
 
 

Econometric Analysis of Panel Data 
 

Assignment 4 

Parameter Heterogeneity in Linear 

Models: RPM and HLM 
 

The estimation parts of this assignment will be based on the Baltagi and Griffin gasoline 

market and the Cornwell and Rupert labor market data sets that are posted on the course 

website.   

 

We will begin with the gasoline market.The basic linear regression model in use will be 

 

 yit  =  β1  +  β2xit,1  +  β3xit,2  +  β4xit,3  +  wit 

where 

and i = 1,…,18 OECD countries 

 t = 1,…,19 years (1960 to 1978). 

 yit = lgaspcar = log of per capita gasoline use 

 xit,1 = lincomep = log of per capita income 

 xit,2 = lrpmg = log of gasoline price index 

 xit,3 = lcarpcap = log of cars per capita 

 wit = a disturbance that may have have both permanent (time invariant) 

     components and time varying components, and may, under some 

     circumstances, be correlated with xit. 

Denote xit =  (1,xit,1,xit,2,xit,3)  and  

 Xi  =  the 194 matrix containing all the data on xit for country i. 
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Part I.  Parameter Variation in the Gasoline Market 

 

A.  Homogeneous parameters:  To begin, we assume that all parameters, including the 

constant term, are homogeneous across countries and through time and that wit = εit, a 

classical zero mean, homoscedastic disturbances. 

 1.  Under these assumptions, what are the properties of the pooled OLS estimator? 

 2.  Estimate the parameters of the model using OLS and report your results. 

 3.  As a first cut at assessing whether the assumptions are correct, compute the 

 robust, cluster (country) corrected standard errors for the least squares estimator. 

 Do they appear to be the same, or close to the same, as the uncorrected OLS 

 standard errors?  What do you conclude about the disturbances in the equation? 

 

B.  Heterogeneous Constant Terms:  Now, consider fixed and random effects 

formulations of the model.  We write the model as 

 

 yit  =  β1i  +  β2xit,1  +  β3xit,2  +  β4xit,3  +  it 

where 

 β1i  =  β1  +  ui and E[ui]  =  0, i = 1,…,17. 

 

Thus, this is a model with a random constant term.  By substituting the second equation 

into the first, you can see that it is the “effects” model we have discussed in class. 

1.  (Fixed Effects) Using the OECD gasoline data, estimate the parameters of the model 

under the assumption that E[ui|Xi]  =  g(Xi) for some nonzero function g(.).  Explain the 

estimator and the motivation for using it.  Display your results with the OLS estimates so 

that you (and your reader) can see the difference between the two.   Note that E[ui|Xi] = 

g(Xi) is still consistent with E[ui] = 0.  When averaged over Xi, the overall mean is zero, 

but the mean is not zero for a specific Xi.  This implies that ui and Xi are correlated. 

2. (Random Effects)  Estimate the parameters of the model under the more restrictive 

assumption that E[ui|Xi] = 0. 

3.  Use the Wu/Mundlak variable addition test to test for the assumption of the (null) 

random effects model against the (alternative) fixed effects model.  Report your results 

and your conclusions.  (Recall, the Wu test is based on adding the group (country) means 

of the regressors to the model and testing down to the REM without the group means.) 

 

C.  General parameter heterogeneity:  Let xit denote (1,lincomep,lrpmg,lcarpcap)it.  

We now consider the possibility that there are differences across countries.  Write the 

model 

 

(1) yit  =  βi′xit +  εit. 

 

Absent any further assumptions about the variation in the parameters across countries, 

how would you proceed to examine the relationship between per capita gasoline 

consumption, yit and the other variables, xit? 

 

1.  Suppose we now assume that all the parameters, not just the constant, are random; 



 

(2) βi  =  β  +  ui  

 

where ui has an overall mean of zero, however E[ui|Xi]  =  g(Xi), where Xi is the 19 years 

of data on xit for country i?  Note that the assumption of the overall mean of zero states 

only that βi varies around a mean.   

 

We are particularly interested in the price elasticity of the demand for gasoline, the 

coefficient on lrpmg. To explore the cross country variation, compute the linear 

regression model for each of the 19 countries (separately).  Display in a graph or a well 

labeled table the results of your estimation, to describe the variation in the estimated 

coefficients on lrpmg.  Note that the assumption about ui is equivalent to the “fixed 

effects” case, but here we are considering the entire parameter vector, not just the 

constant term. 

 

2.  If we add to A. the assumption E[ui|Xi]  =  0, the model turns into a ‘random effects’ 

model, though note, once again, we are considering the entire parameter vector.  Under 

this new assumption, what are the properties of the pooled ordinary least squares 

estimator?  What does b estimate in this case?  For a useful step in the analysis, insert (2) 

into (1), expand, and analyze the implied model. 

 

Part II.  Theory and an Example for Simulation Based Estimation:   

 

This theoretical exercise will begin to suggest how simulation based estimation works. 

Consider a simple regression model 

 

 yit  =  βixit + εit 

 

There is only one variable and no constant in the model. Assume that εit ~ N[0,σ
2
].  We 

suppose as well that βi is random; βi = β + wi where wi ~ N[0,θ
2
].  A useful way to write 

this is 

 

 βi  =  β  +  θui  where ui  ~ N[0,1]. 

 

Putting θ specifically in the equation simplifies the derivation a bit.  The contribution of 

individual i to the likelihood function is the product of the normal densities, 
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This is not useable for maximum likelihood estimation because βi = β + θui which means 

that the log likelihood to be maximized involves the unobserved ui; 
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In principle, we would now maximize logL|u = Σi logLi|ui   with respect to (β,θ,σ).  The 

problem is that the unobserved ui is still in the equation and must be integrated out to 

proceed..  The contribution of individual i to the unconditional log likelihood function is 
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where (ui) is the standard normal density. The integral of the product above does not 

exist in closed form, so we will approximate it by simulation. (It could be approximated 

with quadrature.)  Adding up the individual contributions, the simulated log likelihood is 
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where uir is a set of R random draws on the standard normal population for each 

individual i. (The same random draws are reused every time the function or its derivatives 

are computed.  There are a total of nR random draws used in the simulation.)  An 

additional simplification is obtained by using γ = 1/σ. (We make use of the invariance 

principle for maximum likelihood estimation.)  Then,  
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The maximum simulated likelihood estimator is the (β,θ,γ) that maximizes this function. 

1.  Derive the necessary (first order) conditions for maximizing this function.  Hint: your 

derivation is simplified greatly by using the result d(t)/dt = -t(t). You can then just use 

the chain rule. 

2.  How would you obtain asymptotic standard errors for your estimator? 

3.  The following small exercise will show this computation at work.  This application 

estimates the parameters of a model that precisely satisfies the assumptions of the model 

above.  Execute these commands and report all of your results 

 

?  1,000 observations in total will be n=100, T=10.  The x(i,t) is normally distributed 

?  with mean zero and standard deviation 1.  Variable i is the 1,1,1,1...,2,2,2,2... etc. 
Sample ; 1 - 1000 $ 

Create ; xit = Rnn(0,1) ; i = Trn(10,0) $ 

? We generate b(i) = 0.5 + u(i) where u(i) is normal with mean 0, standard deviation 

? .5.  Then, y(i,t) = b(i)*x(i,t) + e(i,t) where e(i,t) is normally distributed (0,1). 
Matrix ; bi = init(100,1,.5) + .5*rndm(100)$ 

Create ; yit = bi(i)*xit + rnn(0,1) $ 

? This command estimates the random parameters model exactly as shown in  

? part 2. above. 
Regress ; lhs = yit ; rhs = xit ;rpm ; fcn=xit(n) 

        ; pds=10 ; pts=100 ; halton $ 



Part III.  Random Parameters Models 

 
This exercise will demonstrate the computation of a fairly elaborate, hierarchical linear model.  

The computations are based on the Cornwell and Rupert data.  Note that the simulations below 

are based on Halton sequences, not pseudorandom random numbers.  As such, the results you 

obtain below are replicable – in principle, you and I (and your colleagues) should all get the same 

results.  Also, if you fit these equations more than once, you will get the same answers. 

 

1.  A simple RPM with one random coefficient.  The first model is the regression model 

discussed in class, now with a random coefficient on education.    After fitting the random 

parameters model, this program computes the posterior estimates of E[i,Ed|yi,Xi] and plots the 

distribution with a kernel density estimator and a histogram.  Estimate the model and report all 

results.  (Note, you can copy/paste the figure into a Word document.) 

 
Sample ; All $ 

Regress ; Lhs = Lwage ;Rhs = One,Exp,Occ,Ind,South,SMSA,MS,FEM,Union,Ed 

;Pds=7 ;RPM ; Halton ; Pts=100 ;Fcn = Ed(N) ;Parameters $ 

Sample ; 1 - 595 $ 

Create ; Ed_Coeff = 0 $ 

Create ; Ed_Coeff = beta_i $ 

Kernel ; Rhs = Ed_Coeff$ 

Histogram ; Rhs = Ed_Coeff $ 

 
2.  The second model is a typical hierarchical model. The model is 

 

 yit  =  1,i  +  2,iExpit + 3OCCit + ... + 8Unionit +  it 

 1,i  =  1 + 1,1Femi + 1,2Edi + u1i, 

 2,i  =  2 + 2,1Femi + 2,2Edi + u2i, 

 

This is a common sort of model in which the regression of interst is based on the time varying 

attributes and the variation in the parameters is explained by the randomness, uk,i and by the 

demographics that do not vary across time, here Gender, Education and Race.  Fit the model and 

report all results, identifying what parameter is what in your report. 

 
Sample ; All $ 

Regress ; Lhs = Lwage 

;Rhs = One,Exp,Occ,Ind,South,SMSA,MS,Union 

;Pds=7 

;RPM=Fem,Ed  

;Halton ; Pts=100 

;Fcn = one(n),exp(n) 

;Parameters $ 

 
3.  Construct a different random parameters specification, modify the command above 

accordingly and fit your model.  Report your results and interpret the estimates you obtain. (Note 

in formulating an RPM, the variables at the ‘upper’ level do not vary through time.  Thus, it will 

be inappropriate to include time variables in the ;RPM list.)  


