in 
the appendix is an easy Monte Carlo technique. Although the 'draw the error 
terms, draw the coefficients' Monte Carlo technique does not produce draws 
from (5) in this case, it might be expected to yield similar numerical results. A 
mean squared error analysis again faces the severe obstacle that the forecast 
errors for two or more periods ahead are multiplicative combinations of 
normally distributed random variables even if a and p are known. 

6. Summary and conclusions 

Our goal here has been twofold. First, we have tried to present the most 
commonly used approaches to prediction in a way that clarifies their relation- 
ship to one another and highlights their theoretical and practical advantages or 
shortcomings. Our interest in doing this stems from our own work on 
developing and studying one approach to prediction- predictive likelihood 
functions. Our second objective was to examine the performance of a variety 
of prediction functions in the context of a common form of econometric 
model. This is in contrast to many similar studies that examine only the 
performance of an advocated technique contrasted occasionally, perhaps, with 
a strawman candidate. 

Our experiments are intended to examine the importance of two features of 
prediction functions - the way they account for parameter uncertainty (or fail 
to) and whether they capture the correct form of the density of future 
observations. One important feature of predictive likelihood analysis is that it 
focuses on the entire shape of f(yf; 0 °) while accounting for parameter 
uncertainty. A mean squared error approach measures only first and second 
moments of the forecast errors, and even a Monte Carlo approach is often 
reduced in practice to computing only two moments. While these simplifica- 
tions are in some cases algebraically convenient, non-linearities in variables or 
parameters and dependencies across observations can lead to important asym- 
metries in forecast error distributions. The results of experiment 3 underscore 
the importance of capturing the correct shape of the asymmetries introduced 
by parameter uncertainty. 

The predictive likelihood approach is at least as informative as mean 
squared error analysis in a setting favorable to the latter. In our experiments 
for the AR(1) model, all error term uncertainty is normally distributed and 
non-linearities in parameter uncertainty arise only for forecasts two or more 
periods into the future. Less favorable circumstances such as those involved in 
the geometric random walk model typically complicate mean squared error 
analysis and introduce more approximations than are required to implement 
predictive likelihood analysis. Even so the asymmetries captured by the latter 
technique are important and evident for the AR(1) model in experiments 2 
and 3. 
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The relatively close agreement of results for predictive likelihood analysis 
and the 'draw the error terms, draw the coefficients' Monte Carlo technique 
are not surprising. The two methods are identical for the AR(1) model in the 
absence of future error term uncertainty. With future error term uncertainty, 
both procedures deal with the asymmetries in forecast errors introduced by the 
dependency among observations. While further study will be required to 
support any generalization, one view of this situation is that coefficient and 
parameter draws are simply a numerical technique for sampling from a 
function that closely resembles the predictive likelihood function or the 
Bayesian posterior for some priors. From that viewpoint, Monte Carlo fore- 
casting is an implementation technique rather than an alternative forecasting 
theory. 

Appendix: Technical details of Monte Carlo methodology 

The computational techniques outlined here for the AR(1) model are 
suitable for a wide range of models. Suppose a generic prediction function for 
a vector yy can be written as proportional to 

exp( g(yf; Oa) + h(y,; 0a)}, 

where the multivariate normal density exp{ g(yfi 0°)} is the true density for y! 
and h(y/; Oa) is a correction for parameter uncertainty. (For notational 
simplicity, we are here omitting a constant necessary to ensure that the 
prediction function integrates to unity.) Our approach to working with predic- 
tive likelihood functions numerically incorporates (i) integrating to get margi- 
nal likelihoods, (ii) importance sampling, and (iii) antithetic variates. 

Although the marginal likelihood of y,.+~ could be found by integrating 
plik(yflOd) over Y,.+I . . . . .  Y,~+n-1, it is not always necessary to actually 
perform this integration. Suppose that we are interested in the k th non-central 
moment A k of the marginal likelihood for Ym+~, which could be obtained as 

A*= ffy~+.exp{ g(Yl; ~d) 

+ h(y ; . . . .  , Ym+o-1)" (A.1)  

By numerically generating draws y~J), j = 1 . . . . .  J, from plik(yflOd), we could 
form the estimate 

J 

A~---3 -1 ~ (,,(J) ~ 
~ , J m + n ]  " 

j--1 

For large J, this estimate converges to the desired value A k because the values 
ym (~) j = 1, J, are drawn from the marginal likelihood for Ym+n" 
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It is, of course, not generally possible to sample randomly from plik(y/]Od), 
and we must resort to some other sampling strategy. It is often convenient to 
sample from exp{g(y/; ~a)}, generating draws ,,(J) .,m+,, J = 1 . . . . .  J. The esti- 
mate of A k then becomes 

J 

A~ -~J-1 E (Y( . ,J )+.)kexp(h(Y/ l~a)}  • 
j - 1  

This strategy, known as importance sampling, will typically require fewer 
random draws than a uniform random sampling strategy to yield an accurate 
estimate of A k. 

More generally, we can efficiently evaluate the integral 

a = faexp{ g(y/; Od) + h(y/; Od)} Oy/ 

over a region D by recognizing that A = B + C, where 

and 

B= f exp{ g(y/; 0,,')} Oy/, 

C= f g[exp (h(yf; ~d)} -- 1]exp( g(yf; Oa)} Oyf. 

B can be computed analytically using properties of the conditional normal 
density exp( g(y/; Od) }. C can be approximated by drawing trials y/Y), j = 
1, . . . ,  J, from the density exp( g(y/; Od)}" The average, 

c,= E 

then converges in probability to C as J + o0. Effectively, we can compute part 
B of the integral analytically, leaving only C to deal with via a numerical 
approximation. 

We follow this strategy in computing nominal percentiles for the predictive 
likelihood function. Let I(. ,  k) be the indicator function defined by 

I ( y , k ) = l  if y<k, 

= 0  if y>k. 

The probability 

P= ffI(y,~+,,k)exp(g(y/;~a)+h(y/;~a) } 

× OY,,+.3(Y,,,+I,..., Ym+,- x) 
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is compu ted  using 

PJffi ~., I[~'(j),.,m+,,, k)exp{h(yf;  exp{h(y/;~d) } 
j - - 1  "- 

for  draws y y ) ,  j - -  1 . . . . .  J ,  f rom e x p ( g ( y / ;  Oa)}- 
Anti thet ic  variates may be useful in this context  if h(y/; O) is more  or less 

symmetr ic  about  the mode of g(y/; ~). To implement  this technique for J 
evenly divisible by 2, let eJJ ), j = 1, 3,5 . . . . .  J -  1, be independent ly  drawn 
f rom N(0, a2In). The draws y}J), j =  1,3,5 . . . . .  J -  1, f rom e x p { f ( y / ;  0d)} 
can then be computed  as 

yy) = ~dz} J) + e~ ), j = 1,3,  5 . . . . .  J - 1, 

where  z~ J) ffi [1, Y[-J)I]. The  antithetic variates are then 

y/J) = ~dZ} y) - e~-1),  j = 2 ,4 ,  6 . . . . .  J .  

In t roduc t ion  of  antithetic variates works well for odd non-central  moments  
because,  if k is odd, then 

(,,(,ff+)n)kexp{ h(yy); Od)} and (ym(~-:))kexp{ h(y~j -1) ;  ~a)} 

are negatively correlated. Consequently,  the variance of a sum involving these 
draws m ay  be  expected to go to zero more  quickly than for independent  
draws. 
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