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Abstract

In this paper we develop a general equilibrium model with heterogeneous, long-lived �rms

where �nancial factors play an important role in their production and investment decisions.

When the economy is hit by monetary shocks, the response of small and large �rms di�ers

substantially, with small �rms responding more than big �rms. As a result of the �nancial

decisions of �rms, monetary shocks have a persistent impact on output. Another �nding of

the paper is that monetary shocks lead to considerable volatility in stock market returns.

Introduction

Empirical studies of the �nancial decisions of �rms have documented important di�erences in

the behavior of large and small �rms. It has been shown by Fazzari, Hubbard, & Petersen (1988)

and others that small �rms are more pro�table, pay fewer dividends, take on more debt, and

invest more. Recent studies by Gertler & Gilchrist (1994), Gilchrist & Himmelberg (1995, 1998)

have also shown that the investment decisions of small �rms are more sensitive to cash ows and

that they respond to monetary policy shocks very di�erently than do large �rms. Because many

of these authors identify small �rms as a priori more likely to face �nancial constraints, these

empirical features are widely interpreted as indirect evidence of frictions in �nancial markets.

These frictions are conjectured to be an important channel for the propagation of monetary

policy shocks.1

In this paper we argue that the many di�erences in behavior of large and small �rms have

a common explanation. It is that the �nancial decisions of �rms will di�er systematically with

�rm size as measured by the amount of equity in the �rm. The higher sensitivity of small �rms

to monetary policy shocks derives from the fact that small �rms take on more debt. Small �rms

choose higher debt-equity ratios because they are more pro�table.

We study the �nancial decisions of �rms that are heterogeneous in the amount of equity

capital in their business. The capital structure of �rms changes endogenously over time as a

�We have received helpful comments and suggestions from Je� Campbell, David Chapman, Thomas Cosimano,

Joao Gomes, Boyan Jovanovic, Jos�e-V�ictor R�ios-Rull, and Harald Uhlig. This research is supported in part by

NSF Grant SBR 9617396.
1See Bernanke & Gertler (1995) for a review of the \credit channel" of monetary transmission.



result of their �nancial decisions and in response to idiosyncratic shocks. The model is in the

spirit of models by Jovanovic (1982) and Hopenhayn (1992), in that shocks a�ect the dynamics

of �rms over time. The key di�erence is that, in this environment, heterogeneity is not generated

by technological di�erences. Rather, �rms are heterogeneous because they face di�erent �nancial

conditions.2

We consider an economy where all �rms have access to the same decreasing return-to-scale

technology for producing a single homogeneous good. The �rm's production plan is �nanced

with funds borrowed from a �nancial intermediary. In deciding the optimal amount of debt,

the �rm faces a trade-o�: on the one hand, more debt allows them to expand the production

scale and to increase the expected pro�ts; on the other hand, the increase in the amount of debt

implies a higher volatility of pro�ts to which the �rm is averse. The aversion to the volatility

of pro�ts derives from the fact that the value of the �rm is a concave function of pro�ts. This

trade-o� induces �rms to choose a di�erent amount of �nancial leverage (debt-equity ratio)

depending on the amount of equity they have in their business. Firms with less equity choose

a higher debt-equity ratio to take advantage of the higher return associated with smaller size.

This feature of the �nancial decision of �rms plays a crucial role in di�erentiating the responses

of small and large �rms to monetary shocks.

Firm �nancing and investment decisions determine how �rms grow over time. Accordingly,

any successful treatment of the �nancing decisions of heterogeneous �rms should be consistent

with an important set of observations about industry dynamics. Studies of the relationship

between �rm size and growth have overturned the conclusion of Gibrat's Law which holds that

�rm size and growth are independent. Studies by Hall (1987) and Evans (1987), for example,

show that the growth rate of manufacturing �rms and their volatility is negatively associated

with their initial age and size. Also, Davis, Haltiwanger, & Schuh (1996) �nd that the rates

of job reallocation are decreasing in the �rm size and age. In Cooley & Quadrini (1997) we

study a similar environment but in a partial equilibrium setting and without aggregate shocks,

and we establish that this model reproduces many of the salient features of industry dynamics

that are observed in U.S. data. In particular, smaller �rms grow faster, experience greater

variability in their growth rates and they have higher rates of job reallocation. Moreover, the

model is consistent with the observed �nancial and investment behavior of �rms: we �nd that

small �rms take on more debt, distribute fewer dividends and their investment depends on the

realization of cash ows, even after controlling for their future pro�tability.

In addition to replicating the observed features of industry dynamics, the model economy

developed in this paper suggests that �rm heterogeneity is an important channel of transmission

for monetary policy. We �nd that there are signi�cant di�erences in the responses of small and

large �rms to monetary shocks. Small �rms are much more responsive. One consequence of

this heterogeneous behavior is that a large fraction of the changes in aggregate output induced

by monetary shocks derives from the reaction of small �rms. Moreover, due to the persistence

of this reaction, the response of the aggregate economy to monetary shocks is highly persistent

with aggregate output that displays a hump-shape response.

The heterogeneous responses of �rms to monetary policy occur for reasons related to the

internal �nance channel that has been analyzed in di�erent contexts by Bernanke & Gertler

2Gomes (1997) studies a similar environment in which �rm heterogeneity and �nancial decisions are central to

understanding the behavior of �rms investment behavior.

2



(1989), Bernanke, Gertler, & Gilchrist (1998), Carlstrom & Fuerst (1997), Kiyotaki & Moore

(1997). The �rm's ability to �nance its production plan is related to the value of its assets.

When the value of these assets increases|either because the price of the assets increases or

because the �rm reinvests more pro�ts|the �rm is able to expand its production plan. In our

model, a monetary shock a�ects investment through this mechanism: A fall in the nominal

interest rate on loans decreases the interest payments of the �rms and increases their pro�ts.

Because of reinvested pro�ts, the next period �nancial capacity of the �rms increases, which in

turn allows them to expand production. This mechanism, however, is more important for small

�rms because they are more highly levered.

The central role played by the �nancial structure in the transmission of monetary shocks

highlights an important fact about the economic conditions under which the economy is more

vulnerable to such shocks. Monetary shocks will have a larger impact during periods in which

�rms are more heavily indebted.

Although monetary shocks have real consequences in this economy, the e�ects are quan-

titatively small. This is consistent with the results of Sims (1992) and Leeper, Sims, & Zha

(1996). In spite of their limited impact on the real sector of the economy, monetary shocks have

a signi�cant impact on stock market variables: monetary shocks generate uctuations of stock

returns that are much larger than the uctuation of pro�ts, dividends and aggregate output.

This latter �nding is consistent with the empirical evidence.3 The main mechanism through

which monetary shocks inuence the volatility of stock returns is by altering the factor with

which agents discount dividends. Because dividends are paid with cash at the end of the period,

the shareholder has to wait until the next period before being able to use these dividends for

consumption. Consequently, changes in the nominal prices a�ect the real values of the dividends

paid with cash. Because monetary shocks a�ect the ination rate, in addition to the nominal

lending rate, they have a signi�cant impact on the market value of the �rms, and therefore, on

the stock market return. Thus, monetary shocks have a far greater impact on �nancial markets

than their impact on the real economy would seem to warrant. This may provide some insights

on the excess volatility puzzle of stock market returns as emphasized in LeRoy (1989) and Shiller

(1981).

In the next section we describe the model economy to be studied and the decision problems

facing households, �rms, and �nancial intermediaries. We then describe the problem of the

�rms and the households in some detail and de�ne the competitive equilibrium for this economy.

After describing the calibration of the model, we present the properties of the arti�cial economy.

In that section we describe the channels through which �nancial factors induce heterogeneous

behaviors of �rms over the business cycle.

1 The Model Economy

There are three sectors in the economy: the production sector, the household sector and the

�nancial intermediation sector. Financial intermediaries intermediate liquid assets (money)

between households and �rms. Shares of the �nancial intermediaries and �rms are owned by

the households.

3Thorbecke (1997) and Hinkelman (1997), for example, �nd that monetary policy shocks have a signi�cant

e�ect on the stock market and Shanken (1990) shows that it a�ects the betas of portfolios of �rms.
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1.1 Firms

In this section we describe the characteristics of existing (old) �rms, that is, �rms that were

created in previous periods and have survived. The description of new �rms is deferred to section

2.2.

At each point in time there is a continuum of �rms that have access to the technology:

y = F (k; l; x; ') (1)

where ' is an idiosyncratic shock to technology, k is the input of capital which depreciates

at rate Æ, l is the input of labor and x is an intermediate input purchased from other �rms.

The shock is observed after the inputs of capital, labor and intermediate goods are employed

in production. To simplify the analysis we assume that labor and the intermediate input are

perfect complements to the input of capital. This implies that the chosen quantity of l and x

will be proportional to k. We assume that l units of labor and x units of intermediate goods

are required for each unit of capital, that is, l = lk and x = xk. Given this assumption, the

production technology can be rewritten as y = F (k; ').

The function F is strictly increasing and continuously di�erentiable in k and ', strictly

concave in k, and satis�es F (0; ') = F (k; 0) = 0. The assumption that the function F is

concave in k implies that the production technology displays decreasing returns-to-scale. The

shock ' is assumed to be independently and identically distributed according to a log-normal

distribution. Therefore, the domain of ' is [0;1).

At each point in time, �rms are characterized by the amount of capital, e, that they own.

Henceforth, this capital is referred to as the equity of the �rm. The amount of equity changes

over time as �rms reinvest pro�ts. The value of a �rm will thus depend on the realization

of the idiosyncratic shock and its dividend policy. To keep the problem tractable, we assume

that retained earnings is the only source of increased capital for the �rm. We motivate this

assumption by the observation that �rms mainly rely on internal sources of funds for �nance.4

In addition to the capital that the �rms own, they can increase (decrease) the input of capital

by renting it from (to) other �rms at the rental rate rk. By allowing �rms to rent extra capital,

we make sure that �nancial di�erences are the only factors that motivate �rms to implement

di�erent production plans. Their production possibility is not technically constrained by the

amount of physical capital they have accumulated until that point.

The purchase of the intermediate input has to be paid in advance and the �rm borrows these

funds from a �nancial intermediary.5 Accordingly, the �rm faces the constraint b � x = xk,

where b denotes the real value of liquid funds borrowed from the �nancial intermediary. By

assuming that the intermediate input has to be paid in advance, the model captures the cost

channel of monetary transmission that Barth & Ramey (1999) have shown to be empirically

relevant for the propagation of monetary shocks in the economy.

4Ross, Wester�eld, & Jordan (1993) and Smith (1977) document that �rms raise more than 80% of equity from

internal sources. Theoretically, this could be justi�ed by assuming that there is a suÆciently high proportional

cost to funds raised with external sources.
5The assumption that the �rm needs to �nance the intermediate input, rather than the payment of wages as

assumed in other models, is helpful for the calibration of the model. If the �rm needs to borrow only to �nance

the advance payment of wages, in equilibrium the aggregate �rms' debt would be small compared to their assets.

By introducing the intermediate input and by assuming that the �rm �nances the purchase of this input with

debt, we can calibrate the economy to obtain any desired aggregate debt to capital ratio.
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The total amount of funds the �rm can borrow is subject to an upper bound �b(e) (borrowing

limit), which depends on the �rm's equity e. For simplicity, we assume that this borrowing limit

is such that the �rm is always able to repay the debt at the end of the period, for any realization

of the shock. Although the imposition of an exogenous borrowing limit may seem arbitrary, it

can be justi�ed by an enforceability argument similar to Albuquerque & Hopenhayn (1997).6

The presence of this limit imposes a lower bound to the size of the �rm in terms of equity: a �rm

needs a positive value of equity in order to borrow and produce. However, as we will see, in the

calibrated economy the borrowing limit is directly binding only for extremely small �rms that,

as a group, are quantitatively unimportant in terms of their contribution to aggregate output.7

The last assumption we make is that at the beginning of each period, and before implementing

any production plan, the �rm faces a probability � of becoming unproductive. In that case the

�rm is liquidated with residual value e (exogenous exit).

1.2 Households

There is a continuum of homogeneous households of total measure 1, that maximize the expected

lifetime utility:

E0

1X
t=0

�
t
u(ct; 1� lt) (2)

where ct and lt are consumption and labor at time t, and � is the households's intertemporal dis-

count factor.8 The utility function satis�es the standard properties. The household is endowed

with one unit of working time that can be supplied to the market in return for the real wage

rate w. Households' assets are of three types: cash, bank deposits, and a diversi�ed portfolio of

�rm shares.

At the end of the period, each household holds an amount m of liquid assets (money). An

amount d is deposited with a �nancial intermediary (bank) and earns the nominal interest rate rd.

The amount m�d is available for transactions in the next period: the purchase of consumption

goods requires money and the household faces the following cash-in-advance constraint:

pc � m� d (3)

6For example, we can assume the following enforceability problem: after receiving the loan, a �rm can distribute

all the borrowed cash to the shareholders and then declare bankruptcy. In that case, if the liquidation value of

the �rm's capital is smaller than the debt, the bank will realize a loss with probability one, independently of the

interest rate charged in the contract. In order to prevent this moral hazard problem, the bank is willing to make

loans to the �rm only up to a limit. The incentive-compatibility limit is equal to the value of the �rm conditional

on the �rm implementing a non-deviating (moral hazard) policy. Because the value of a �rm is an increasing

function of the capital it owns, to simplify the analysis the value of the �rm's capital is taken as proxy for the

current value of the �rm.
7Rather than imposing a borrowing limit exogenously, we could have assumed that there is asymmetric in-

formation between the �rm and the intermediary and monitoring is costly. This is the assumption made, for

example, in Carlstrom & Fuerst (1997) and Bernanke et al. (1998). The main properties of the model would

not change, because, with costly state veri�cation, the optimal \one-period" contract is the debt contract. We

have chosen not to do this because it would complicate the structure of the model without changing its main

properties.
8Throughout we use small letters to denote individual state and choice variables and prices, and capital letters

to denote aggregate variables.
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where p is the nominal price.

We assume that the stock of deposits cannot be changed before the end of the next period.

This is the assumption typically made in the class of monetary models known as \limited par-

ticipation" models. At the end of each period, the household has available its bank deposits

plus the interest earned, wages, and dividends from the �rms. In addition, it invests in new

shares of �rms. We denote the real resources invested in the purchase of new �rms shares by i.9

Denote with � the initial portfolio of shares in existing �rms. At the beginning of the period

�rms di�er only over the amount of equity they own, and therefore, � represents the measure of

�rms shares over e. Denote with �(�) the dividends paid by this portfolio. Then the household's

end-of-period money holding (assuming that the cash-in-advance constraint is binding) is:

m
0 = (1 + rd)d+ p(�(�) + wl � i) (4)

The end-of-period stock of money m0 is allocated to cash holding and deposits before the begin-

ning of the next period.

The evolution of the portfolio of �rms' shares owned by the representative household depends

on the initial portfolio � and the investment in new �rms. Denoting with ~� the shares of

the new �rms added to the initial portfolio �, the household's portfolio evolves according to

�
0 =  (s; �) + ~�, where the function  de�nes the evolution of the old portfolio of shares. This

function also depends on the set of aggregate states s as described below.

1.3 Financial intermediaries and the monetary authority

In this economy there is a continuum of competitive �nancial intermediaries. At the end of

each period, the �nancial intermediaries collect deposits from households, and use these funds

to make loans to �rms at the beginning of the next period. They also receive injections of liquid

funds from the monetary authority. The sum of deposits and monetary injection determines the

total quantity of loanable funds. These funds are lent to �rms through a standard one-period

contract based on a non-contingent interest rate. The lending rate is denoted by rl.

The intermediation sector is competitive, so, in equilibrium, intermediaries do not make

pro�ts. This implies that the interest on loans rd paid to the households is implicitly determined

by the zero-pro�t condition:

(1 + rd)D = (D +�M)(1 + rl) (5)

where D is the aggregate stock of deposits and �M is the aggregate transfer of money.

By controlling the monetary transfers to the intermediaries, the monetary authority controls

the lending rate rl. The action of the monetary authority is speci�ed as an exogenous process

for the lending rate rl.

Our �nancial intermediation sector is somewhat di�erent than in other limited participation

models as, for example, in Christiano & Eichenbaum (1995) and Fuerst (1992). We assume

that the monetary authority makes monetary transfers directly to the intermediaries and the

9At the end of the period, households also trade in the shares of existing �rms (old �rms). However, because

we assume that households own the market portfolio, in equilibrium no trade in existing �rms takes place, and

we neglect these transactions in the household's budget constraint. We will re-examine these transactions in later

sections, when we derive the market value of the �rms' shares.
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intermediaries can use these transfers to remunerate the depositors. The more common approach

is to assume the transfers are made directly to households. Our approach makes the control of

the nominal interest rate easier through changes in the transfers �M .

2 The agents' problems

In this section we describe the optimization problems solved by the two main actors of this

economy: �rms and households. As is standard in monetary models, we normalize nominal

variables (deposits, loans, cash holdings and the nominal price) by the pre-shock stock of money.

The aggregate states of this economy are then given by the lending rate rl, the beginning-of-

period distribution of �rms over equity represented by the measure �, and the nominal stock of

households deposits D. The set of aggregate state variables is denoted by s = (rl; �;D).

2.1 The �rm's Problem

The problem facing managers of �rms is to choose capital, labor, the intermediate input, and

the amount of borrowing from �nancial intermediaries to maximize the value of the �rm for the

shareholders. The value of the �rm derives from the ows of dividends that are paid at the end

of each period. Because dividends are paid at the end of the period with cash, the shareholders

have to wait until next period to buy consumption goods. This implies that one unit of real

dividends paid at time t allows the shareholder to buy pt=pt+1(1 + gt) units of consumption

goods at time t+1. The term (1+ gt) derives from normalizing all nominal variables (including

prices) by the pre-shock stock of money. Therefore, the expected utility at time t of one unit of

real dividend paid at time t is equal to �Et(ptu1;t+1=pt+1(1 + gt)), where u1;t+1 is the marginal

utility of consumption at time t + 1. The term �Et(ptu1;t+1=pt+1(1 + gt)) will be denoted by

!(s) and it depends on the states of the economy s. To determine the value in terms of utility

of the �rm's payments to the shareholders, we have to multiply these payments by !(s).

Denote by 
(s; e) the value of a �rm with equity e.10 The optimization problem of a surviving

�rm can then be written as:


(s; e) = max
k;b��b(e)

E

�
max
e0

n
� � !(s) + �
(s0; e0)

o�
(1� �) + e � !(s) � � (6)

subject to

b � xk (7)

�(s; e; k; b; ') = (1� Æ)e + F (k; ') �wlk � rk(k � e)� xk � rlb� e
0
� 0 (8)

A productive �rm solves two sequential problems at two di�erent stages where each stage is

characterized by a di�erent information set. At the beginning of the period, and before observing

10Measured in terms of utility for the representative household.
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the shock ', the �rm decides the production scale by choosing k and b. By choosing k the �rm

also chooses l and x as they are perfect complements of k. At the end of the period, and after

observing the shock ', the �rm decides the next period equity e0. Choosing e0 is equivalent to

choosing the dividend policy of the �rm as speci�ed in equation (8). The dividend cannot be

negative which is equivalent to saying that the �rm cannot raise equity with external sources.

Equation (7) is the cash-in-advance constraint for working capital: in order to purchase the

intermediate input, the �rm needs to borrow liquid funds from the �nancial intermediary.

To solve this problem, the �rm needs two other objects: the law of motion for aggregate

states H(s) and the function Q(s) which gives the endogenous variables (w; rk; g; p) as function

of the states. The variable g is the growth rate of money which is determined endogenously as

the monetary authority controls the lending rate rl. These functions are taken as given by the

�rm.

In Cooley & Quadrini (1997) we show that the optimal dividend policy of the �rm assumes

a simple form. Firms will retain pro�ts and build the equity of the �rm until it reaches an

optimal size �e(s). The existence of an upper bound in the size of the �rm derives from the fact

that the value of the �rm is increasing and concave. Consequently, the marginal increase in the

value of the �rm is decreasing in e and there is a point, �e(s), for which the �rm is indi�erent

between increasing its size and distributing dividends. This upper limit in the equity size of the

�rm is not exogenous but it depends on the aggregate states of the economy. The presence of

the exogenous probability � of becoming unproductive guarantees the existence of this upper

bound.11

By imposing suÆcient conditions for which the cash-in-advance constraint (7) is binding and

using the properties of the optimal dividend policy described above, the �rm's choice reduces to

the choice of b and the upper bound �e. The �rm problem can then be reformulated as:


(s; k) = max
�e;b��b(e)

E

n
� � !(s) + �
(s0; k0)

o
(1� �) + e � !(s) � � (9)

subject to

�(s; e; b; ') = max

�
0 ; (1 + rk � Æ)e + F

�
b

x
; '

�
�

�
(1 + rl)x + wl + rk

x

�
b� �e

�
(10)

As in the previous program, the �rm takes as given the law of motion for the aggregate states

H(s) and the price function Q(s).

2.2 Entry of new �rms

The creation of a new �rm requires an initial investment �, which is sunk. We also assume that,

once a new �rm is created, it becomes productive only with probability �. If the �rm becomes

11Notice that in equilibrium �rms always prefer to accumulate physical capital, rather than liquid funds. If

�rms prefer to accumulate liquid funds, then the demand for rental capital would be higher than its supply and

this would drive the rental rate up. As the rental rate of capital increases, �rms will �nd more convenient to keep

their equity in the form of physical capital rather than liquid funds.
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productive, it has access to the same production technology and faces the same decisions as

existing �rms.

The presence of the �xed cost � is motivated by technical considerations. Without this cost,

the optimal size of a new �rm in terms of capital would be zero in the limit and the return

from creating new �rms would go to in�nity. The size of all �rms would collapse to the size of

new entrants and there would be no �rm heterogeneity. The exogenous probability of failure

is introduced to control for the optimal size of new entrants. As we will see below, when � is

one the optimal size of new entrants would be the maximum size �e, while in the data new �rms

are generally small. With a suÆciently small �, however, the size of new �rms will be small.

We justify this probability with the empirical observation that young �rms face a lower survival

rate than old �rms.

In each period there is an optimal size (in terms of equity) of new �rms denoted by e0. This

is the equity size that maximizes the present return from creating new �rms.12 Because the

households purchase a diversi�ed portfolio, the cost (in terms of utility) of a new �rm of size

e is (� + e)!(s). The value of owning it is the next period value of an existing �rm of that

size, discounted to the current period, that is, ��E
(s0; e). Therefore, the present return from

creating a new �rm is ��E
(s0; e)=(�+ e)!(s) and the optimal size of a new �rm is determined

by solving the following optimization problem:

e0 = argmax
e�0

�
��E
(s0; e)

(�+ e)!(s)

�
(11)

Figure 1 illustrates graphically how the optimal size of new �rms is determined. The �gure

plots the term ��E
(s0; e), which is the current value (in terms of utility) of a newly created

�rm. The concavity of 
 implies that this term is also concave in e. The optimal size of new

�rms is given by the value of capital for which the line departing from ��!(s) is tangent to the

curve ��E
(s0; e). This is because the current return from creating a new �rm of size e is equal

to the slope of the line departing from ��!(s) and crossing the curve at the point e. As can be

veri�ed from the picture, the line with the highest slope is the one tangent to the value curve

��E
(s0; e).

New �rms are created until the value of a new �rm of size e0 is equal to its cost, and in

equilibrium the following arbitrage condition has to be satis�ed:

(�+ e0)!(s) = ��E
(s0; e0) (12)

Therefore, in equilibrium, the slope of the tangent line to the curve ��E
(s0; e) departing from

��!(s) is equal to !(s). Simple comparative static using �gure 1 shows that an increase in �

raises the value curve of new �rms and increases the optimal size of new entrants. When � = 1,

the optimal size of new �rms is equal to the upper bound �e. This is because the upper bound is

at the point in which the slope of �E
(s0; e) is equal to !(s). Both variables e0 and �e depend

on the aggregate states of the economy and they uctuate over the business cycle.

12The optimal size of new �rms is determined by the value of e that maximizes the value of the portfolio of

new �rms obtained with the investment of a �xed amount of funds. Because there is no limit in the number of

new �rms that can be created, the problem consists of maximizing the surplus of the portfolio of all new �rms

that can be obtained with a �xed amount of resources.
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Figure 1: Optimal size of new entrant �rms.
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2.3 The household's Problem and general equilibrium

The households in this economy choose labor supply, consumption, investment in new �rms and

their initial size, deposits and cash holding.13 Denote by ŝ the set of individual states for the

households. They are given by the initial portfolio of shares, �, the nominal stock of deposits,

d, and the stock of nominal assets m (cash and deposits), that is, ŝ = (�; d;m). The recursive

formulation of the household's problem is:

V (s; ŝ) = max
c;l;d0;e0;i

�
u(c; 1 � l) + �EV (s0; ŝ0)

�
(13)

subject to

pc � m� d (14)

p(c+ i) + (1 + g)m0 = m+ pwl + rdd+ p

Z
e
�(s; e)�(de) (15)

�
0 =  (s; �) + ~�; ~� =

�i

�+ e0
(16)

13As pointed out previously, households also trade in shares of existing �rms. However, because in equilibrium

households hold the same portfolio of shares, in this section we ignore these potential transactions.
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Equation (14) is the cash-in-advance constraint for the household, and equation (15) is the

budget constraint. The end-of-period stock of nominal assets m0 is multiplied by the gross

growth rate of money 1 + g as a result of normalizing all nominal variables by the aggregate

pre-shock stock of money M . Equation (16) de�nes the evolution of the household's portfolio

of the �rms' shares. The portfolio of new �rms' shares is a mass point at e0, with mass equal to

�i=(� + e0). The households, as the �rms, also use the law of motion for aggregate states H(s)

and the function Q(s) to solve this problem.

Under the condition for which the cash-in-advance constraint is binding, the �rst order

conditions of the household's problem with respect to l, d0, e0 and i are:

u2;t � w � !(st) = 0 (17)

Et

�
u1;t+1

pt+1
� �

(1 + rd;t+1)u1;t+2

pt+2(1 + gt+1)

�
= 0 (18)

��Et
2(st+1; e0)� !(st; e0) = 0 (19)

��Et
(st+1; e0)� (�+ e0)!(st) = 0 (20)

The function 
2 is the derivative of 
 with respect to its second argument, that is, e0. The

function !(s) has been de�ned previously and it is the value in terms of utility of one unit of

real resources paid at the end of the period with cash. Notice that equation 19 was implicitly

derived in section 2.2 in which we discussed the entry of new �rms. Equation (20) is the arbitrage

condition derived in (12).

The de�nition of equilibria follows.

De�nition 2.1 (Recursive equilibrium) A recursive competitive equilibrium for this econ-

omy consists of: (a) Households' decision rules l(s; ŝ), d0(s; ŝ), e0(s; ŝ), i(s; ŝ), and households'

value function V (s; ŝ); (b) Firms' decision rule b(s; e) and �rms' value function 
(s; e); (c)

Aggregate demand of loans B(s), rental capital K(s) and labor L(s) from �rms; (d) Aggregate

supplies of labor Lh(s) and deposits Dh(s), and aggregate investment in new �rms' shares I(s)

each of size e0 from households; (e) Function Q(s) for (w; rk; g; p); (f) Law of motion H(s) for

aggregate states s = (rl; �;D). Such that: (a) The decision rules l(s; ŝ), d0(s; ŝ), e0(s; ŝ), i(s; ŝ)

solve the household's problem (13) and V (s; ŝ) is the associated household's value function; (b)

The decision rule b(s; e) solves the �rm's optimization problem (9) and 
(s; e) is the associated

�rm's value function; (c) Prices are competitive and the markets for loans, rental capital, labor,

and �nal goods clear; (d) The laws of motion for aggregate states are consistent with individual

decision rules of households, �rms and �nancial intermediaries.

3 Calibration

Given the complexity of the model, an analytical solution is not feasible. Accordingly, we solve

the model using numerical methods. These methods are described in the appendix.
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We calibrate the model assuming that a period is a quarter and the discount factor � is equal

to 0.985. The household's per-period utility is speci�ed as u(c; 1�l) = �log(c)+(1��)log(1�l).

The parameter � is calibrated so that in the steady state the representative household spends

33% of the available time in market activities.

The production technology is speci�ed as F (k; ') = 'h(k) where the shock ' is log-normally

distributed with parameters �' and �'. The function h is assumed to be quadratic, that is,

h(k) = k �Ak
2. The parameter A a�ects the degree of concavity of the production technology

and we set it to 0.006. This parameter is not important for the main properties of the model.

The other two parameters that characterize the production technology are l and x, that is the

factors of proportionality between the inputs of labor and intermediate goods, and the capital

input. After imposing an upper bound for equity �e = 1; 000 (this acts like a normalization

factor), these two parameters are calibrated jointly with the parameters �' and �' by imposing

the following conditions: (a) the steady state capital-output ratio is equal to 12; (b) the largest

�rm employs 10,000 workers; (c) the average debt-equity ratio in the economy is 0.35; (d) small

�rms choose a leverage that is about twice the leverage chosen by the largest �rm.

By imposing that the largest �rm employs 10,000 workers, the model captures the range of

�rms that are thought to face stricter �nancial conditions. (See Gertler & Gilchrist (1994) for

example.) The parameter that is specially important in di�erentiating the leverage of small and

large �rms is �'. A larger value of �' implies smaller di�erences between small and large �rms.

The depreciation rate of capital is set to 0.025 which is consistent with the values used in

the business cycle literature. The exit probability � is set equal to 0.012 which is the average

exit rate in the sample of manufacturing �rms analyzed by Evans (1987), on a quarterly basis.

The survival probability of a newly created �rm, �, is important in determining the size of

new entrants: smaller values of � imply a smaller size of new entrants. By �xing the value of

this parameter at 0.6, we keep the size of new entrants relatively small as in the data. Although

the survival probability of new �rms in the �rst quarter of life is larger than 0.6, we should

interpret this value as the survival probability of new �rms in the �rst years of life, given that in

the model we do not keep track of the age of the �rm. The set-up cost � is determined residually

so that the arbitrage condition for the entrance of new �rms in the steady state equilibrium is

satis�ed, given the imposed distributional range of �rms over equity e.

Finally, the lending rate is assumed to follow a �rst order autoregressive process with cor-

relation parameter �m = 0:9 and standard deviation �m = 0:0025. The full set of parameter

values are reported in table 1.

4 Steady state properties

We begin by describing the main features of the steady state equilibrium. Some of the properties

of the steady state equilibrium will help to clarify why �rms of di�erent size respond di�erently

to monetary shocks.

Figure 1a reports the value of debt and the borrowing limit as functions of equity. As can

be seen from this �gure, the value of debt is increasing in the size of the �rm. However, the fact

that debt is increasing in equity is not a \direct" consequence of the borrowing limit. In fact,

the borrowing limit is binding only for extremely small �rms, and most of the �rms choose to

borrow less than their limit.
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Table 1: Calibration values for the model parameters.

Intertemporal discount rate � 0.985

Consumption/leisure share � 0.393

Technology parameter A 0.006

Technology parameter l 5.000

Technology parameter x 0.340

Mean idiosyncratic shock �' 0.490

Standard deviation shock �' 0.400

Depreciation rate Æ 0.025

Probability of exit � 0.012

Survival probability of new �rms � 0.600

Firm initial set-up cost � 13.079

To understand why �rms do not borrow up to the borrowing limit, consider the trade-o�

that they face in deciding their production plans. By borrowing more the �rm can expand the

scale of production and increase the expected pro�ts. On the other hand, a larger production

scale implies an increase in the volatility of pro�ts. Because the next period equity depends

on the current realization of pro�ts and the value of the �rm is a concave function of equity

(see �gure 1e), the �rm is averse to uctuations of pro�ts. Therefore, in deciding whether to

expand the scale of production by borrowing more, the �rm compares the marginal increase in

the expected pro�ts with the marginal increase in its volatility (and therefore, in the volatility

of next period equity). Because of the decreasing return-to-scale property of the production

function, as the �rm increases its equity and implements larger production plans, the marginal

expected pro�ts from increasing the production scale further decreases. This implies that the

�rm becomes more concerned about the volatility of pro�ts and borrows less in proportion to

its equity. Thus, as the �rm grows, the composition of the sources of �nance changes in favor

of internal sources.14

Figure 1b plots the �rm's leverage, the ratio of debt to equity. Smaller �rms choose a higher

ratio. Although the increased leverage allows small �rms to be more pro�table (see �gure 1c),

their pro�ts are more vulnerable to changes in the lending rate. This implies that monetary

shocks will a�ect small �rms more heavily than large �rms. This observation will be important

in understanding the impulse responses of small and large �rms to monetary shocks that are

described in the next section.

It is also interesting to note that small �rms rent capital from large �rms, that is, the capital

input of small �rms is larger than the capital they have previously accumulated. If we interpret

rental capital as commercial credit, then in the model larger �rms provide commercial credit to

smaller ones, which is consistent with the allocation of commercial credit across �rms of di�erent

size observed in the real economy. For this reason, large �rms can be considered to be more

14The fact that the borrowing limit is not directly binding does not mean that this limit is irrelevant in the

model. Even though the �rm is not currently constrained, there is always a non-zero probability that the �rm

could experience a sequence of bad shocks and its equity approaches zero. At this point the borrowing limit

becomes binding. The possibility of being constrained prevents the �rm from borrowing too much, as more debt

makes this possibility more likely.
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liquid than smaller �rms.

Figure 1d plots the expected dividend rate, that is, the amount of dividends as a fraction

of equity that the �rm expects to pay before the realization of the idiosyncratic shock. The

dividend rate is increasing in the size of the �rm. This is because, as observed in section 2.1, the

optimal policy consists in retaining the earnings until the �rm has reached the maximum size �e.

This policy derives from the concavity of the �rm's value, as shown in �gure 1e, which in turn

derives from the concavity of the production function. Note also that, in this economy, �rms with

higher pro�ts invest more, independently of their future pro�tability. In this respect the model

is consistent with the empirical �ndings of Fazzari et al. (1988) and Gilchrist & Himmelberg

(1995, 1998) that cash ow has a signi�cant impact on �rms' investment, even after controlling

for their future pro�tability.

Finally �gure 1f plots the steady state size distribution of �rms. If we exclude the largest

class, the steady state distribution is skewed toward small �rms which is also an empirical

regularity of the data. The concentration of �rms in the largest class occurs because in the

model there is an upper bound to the size of the �rm. In the data, of course, there exist �rms

that employ many more workers than the largest �rm in the model (10,000 workers). Although

the number of these �rms is relatively small, they account for a large fraction of aggregate

production. We interpret the largest �rms in the model as representing the production of very

big �rms: the large share in production of these big �rms is accounted for in the model by an

increase in the number of �rms rather than their size.

5 The response to monetary shocks

Figures 2a-2b report the impulse response of small and large �rms after a shock that initially

increases the lending rate rl by 25 basis points. Small �rms are those employing fewer than 5,000

employees. The �gures show the responses of real debt and output as deviations from the steady

state. As can be seen from the �gure, the reaction of small �rms is signi�cantly greater than

large �rms. This is consistent with the empirical facts outlined in Gertler & Gilchrist (1994).

This asymmetric response occurs for the reasons articulated earlier: a monetary shock leads

to proportionately greater growth in the pro�ts of small �rms. The increase in the interest rate

decreases the �rms pro�ts, which in turn reduces their next period equity. Given the reduced

value of equity, �rms borrow less in the next period. This is the internal �nance mechanism

that has been emphasized in Bernanke & Gertler (1989), Bernanke et al. (1998), Carlstrom &

Fuerst (1997), Kiyotaki & Moore (1997). As observed in the previous section, small �rms are

more heavily indebted than large �rms (higher leverage). Consequently, changes in the interest

rate imply a larger impact on the interest burden of small �rms (again, in proportion to the

equity of the �rm), which in turn implies a larger impact on their next period equity.

Figures 3a-3h show the aggregate response of several variables to a monetary shock. The

pattern of the lending rate is plotted in �gure 3a. Because the lending rate follows an exogenous

autoregressive process, after the unexpected increase, it returns asymptotically to the steady

state. In keeping with the limited participation structure of the monetary sector, the increase

in the nominal interest rate requires a fall in the growth rate of money as shown in �gure 2b.

Following a monetary contraction, output, hours, wages, pro�ts and prices fall. These responses

are consistent with the empirical �ndings of Christiano, Eichenbaum, & Evans (1996). It is
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Table 2: Business cycle properties of the arti�cial economy.

Standard deviation

Money shock Real shock Both shocks U.S. Economy

Output 0.11 1.61 1.62 1.67

Consumption 0.62 1.26 1.40 0.84

Investment 2.38 3.77 4.49 8.24

Wage rate 0.51 1.22 1.33 0.86

Pro�ts 3.08 5.34 6.20 9.15

Capital share 0.84 1.12 1.46 0.70

Price index 0.74 0.75 1.06 1.39

Ination 0.64 0.72 0.97 0.57

Correlation with output

Both shocks Money shock Real shock U.S. Economy

Consumption 0.28 0.94 0.84 0.84

Investment -0.06 0.89 0.74 0.91

Wage rate 0.84 0.93 0.88 0.27

Pro�ts -0.06 0.90 0.77 0.74

Capital share -0.85 0.54 0.40 0.15

Price index 0.21 -0.85 -0.59 -0.51

Ination 0.44 -0.55 -0.39 0.34

NOTES: Statistics for the model economy are computed on HP detrended data generated

by simulating the model for 200 periods and repeating the simulation 200 times. The

statistics are averages over these 200 simulations. Statistics for the U.S. economy are

computed using HP detrended data from 1959.1 through 1996.4. Consumption includes

consumer expenditures in non-durable and services. Consumer durables are classi�ed as

investment. Wages is the index of real compensation per hour in the non-farm business

sector. Pro�ts are corporate pro�ts and the price index is the CPI index.

important to observe the persistent response of aggregate output which follows a hump-shaped

pattern. This is a consequence of the internal �nance mechanism, as outlined above, through

which shocks get propagated in the economy. Also interesting is that job destruction reacts

more than job creation and in the opposite directions.15 This implies that the variability of job

creation is smaller than the variability of job destruction and that they are negatively correlated.

This is consistent with the �ndings of Davis et al. (1996) who document the dynamics of job

reallocation in the manufacturing sector.

We summarize the business cycle properties of this economy in the �rst column of Table

2, which reports the standard deviations and correlations with output of several aggregate

variables. As can be seen from this table, the model generates signi�cant volatility in prices and

ination, but does not generate the volatility of output we observe in the data (see last column

of the table). The �nding that monetary policy shocks contribute only marginally to output

uctuations, is consistent with the empirical studies of Sims (1992) and Leeper et al. (1996).

To investigate the impact of other shocks on the business cycle properties of the arti�cial

15The de�nition of job reallocation follows the de�nition adopted by Davis et al. (1996): job creation is com-

puted by summing the employment gains of expanding �rms, and job destruction is computed by summing the

employment losses of contracting �rms.
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economy, we extend the model by introducing an aggregate shock z to the production technology.

The technology becomes y = 'h(zk). The shock follows a �rst order autoregressive process as

in the standard real business cycle model. The autoregressive parameter is set to 0.95 and the

standard deviation to 0.036. With this variability, the model generates output volatility that is

similar to the data. Of course, we are not evaluating the performance of the model according to

its ability to generate the empirical volatility of output.

The business cycle statistics of the model with only technology shocks and with both mon-

etary and technology shocks are reported in the second and third columns of Table 2. Once

we consider both shocks, this model generates business cycle properties that are close to those

observed in the data. It is interesting to note that the model also generates a positive correlation

between output and capital incomes share, which is also a feature of the data.

6 The response of �nancial markets

We now consider the response of �nancial markets to aggregate shocks. Stock market trans-

actions take place at the end of the period, after the payment of dividends. De�ne q(s; e) to

be the real market price of a share of a �rm with total equity e at the end of the period|i.e.

after the payment of dividends. This price can be derived using the function 
(s; e), de�ned

in (6). The function 
(s; e) is the utility value of a �rm with total equity e at the beginning

of the period, before uncertainty is resolved. These two functions are related by the following

arbitrage condition:

q(s; e)!(s) = �E
(s0; e) (21)

The left hand side of the equation is the cost in terms of utility of paying the price q(s; e) at

the end of the period. The function !(s) multiplying the price has been de�ned previously and

it is equal to E(�pu01=p
0(1 + g)). The term on the right hand side is the expected present value

(also in terms of utility) of owning a share of the �rm. In equilibrium these must be the same.

Consequently, the equilibrium market price of the �rm is:

q(s; e) =
�E
(s0; e)

!(s)
(22)

Using q(s; e), we can price any portfolio of �rms' shares. We concentrate the analysis on a

particular portfolio, the one composed of the steady state distribution of �rms. The composition

and size of this portfolio is kept constant. The value of this portfolio, denoted by SM , is the

sum of the real market prices of the �rms' shares traded at the end of the period, weighted by

the steady state distribution of �rms. This measure of the stock market value is the closest to

standard stock market indices like the S&P 500 index.16 Formally, we compute it as:

SMt =

Z �e

0
q(st; e)�

�(de) (23)

16We have also considered an alternative portfolio consisting of the market portfolio. The di�erence between

the market portfolio and the one consider in the paper is that in the former the composition and dimension change

as the distribution and mass of �rms in the economy change, while in the latter the composition and dimension

are kept constant. Because the properties of these two portfolios are very similar, we report the results only for

the steady state portfolio.
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where ��(e) is the steady state measure of �rms. We will refer to SM as the stock market index.

To compute the stock market return we need to compute the market price of this portfolio at

the end of the next period, inclusive of the dividends that the portfolio will pay in that period.

The value of this portfolio, denoted by SM t+1, is simply given by:

SM t+1 =

Z �e

0


(st+1; e)

!(st+1)
�
�(de) (24)

The ex-post stock market return index is:

rt+1 =
SM t+1 � SMt

SMt

(25)

Figures 4a-4f report the impulse responses of stock market prices, returns and dividend

yields after a monetary shock that increases the lending rate (left graphs) and after a negative

technology shock (right graphs). Each graph on the left-hand side uses the same scale of the

graph on right-hand side. Consequently, the responses of the same variable to di�erent shocks

are comparable in magnitude.

As can be seen, both a contractionary monetary policy and a negative technology shock,

induce a fall in the stock market value, return and dividend yield. Moreover we observe that

monetary and real shocks produce uctuations in stock market returns of similar magnitude.

This is in contrast to the contribution of monetary shocks to the uctuation of output in which

real shocks are far more important than monetary shocks.

The �rst section of Table 3 reports standard deviations of the stock market index, return,

pro�ts and dividend yields for three versions of the economy: the economy with only monetary

shocks, the economy with only real shocks, and the economy with both monetary and real shocks.

The comparisons of these three versions of the model allow us to evaluate the importance of

monetary and real shocks for stock market uctuations. As was expected from the analysis

of the impulse responses, monetary shocks generate signi�cant stock market uctuations even

though they are relatively unimportant for generating uctuations in aggregate output. We also

observe that, as in the data, the model generates much more volatility in stock market returns

than in dividend yields.

The sensitivity of the stock returns to monetary shocks derives from the impact that these

shocks have on the factor !(s), which is the factor with which current dividends are evaluated.

Recall that, with some simpli�cation, the value of a �rm can be written as 
 = � � ! + �
0.

Therefore, even though the dividend � does not change, the value of the �rm changes if !

changes. Because ! is a�ected by the ination rate, and monetary shocks have a direct impact

on this rate, the value of the �rm is very sensitive to these shocks. Another way to see this is by

de�ning the value of the �rm in terms of the discounted value of dividends. This value, denoted

by ~
, is given by:

~
 = � + �E

��
!
0

!

�
~
0
�

(26)

This is the pre-dividend market price of the �rm. This price is given by the current dividend plus

the discounted price of future dividends. The key point is that future dividends are discounted

with a variable factor which depends on !. Therefore, changes in ! induce large changes in the
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Table 3: Cyclical properties of stock market prices, returns and dividend yield.

Money shock Real shock Both shocks

Standard deviation

Stock market prices 0.07 0.11 0.13

Stock market returns 4.43 7.27 8.55

Dividend yields 0.31 0.90 0.95

Correlation with money growth

Stock market prices 0.76 -0.61 0.01

Stock market returns 0.71 -0.60 -0.01

Dividend yields 0.79 -0.60 -0.14

Correlation with ination

Stock market prices 0.85 -0.69 -0.14

Stock market returns 0.80 -0.70 -0.16

Dividend yields 0.87 -0.68 -0.29

NOTES: In the data standard deviation of real stock market return 8.2%.

Standard deviation of real dividend yield 0.7%. Correlation money growth-

stock market return 0.16; correlation ination-stock market return -0.28.

Monthly observations from 1957.1 through 1994.4 compounded to quarterly

frequencies.

market price of a �rm. Because ! is sensitive to the changes in nominal prices, then monetary

shocks have a large impact on stock market prices by impacting on the ination rate.

Finally the second and third section of Table 3 reports the correlations of stock market

values, returns, and dividend yields with money growth and ination. In the data stock market

returns are positively correlated with the growth rate of money and negatively correlated with

the ination rate. These features of the stock markets returns have been documented and

analyzed in Jovanovic & Ueda (1998) and Marshall (1992).

The economy with only monetary shocks is able to generate the positive correlation of money

growth with the stock market returns but does not generate the negative correlation with ina-

tion. This is because a negative monetary shock is associated with a reduction in the growth

rate of money and ination rate, and it has a negative impact on the stock market returns. On

the other hand, the economy with only technology shocks generates the opposite results with

the stock market returns that are negatively correlated with both money growth and ination.

This is because a negative technology shock has a negative impact on the stock market returns

and generates a persistent increase in the nominal prices and ination. To prevent the nominal

interest rate from raising (through the ination expectations), the growth rate of money has to

be increased. Therefore, the growth rate of money and the ination rate are both negatively

correlated with the stock market returns.

When we consider both shocks, the signs of these correlations depend on the relative im-

portance of the two shocks. For the particular calibration, we have that ination is negatively

correlated with stock market returns and the correlation with the growth rate of money is basi-

cally zero. Finally, we should emphasize that if the monetary shocks take the form of innovations

to the growth rate of money, rather than to the nominal interest rate, then with suÆcient vari-

18



ability in the growth rate of money the model with both types of shocks will be able to generate

the right correlations of the stock market returns with the growth rate of money and the ination

rate.

7 Conclusion

We have developed a general equilibrium model with heterogeneous, long-lived �rms where

�nancial factors play an important role in di�erentiating the production and investment decisions

of the �rms, and their response to monetary shocks. We �nd that the response of small �rms

to monetary shocks is larger than big �rms. The mechanism that generates this heterogeneous

response is the internal �nance channel. Through this propagation mechanism, the response of

the economy to monetary shocks follows a hump-shape pattern.

The aggregate impact of monetary shocks on the real sector of the economy is not large.

Nevertheless, monetary shocks cause considerable volatility in �nancial markets, particularly in

stock market returns.
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A Appendix: Computational procedure

We describe �rst the computational procedure to solve for the steady state equilibrium and then the

algorithm used to compute the equilibrium with aggregate uncertainty.

A.1 Solving for a steady state equilibrium

The computational procedure to solve for the steady state equilibrium consists of the following steps.

1. Guess initial values for w, rk , and D. Then using equations (5), (14), (17) and (18) compute the

steady state values of rd, rl, p and C.

2. Guess the steady state upper bound for equity �e and choose a discrete grid in the space of �rms'

equity, i.e., e 2 E � fe1; :::; eng. In this grid, e1 = 0 and en = �e.

3. Guess initial steady state values of debt b�i , for i 2 f1; ::; ng.

4. Guess initial values of 
i, for i 2 f1; ::; ng.

5. Approximate with a second order Taylor expansion the function ~
i around the guessed values b�i .

This function is de�ned as:

~
i(b) = �

n�1X
j=1

Z ej+1

ej

�

j +

�

j+1 �
j

ej+1 � ej

�
(x � ej)

�
�i(b; dx) (27)

+

Z
1

en

[(x� en) � ! + �
n]�i(b; dx)

where �i(b; x) is the density function for the end-of-period �rm's resources, that is, x = (1� Æ)ei+

F (k; ')� rk(k� ei)�wl� (1+ rl)b. The function ~
i is the approximated utility value of the �rm

with equity ei and debt b, conditional on being productive (which happens with probability 1� �).

The factor ! is constant in the steady state and it is equal to �u1=(1+ g). The value function 
 is

approximated with piece-wise linear functions joining the grid points in which the value function

is computed. The de�nition of ~
i given in (27), takes as given the dividend policy of the �rm

consisting in retaining all pro�ts until the �rm reaches the size en.

6. Solve for the �rm's policy bi by di�erentiating the function ~
i(b) with respect to b and eliminate b

using this policy rule. Take the resulting values to guess new values of 
i and restart the procedure

from step 5 until all �rms' value functions have converged.

7. After value function convergence, check whether the �rm policies found above reproduce the guesses

for the steady state values of debt b�i . If not, update this guesses and restart the procedure from

step 4 until convergence.

8. Check the optimality of the upper bound �e by verifying the following condition:

�
@
(e)

@e

����e = �e
= ! (28)

To check this condition, we compute the numerical derivative of 
(e) at en, taking as given the

value of b�n found above. If this condition is not satis�ed, change the guess for �e and restart the

procedure from step 2 until convergence.

9. Find the optimal size of new �rms e0 using the condition:

��
@
(e)

@e

����e = e0
= ! (29)
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10. Given the size of new entrants, iterate on the measure of �rms until convergence. In each iteration,

it is assumed that the measure of new entrants, denoted by ~�, is equal to the measure of exiting

�rms. Using ~�, we determine the investment in the creation of new �rms, that is, I = ~�(�+ e0).

11. Using the steady state distribution of �rms, compute the demand for labor Ld, rental capital Kd

and the dividends �. The measure of �rms is rescaled so that the demand for labor is equal to the

guessed value L.

12. At this point we verify three equilibrium conditions: 1) the aggregate budget constraint (1 + g) =

(1+ rd)D+ p(�+wL)� pI ; 2) the equilibrium condition in the market for rental capital Kd = 0;

3) the arbitrage condition for the creation of new �rms ��
(e0) = (� + e0)!. If these conditions

are not satis�ed, we update the initial guesses for w, rk , D, and restart the procedure from step 1

until convergence.

A.2 Solving for the equilibrium with aggregate uncertainty

Given the steady state equilibrium variables, we seek for Markovian decision rules of the �rms and of the

representative household. At each point in time the states of the economy are: (i) the lending rate rl;

(ii) the distribution of �rms over real equities represented by the measure �; (iii) the nominal stock of

deposits D. The set of states are denoted by s = (rl; �;D).

Given the computational diÆculties in deriving functions of measures, the distribution of �rms � has

to be approximated with some of its moments. We approximate the distribution with two variables: the

aggregate value of equity owned by new �rms (new entrants), denoted by E
0, and the aggregate value

of equity owned by old �rms (�rms with more than one period of age), denoted by E
1. Therefore, as

in Krusell & Smith (1998), we approximate the distribution of agents (in our case young and old �rms)

with the �rst moments E0 and E1. However, the procedure followed to derive the laws of motion of these

moments is slightly di�erent, and it consists in the aggregation of the individual decision rules. Following

is the description of the whole procedure.

1. Discretize the state space of �rms' equity as in the computation of the steady state equilibrium

described in the previous section.

2. Guess a linear function H(s) for the law of motion of the aggregate states and a linear function Q(s)

for the variables (w; rk ; g; p; !). The function H maps the current states s = (rl; E
0
; E

1
; D) into

next period states and Q maps the current states into the vector of variables h = (w; rk ; g; p; !).

Given these functions, the �rm's problem is well-de�ned.

3. Guess initial quadratic (�rms' value) functions 
i(s), i = f1; :::; ng.

4. Given the guesses for 
i(s), approximate with a second order Taylor expansion the function ~
i

de�ned as:

~
i(s;h; b; s
0) = (30)

�
Pn�1

j=1

Z ej+1

ej

�

j(s

0) +

�

j+1(s

0)�
j(s
0)

ej+1 � ej

�
(x� ej)

�
�i(s; b; dx)

+

Z
1

en

[(x � en) � ! + �
n(s)] �i(s; b; dx)

for i 2 f1; ::; ng, where b is the real �rm's debt and �i(s; b; x) is the density function for the end-

of-period resources. A simplifying assumption, here, consists of taking the size of the largest �rm

�xed at the steady state value �e.
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5. Using the law of motion H , eliminate the next period states s0. Then taking derivatives with

respect to b of the functions ~
i, derive the �rm's decision rules bi(s;h), for i = f1; ::; ng, which

are linear functions of s and h. If the �rm is �nancially constrained, then the policy rule is simply

given by a linear approximation of the borrowing constraint.

6. Using the decision rules bi(s;h), eliminate the variable b from the �rms' objective function and,

using the function Q, eliminate the vector of variables h. After reducing, the functions ~
i depend

only on the states s. These are used to form the new guesses for the �rms' value functions. The

procedure is then restarted from step 4 until all value functions have converged.

7. Using the decision rules found in step 5, derive the aggregate demand for loans by summing the

individual decision rules of new and old �rms weighted by the steady state distribution. In that

way we get a linear demand for loans from new �rms Bd
0 (s;h) and a linear demand for loans from

old �rms Bd
1(s;h). These two demands are then multiplied by the factors E0

=E
0� and E

1
=E

1�

respectively, and they are linearized around the steady state. By summing these two linear functions

we get the aggregate demand for loans Bd(s; h). The computational approximation, here, consists

in assuming that when the mean values of equity for new and old �rms increase, then the mass

of all new and old �rms increases proportionally. Using the demand for loans and the �rms'

demands for labor and rental capital, as well as the function linking the supply of loans to the

supply of deposits, approximate with linear functions the demands for labor Ld(s;h), for rental

capital Kd
d(s;h) and deposits Dd(s;h). Furthermore, given the optimal decision rules of the �rms,

linearize the function for the next period value of equity of existing �rms E1(s;h), and the function

of dividends distributed by existing �rms �(s;h). The derivation of these functions is similar to

the derivation of the aggregate demands.

8. Using the derived demands for labor, rental capital, loans, the linearized household's budget con-

straint and ! = �u1p=p
0, impose market clearing conditions and compute the vector of variables

h = (w; rk ; g; p; !) as a function of the states s, the labor supply L and the household dividends

�. Denote this function by h = ~Q(s; L;�).

9. Given the function ~Q(s; L;�), the dividend function �(s;h) and the next period equity of all

�rms E1(s; h), the household's decision rules for the variables L, E0
0

and D
0 are derived using the

household's �rst order conditions, that is, equations (17), (18), and (19). The decision rules are

computed with the method of undetermined coeÆcient after linearizing these conditions around

the steady state. In equation (19) it is assumed that the size of new entrants is �xed at the steady

state value.

10. The solution of the household problem allows the derivation of L, E0

0, D
0 as linear functions of the

states s. These functions, together with the functions ~Q(s; L;�), �(s;h) and E
1(s;h), allows us

to derive the law of motion H(s) and the function Q(s). These functions are then used as new

guesses and the procedure is restarted from step 3 until full convergence.
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