
7 Appendix: Proofs

Proof of Lemma 1.

Proof. Define

fi(wi) =
dui
dwi

= −Tiψ′(Ti(1− wi))φ(S−i) + αiqiTi
∑

j 6=i

S−ij
(S−ij + qiTiwi)2

Tjrj

It’s easy to see that dfi(wi)
dwi

< 0. We need to examine the incentive constraints of the three
groups in equilibrium.

1) content consumers: Ic
For user i ∈ Ic, the necessary and sufficient condition for her to choose wi = 0 is

fi(0) = −Tiψ′(Ti)φ(S−i) + αiqiTi
∑

j 6=i

Tjrj
S−ij

≤ 0 (15)

Since
rj
S−ij

= 0 if j ∈ Ip and
rj
S−ij

= 1
S−i

if j ∈ Ic,
∑

j 6=i
Tjrj
S−ij

= 1
S−i

∑
j∈IC ,j 6=i Tj+

∑
j∈Im,j 6=i

Tjrj
S−ij

.

Inequality 15 becomes to

αiqi ≤ S−i
TC−i + S−i

∑
j∈Im,j 6=i

Tjrj
S−ij

ψ′(Ti)φ(S−i) = hC(i)

2) content producers: Ip
For user i ∈ Ip, the necessary and sufficient condition for him to choose wi = 1 is

fi(1) = −Tiψ′(0)φ(S−i) + αiqiTi
∑

j 6=i

S−ij
(S−ij + qiTi)2

Tjrj ≥ 0 (16)

∑

j 6=i

S−ij
(S−ij + qiTi)2

Tjrj =
∑

j∈IC ,j 6=i

S−ij
(S−ij + qiTi)2

Tj +
∑

j∈IM ,j 6=i

S−ij
(S−ij + qiTi)2

Tjrj

=
S−i

(S−i + qiTi)2

∑

j∈IC ,j 6=i
Tj +

∑

j∈IM ,j 6=i

S−ij
(S−ij + qiTi)2

Tjrj

=
S−i

(S−i + qiTi)2
TC−i +

∑

j∈IM ,j 6=i

S−ij
(S−ij + qiTi)2

Tjrj

Inequality 16 becomes

αiqi ≥ (S−i + qiTi)
2

S−iTC−i + (S−i + qiTi)2
∑

j∈IM ,j 6=i
S−ij

(S−ij+qiTi)2
Tjrj

ψ′(0)φ(S−i) = hP (i)

Apparently, user with hC(i) < αiqi < hP (i) will choose 0 < wi < 1.
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Proof of Lemma 2.

Proof. (1)
If nM/n90 as n → ∞, then we immediately have nM → ∞ as n → ∞. Pick 1 > δ >

0, w > 0 such that ∀n, at least nMδ of those i ∈ IM choose wi > w. 8.

S−i =
∑

j 6=i
qjTjwj ≥

∑

j∈IM ,j 6=i
qjTjwj ≥ (nMδ − 1)qwT

TC−i
Sβ−i

<
Tn

qβwβT β(nMδ − 1)β
→ 0 as n→ 0

If nM/n→0 as n→∞, then we must have TC−i →∞ and S−i →∞ since otherwise either

hC(i) →∞ or hP (i) → 0 both of which can’t be true in equilibrium. Furthermore,
TC
−i

S−i
9∞

as n→∞ since otherwise hP (i) → 0 too. Therefore, limn→∞
TC
−i

Sβ
−i

= 0, ∀β > 1.

(2)
If nM/n9 0, then

∑

j∈IM ,j 6=i

Tjrj

Sβ−ij
<

nMT

(nMδ − 2)βwβqβT β
→ 0 as n→ 0

where δ, w are defined in the first part of the proof.

If nM/n → 0, then nC/n 9 0 since otherwise
TC
−i

S−i
→ 0, hC(i) → ∞ which can not be

true in equilibrium. So we must have
∑

j∈IM ,j 6=i Tjrj < TC−i. Now

∑

j∈IM ,j 6=i

Tjrj

Sβ−ij
<

Sβ−i
(S−i − qT )β

TC−i
Sβ−i

→ 0 as n→ 0

Proof of Proposition 1.

Proof. We will prove the proposition in four steps. Throughout the proof, we will constantly
use the boundedness of φ(·) but we won’t refer to it each time.

1) First we will show

lim
n→∞

hC(i)

hP (i)
=
ψ′(Ti)
ψ′(0)

Define h(i) = hC(i)/hP (i), which could be written as

h(i) =

S−iT
C
−i

(S−i+qiTi)2
+

∑
j∈IM ,j 6=i

S−ij

(S−ij+qiTi)2
Tjrj

TC
−i

S−i
+

∑
j∈IM ,j 6=i

Tjrj
S−ij

ψ′(Ti)
ψ′(0)

8Technically, it is possible that such (δ, w) does not exist. In such case, nM

n 9 0, but wi → 0, ∀i ∈ IM .
We don’t discuss this pathological limit equilibrium in the current paper.
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TC−i
S−i

− S−iTC−i
(S−i + qiTi)2

= TC−i
2S−i + qiTi

S−i(S−i + qiTi)2
qiTi < 2qiTi

TC−i
S2
−i
→ 0 as n→ 0

∑

j∈IM ,j 6=i

Tjrj
S−ij

−
∑

j∈IM ,j 6=i

S−ij
(S−i + qiTi)2

Tjrj =
∑

j∈IM ,j 6=i
Tjrj

qiTi(2S−ij + qiTi)

S−ij(S−ij + qiTi)2

< 2qiTi
∑

j∈IM ,j 6=i

Tjrj
S−ij(S−ij + qiTi)

< 2qiTi
∑

j∈IM ,j 6=i

Tjrj
S2
−ij

→ 0 as n→∞

Since hC(i) 9∞ in equilibrium and φ(·) is bounded,
TC
−i

S−i
+

∑
j∈IM ,j 6=i

Tjrj
S−ij

9 0 as n→∞.

So limn→∞ h(i) = ψ′(Ti)
ψ′(0)

.

2) Second, we will show

lim
n→∞

hC(i)

hC(k)
=
ψ′(Ti)
ψ′(Tk)

,∀i, k

∣∣∣∣∣
∑

j∈Im,j 6=i

Tjrj
S−ij

−
∑

j∈Im,j 6=k

Tjrj
S−kj

∣∣∣∣∣ =
∑

j∈IM ,j 6=i,k

∣∣∣∣
qkTkwk − qiTiwi

S−ijS−kj

∣∣∣∣Tjrj +
Tkrk − Tiri

S−ik

≤ |qkTkwk − qiTiwi|
∑

j∈IM ,j 6=i

Tjrj
S2
−ij

+
Tkrk − Tiri

S−ik

→ 0 as n→∞ (17)

Since hC(i) 9∞,
TC
−i

S−i
+

∑
j∈Im,j 6=i

Tjrj
S−ij

9 0, hence

hC(i)

hC(k)
=

TC
−k

S−k
+

∑
j∈Im,j 6=k

Tjrj
S−kj

TC
−i

S−i
+

∑
j∈Im,j 6=i

Tjrj
S−ij

ψ′(Ti)φ(S−i)
ψ′(Tk)φ(S−k)

→ ψ′(Ti)
ψ′(Tk)

3) From 1) and 2), we immediately have

lim
n→∞

hP (i)

hP (k)
=
hC(i)

hC(k)

hC(k)/hP (k)

hC(i)/hP (i)
=
ψ′(Ti)
ψ′(Tk)

ψ′(Tk)/ψ′(0)

ψ′(Ti)/ψ′(0)
= 1,∀i, k

Since hP (k) 9 0,∀k, hP (i) − hP (k) → 0,∀i, k. Denote limn→∞ hP (i) = hP , then

limn→∞ hC(i) = ψ′(Ti)
ψ′(0)

hP .

Proof of Corollary 1.
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Proof. By Proposition (1), we only need to examine the case when wi and wk are the interior
solutions of the first-order conditions of user i and user k’s utility maximization problem.
From the proof of Lemma (1), we have

ψ′(Ti(1− wi))φ(S−i) = αiqi
∑

j 6=i

S−ij
(S−ij + qiTiwi)2

Tjrj

ψ′(Tk(1− wk))φ(S−k) = αkqk
∑

j 6=k

S−kj
(S−kj + qkTiwk)2

Tjrj

ψ′(Ti(1− wi))

ψ′(Tk(1− wk))
=
φ(S−k)
φ(S−i)

αi
αk

∑
j 6=i

S−ijqi
(S−ij+qiTiwi)2

Tjrj
∑

j 6=k
S−kjqk

(S−kj+qkTiwk)2
Tjrj

(1) If Ti = Tk, qi = qk, αi ≥ αk, then, using Lemma(2), one can easily show that

lim
n→∞

∑
j 6=i

S−ijqi
(S−ij+qiTiwi)2

Tjrj
∑

j 6=k
S−kjqk

(S−kj+qkTiwk)2
Tjrj

= 1

Hence, limn→∞
ψ′(Ti(1−wi))
ψ′(Tk(1−wk))

= αi

αk
≥ 1, which implies that wi ≥ wk

(2) If Ti = Tk, αi = αk, qi ≥ qk, then using Lemma(2), one can easily show that

lim
n→∞

∑
j 6=i

S−ijqi
(S−ij+qiTiwi)2

Tjrj
∑

j 6=k
S−kjqk

(S−kj+qkTiwk)2
Tjrj

=
qi
qk

Hence, limn→∞
ψ′(Ti(1−wi))
ψ′(Tk(1−wk))

= qi
qk
≥ 1, which implies that wi ≥ wk

Proof of Proposition 2.

Proof. The ”if” part is obvious from Proposition 1 and is explained in the paper. The ”only
if” part could be similarly proved. Suppose limn→∞

nM

n
= 0, then

lim
n→∞

∑
j∈Im

Tjrj
S−ij

= 0, lim
n→∞

∑

j∈IM ,j 6=i

S−ij
(S−ij + qiTi)2

Tjrj = 0

since S →∞ as n→∞. Hence

lim
n→∞

hC(i) =
S

TC
ψ′(Ti) lim

n→∞
φ(S), lim

n→∞
hP (i) =

S

TC
ψ′(0) lim

n→∞
φ(S)

With continuous distribution of (α, q, T ), if ψ′′(·) < 0, then there is a always positive propor-
tion of user who have hC(i) < αiqi < hP (i) as n→∞ and those user choose ri > 0, wi > 0.
Hence nM

n
9 0, contradiction.

Proof of Corollary 2.
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Proof. In a partition equilibrium, the utility function simplifies to

ui = ψ(Ti(1− wi))φ(S−i) + αiqiTiwi
TC
S

Since rj = 0 if j ∈ IC and rj = 0 if j ∈ IP .
If i ∈ IC , then wi = 0 and S−i = S. So uCi = ψ(Ti)φ(S).
If i ∈ IP , then wi = 1. So uPi = αiqiTi

TC

S
.

From Proposition 1, we know in a partition equilibrium

lim
n→∞

hC(i) = lim
n→∞

hP (i) =
S

TC
ψ′(0) lim

S→∞
φ(S) =

S

TC
= h

and S =
∑

αiqi>h
qiTi, T

C =
∑

αiqi<h
Ti, so, h is determined by

h =

∑
αiqi>h

qiTi∑
αiqi<h

Ti
(18)

which always has a solution in (0, αq).

Proof of Corollary 3.

Proof. The original threshold h is determined by

h =

∑
αiqi>h

qiTi∑
αiqi<h

Ti
(19)

Denote h′ the threshold after the shift and ĥ the threshold that keeps the same group of people
content consumers/producers, i.e.,

∑
α′iqi<ĥ

Ti =
∑

αiqi<h
Ti or

∑
αiq′i<ĥ

Ti =
∑

αiqi<h
Ti.

If the population shifts up in α, then

h′ =

∑
α′iqi>h′

qiTi∑
α′iqi<h′

Ti
(20)

and

h =

∑
α′iqi>ĥ

qiTi∑
α′iqi<ĥ

Ti
(21)

We must have h′ ≥ h since otherwise the RHS of (20) will be greater than (19) which
leads to contradiction. From this, we must have h′ < ĥ since otherwise the RHS of (20) will
be smaller than (21). which also leads to contradiction. This implies that more user will
become content producers and that more content will be generated.

If the population shifts up in q, then similarly we would have h′ ≥ h. Now suppose S ′ =∑
αiq′i>h′

< S =
∑

αiqi>h
, i.e., h′

∑
αiq′i<h′

Ti < h
∑

αiqi<h
Ti, then

∑
αiq′i<h′

Ti <
∑

αiqi<h
Ti

which implies h′ < h, contradiction. Hence we must have S ′ > S, i.e., more content will be
generated after the shift up of q.
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Proof of Proposition 3.

Proof. Suppose that user i chooses Ti in the first stage, and that in the second stage, the
partition equilibrium is played. Denote user i’s utility by uCi if he is a content consumer and
uPi if he is a content producer. From Corollary (2) and our assumption of quadratic cost
function, we have

uCi = Tiφ(S)τ − 1

2θi
T 2
i , u

P
i =

TC
S
αiqiTi − 1

2θi
T 2
i

where S =
∑

i∈IP qiTi.
In the first stage, each user chooses Ti to maximize utility. We have

{
TCi = φ(S)τθi, i ∈ IC
T Pi =

P
j∈IC

Tj

S
αiqiθi, i ∈ IP

(22)

Summing up over i ∈ IC for the first equation, we get TC =
∑

i∈IP φ(S)τθi. Multiplying
by qi on both sides of the second equation, and summing up over i ∈ IP , we get S =∑

i∈IC
TC

S
αiq

2
i θi. By Proposition (1), i ∈ IC if αiqi <

S
TC and i ∈ IP if αiqi >

S
TC . So (S, TC)

is the solution to Equation (6).

Proof of Lemma 3.

Proof. Denote f(S) = βφ(S)− φ′(S)S, f ′(S) = βφ′(S)− φ′(S)− Sφ′′(S) = (β − 1)φ′(S)−
Sφ′′(S) > 0,∀S > 0, β ≥ 1. f(0) = 0, Hence f(S) > 0, ∀S > 0

Proof of Proposition 4.

Proof. From the proof of Proposition (3) we know

{
TC =

∑
i∈IP φ(S)τθi

S =
∑

i∈IC
TC

S
αiq

2
i θi

(23)

Denote {
k1 =

∑
i∈IC θi

k2 =
√∑

j∈IP αiq
2
i θi

Then we obtain Equations(8) which characterizes the content consumption and pro-
duction at the macro-level. From Equations(8), we have S∗2 = k1k2φ(S∗). Obviously,
(S∗, TC∗) = (0, 0) is always a solution. But there is at least one solution (S∗, TC∗) 6= (0, 0)
since φ′(0) > 0.

The proof of asymptotic stability of this equilibrium point is a simple application of
Liapunov’s indirect method.

G =

(
∂g1
∂TC

∂g1
∂S

∂g1
∂TC

∂g1
∂S

)
=

(
0 k1φ

′(S)
k2

2
√
TC

0

)
(24)
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The eigenvalues of G satisfy |λ|2 = k1k2φ′(S)τ

2
√
TC

. We need to check whether or not |λ| < 1 at

the equilibrium point (TC∗, S∗).

|λ| < 1 ⇐⇒ k1k2φ
′(S∗)τ < 2

S∗

k2

(25)

⇐⇒ k1k
2
2φ

′(S∗)S∗τ < 2S∗2 = 2k1k
2
2φ(S∗)τ (26)

⇐⇒ φ′(S∗)S∗ < 2φ(S∗) (27)

The last inequality is ensured by Lemma (3)

Proof of Corollary 4.

Proof. By checking dTC∗
dk1

> 0 and dS∗
dk2

> 0, the corollary follows.
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