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This paper demonstrates the use of exact predictive likelihood functions for simple non-linear 
models. A measure of predictive efficiency based on the concept of expected information loss is 
introduced as a way of comparing alternative prediction functions. It is shown that the predictive 
likelihood function minimizes expected information loss over a wide class of potential prediction 
functions. Some Monte Carlo experiments illustrate the performance of alternative prediction 
functions in settings where prediction is difficult. 

1. Introduction 

Problems of prediction are distinguished from classical parameter estima- 
tion by the fact that the object of interest is an unknown probability dis- 
tribution rather than an unknown, but non-stochastic parameter. Prediction 
functions based on mean squared analysis, Monte Carlo simulation or Baye- 
sian procedures are commonly used devices for approximating the unknown 
future distribution. In Cooley and Parke (1987a, b) we have described ap- 
proximate prediction functions based on a definition of predictive likelihood. 
In this paper we propose a way of comparing alternative prediction functions 
and illustrate its use in simple non-linear models. 

Practical as well as theoretical considerations suggest that successful predic- 
tion functions should (i) be free of unknown parameters, (ii) reflect parameter 
estimation uncertainty and (iii) converge in probability to the true density of 

*This is a substantially abridged version of the paper ‘Prediction Functions’ presented at the 
Conference on Forecasting at Arizona State University in March 1987. We are grateful to Adrian 
Pagan, Peter Schmidt and an anonymous referee for helpful comments. Responsibility for errors 
remains ours. The first author acknowledges financial support from the John M. Olin Foundation 
and the Center for Research in Government Policy and Business. 
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the future observations as the sample size goes to infinity. A prediction 
function with these characteristics can be summarized by a measure of 
location such as the mean or median or via a predictive confidence interval 
that incorporates the shape and dispersion. In an earlier paper [Cooley and 
Parke (1987a)] we compared the performance of several alternative prediction 
functions in the context of a simple dynamic model. The basis for comparison 

was largely how well they captured the mean and median and whether they 
had appropriate length confidence intervals. The results of that paper suggest 
that, although there are important theoretical differences among them, the 
techniques seem to perform about equally well when judged in terms of their 
moments and confidence intervals whether or not they account for parameter 
uncertainty or capture the correct functional form. If that were generally the 
case, there would not seem to be much reason to worry about exact or 
approximate predictive densities. 

Our goal in this paper is to shed more light on this issue in two respects. 
First, we introduce a measure of expected information loss as a way of 
comparing predictive densities. This provides an informative summary of the 
relative predictive efficiencies of alternative prediction functions by accounting 
for the entire shape of the distribution and by taking expectations over 
realizations of both past and future data. The second notable feature of this 
paper is that we illustrate the information loss associated with different 
prediction functions for some difficult prediction problems. The examples 
themselves are simple non-linear models: a log-linear function and a logistic 
function. The prediction problems are difficult, however, in that they arise 
from either policy interventions or exogenous circumstances of low probabil- 
ity. The results demonstrate significant differences in the information loss 
associated with alternative prediction functions. 

2. Exact predictive likelihood functions 

Before introducing the measure of information loss, we define here the exact 
predictive likelihood functions for the linear regression model and two non- 
linear extensions. Although the concept of predictive likelihood is discussed in 
Cooley and Parke (1987a, b), those papers develop approximate versions based 
on asymptotic expansions and asymptotic distributions. The cases considered 
here are logically prior in that they lend themselves to exact small sample 
derivations. Interesting analytic results can be obtained for these models that 
can only be illustrated numerically for other models. 

Lauritzen (1974) and Hinkley (1979) define a predictive likelihood function 
based on minimal sufficient statistics S, for the m data period observa- 
tions Y, = (Y,, . . . , Y,), S, for the n future period observations Yr= 

(Y,+i,. . . 2 L+,h and %+, for the combined data and forecast period ob- 
servations Yd+,. Sufficiency ensures that the conditional probability densities 
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f( S,, S,l Sd+f) and f( y/I S,) do not involve the true parameters. Loosely stated, 
the predictive likelihood function is intended to reflect the degree to which Y, 

and Y, are compatible with a common sufficient reduction Sd+f. We state this 
formally as: 

DeJinition I [Lauritzen (1974), Hinkley (1979)] 

Plik(Yfl YJ =f(r,lS,) .fV,, w%if)~ 

We can illustrate this idea for the linear regression model, 

(0 

y, = X# + Ei, i=l ,..., m + n, (2) 

where X, is 1 X k and cd+, - N(0, a2Z,+ .). The minimal sufficient statistics 

s d+f are the independent quantities Xj+,Y,+f and SSR,,/= Y&,,[Z - 

WY,+,, where M= Xd+,( X&+rXd+,)-lXi+, [Cox and Hinkley (1974, p. 
14)].’ (The sufficient statistics for the data period are X,lY, and SSR,.) 
Applying Definition 1, we obtain: 

Proposition 1. For (2), let Id = (X:X,)-‘X,lY, and let 

A= (yf-x,&J’[zn+xf(x;x,)-‘xj]-l(yf-x,~~). 

For /I and o2 unknown, 

plik( Y,l Yd) CC { 1 + A/SSR, } -(m+n-k)‘2. 

For /3 unknown and a2 known, 

plik( Yrl Yd) a e-:A/02. 

Proof. Appendix. 

The predictive likelihood function (plik) thus takes on a familiar form for 
the linear regression model. If both j3 and a2 are unknown, it has the form of 
a multivariate t with m - k degrees of freedom, mean X,8d, and covariance 

matrix s2Z,, + s2X,( X:X,)-‘X,l, where s2 = SSR,/(m - k) is the usual esti- 
mate of u2. The term s2Z in the covariance matrix is due to error term 
uncertainty, and the term “2 s X,( X:X,)-‘Xi is due to parameter uncertainty. 
If a2 is known, the predictive likelihood function is the corresponding multi- 
variate normal density. For simplicity, we will use the latter density and the 
case n = 1 (so that f denotes m + 1) in the remainder of this paper. 

‘Any one-to-one transformation of a minimal sufficient statistic is also minimal sufficient, and 
we choose lo& SSR) because the latter is consistent with an invariant uniform prior [Jeffreys 
(1983)]. 
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Extending Proposition 1 to simple non-linearities is straightforward. The 
minimal sufficient statistics for the non-linear model 

h(Zi) = q, y. = xi/3 + E;, (3) 

are again X’Y and SSR. Letting J denote the Jacobian dY,/d Z,, 

plk(Z,IZ,) = IJI *~hk(yflY,). 

This functional form parallels the true density 

f(Z,;B>e*) = IJI -f(~;P,~*). (5) 

In particular, under the usual assumption that (X:X,)-’ = O(m-‘), we have 
rgd= p + O,(m-‘I*) andplik(Z,lZ,) converges to the true density f( Z,; p, u *). 

Convergence to the true density helps in constructing minimum-length 
predictive confidence intervals with prespecified probability levels. Consider, 
for example, a log-linear model 

log(zi) = Y:., Y = x,p + Ei. 

In this case, 

plik( Z,(Z,) a Z,F’. exp( - i(log( Zf) - Xf&)2/(~2 + ~2)>y 

(6) 

(7) 

where 

& = (xix,) -'x;r, and r* = 0*X,( X:X,)-‘Xi. 

Plik( Z,l Z,) thus has the form of a log-linear density with log-mean X,Bd and 
log-variance u* + r *. While one might construct a confidence interval for Z, 
by simply transforming a confidence interval for Yr = log(Zf), a 
Neyman-Pearson type construction based on (7) will yield shorter confidence 
intervals for a given probability level. 

The distinction between region forecasts for Z, and transformed region 
forecasts for Y, is even more striking for the logisttc model 

l”g( zi/(l - z,)) = Y(i, q = x$3 + q, O<Z,<l. (8) 

If u* is large enough, the true density for Z, will be bimodal with a region of 
highest probability consisting of two disjoint intervals. While the region of 
highest predictive likelihood will also be composed of two intervals, trans- 
forming a confidence interval for q will yield a single interval that totally 
misses the bimodal nature of the true density. 
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3. Predictive efficiency 

These simple examples illustrate that the entire shape of a predictive density 
may well be relevant for non-linear prediction problems. As a quantitative 
measure of how well a candidate normalized prediction function f*(Z,lZ,) 
based on estimated parameters resembles the unknown true density 
f(Z,; p, a*), we adopt the Kullback-Leibler information measure of the 
difference between f*( Z,j Z,) and f( Z,; /I, a*).* 

Dejinition 2 [Predictive Efficiency]. The K-L information measure is 

z(f”,f*) = l[k$r(z,; P, 0’)) - l%(J*(z,Iz,)~] 

xf( Z,; B, 0’) dz,. (9 

The expected value of this measure over realizations of Z,, 

measures the information loss associated with f*. We say that f* is predictive 
efficient relative to f** if I< f”, f*) < I< f”, f**). 

Two advantages of this approach should be noted. Ficst, unlike other 
efficiency measures such as mean squared prediction error, I(!“, f*) is natu- 
rally tailored to the functional form of the true future density. Furthermore, it 
is invariant to common non-linear transformations q = h ( Zi) in the following 
sense. 

Proposition 2. For any monotone, differentiable transformation y. = h( Z,), let 
f*( 51 Yd) = IJJ -’ .f*( Z,I Z,). Then 

and 

2Aitchison (1975) and Larimore (1983) also advocate (10) as an information measure of 
goodness of prediction fit. Akaike’s (1973) information criterion (AIC) for model selection is 
based on a sample variant of (10). 
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Proof. Appendix. 

We can thus frame predictive efficiency questions for many non-linear 
models in terms of the underlying linear model. For the linear model, Levy 
and Perng (1986) show that plik(YJ Y,) minimizes j(f”,f*) over a wide class 
of potential prediction functions of the form g(Y,- X,b,) for some function 
g. Proposition 2 effectively extends Levy and Pemg’s optimality result to a 
general class of non-linear models. 

The resulting bound on predictive efficiency, which is attained by the 
predictive likelihood function, follows directly from Kullback (1959, p. 189): 

I( f”, plik) = $og(l + +7’). 03) 

We can compare this expected information loss to that obtained by other 
prediction functions. One example is the naive plug-in function that simply 
substitutes parameter estimates for the unknown parameters in the true 

density: CEQ( Y,l Y,) = f( Y/; pd, A s2). The expected information loss for this 
function is 

I( fo, CEQ) = ~r2/e2, (14) 

where 72 = a2Xf( X&X,)-‘Xi. Correcting for parameter uncertainty is thus 
important to the extent that log(1 + T~/u~) < ~~/a~. 

4. Monte Carlo results3 

We conclude this paper with some Monte Carlo experiments that compare 
predictive efficiencies for alternative prediction functions. The experiments are 
deliberately chosen to illustrate situations where non-linearities and parameter 
uncertainty make an important difference in the prediction problem. We 
report results for three techniques and for each technique we have a version 
that corrects for parameter uncertainty and one that ignores it. The predictive 
likelihood function, plik, is as discussed in section 2. The certainty equivalence 
function, CEQ, is essentially the same as the plik (it has the correct functional 
form) but it does not correct for parameter uncertainty. Rather, it treats 
estimated parameters as known. 

The other two approaches considered yield symmetric prediction functions 
with the form of a normal density. The mean squared error prediction 
functions, MSE/MSE*, are based on a linear approximation to a non-linear 
estimated model. The asterisk denotes the version that corrects for parameter 

‘The results reported here are a brief summary of a more complete Monte Carlo study 
described in Cooley, Parke and Chib (1987). 
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uncertainty. A direct linear regression of 2, on the explanatory variables yields 
the n-&specified prediction functions REG/REG*. We use truncated normal 
densities in calculating the information loss for the normal prediction func- 
tions to take into account the restriction on the permissible range of Z, 
inherent in the true specification. This makes the results for these normal 
prediction functions more favorable than would otherwise be the case. 

The first two examples involve prediction from a log-linear model (6) with 
three explanatory variables exhibiting moderate collinearity. For the first 
experiment, the sample period exogenous data are drawn from a mixing 
process designed to permit the possible rare occurrence of extreme observa- 
tions. Future period observations are drawn from the density that can generate 
extreme values. The second example, also a log-linear model, represents the 
sort of prediction problem encountered when the X’s are altered by a policy 
intervention. To capture this, we add a constant to the draw for one of the X’s 
for the future observations. 

Figs. la and lb illustrate the expected information losses for the two 
experiments just described for sample sizes of 50, 100, 200,400 and 800. These 
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Fig. la. Log-linear model mixture experiment. 
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Fig. lb. Log-linear model policy intervention experiment. 

results illustrate the importance of accounting for both parameter uncertainty 
and functional form. While the latter is apparently the more important of the 
two, parameter uncertainty is clearly important for the combination of small 
sample sizes and difficult prediction problems. 

The final two examples consider the same prediction problems as above, but 
in the context of a logistic model (8). The logistic specification increases the 
extent of the non-linearity: there is both an upper and lower bound on the 
range of the dependent variable and the function changes from concave to 
convex. The parameter values are chosen so that the true density is essentially 
unimodal.4 Figs. lc and Id illustrate the results for these two experiments. 
These results are basically similar to those reported above although the 
misspecified REG/REG* prediction functions perform much worse here. 
Once again both functional form and parameter uncertainty make a difference. 
The information loss associated with functions that ignore parameter uncer- 

4The results for a bimodal true density are not reported because MSE/MSE* and REG/REG* 
fare very poorly in terms of information losses in that case. 
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Fig. lc. Logistic model mixture experiment. 

tainty converges relatively quickly to the information loss of the corresponding 
functions that incorporate it as the sample size increases. 

These simple examples do not test the candidate prediction functions on 
two important points. First, realistic prediction models are often more elaborate 
than those we have used. In particular, they almost always involve a greater 
number of parameters and, hence, entail a greater possibility for practically 
important parameter uncertainty. Second, the non-linearities in more elaborate 
models may be difficult to analyze in a closed form and, unlike the simple log 
and logistic transformations, may depend upon estimated parameters. The 
examples do, however, give some indication of how the importance of parame- 
ter uncertainty depends on sample size. They also suggest that there are 
prediction problems arising in familiar models where it is quite important to 
have an accurate approximation of the underlying true density. There are 
many different approaches to obtaining that density. While we have empha- 
sized the predictive likelihood approach it is worth noting that for the 
problems considered here the plik is equivalent to prediction functions based 
on Monte Carlo simulation or a Bayesian posterior density. 
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Fig. Id. Logistic model policy intervention experiment. 

Appendix 

Lemma 1. The sujicient statistics X;Y,, X&+/Ydcf, 

log( SSR,,,) are related by the relations X&+,Y,+, = X;Y, + 

SSR d+,= SSR,+ A, 

where 

log( SSR d) and 
Y,‘Y, and 

(A-1) 

Proof of Lemma I. Let X = X,,,, Y = Yd+/, p^ = Ijd+l and SSR = SSR,,/. 
The recursion 

#L&&B,= (x/x)_lx&-x,&) (A-2) 

follows directly from X(X( s - s,) = X’Y - Y,lY, - X/IX,pd, which can also be 
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written in the form X’X( p^ - fid = X’( Y - Xkd). We can use this last relation 
and thedevice Y-XB= Y-X d+X(rljd-P) towrite SSR=(Y-Xfi)‘(Y- B 
X4 as 

SSR=(Y,-X&,)‘(Y,-X&)+(Yf-X,&)‘(Ej-Xjd) 

-(p^-&J~(XfX)(p^-kf). 

We then use the recursion (A.2) to obtain 

SSR=SSR,+(Yf-X,p‘$[I.-X/(X’X)-‘Xj](Y/-X,&). 

Eq. (A.l) follows from I,, - Xr(X’X)-‘X/’ = [I, + X,<X,lXd>~‘X,l]-’ 
[Rao (1973, p. 33)]. 0 

Proof of Proposition I. Definition 1 can be written as 

PlilOjl Y,) = 
f(~;~:02)f(~~,log(SSR,);B,u2) 

f(hodSSR);P,a2) ’ 
(A.3) 

p^ and log(SSR) are independent, with p^ - N(/I, a2( X’X))‘) and SSR/02 - 

XL-k. Using similar distributions for Bd and SSR,, the factors of (A.3) are 

f(r,;P,u2)aexp{-:(Y/-X,p)~(r,-X,P)/u2}, (A-4) 

f(bJog(SSR,);P>~2) sew{ -:(s,-P)‘(X&X,)(Is,-p)/a’} 

.(SSRJu2)‘“-k”2exp{ - $SSRd/u2}, 

(A4 

f(hg(SSR); Au’) aexp{ -~(P^-P)‘(X’X)(p^-p)/a2} 

.(SSR/u2)‘m+“-k”2exp{ - :SSR/a2}. 

(A.61 

Using the well-known results 

(Y-Xp)‘(Y-Xp) =SSR+ (p^-p)‘(X’X)(p^-p), (A.7) 

and 

(Y,-X,P)‘(Y,-X,p)=SSR,+(~~-P)‘(X,’X,)(~~-P), (A.8) 
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the exponential functions in (A.4), (A.5) and (A.6) cancel, leaving 

plik( Yrl Yd) a ( SSR/CJ~)-(~+~-~)“/( SSRJO~)-(“‘-~)‘~. 

Finally, Lemma 1 yields 

plik( Y,I Y,) a (1 + A/SSR,)-‘“+“-k”2. 

For the case that a2 is known, p^ is sufficient and we can eliminate the x2 
densities from (A.5) and (A.6). Applying (A.7) and (A.8) then yields 

plik(YJ Yd) a exp{ - $SSR/02}/exp{ - $SSR,/a2}. 

Lemma 1 gives us the desired prediction function. 0 

Proof of Proposition 2. Substituting (4) and (5) into (9) yields 

I( fO(Z,; PdJ’), f*(z,lZd)) = /log{ $g$j jiJl 

Using (5) once more, this equals Z( f’(Y,; j3, u2), f*(Y,j Y,)). The extension to 
i( f O, f *) is immediate. 0 
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