
 
 

Econometric Analysis of Panel Data 
 

Assignment 6 

Nonlinear Models for Panel Data 
 

 

Part I.  A Concentrated Log Likelihood    
 

 Consider an exponential regression model with fixed effects, The density is 

 

f(yit|xit)  =  [1/θit] exp(-yit / θit), yit > 0, where it = exp(i + xit), i = 1,…,n; t = 1,…,T. 

 

It will prove convenient to let i = exp(i) so it = i exp(xit) = i it.   

 The log likelihood for this exponential regression model with fixed effects is 
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(a)  Obtain the first order condition for maximizing logL with respect to γi.  Note, there is 

one of these for each i, so you need only differentiate 
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with respect to γi and equate it to zero.  You will gain some convenience by defining ait = 

yit/it. 

 

(b)  Now, treating β as if it were known, show that the implicit solution of this likelihood 

equation for γi in terms of  is  
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 (c) It follows that at the solution for the MLE, it will be true that i() = ia  where ia  is 

the sample mean of ait.  Denote   c

it i ita .  Insert this solution back into the log 

likelihood function, to obtain the concentrated log likelihood function 
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Note that this is a function of β but not of γi.  To obtain the maximum likelihood 

estimator of β, we can now maximize this function with respect to β.  This is equivalent 

to maximizing the whole log likelihood function, while considering only the solutions for 

γi that satisfy γi = γi(β) as shown above.  When we find , we can then compute i.  (No 

assignment for this part.) 
 

(d)  With this in hand, it is now possible to maximize the function with respect to .  

Show that the likelihood equation will be  
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You now need the derivative, ∂θit
c
/∂β .   Continuing, show that  
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  x x   Hint: it/ = itxit.  Insert your result in the log 

likelihood equation to obtain the implicit solution for β, 
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Part II.  Solving for FE in Panel Probit 
 

 For the binary fixed effects panel probit model, 

 

 Prob(yit = 1 | xit) =  (i + xit),  

Prob(yit = 0 | xit) = 1 - Prob(yit = 1|xit) = (-i - xit). 

 

a.  Write out the full log likelihood function. 

 

b.  Write out the first order condition for maximizng the function with respect to i, taking  as 

known.  Take this derivation as far as possible – you will ultimately find that unlike the exponential 

model we examined earlier, in this model, there is no explicit solution for i in terms of  and the 

data. 

 

c.  Show that regardless of the finding in b, there is no solution for i when yit is always 1 or always 

0 within a given group (i). 
  



Part III.  The Incidental Parameters Problem. 
 

 This is a purely empirical exercise.  It will involve some computations using the German 

health care data. 

 As we discussed in class, for the binary logit model, there are two estimators for the 

fixed effects model 

 

 Prob(yit = 1 | xit)  =  (i + ′xit), i = 1,...,n, t = 1,...,T. 

 

The ‘brute force,’ unconditional approach maximizes the whole log likelihood for i,i=1,...,n and 

.  This estimator is known to suffer from the ‘incidental parameters problem;’ when T is small, 

the estimator is biased away from zero.  The best known result is that when T = 2, there is a 

100% bias.  The other approach is the Rasch/Chamberlain method, which computes a conditional 

MLE using the probabilities conditioned on the sum of the yits for each group. This estimator is 

known to be consistent.  For this exercise, we will see if the effect is visible in a sample, using 

precisely the estimators described. 

 

a.  We first see if we can observe Hsiao/Abrevaya’s finding when T = 2.  The following 

commands compute the estimates of the logit model both ways.  Estimate the equations, and 

report your results.  Do the empirical results seem to conform to the theory? 

 
Setpanel ; Group = id ; Pds = ti $ 

Namelist ; x = hhninc,age,married,working $ 

Proc = FELogit $ 

Logit ; if[ti = T] ; Lhs = doctor ; Rhs = x ; Panel ; Fixed 

      ; Table = Uncond $ 

Logit ; if[ti = T] ; Lhs = doctor ; Rhs = x ; Panel 

      ; Table = Cond $ 

MakeTable ; Uncond,Cond $ 

EndProc $ 

Exec  ; Proc=FELogit ; T=2 $ 

 

b.  A second result that seems intuitively reasonable is that the IP bias diminishes as T increases.  

Is this the case?  Change the 2 in the Exec command above to 3 and redo the experiment.  What 

do you find?  Now, change the 2 to 7 and repeat the experiment. In each case, report your 

findings and your conclusions.  (Tip:  You could use Exec;Proc=FELogit;T=2,7$ to do 

all 6 experiments with one instruction. The syntax T=2,7 means T=2,3,4,5,6,7, not T = 2 and 7.) 

 

c.  What do you conclude about the fixed effects estimators? 

 



Part IV.  A Common Effects Probit Model 
 

 In this exercise, you will fit a probit model with common effects, and develop the 

appropriate model based on your findings.  The probit model we will use is 

 

 Prob(yit = 1 | xit)  =  (ci + ′xit) 

 yit  =  Publicit  =  whether or not the individual chose public health insurance in that year. 

 xit =  one,age,educ,hhninc,handper,working,hsat 
 

1.  Suppose, for the moment, we ignore the heterogeneity, ci and just pool the data and fit a 

simple probit model.  Is the estimator consistent?  What assumptions are necessary for the pooled 

estimator to be a consistent estimator of ? 

 

2.  All of the suggested covariates in the model are time varying.  Fit a random effects model and 

a fixed effects model (this can only be done by brute force – there is no conditional estimator for 

the probit model).  Report your results. 

 

3.  We are interested in deciding which is preferred, fixed or random effects. I propose to use a 

variable addition test.  Add the group means to the model, then carry out a likelihood ratio test of 

the hypothesis that the coefficients on the group means are all zero.  What do you find?  What do 

you conclude is the preferred model? 

 

Hint: These commands can be used for parts 1. – 3. 

 
Setpanel ; Group=id ; Pds=ti $ $ 

Namelist ; X = age,educ,hhninc,handper,working,newhsat $ 

Probit ; Lhs = public  

       ; Rhs = one,X ; Panel ; Random ; HPT = 8$ 

Probit ; Lhs = public  

       ; Rhs = one,X ; Panel ; FEM $ 

Probit ; Lhs = public  

       ; Rhs = one,X,Gmn(X)  ; Panel; Random ; HPT = 8$ 

 

4.  Suppose it were hypothesized that the previous year’s choice of whether or not to choose 

public insurance were on the right hand side of the equation.  That is, 

 

 Prob(yit = 1 | xit)  =  (ci + ′xit + yi,t-1) 

 

What would this imply for how one (you) should go about estimating the parameters of the 

model. What issues should you be concerned with for a dynamic model? 
 

 


