
Price discovery in high resolution:
computational appendix

Joel Hasbrouck*
October 1, 2018

*Department of Finance
Stern School of Business, NYU
44 West 4th St.
New York, NY 10012
jhasbrou@stern.nyu.edu

Abstract

Estimating and forecasting long-lag high-resolution multivariate time series models pose computational challenges. This
appendix describes several techniques used in the paper. Most are based on standard polynomial distributed lag (PDL) and
sparse matrix methods. I discuss these in simple univariate and bivariate settings, along with extensions relevant to the
problem at hand.

This document includes Mathematica code at the end. The Matlab software uses additional conventions and will be
described in a separate document. There are two versions of this appendix: a pdf document (with a 'pdf' extension) and a
Mathematica notebook (with an 'nb' extension). The latter is executable in Mathematica.

A review of polynomial distributed lags (PDLs)
For bivariate time series {xt, yt}, consider a standard linear lagged regression model:

yt = β1 xt-1 + β2 xt-2 + ...+ βℒ xt-ℒ + et (1)

If xt = yt this is an autoregression. The data sample is {xt, yt : t = 1, ...,  }. The values can be arranged for estimation as
y = Xβ + e, where y =  y1 y2, ... y) , e is a  ×1 vector of errors, and X is the lagged data matrix, that is a  ×ℒ

matrix of the lagged xs:

X =

x0 x-1 x-2 ⋯ x-ℒ+1

x1 x0 x-1 … x-ℒ

⋮

xt xt-1 xt-2 ⋯ xt-ℒ+1

⋮

x-1 x-1 x-1 ⋯ x-ℒ+1

Here, values of xt for t < 1 can be handled in various ways. If Ex = 0 we can set the pre-sample values to zero. Alterna-
tively, we can discard rows that contain any pre-sample values; y is adjusted to be conformable. The OLS estimates of β
are β


= X X

-1
X y.

In the autoregressive case, y may be forecast subsequent to an initial disturbance e0 by recursion. The forecasts, denoted yt
*,

are:

y1
* = e0

y2
* = β1 y1

*

y3
* = β1 y2

* + β2 y1
*

⋮

(2)

yt
* = β1 yt-1

* + β2 yt-2
* + ...+ βℒ yt-ℒ

*

This is the same as the lagged regression model, but since we are forecasting, we are recursively calculating the system
assuming that all disturbances, except e0, are zero.

In the present applications, both the sample size  and the number of parameters ℒ are large:  ≈ 109 and ℒ≈ 106. This
makes direct estimation and forecasting difficult at best and infeasible at worst. The following material describes how use
of polynomials and sparsity can help.

The first device we employ is due to Almon (1965), who suggests constraining the βi to lie on polynomials in i. In the
quadratic case, for example, βi = γ0 + γ1 i + γ2 i2. In matrix notation, this can be expressed as β = Dγ, where
γ = (γ0 γ1 γ2) and D is the (ℒ×3) design matrix:

D =

1 1 1
1 2 4
1 3 9

⋮

1 ℒ ℒ2

(3)

Substituting into the regression equation gives

y = X β+ e = XDγ+ e

The first term on the right hand side can be grouped as X(Dγ), which suggests a smoothing of the model parameters (the β
coefficients). Grouping as (X D) γ suggests a transformation or smoothing of the data. This distinction, though, is purely a
matter of perspective. The mathematics are the same.

A PDL can greatly reduce the dimensionality of the estimation. The transformed data matrix, X D is  ×3, and the γ may
be estimated directly as

γ

= (D X XD)-1 D X y (4)

This effectively reduces the size of the cross-product matrix: X X is ℒ×ℒ, but D X X D is 3×3.

PDLs can also simplify the forecasting computations. Direct application of (2) requires ℒ multiplications and ℒ additions
at each step. Using the PDL representation for the coefficients,

yt = (γ0 + γ1 + γ2) yt-1 + (γ0 + 2 γ1 + 4 γ2) yt-2 +⋯+ γ0 +ℒγ1 +ℒ2 γ2 yt-ℒ

= γ0(yt-1 + yt-2 + yt-3 +⋯+ yt-ℒ) +

γ1(yt-1 + 2 yt-2 + 3 yt-3 +⋯+ℒyt-ℒ) + γ2yt-1 + 4 yt-2 + 9 yt-3 +⋯+ℒ2 yt-ℒ

(5)

Now define three state variables that will carry the quantities in the parentheses:

S(t, d) = 
i=1

ℒ

id yt-i, for d = 0, 1, 2

To update S(t, d)→ S(t + 1, d), we first compute yt =∑d=0
2 γd S(t, d). Then to take S(t, 0)→ S(t + 1, 0), note that yt-ℒ leaves

the sum and yt enters:

S(t+ 1, 0) = S(t, 0) + yt - yt-ℒ (6)

Similarly, by direct examination of the leaving and entering terms for higher orders:

2 priceDiscoveryHRCompApp02.nb

S(t+ 1, 1) = S(t, 1) + S(t+ 1, 0) -ℒyt-ℒ

= S(t, 1) + S(t, 0) + yt - (ℒ+ 1) yt-ℒ

S(t+ 1, 2) = S(t, 2) + 2 S(t+ 1, 1) - S(t+ 1, 0) -ℒ2 yt-ℒ

= S(t, 2) + 2 S(t, 1) + S(t, 0) + yt - (1+ℒ)2 yt-ℒ

(7)

It is still necessary to store all lagged values yt, ..., yt-ℒ, but the update calculations are more efficient. (In the Matlab
code, see the stateUpdate method in the polynom class.)

Additional notes on PDLs

The design matrix involves multiple polynomials covering different lagged intervals. These polynomials may be of differ-
ent orders. Consider, for example, the design matrix

1 1 0 0 0 0
1 2 0 0 0 0
1 3 0 0 0 0
1 4 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 1 2 4
0 0 0 1 3 9

This specifies that: β1, ..., β4 lie on a linear segment; β5 = β6 = β7; and, β8 through β10 lie on a quadratic segment. Linear
restrictions on the γ can be imposed to ensure that the segments join up. Splines can be used to give smoothness (continuity
of derivatives, see Smith (1979)). Although PDLs are usually introduced using the direct polynomial forms used above,
most estimation software packages use alternative representations that aim to control collinearity and errors of numerical
precision (Cooper (1972)).

Sparsity
Application of PDL’s greatly reduces the size of the cross product matrix, from ℒ×ℒ to (in the quadratic case) 3×3. To
arrive at that point in the direct way, though, we must compute X D where X is  ×ℒ and D is ℒ×3. This is still a
formidable computation, so we take advantage of the sparsity of the data. Specifically, if y and x are  -vectors of price
changes, it may well be that the number of non-zero elements is on the order of 10-6  . This is sparsity in the usual sense,
wherein a matrix is assumed to be primarily zeros, and only the non-zero elements (and their locations) are stored. Notation-
ally, we write x = {tk, vk for k = 1, ..., K} where tk and vk denote the time and value of the kth element. Implicitly, the K
nonzero elements are embedded in a vector of size , which has zeros (except at the tk positions). Direct calculation of
D X X D requires on the order of  2 ℒ4 multiplications. By taking advantage of sparsity, this can be brought down to the
order of K2.

Define ℐ(k) as a  ×ℒ matrix of zeros, with an ℒ×ℒ identity matrix located with its first element in row k and column 1.
With this definition, the lagged data matrix may be written as

X = 
k=1

K

vk ℐ(tk + 1)

where the unit offset in tk + 1 imposes a lag relative to the original series. It is understood that any terms with row index
larger than  are discarded.

For example, suppose that with  = 12, there are three non-zero values of x: x1 = 4, x3 = 2, and x7 = 5. Specified as a

priceDiscoveryHRCompApp02.nb 3

 example, suppose Specified
sparse matrix, t = {1, 3, 7} and v = {4, 2, 5} The lagged data matrix for ℒ = 4 is X = 4 ℐ(2) + 2 ℐ(4) + 5 ℐ(8). Expressed in
full form:

X =

0 0 0 0
4 0 0 0
0 4 0 0
2 0 4 0
0 2 0 4
0 0 2 0
0 0 0 2
5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5
0 0 0 0

= 4×

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+ 2×

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+ 5×

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

It is initially easier to illustrate the calculations when the data are assumed to satisfy a non-overlap condition such that the
tk are sufficiently removed from one another that tk - tk-1 ≥ ℒ for k = 2, ..., K. In this case, the blocks of lagged variables
are distinct. The example given above does not satisfy this condition. (Rows 4 and 5 contain overlapped lagged values.) A
lagged data matrix that does satisfy the non-overlap condition can be constructed for nonzero values x1 = 4, x4 = 2, x7 = 5,
with  = 10 and ℒ = 3:

X =

0 0 0
4 0 0
0 4 0
0 0 4
2 0 0
0 2 0
0 0 2
5 0 0
0 5 0
0 0 5

= 4×

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

+ 2×

0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

+ 5×

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

The cross product required for the OLS estimates is then:

D X X D = D 
k

vk ℐ(tk + 1) 
j

v j ℐ(t j + 1) D

= 
k

vk D ℐ(tk + 1) 
j

v j ℐ(t j + 1)D

= 
k, j

v j vk D ℐ(tk + 1) ℐ(t j + 1)D

= 
k

vk
2 D ℐ(tk + 1) ℐ(tk + 1)D

(8)

The last equality relies on the non-overlap condition. Since ℐ(tk + 1) ℐ(tk + 1) is an identity matrix of order ℒ, the inner
term of the last summation is equal to the product D D, is a constant 3×3 matrix. Since we only need to compute it once,
direct calculation is straightforward. Of course, in this case, it might be pointed out that with the non-overlap condition,
we could view the problem as consisting of K disjoint samples. Cumulating over these samples is the obvious thing to do,
with no particular need to embed the data in the length- time frame.

4 priceDiscoveryHRCompApp02.nb

We now drop the non-overlap assumption. We also consider a more general bivariate cross product situation similar to
those that arise in multivariate VARs. Suppose that both x and y are sparse time series. The lagged data matrix correspond-
ing to x is X , a  ×ℒx matrix, where ℒ denotes the number of lags on x. Similarly, the lagged data matrix for y is Y, a
 ×Ly matrix. The corresponding PDL design matrices are Dx and Dy. Dx has ℒx rows, and Dy has ℒy rows. The orders of

the polynomials (equal to the numbers of columns) may also differ. The desired cross product matrix is Dx X YDy. The

sparse representation of x involves time and value vectors tk and vk for k = 1, ... K ≪ ; that of y has time and value vectors
s j and uj for j = 1, ..., J ≪ . The lagged data matrices are represented as:

X = 
k=1

K

vk ℐ(tk + 1) and Y = 
j=1

J

u j (s j + 1)

where ℐ(t) is (as above) a  ×ℒx matrix of zeros, with an identity matrix of order ℒx positioned with its leading element in
the first column of row t, and (s) is similarly defined as a  ×ℒy matrix of zeros, with an identity matrix of order ℒy

positioned at s. With these definitions,

Dx X Y Dy = Dx 
k=1

K

vk ℐ(tk + 1)  
j=1

J

u j (s j + 1) Dy

= 
k=1

K


j=1

J

vk uj Dx ℐ(tk + 1) (s j + 1) Dy

For convenience, define ℐ(t, s) ≡ ℐ(t)  (s), a matrix of size ℒx×ℒy, and with elements are to zero or one. ℐ (t, s)

indicates the overlap between the two lagged structures. Suppose, for example, that with  = 10,
ℒx = 3, ℒy = 4, t1 = 2, and s1 = 3. Then

ℐ(2) =

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

, (3) =

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, and ℐ(2, 3) =
0 0 0 0
1 0 0 0
0 1 0 0

These representations can greatly simplify the cross product calculation. Initially suppose that each of the PDL design
matrices contains only a constant term: Dx = (1 1 1) and Dy = (1 1 1 1). Then the contribution to the cross

product is

v1 u1(1 1 1)

0 0 0 0
1 0 0 0
0 1 0 0

1
1
1
1

= v1 u1 × 2

If the PDL design matrices contain constant and linear terms,

Dx = 
1 1 1
1 2 3

 and Dy = 
1 1 1 1
1 2 3 4

,

and the contribution to the cross product is:

priceDiscoveryHRCompApp02.nb 5

v1 u1
1 1 1
1 2 3



0 0 0 0
1 0 0 0
0 1 0 0

1 1
1 2
1 3
1 4

= v1 u1 
2 3
5 8



With quadratic PDL design matrices the cross product contribution is

v1 u1

1 1 1
1 2 3
1 4 9

0 0 0 0
1 0 0 0
0 1 0 0

1 1 1
1 2 4
1 3 9
1 4 16

= v1 u1

2 3 5
5 8 14

13 22 40

In general, the entries in the last matrix are double partial sums of offset finite geometric series, for which compact closed-
form expressions are readily available. (It is not necessary to construct and multiply the matrices on the left hand sides of
these expressions. See the Mathematica section on lagged polynomial cross products of sparse vectors.) Taking advantage
of these closed-form expressions, define f (t, s, ℒx, ℒy, dx, dy) = Dx ℐ(t)(s) Dy, where Dx is the PDL design matrix for x,

with maximum degree dx and lag length ℒx. Dy is defined similarly.

Dx X Y Dy = 
k=1

K


j=1

J

vk uj f (tk + 1, s j + 1, ℒx, ℒy, dx, dy)

Direct computation of the left-hand side involves something on the order of ℒ2
x×

2×ℒ2
y operations. Evaluation of

f involves (at most) several hundred operations. The double sum is only over the nonzero values of x and y. If we sort the
entries in the sparse matrices by time (of the nonzero elements), we can realize greater efficiencies. For a given k, the
values of j that make nonzero contributions to the crossproduct (that is, ℐ(tk + 1, s j + 1) ≠ 0) can be determined before

the start of the inner loop.

References
Almon, Shirley, 1965, The Distributed Lag Between Capital Appropriations and Expenditures, Econometrica 33, 178-196.

Cooper, J. Phillip, 1972, Two Approaches to Polynomial Distributed Lags Estimation: An Expository Note and Comment,
The American Statistician 26, 32-35.

Smith, Patricia L., 1979, Splines as a useful and convenient statistical tool, American Statistician 33, 57-62.

Mathematica Code

Polynomial update verifications
This section may be evaluated.

Clear[y, S, t, n, d];

The PDL state variables are as follows. t is the current time index; n is the max lag; d is the degree.

S[t_: t, n_: n, d_: 0] := Sumyt-i i
d, {i, 1, n}

{S[t, n, #] & /@ {0, 1, 2}} // TableForm

∑i=1
n y-i+t ∑i=1

n i y-i+t ∑i=1
n i2 y-i+t

6 priceDiscoveryHRCompApp02.nb

Verify the degree 0 update expression for various values of n:

Table[Evaluate[S[t + 1, n, 0] == (S[t, n, 0] + yt - yt-n)], {n, 5, 20, 5}] //

Simplify

{True, True, True, True}

Verify the degree 1 update expression for various values of n.

Table[S[t + 1, n, 1] == (S[t, n, 1] + S[t + 1, n, 0] - n yt-n), {n, 5, 20, 5}]

{True, True, True, True}

Alternatively, the expression used in the Matlab code is:

(S[t, n, 1] + (S[t, n, 0] + yt - yt-n) - n yt-n) // Simplify

yt - (1 + n) y-n+t +

i=1

n

y-i+t +

i=1

n

i y-i+t

Table[S[t + 1, n, 1] == (S[t, n, 1] + (S[t, n, 0] + yt) - (n + 1) yt-n),

{n, 5, 20, 5}]

{True, True, True, True}

Verify the degree 2 update expression for various values of n.

TableS[t + 1, n, 2] == S[t, n, 2] + 2 S[t + 1, n, 1] - S[t + 1, n, 0] - n2 yt-n,

{n, 5, 20, 5} // Simplify

{True, True, True, True}

Alternatively, the expression used in the Matlab code is:

S[t, n, 2] + 2 (S[t, n, 1] + (S[t, n, 0] + yt) - (n + 1) yt-n) -

(S[t, n, 0] + yt - yt-n) - n2 yt-n // Simplify

yt - (1 + n)2 y-n+t +

i=1

n

y-i+t + 2 

i=1

n

i y-i+t +

i=1

n

i2 y-i+t

Table

S[t + 1, n, 2] == S[t, n, 2] + 2 (S[t, n, 1] + (S[t, n, 0] + yt) - (n + 1) yt-n) -

(S[t, n, 0] + yt - yt-n) - n2 yt-n, {n, 5, 20, 5} // Simplify

{True, True, True, True}

Lagged polynomial cross products of sparse vectors
Matrix construction

Clear[X, Y, , tSum];

priceDiscoveryHRCompApp02.nb 7

 denotes the coefficient (design) matrix for polynomials. (“D” is reserved in Mathematica for derivatives.)

[n_, d_] := Tableidd, {dd, 0, d}, {i, 1, n};

[4, 2] // MatrixForm

1 1 1
1 2 4
1 3 9
1 4 16

X[i,t] is a matrix with  rows, n columns and an identity matrix starting in row i. It represents a lag matrix, where a

variable that appears in position i, 1 also appears in position i - 1, 2, position i - 2, 3, ... position i - n + 1, n. (The Mathe-
matica Block construct is used to localize the assignment =8.)

X[i_, n_] := Module[{x},

x = Table[0, {}, {n}];

If[i + n - 1 > , Print["X[i,n]: i+n-1> (i=", i, "; n=", n,

"; =", , ")"];

Return[Null]];

x[[i ;; i + n - 1]] = IdentityMatrix[n];

x];

Block[{ = 8}, X[3, 4]] // MatrixForm

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

Define Y similarly:

Y[i_, n_] := X[i, n]

and

Ones := Table[{1}, {}];

Block[{ = 8}, Ones] // MatrixForm

1
1
1
1
1
1
1
1

8 priceDiscoveryHRCompApp02.nb

Matrices used in text examples:

Block[{ = 12, ℒ = 4}, x1 = X[2, ℒ];

x2 = X[4, ℒ];

x3 = X[8, ℒ];

r = 4 * x1 + 2 * x2 + 5 * x3;

MatrixForm /@ {x1, x2, x3, r}]



0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

,

0 0 0 0
4 0 0 0
0 4 0 0
2 0 4 0
0 2 0 4
0 0 2 0
0 0 0 2
5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5
0 0 0 0



Block[{ = 10, ℒ = 3}, x1 = X[2, ℒ];

x2 = X[5, ℒ];

x3 = X[8, ℒ];

r = 4 * x1 + 2 * x2 + 5 * x3;

MatrixForm /@ {r, x1, x2, x3}]



0 0 0
4 0 0
0 4 0
0 0 4
2 0 0
0 2 0
0 0 2
5 0 0
0 5 0
0 0 5

,

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

,

0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

,

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



priceDiscoveryHRCompApp02.nb 9

Block[{ = 10}, x = X[2, 3];

y = X[3, 4];

xty = x.y;

MatrixForm /@ {x, y, xty}]



0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

,

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,
0 0 0 0
1 0 0 0
0 1 0 0



MatrixForm /@ [3, 1], [4, 1], [3, 1].
0 0 0 0
1 0 0 0
0 1 0 0

.[4, 1]



1 1
1 2
1 3

,

1 1
1 2
1 3
1 4

, 
2 3
5 8



MatrixForm /@ [3, 2], [4, 2], [3, 2].
0 0 0 0
1 0 0 0
0 1 0 0

.[4, 2]



1 1 1
1 2 4
1 3 9

,

1 1 1
1 2 4
1 3 9
1 4 16

,
2 3 5
5 8 14
13 22 40



Continuation

The result matrix is x.X.Y.y. The following depicts the pieces and final result in the case of fixed values for , ℒx,

and ℒy; for X[5,ℒx] and Y[j,ℒy] where j goes from 2 to 9.

10 priceDiscoveryHRCompApp02.nb

Block[{ = 12, ℒx = 4, ℒy = 3},

Table[{j,

X[5, ℒx] // MatrixForm,

Y[j, ℒy] // MatrixForm,

X[5, ℒx].Y[j, ℒy] // MatrixForm,

[ℒx, 2].X[5, ℒx].X[j, ℒy].[ℒy, 2] // MatrixForm},

{j, 2, 9}] // Transpose // TableForm] // Style[#, FontSize → 9] &

2 3 4 5 6 7 8 9
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0
0 0 0

0 1 0
0 0 1
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1
0 0 0

0 0 0
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
1 0 0
0 1 0

0 0 0
0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 3 9
1 3 9
1 3 9

2 5 13
3 8 22
5 14 40

3 6 14
6 14 36
14 36 98

3 6 14
9 20 50
29 70 184

2 3 5
7 11 19
25 41 73

1 1 1
4 4 4
16 16 16

0 0 0
0 0 0
0 0 0

Depending on the relative offset between the X and Y matrices, the XY product is a diagonal band of ones that moves
from top/right to bottom/left.

Here is an alternative calculation. i indicates the location of the identity matrix in X, and j indicates the location for Y.

CP0[i_, j_, ℒx_, ℒy_] := Module{k, ka, kb, z},

z = Table[0, {3}, {3}];

k = j - i; (*offset*)

ka = Max[1, k + 1];

kb = Min[ℒx, ℒy + k];

If[ka > kb, Return[z]];

TableSumiid1 (ii - k)d2, {ii, ka, kb}, {d1, 0, 2}, {d2, 0, 2};

Table[{j, CP0[5, j, 4, 3] // MatrixForm}, {j, 2, 9}] // Transpose //

TableForm // Style[#, FontSize → 10] &

2 3 4 5 6 7 8 9
0 0 0
0 0 0
0 0 0

1 3 9
1 3 9
1 3 9

2 5 13
3 8 22
5 14 40

3 6 14
6 14 36
14 36 98

3 6 14
9 20 50
29 70 184

2 3 5
7 11 19
25 41 73

1 1 1
4 4 4
16 16 16

0 0 0
0 0 0
0 0 0

In CP0 the geometric sums in the matrix given by

priceDiscoveryHRCompApp02.nb 11

TableSumiid1 ii - k
d2
, ii, ka, kb, {d1, 0, 2}, {d2, 0, 2}

are evaluated in full form (with the number of iterations approximately equal to Min[ℒx, ℒy]). It is very useful to have

closed-form representations for these sums. Below is a grid with rows indexed by d1 and columns indexed by d2.

Clear[i, k, ka, kb, ia, ib];

t = TableSumid1 (i - k)d2, {i, ia, ib}, {d1, 0, 2}, {d2, 0, 2};

Grid[t, Frame → All, ItemStyle → {FontSize → 12}, ItemSize → 13,

Alignment → {Center, Center}]

1 - ia + ib -
1
2
-1 + ia - ib ia + ib - 2 k

-
1
6
-1 + ia - ib

-ia + 2 ia2 + ib + 2 ia ib +

2 ib2 - 6 ia k - 6 ib k + 6 k2

-
1
2
-1 + ia - ib ia + ib

-
1
6
-1 + ia - ib

-ia + 2 ia2 + ib + 2 ia ib +

2 ib2 - 3 ia k - 3 ib k

-
1
12

-1 + ia - ib

-3 ia2 + 3 ia3 + 3 ia2 ib +

3 ib2 + 3 ia ib2 + 3 ib3 +

4 ia k - 8 ia2 k - 4 ib k -

8 ia ib k - 8 ib2 k +

6 ia k2 + 6 ib k2

-
1
6
-1 + ia - ib

-ia + 2 ia2 + ib +

2 ia ib + 2 ib2

-
1
12

-1 + ia - ib

-3 ia2 + 3 ia3 + 3 ia2 ib +

3 ib2 + 3 ia ib2 + 3 ib3 +

2 ia k - 4 ia2 k - 2 ib k -

4 ia ib k - 4 ib2 k

-
1
30

-1 + ia - ib

ia + ia2 - 9 ia3 + 6 ia4 -

ib - 2 ia ib - 3 ia2 ib +

6 ia3 ib + ib2 + 3 ia ib2 +

6 ia2 ib2 + 9 ib3 + 6 ia ib3 +

6 ib4 + 15 ia2 k - 15 ia3 k -

15 ia2 ib k - 15 ib2 k -

15 ia ib2 k - 15 ib3 k -

5 ia k2 + 10 ia2 k2 + 5 ib k2 +

10 ia ib k2 + 10 ib2 k2

(In the Matlab code, these calculations are implemented in the pSum method of the polynom class.)

Modifications and extensions used in Matlab code

Adjusting the lagged data matrix to conform to [firstValid, lastValid]

In the Matlab programing, the data vectors are implicitly defined on i = 1, ...,  . The lagged data matrix X is assumed to
have  rows. (In the VAR applications,  is the number of time units per day, 3600×24 = 86, 400 if the time units are
seconds, and 86,400,000 if the time units are milliseconds.) Due to lags and incomplete data, though, not all rows of X are
valid. The valid range is indicated as 0 < firstValid < lastValid ≤  . All routines are adjusted to confine calculations to
these rows. This section uses the following conventions.

 i is the original position in the sparse data vector corresponding to x (i.e., at lag zero).

 a is an offset relative to i, where the PDL starts.

 Similarly, j and b are the original position for y and the offset for the y PDL.

vTrim removes all rows from X that are outside of [firstValid, lastValid].

12 priceDiscoveryHRCompApp02.nb

vTrim[X_] := Module[{d},

d = Dimensions[X];

If[Not[MatrixQ[X]] || lastValid > d[[1]] || firstValid < 1 ||

firstValid > lastValid,

Print["vTrim error."]; Return[Null]];

X[[firstValid ;; lastValid]]];

Block[{ = 10, firstValid = 2, lastValid = 8},

MatrixForm /@ {X[3, 4], vTrim[X[3, 4]]}]



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



Here is a cross product calculation that uses vTrim to adjust the range.

Block[{ = 20, firstValid = 8, lastValid = 10, j = 10, a = 0, b = 0,

ℒx = 4, ℒy = 3},

Table[{

i,

(*X[i+a,ℒx]//MatrixForm,

Y[j+b,ℒy]//MatrixForm,

vTrim[X[i+a,ℒx]]//MatrixForm,

vTrim[Y[j+b,ℒy]]//MatrixForm,*)

X[i + a, ℒx].Y[j + b, ℒy] // MatrixForm,

vTrim[X[i + a, ℒx]].vTrim[Y[j + b, ℒy]] // MatrixForm,

[ℒx, 2].vTrim[X[i + a, ℒx]].vTrim[Y[j + b, ℒy]].[ℒy, 2] //

MatrixForm}, {i, 6, 13}] // Transpose // TableForm] //

Style[#, FontSize → 9] &

6 7 8 9 10 11 12 13
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
1 0 0
0 1 0

0 0 0
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1
0 0 0

0 1 0
0 0 1
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
1 0 0
0 0 0

0 0 0
1 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 1 1
4 4 4
16 16 16

1 1 1
3 3 3
9 9 9

1 1 1
2 2 2
4 4 4

1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

The code used in Matlab adjusts the starting and ending values of the loop to conform to firstValid and lastValid:

priceDiscoveryHRCompApp02.nb 13

CP1[i_, j_, a_, b_, n_, m_, dx_, dy_] := Module{k, ka, kb, z},

z = Table[0, {dx + 1}, {dy + 1}];

k = (j + b) - (i + a); (*offset*)

ka = Max[1, k + 1, firstValid - (i + a) + 1];

kb = Min[n, m + k, lastValid - (j + b) + 1 + k];

If[ka > kb, Return[z]];

TableSumiid1 (ii - k)d2, {ii, ka, kb}, {d1, 0, dx}, {d2, 0, dy};

Block[{ = 20, firstValid = 8, lastValid = 10, j = 10, a = 0, b = 0,

ℒx = 4, ℒy = 3},

Table[{i, CP1[i, j, a, b, ℒx, ℒy, 2, 2] // MatrixForm}, {i, j - 4, j + 3}] //

Transpose // TableForm] // Style[#, FontSize → 9] &

6 7 8 9 10 11 12 13
0 0 0
0 0 0
0 0 0

1 1 1
4 4 4
16 16 16

1 1 1
3 3 3
9 9 9

1 1 1
2 2 2
4 4 4

1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

Verify equivalence of calculation methods for a range of values ...

kStep = 0;

Block[{ = 30},

Do[

Block[{firstValid = kfv, lastValid = klv, i = ki, j = kj, a = kka,

b = kkb, dx = 2, dy = 1, n = 4, m = 1},

kStep = kStep + 1;

If[Mod[kStep, 2500] ⩵ 0 , Print[kStep, " ", kfv, " ", klv,

" ", ki, " ", kj, " ", kka]];

If[kStep > 15 000, Break[]];

z1 = CP1[i, j, a, b, n, m, dx, dy];

z2 = [n, dx].vTrim[X[i + a, n]].vTrim[X[j + b, m]].[m, dy];

(*z2=123;*)

If[z1 === z2, Continue[],

Print["Whoops"] Print[z1 // MatrixForm, z2 // MatrixForm];

Break[];];],

{kfv, 5, 15, 5}, {klv, kfv + 10,  - 5, 5}, {ki, Max[1, kfv - 5],  - 8},

{kj, Max[1, kfv - 5],  - 8, 2}, {kka, 0, 2}, {kkb, 0, 2}]];

2500 5 20 4 5 2

5000 5 25 7 11 1

7500 10 20 16 21 0

10 000 15 25 18 20 0

Non-sparse data series

The sparse data vectors discussed to this point have all been sparse (like price changes). A price discovery VECM will also

14 priceDiscoveryHRCompApp02.nb

 sparse point sparse (like price changes). price discovery
often include a constant term and/or a cointegration vector. These require special handling.

Constant terms

Many models will include constant terms. In the data matrix, this is usually represented as a column of ones. The constant
crossed with itself is simply the number of observations, N. We might have N = , the length of the implicit data matrix.
More generally, though, N = lastValid - firstValid + 1, where firstValid and lastValid are (as described earlier) pointers in
X.

The cross product of the constant vector and a sparse data vector is the sum of the nonzero values.

Letting ιl denote a column vector of l ones, the cross product of the constant vector and a quadratic PDL on a sparse data
vector is:

Dx X ι = Dx 
k=1

K

vk ℐ(tk + 1)  ι = 
k=1

K

vk Dx ℐ(tk + 1) ι = 
k=1

K

vk Dx ιℒ

where ℒ is the length of the PDL. The Dx ιℒ term is the sum (across columns) of the elements of x.

Block[{ = 10, ℒx = 4}, {MatrixForm[#] & /@ {

X[5, ℒx],

X[5, ℒx].Ones,

[ℒx, 2],

[ℒx, 2].X[5, ℒx].Ones}}] // TableForm

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

1
1
1
1

1 1 1 1
1 2 3 4
1 4 9 16

4
10
30

Sparse levels

Cointegrating vectors are not sparse in the usual sense (of having a small number of nonzero values). The difference
between two price series Δt = p1 t - p2 t is not sparse, even if the price changes of component prices are sparse. Δt is sparse
in a different sense, sometimes called piecewise sparse or level sparse. Its entries consist of constant levels that persist in
time until one of component prices changes. The cross product calculations are adjusted accordingly.

Matlab notes

The Matlab code has two sparse matrix classes. spd matrices, used for price differences, are sparse in the usual sense. spl

matrices are level sparse.

A VECM analysis involves four types of data series:

 constant vectors

 spd vectors (like price changes)

 spl vectors (like cointegrating vectors)

 spd vectors operated on by PDLs

The Crossproduct class has static methods (functions) to compute crossproducts involving all pairwise combinations of

priceDiscoveryHRCompApp02.nb 15

these types.

16 priceDiscoveryHRCompApp02.nb

