

Econometric Analysis of Panel Data Assignment 2

Part I. Interpreting Regression Results

The results below show OLS, fixed effects and random effects estimates for a reduced version of the model analyzed in class using the Cornwell and Rupert data.

- 1. Test the hypothesis of 'no effects' vs. 'some effects' using the results given below.
- 2. Explain in precise detail the difference between the fixed and random effects models.
- 3. Carry out the Hausman test for fixed effects against the null hypothesis of random effects and report your conclusion. Carefully explain what you are doing in this test.
- 4. In the context of the fixed effects model, test the hypothesis that there are no effects i.e., that all individuals have the same constant term. (The statistics you need to carry out the test are given in the results.)
- 5. Using the fixed effects estimator, test the hypothesis that all of the coefficients in the model save for the constant terms are zero. Show all computations, and the appropriate degrees of freedom for F.
- 6. Discuss the impact of adding the individual dummy variables to the model in terms of the substantive change (or lack of) in the estimated results.

Part II. Fixed Effects Normalization

Some researchers (such as your professor) prefer to fit the conventional fixed effects model (estimator) by having exactly one dummy variable in the model for each individual. In some other cases, the researchers prefer to have a single overall constant and a set of N-1 individual dummy variables, i.e., dropping one of the individual constants to avoid the collinearity problem. (This is the default setting in Stata, for example.) A third way to proceed is to include an overall constant and the full set of dummy variables, but constrain the dummy variable coefficients to sum to zero. How does this manipulation of the dummy variable coefficients affect the least squares estimates of the other coefficients in the model and the fit of the equation, i.e., R^2 ?

Ordinary	least squares	regression					
LHS=LWAGE	Mean	=		51800			
200 2002	Standard devi			42809			
	No. of observe		•	51	DegFreedom	Mean square	
Regression			1	57896	4	.39474	
Residual	Sum of Square			58394	46	.16487	
Total	Sum of Square			16289	50	.18326	
	Standard error			40604	Root MSE	.38562	
Fit	R-squared			17232	R-bar squared		
Model test		=		39427	Prob $F > F^*$		
Diagnostic		-		76813	Akaike I.C.		
2	Restricted (b	=0) =	-28.	59094	Bayes I.C.	= -1.52032	
	Chi squared [41 =		64561	Prob C2 > C2*	= .04684	
B-P test	Chi squared [1] =	39.	30737	Prob C2 > C2*	* = .00000	
[High valu	es of LM favor 1	FEM/REM over	<pre>base model]</pre>				
Baltagi-Li	form of LM Stat	istic =	26.	75797	[= BP if bala	anced panel]	
Moulton/Ra	form of LM Stat. ndolph form:SLM	N[0,1] =	12.	91801		_	
Panel Data	Analysis of LWA	GE	[ONE	way]			
	Uncondition	al ANOVA (No	regres	sors)			
Source	Variation 1	Deg. Free.	Mean S	quare			
Between	5.96999	7.					
Residual	3.19290	43.		07425 18326			
Total	9.16289	50.	•	18326			
+-							
		Standard		Prob	. 95% Cor		
LWAGE	Coefficient	Error	t	t >T	* Inte	erval	
OCC	.25940	.28182	.92	.3621	30788		
UNION	20027	.21010 .16103	95 1.42	.3455	62318		
MS	.22821	.16103	1.42	.1632	09592	.55234	
EXP	.00794	.01045		.4513	01309	.02897	
Constant	6.03804***			.0000	5.56926	6.50682	
+-	**, * ==> Sign	ificance at					
Noce. ,	, Sign	iiicance at	10, 20,	TO2 TO	ever.		
LSDV LHS=LWAGE	least squares Mean	with fixed =		51800			
	Mean Standard devi	= ation =	6.	51800 42809			
LHS=LWAGE	Mean Standard devi No. of observa	= ation = ations =	6.	51800 42809 51	DegFreedom		
LHS=LWAGE Regression	Mean Standard devi No. of observ Sum of Square	= ation = ations = s =	6. 8.	51800 42809 51 58750	11	.78068	
LHS=LWAGE Regression Residual	Mean Standard devis No. of observe Sum of Squares Sum of Squares	= ation = ations = s = s =	6. 8. .5	51800 42809 51 58750 75396	11 39	.78068 .01475	
LHS=LWAGE Regression	Mean Standard devis No. of observe Sum of Square Sum of Square Sum of Square	= ation = s = s = s =	6. 8. .5 9.	51800 42809 51 58750 75396 16289	11 39 50	.78068 .01475 .18326	
LHS=LWAGE Regression Residual Total	Mean Standard devi No. of observ Sum of Square Sum of Square Sum of Square Standard erro	= ation = s = s = s = r of e =	6. .5 9.	51800 42809 51 58750 75396 16289 12146	11 39 50 Root MSE	.78068 .01475 .18326 .10622	
LHS=LWAGE Regression Residual Total Fit	Mean Standard devi No. of observ Sum of Square Sum of Square Standard erro R-squared	= ation = s = s = r of e = =	6. .5 9.	51800 42809 51 58750 75396 16289 12146 93720	11 39 50 Root MSE R-bar squared	.78068 .01475 .18326 .10622 4 .91949	
LHS=LWAGE Regression Residual Total Fit Model test	Mean Standard devi No. of observ Sum of Square Sum of Square Standard erro R-squared F[11, 39]	= ation = s = s = r of e = =	6. 9.	51800 42809 51 58750 75396 16289 12146 93720 91412	11 39 50 Root MSE R-bar squared Prob F > F*	.78068 .01475 .18326 .10622 4 .91949 .00000	
LHS=LWAGE Regression Residual Total Fit	Mean Standard devia No. of observa Sum of Square Sum of Square Standard erro R-squared F[11, 39] Log likelihood	= ation = s = s = r of e = = d =	6. 9.	51800 42809 51 58750 75396 16289 12146 93720 91412 98946	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ .91949\\ .00000\\ = -4.01393\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test	Mean Standard devi No. of observ Sum of Square Sum of Square Standard erro R-squared F[11, 39] Log likelihoo Restricted (b	= ation = s = s = r of e = = d = = =0) =	6. 9.	51800 42809 51 58750 75396 16289 12146 93720 91412 98946 59094	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic	Mean Standard devi No. of observ Sum of Square Sum of Square Standard erro R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [= ation = s = s = r of e = = d = = 0) = 11] =	6.	51800 42809 51 58750 75396 16289 12146 93720 91412 98946 59094 16079	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic	Mean Standard devi No. of observ Sum of Square Sum of Square Standard erro R-squared F[11, 39] Log likelihoo Restricted (b	= ation = s = s = r of e = = d = = 0) = 11] =	6.	51800 42809 51 58750 75396 16289 12146 93720 91412 98946 59094	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto	Mean Standard devi No. of observ Sum of Square Sum of Square Standard erro R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [= ation = s = s = r of e = = d = e0) = 11] = (i,t) = Valid d	6.	51800 42809 51 58750 75396 91412 98946 59094 16079 26845 8 7	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto	Mean Standard devi No. of observ Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = e0) = 11] = (i,t) = Valid d Largest size in pan	6.	51800 42809 51 58750 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto	Mean Standard devi No. of observ. Sum of Square Sum of Square Sum of Square Standard erro R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e Smallest 2,	= ation = ations = s = s = r of e = = d = e0) = 11] = (i,t) = Valid d Largest size in pan	6.	51800 42809 51 58750 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances	Mean Standard devi No. of observ Sum of Square Sum of Square Standard erro R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = e0) = 11] = (i,t) = Valid d Largest size in pan Resi	6.	51800 42809 51 58750 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro	Mean Standard devi No. of observ. Sum of Square Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = l1] = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE	6.	51800 42809 51 58750 75396 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 87720 .1929	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared	Mean Standard devi No. of observ. Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e correlation of e Smallest 2, Average group Effects a(i) 1.186657 d: Residual vari ups variation in based on within s	= ation = ations = s = s = r of e = = d = el = 11] = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat	6.	51800 42809 51 58750 75396 93720 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 (i,t) 14754 147520 .1929 19789	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared	Mean Standard devi No. of observ. Sum of Square Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = el = 11] = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat	6.	51800 42809 51 58750 75396 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 87720 .1929	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C.	$\begin{array}{r} .78068\\ .01475\\ .18326\\ .10622\\ 9\\ .91949\\ .00000\\ = -4.01393\\ = -3.55939\end{array}$	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared	Mean Standard devi No. of observ. Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e correlation of e Smallest 2, Average group Effects a(i) 1.186657 d: Residual vari ups variation in based on within s	= ation = ations = s = s = r of e = = d = e0) = 11] = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat LWAGE	6.	51800 42809 51 58750 16289 12146 93720 91412 98946 59094 16079 26845 6.38 (i,t) 14754 87720 .1929 19789 .9700	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2*	.78068 .01475 .18326 .10622 4 .91949 .00000 = -4.01393 = -3.55939 5 = .00000	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared T Between gr	Mean Standard devi No. of observ. Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e correlation of e Smallest 2, Average group Effects a(i) 1.186657 d: Residual vari ups variation in based on within s	= ation = ations = s = s = r of e = = d = e0) = 11] = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat LWAGE 	6. 8. 59. 52. 41. -28. 141. -0 ata el duals e .0 ai .9 3 ion .8 5	51800 42809 51 58750 75396 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 87720 .1929 19789 .9700 Prob	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2*	.78068 .01475 .18326 .10622 4 .91949 .00000 = -4.01393 = -3.55939 5 = .00000	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared	Mean Standard devi No. of observ. Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = e0) = 11] = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat LWAGE	6.	51800 42809 51 58750 16289 12146 93720 91412 98946 59094 16079 26845 6.38 (i,t) 14754 87720 .1929 19789 .9700	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2*	.78068 .01475 .18326 .10622 4 .91949 .00000 = -4.01393 = -3.55939 5 = .00000	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared T Between gr	Mean Standard devi No. of observ. Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = e0) = 11] = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat LWAGE 	6. 8. 52. 41. -28. 141. -28. 141. -28. 141. -0 ata el duals e 0 ai 9 3 ion .8 5 	51800 42809 51 58750 75396 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 87720 .1929 19789 .9700 Prob	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2* Prob C2 > C2*	.78068 .01475 .18326 .10622 4 .91949 .00000 = -4.01393 = -3.55939 5 = .00000	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto 	Mean Standard devi No. of observ. Sum of Square Sum of Square Sum of Square Standard erro R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = d = d = d = d = d = d = d = d =	6. 8. 52. 41. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -28. 141. -00 	51800 42809 51 58750 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 87720 .1929 19789 .9700 Prob T 	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2* * 95% Cor * Inte	.78068 .01475 .18326 .10622 4 .91949 .00000 = -4.01393 = -3.55939 s = .00000	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared Between gr	Mean Standard devi No. of observ Sum of Square Sum of Square Sum of Square Standard erro R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = e0) = 11] = (i,t) = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat LWAGE Standard Error .11812	6. 8. 52. 41. -28. 141. -28. 141. -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	51800 42809 51 58750 75396 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 87720 .1929 19789 .9700 L19789 .9700 L1>T .4536 .1010 .5054	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2* . 95% Cor * Inte 32691 36030 28737	.78068 .01475 .18326 .10622 4 .91949 .00000 = -4.01393 = -3.55939 * = .00000 * = .00000	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared Between gr LWAGE LWAGE	Mean Standard devi No. of observ. Sum of Square Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihood Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = el = el = el = (i,t) = till = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat LWAGE group variat LWAGE 	6. 8. 52. 41. -28. 141. -28. 141. -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	51800 42809 51 58750 75396 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 87720 .1929 19789 .9700 L19789 .9700 L1>T .4536 .1010 .5054	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2* . 95% Cor * Inte 32691 36030 28737	.78068 .01475 .18326 .10622 4 .91949 .00000 = -4.01393 = -3.55939 f = .00000 f = .00000	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared T Between gr 	Mean Standard devi No. of observ. Sum of Square Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = e0) = 11] = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat LWAGE 	6. 8. 52. 41. -28. 141. -28. 141. -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	51800 42809 51 58750 75396 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 87720 .1929 19789 .9700 L19789 .9700 L1>T .4536 .1010 .5054	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2* 95% Cor * Inte 32691 36030	.78068 .01475 .18326 .10622 4 .91949 .00000 = -4.01393 = -3.55939 * = .00000 * = .00000	
LHS=LWAGE Regression Residual Total Fit Model test Diagnostic Estd. Auto Panel:Group Variances Rho square Within gro R squared Between gr LWAGE LWAGE UNION MS EXP	Mean Standard devi No. of observ. Sum of Square Sum of Square Sum of Square Standard error R-squared F[11, 39] Log likelihoo Restricted (b Chi squared [correlation of e 	= ation = ations = s = s = r of e = = d = el) = 11] = (i,t) = Valid d Largest size in pan Resi ation due to LWAGE group variat LWAGE Standard Error .11812 .09779 .10711 .00967	6. 8. 52. 41. -28. 141. -28. 141. -0 -0 ata el duals e 0 ai .9 3 ion .8 5 t 76 -1.67 67 10.66 	51800 42809 51 58750 75396 16289 12146 93720 91412 98946 59094 16079 26845 8 7 6.38 (i,t) 14754 87720 .1929 19789 .9700 Prob t >T .4536 .1010 .5054 .0000 	11 39 50 Root MSE R-bar squared Prob F > F* Akaike I.C. Bayes I.C. Prob C2 > C2* Prob C2 > C2*	.78068 .01475 .18326 .10622 4 .91949 .00000 = -4.01393 = -3.55939 * = .00000 * = .00000	

Tes	t Statistics for	the Fixed Ef	fects R	egressi	on Mode	1	
(2) Grou (3) X -	l I tant term only p effects only variables only d group effects	-23.76813		3.19	5289 9290 3394	-squared .00000 .65154 .17232 .93720	
	Eikelihood Ratic Chi-squared d.			sts num	denom	P value	
(2) vs (1 (3) vs (1) 53.77) 9.65	7 .0000 4 .0468	11.49 2.39	7 4	43 46	.00000.06406	
(4) vs (1 (4) vs (2 (4) vs (3) 87.39		44.35	11 4 7	39	.00000 .00000 .00000	
Estimates	<pre>fects Model: v(i : Var[e] Var[u] Corr[v(i,t),v Sum of Square R-squared computed using</pre>	= = r(i,s)] = :s	.0147 .1501 .9105 30.1081 -2.2835	54 14 12 08 34			
Fixed vs. [4 degre	Random Effects es of freedom, p w) values of H f	(Hausman) = prob. value =	36. .00000	 02 0]			
LWAGE	Coefficient	Standard Error	z	Prob. z >Z*	9	95% Confidence Interval	
OCC UNION MS EXP Constant	24613** 11957 10910 .07438*** 5.31395***		-1.25 -1.05 9.25	.0295 .2111 .2922 .0000 .0000	3 3 .0	0696 .0 1213 .0 5861 .0	2446 6782 9392 9014 4031
+ Note: ***	, **, * ==> Sig	nificance at	1%, 5%,	10% lev	zel.		

Part III. Estimating Variance Components

Greene (2018), Wooldridge (2010, page 296), etc. suggest that in order to obtain the asymptotically efficient FGLS estimator of the coefficients in the random effects model, one only needs a consistent pair of estimators for σ_{ϵ}^2 and σ_u^2 – any consistent estimators will do. That is good, because there are quite a few available. One is suggested in Greene (2018 on pages 408-409) based on the degrees of freedom corrected OLS and FE estimators. A different one uses the pooled OLS estimate, **e'e**/*NT* (note no degrees of freedom correction) and **e**_{LSDV}/**e**_{LSDV}//*NT* (again, no correction). A third that is completely different is proposed on page 296 of Wooldridge. Only the second of these is guaranteed to produce a positive estimate of σ_u^2 . Show this. For each estimator, show how the residuals are used to compute the two variance component estimators. The Wooldridge estimator appears to use cross observation products (covariances) to estimate a variance. Can you justify this computation? Determine exactly how your software computes the variance components.

Note that the estimator that does not make the degrees of freedom corrections is not, in fact, consistent. The estimator of σ_{ε}^2 converges to σ_{ε}^2 (T-1)/T. What does this imply? The estimator of β based on this estimator is still consistent, since this is just weighted least squares with suboptimal weights as is, for example, OLS. But, it does raise an interesting question about the estimated standard errors. One hopes that *T* is large enough that the standard errors are nearly correct.

Part IV. The Hausman Test

We have considered two approaches to Hausman's test for random vs. fixed effects. A direct approach compares the random and fixed effects estimators using a Wald test and using Hausman's theoretical result on how to obtain the asymptotic covariance matrix for the difference. A second approach is a 'variable addition test,' in which the group means of the time varying variables are added to the regression (each group mean is repeated for each observation in the group), then an F (or Wald) test is used to test the significance of the coefficients on the means. A large F weighs against the random effects specification.

1. Using the bank cost data on the course website, carry out this test both ways with respect to the following model

 $\log C_{i,t} = \beta_1 \log Y 1_{i,t} + \beta_2 \log Y 2_{i,t} + \beta_3 \log Y 3_{i,t} + \beta_4 \log Y 4_{i,t} + \beta_5 \log Y 5_{i,t} + \alpha_i + \varepsilon_{i,t}$

(Note for the direct test, you use only the first 5 coefficients).

2. Using the preferred model based on part 1., now test the hypothesis of constant returns to scale, that $\beta_1+\beta_2+\beta_3+\beta_4+\beta_5=1$.

NOTE: In the data set, variable variable "C" is the log of the costs, and variables Q1, ..., Q5 are the logs of the outputs. So, you need not transform the data after reading them into your program. The files are stored at http://people.stern.nyu.edu/wgreene/Econometrics/banks.csv and banks.lpj.

Part V. Algebra for the Two Period Model

1. [This is Wooldridge's problem 10.2, page 334.] Suppose you have T=2 years of data, year 0 and year 1, on the same group of N working individuals. Consider the following model of wage determination:

 $Log(wage_{it}) = \theta_1 + \theta_2 d2_t + \mathbf{z}_{it}' \boldsymbol{\gamma} + \delta_1 \text{ female}_i + \delta_2 d2_t \times \text{female}_i + c_i + \varepsilon_{it}.$

The unobserved effect, c_i is allowed to be correlated with z_{it} and with female_i. The variable d2 is a time period indicator; $d2_t = 0$ if t = 0 and $d2_t = 1$ if t = 1. In what follows: assume that

 $E[\epsilon_{it}|female_i, \mathbf{z}_{i0}, \mathbf{z}_{i1}, c_i] = 0, t = 0, 1.$

- a. Without further assumptions, what parameters in the log wage equation can be consistently estimated?
- b. Interpret the coefficients θ_1 and θ_2 .
- c. Write the log wage explicitly for the two time periods. Show that the differenced equation can be written as

 $\Delta log(wage_{it}) = \theta_2 + \Delta \mathbf{z}_{it} \boldsymbol{\gamma} + \delta_2 \text{ female}_i + \Delta \varepsilon_{it}$ where $\Delta log(wage_{it}) = log(wage_{i1}) - log(wage_{i0})$.

- 2. Continuing part 1, discuss estimation of the model under the 'random' effects assumption. How would you proceed? Can it be done?
- 3. Note that without the "confounding" effects, $\mathbf{z}_{it}' \boldsymbol{\gamma}$, this is a difference in differences model, $\delta_2 = (\Delta \log(wage) | female = 1) - (\Delta \log(wage) | female = 0)$

Part VI. The Random Effects Model

- 1. [Based on Wooldridge, problem 10.5, page 336.]
 - a. Consider an extension of the random effects model in which the variance of u_i differs across individuals. How does the covariance matrix of the disturbance vector in the RE model change if the individual component is heteroscedastic?
 - b. How would this change the behavior (asymptotic properties) of the OLS estimator and the GLS estimator
 - c. Given this modification of the model, how would you modify your estimation and inference procedures?
- 2. [Based on Wooldridge, problem 10.14, page 340] Suppose we specify the unobserved effects model

 $y_{it} = \alpha + \mathbf{x}_{it}' \boldsymbol{\beta} + \mathbf{z}_i' \boldsymbol{\gamma} + \mathbf{h}_i + \varepsilon_{it}, i = 1,...,N; t = 1,...,T.$

 \mathbf{x}_{it} is a set of time varying variables while \mathbf{z}_i is a set of time invariant variables. We assume that

 $E[\varepsilon_{it}|\mathbf{x}_i, \mathbf{z}_i, \mathbf{h}_i] = 0$, I.e., ε_{it} is uncorrelated with \mathbf{x}_{is} for all periods, as well as with \mathbf{z}_i and \mathbf{h}_i .

 $E[h_i | \mathbf{x}_{i}, \mathbf{z}_{i}] = 0.$ (The random effects specification).

If we use the fixed effects estimator to estimate this random effects model, we are implicitly estimating the parameters of the equation

$$\mathbf{y}_{it} = \mathbf{x}_{it}' \mathbf{\beta} + \mathbf{c}_i + \varepsilon_{it}$$
 where $\mathbf{c}_i = \alpha + \mathbf{z}_i' \mathbf{\gamma} + \mathbf{u}_i$.

- a. Obtain $\sigma_c^2 = \text{Var}[c_i | \mathbf{z}_i]$. Show that this is at least as large as σ_h^2 .
- b. Explain why estimation of the model by fixed effects will lead to a larger estimated variance of the unobserved effect (the disturbance) than if the model is estimated by the random effects procedure.
- 3. The Lagrange multiplier statistic for testing the hypothesis that $\sigma_u^2 = 0$ in the model $y_{it} = x_{it}'\beta + u_i + \varepsilon_{it}$ appears on Slide 23 of PanelDataNotes-5 (Random Effects). Derive the probability limit of (1/N)LM under the null hypothesis that σ_u^2 is actually zero. Hint: a simpler form to work with is

$$\frac{1}{N}LM = \frac{T}{2(T-1)} \left[\frac{T\left\{ \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} e_{it} \right)^{2} \right\}}{\frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} e_{it}^{2}} - 1 \right]^{2}$$

You can obtain the probability limits of the two sums and use the Slutsky theorem to obtain the end result.

Part VII. The Fixed Effects Model

[Based on Wooldridge, problem 10.3, page 335.] For T = 2, consider the standard unobserved effects model,

$$y_{it} = x_{it}' \beta + c_i + \varepsilon_{it}, i = 1,...,N; t = 1,2.$$

Let \mathbf{b}_{FE} and \mathbf{b}_{D} denote the fixed effects (within) and first difference estimators, respectively.

- 1. Show that the two estimators are numerically identical.
- 2. Show that the estimates of the disturbance variance from the two estimators are also identical.