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1. Introduction

This appendix describes the Markov Chain Monte Carlo (MCMC) estimation of microstructure
models with bid/ask spreads, discreteness, clustering and trade impacts. In all cases, the data are
presumed to consist solely of trade prices and (optionally) trade volumes. The exposition discusses
models of increasing complexity. The appendix is distributed in two forms: a text document, and a
Mathematica notebook in which derivations are interspersed with the text.

The appendix presumes some exposure to Bayesian MCMC techniques. Textbook level discussions
are given in Carlin and Louis (1996), Tanner (1996), Gamerman (1997), and Kim and Nelson
(2000). Casella and George (1992), Chib and Greenberg (1995), and Chib and Greenberg (1996)
also provide useful expositions.

(Mathematica initializations)

2. Notation and conventions

A time-series variable written without a time subscript denotes the full sample, e.g.,
g= {01, 92, ..., qr}. The subscript " \t" indicates the full sample except for the observation at time

t! e'g'! q\t = {q].! Ty qt—li qt+11 ey QT}
"Draw x|y, Z' isshorthand for "draw x from f(x| vy, 2)."

The expression ¢, o, X] denotes the normal density function for random variable x, with mean p
and standard deviation o-. For example, we denote the normal density for arandom variable z with
mean m and standard deviation sas¢(m, s, z). Fully expanded,

_ (z—m)2

252
p(m,'s, 2) =
2n's

Similarly, the expression @[, o, a, b] = fab¢[/,t, o, X]d X, 1.e., the cumulative normal distribution
function evaluated between aand b.



3. Basic Roll modd

a. Model description
The basic Roll modsdl is:

m = M_1 + U where W isdistributedasN (0,0°2)

Pt =M +CG
where my isthe log efficient price, g isthe buy/sell (trade direction) indicator variable,
o € {—1, +1}, cistheisthe half-spread, and p; is the log transaction price. The increment to the
log efficient price, uy~N(0, o2); ¢ and o2 are constant parameters. The g are independent of
U = Am, so trade directions are not informative.

The data consist of a sample of (log) transaction prices p = {p1, ..., pt}. The Gibbs sam-
pler iterates over parameter draws and latent data draws. There are two parametersin the mode,
{ou, ¢}. Thereare 2T latent data items, {g, m}.

(1)

b. Moment estimates
The price differenceis
Apy = U + CAQ
The variance and first-order autocovariance are:

yo=Va(Ap) = o2 + 2 Var(Ag) = o + 22
y1=Cov(Apt, Ap1) = CCEAGAG 1 = —C°

Solving:

oi=yo+2yiandc=vV-y

c. Overview of the Bayesian sampler

In the Gibbs sampler, we start with any feasible set of values (a sample path) for g. We then iterate
over

1. Parameter draw. Generate arandom draw of ¢, oy | p, m, Q.

2. Latent data draw. Generate arandom draw of m, g c, o, p.



In the parameter draw, we condition on the most-recently drawn values of the latent data; in the
latent data draw, we condition on the most recent parameter draw. We now discuss each of these
draws in greater detail.

d. Parameter draws

The prior and posterior densities for the parameters are standard Bayesian results covered in most
basic treatments, such as Carlin and Louis (1997), Tanner (1997). Kim and Nelson (2000) discuss
these results in a state-space context.

(i) Thedraw for c.

Given al of the other parameters and latent data A p; = Am + CAq. Therefore, ¢ can be inter-
preted as the coefficient in the regression specification

Apy = CAQt + Ug. 2

The classic Bayesian regression model is
y = XB + U, where Euu’ = ().

If the prior distribution on the coefficientsis normal: 8~ N(uj'™, QFN'"), then the posterior distribu-
tion for the coefficientsis 3| y~ N(uj?e1o", QoSN where /,LEOSte”Of Dd, Qfesterior = p-1,
D- 1_ =X’ ,Q, 1X +(QPﬂ0r)— andd = X’ 'Q‘ul y+(.QP“0r) 1 Pnor

In the present case, y = [A pt], the column vector of price changes, X = [Aq], and Q = o2 We
might take ' = 0, and Q5" =some large number like 10°. We would then compute
piPStenor gnd (FoSENor and make a random draw from the coefficient posterior.

On economic grounds, it is sensible to impose a non-negativity restriction on c. The easiest way to
do thisisto let the prior be c~N*(0, QOF1%"), where the "+" superscript denotes restriction of the
density to [0, +co). The posterior is then N*(yFosterior - oPosterion \here the parameters are com-
puted exactly asin the unrestricted case.

(The nonnegativity restriction on c is attractive from an economic perspective. It is also necessary
for identification. The regression in eg. (1) is observationally equivalent if c and q are replaced
with —cand —q.)

(i) Thedraw for o

With normal u, a natural prior for o is the inverted gamma distribution, denoted 1G[™", gP1°'],
Then, givenu = {uy, ..., ut}, the posterior is | G[Postenor gRosterion] 'yyhere oPostenor - gPrior 1 /2
and IBPosterlor IBPrlor + Zu /2.



e. Latent data draws

There are two latent series, g and m, but one of these is redundant. (The p are known, and

p = m+ cq.) It sufficestherefore to draw q| p, ¢, oy. At thisstage, ¢ and o, are known, so for
notational economy, these parameters will be dropped from the explicit conditioning set. To set up
the draw:

1
Pr = f Pr —
gl p) = f(plag)xPr(g)x o) (3

Since the q are discrete random variables and the p are continuous, the joint distribution is written
as f(p|g) x(Pr(q) to avoid writing an improper density function like" f(p, @)". In eg. (3) the last

factor does not depend on g. Furthermore, since buys and sells are unconditionally equally proba-

ble, Pr(g) = (1/2)". Therefore:

Pr(gq| p) e« f(pl Q) = f(M) |m=p-cq (4)
where f(m) isthe unconditional distribution of the m. From the structure of the model,
f(m) = f(my) [T, f(w) where uy = Amy. The distribution of the initial realization of mistaken as
uniformin the region of interest, so this can be impounded into the constant of proportionality.

The direct approach to making the draw would be to enumerate all possible sample paths for q,
compute the unnormalized (i.e., up to the factor of proportionality) probabilities; normalize.
Finally, we'd make the draw on the resulting discrete probability space. Given that the number of
sample pathsis 27, the direct approach is not feasible.

Fortunately, it is not necessary to fully characterize Pr(q| p) to make the draw. The next section
describes a Gibbs sampler approach to the problem.

f. The Gibbssampler

At this stage, we assume that ¢ and o, are known, so for notational economy, these parameters

will be dropped from the explicit conditioning set. Furthermore, since the p are known, given q, the
m are redundant. In the Gibbs sampler, g; draws are made sequentially. To distinguish the newly
drawn g; from those left over from the previous draw, | denote the newly drawn values gi. The
steps are then:

1. Draw ¢ fromPr(qy | p, 2, 03, ---, OT)

2. Draw ¢ fromPr(cp | p, 0%, 03, --., OT)

3. Draw g5 fromPr(gr | p, G5, G5, ..., OF_1)



Note that at each step, we use the fresh g;° as they become available. The individual draws all
follow asimilar pattern. We will first consider the general case, the draw for q; | p, gy for
1<t<T. Theendpoint draws(at t = 1 and t = T) follow as smple modifications.

Given the structure of the model, Pr(c: | p, ay) = Pr(g: | pt, M—1, My1). That is, once we know
p:, m_1, and m, 1, the additional variables in the full conditioning set are not informative. To
analyze Pr(q: | pt, m_1, M1), Note that by conventional conditional probability calculations

f ! —1 XPI' —1
PG B ) = — P mtfl(ptnr:nlt)l mt(qlt)lmt —— 5)
-1, Me+

When we actually need to evaluate this, p; is known, so the denominator can be treated as a propor-
tionality constant. Next, because the trade directions are independent of the efficient price evolu-
tion, Pr(q; | m—1, m1) = Pr(gy) = 1/2. Therefore,

Pr(qtl Pt, Me-1, rnt+l) & f(p[ | G, Mk-1, rnt+l)-

To evauate ther.h.s., note that

f(my | Mg, M) o (Mg [ my) (Mg | me_g) = §(0, oy, My —Me—1) K0, oy, Meq — M)

The last expressionis:

_ (mt_mt—l)2 _ (mt+1—mt)2
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Thisimplies

f(me | me_g, M) = G, o, M) (6)
where

/lt:(% (M1 + M)
gy = f/-—%
Since py = m; + Cqt,

fOpel Gt M—1, My1) = Pt 0t, Py — CG) (7)



The unnormalized probabilities of a buy and a sell are given by evaluating the above quantity at
O = +1 and g; = — 1 respectively. The normalized probability of abuy is therefore

o3 oy emp i pc)

¢(% (mt—1+mt+1)’3—%,pt—0)+¢(% (mt_1+mt+1),%,c+ pt)

This simplifiesto

4Cpt

e o6
2c(my_1+Mmyp)  4cpy
e aa +e U

Given p;, m_1, M1, cando3, wecancomputethisand makethedraw. For example, with
{m_1=5 my1=51, p=5.2,c=0.2, o, = 0.4}, the probability of a buy is 0.679. Intuitively, we
can rationalize this value in the following way. Giventhat m_, =5and m,; = 5.1, Em, = 5.05.
That the transaction price lies above this makes it more likely that the trade was a "buy".

(i) t=1

Att =1, therelevant conditional density is f(my | mp), which is proportional to

f(mp | my) = ¢(0, oy, Mp — My). Substituting in for my gives ¢(0, oy, Mp — p1 + €Qy). The unnor-
malized probabilities for a buy and sell are given by evaluating thisat g1 = +1and gy = —1. The
normalized probability of a buy is:

#(0,0y,c+Mp—p1)
#(0,0y,—C+Mo—p1)+d(0,0y,c+HMo—pq)

This simplifiesto:

2cpq

e G
2cmp  2cpp
e TG 4+ o

(i) t=T

Attime T we have f(mr | mr_q) = ¢(0, oy, My —my_4). Evaluated at my = pr — cqr, this
becomes ¢(0, oy, —Mmyr_1 + pT — cqr). The (unnormalized) probabilities for abuy and sell are
given by evaluating thisat gr = +1 and gr = —1. The normalized probability of a buy is:



$0,0y,—C-my_1+p7)
$(0,0y,~C-m7_1+PT)+$(0,0°y,C-mr_1+PT)

This evaluates and smplies to:

2cpr

e 7t
2cmp_1  2cpr
0'2 0'2
e u +e u

4. Contemporaneous trade impacts on the efficient price

a. Description

This model incorporates trade impacts on the efficient price, which are presumed to reflect the
informationcontent of the trades. The evolution of the efficient priceis:

My =M1 + 0 Vi A+ Ut (8)

where V; is the volume of the trade, A isthe impact coefficient, and py is the observed log transac-
tion price. The quantity V; A can be interpeted as a product of scalars, or avector product, asin:
Vi =[1 Vol VVol; | and A a3x1 vector of coefficients. Asin the basic model, g isthe trade
direction indicator, +1 for abuy and —1 for asell. Thusg; V; isthe signed volume. The disturbance
W is public information, and u; ~N (0,03). The mapping to the observed price is the same as in the
Roll mode:

Pt =M +CG

Relative to the basic Roll case discussed in the last section, this model is complicated by an addi-
tional parameter, A, and dependence of the m; on ¢;.

The parameter draw is relatively straightforward, as the model implies

Ap; =AM + CAQG = AG: Vi + CAQ: + Uy 9

At the parameter draw stage, q:V; and Aq; are known. This specification therefore fitsin the regres-
sion framework, and A and ¢ may be drawn from the regression coefficient posterior.

The latent data draws are more complicated. Given the structure of the model,

Pr[Qt | M, Cht, p[] = Pr[Qt | My—1, Me+1, Gi+1, p[]
Analogousto eqg. (5),



FOPl G M-, Mert, Oren) XPr(Gel M1, Me1, Ge1) (10
f(Pt | M-1, M1, Ge1) )

Asin the simple case, when we need to evaluate this, p; is known, and so the denominator can be

treated as a proportionality factor. Here, however, and in contrast with the Roll case,

f(qe | me_1, myq) # f(qr) = 1/2. Intuitively, if myqisrelatively high, thisimplies that g; is more

likely to be +1 (abuy). Therefore, we need to compute both of the factors in the numerator of eqg.

(10).

Pr(qtl Pt Me—1, M1, Ch+1) =

b. Pr(g| mg-1, Me1, G+1)

The joint distribution of u; and U, 1iS ¢(0, oy, Ut) (0, oy, Uty1). Substituting from (8) gives:

¢(01 Tus _rnt—l + rnt - Aqt Vt)¢(oa Tu _rnt + rnt+1 - Aqt+1 Vt-‘rl)

To compute Pr(qg: | m_1, M1, Gie1) , the dependence on my must be eliminated, which we do by
integrating over m. That is,

Pr(og | me_q, M1, Ger) o<
00, oy, —Mi_g + My — A0 V) (0, oy, =M + Mg — A G Vi) dmy = Pr(ay)

Evaluating the integral gives Pr(q;) =

(my_g-myy g+ Ve gy Ve p)?
408
u

2\/;0'u

e

Performing the final normalization:

Pr(at)

Pr(qt | rnt—la rnt+11 qt+1) = Pr(+1)+Pr(—1)

Therefore, Pr(oy = 1| mk_1, Mkyq, 1) =

Pr(1)
Pr(-1)+Pr(1)

For example, at the values
{m_l = 5, rnt+1 = 52, Vt = 1, q'[+1 = 1, Vt+1 = 2, A, = 001, Oy= 005}

the probability of a buy is 0.673. Intuitively, given the increase in the efficient price between my_1
and m 1, it ismore likely that the trade at time t was a buy.



C. f(pt I mt—la qta mt+11 mt+11 qt+1)
As indicated above, the transition density is
¢(01 Ou, _rnt—l + rnt - Aqt Vt) ¢(01 Ou, _m + rnt+1 - Aq":-‘r:l. Vt+1)'

Expanding the normal densities and simplifying gives:

_mk&‘W+l%VOZHW£W+rMﬂH1W+ﬂ2
ZUU

e

2ﬂaa
Therefore, my isnormal: f(m [ my_q, My, G, Gev1) = S, o, M) With parameters
Ht = (% (My_1 + Mg + A G Vi — A Qe Vis1))
gt = f/-—%
Substituting in for my gives
fOPt I Me-1, Mey, Gty Gevn) = Plut, Oty Pr— CGL)

d. Summary

The draw is made in the following steps.

1. Compute the normalized probabilities Pr(q | m_1, M1, Gr1) for g = —land g = +1.

2. Compute ¢(ut, ot, Pt —Cq) Pr(c | me-1, M1, Gev1) for gr = —landge = +1.
3. Normalize the probabilities from step 2.

4. Make the draw.

Note that the overall calculation requires two normalizations, at step 1 (done, above, for the trial

values) and step 3.

e. Endpoint modifications

(i) t=1
Att=1,
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Pr(gy | my, Gy, P1)
= Pr(oy | mp, a2, p1)
o< f(p1lmp, 02, 1) X Pr(oy | My, )

Here, however, Pr(q; | mp, gp) = Pr(gy) = 1/2. To compute the first term on ther.h.s,, the relevant
density is f(up) = ¢(0, oy, Up). Substituting in for u, and myand solving indicates

f(ml | My, g2, ql) = f(ml | my, QZ) = ¢(/'L11 a1, ml)

where

H1=(mp -0 V)

O'1=O'u

Thus,

f(p1l My, d2, 1) = (i1, 071, P1—CA1)

We evaluate this. for g; = +1, normalize, and make the draw of q;.
() t=T
Att=T,

Pr(gr | my, Gvr, PT)
= Pr(qr | my_q, Or-1, P1)
o« f(pr | Mr—1, Or-1, o) X Pr(gy | Mr_1, dr-1)

Again, Pr(gr | mr_1, gr-1) = Pr(gr-1) = 1/2. To compute the first term on ther.h.s., the relevant
density is f(ut) = ¢(0, oy, Ut). Substituting in for ur and my gives:

f(mrimr_q, dr-1, Or) = éuT, o1, MY)

where

pr=(Mr_1+Adr V)

O-T:O-u

We normalize and make the draw.



11

5. Discreteprices

a. Model Description

This model is a Roll model with price discreteness. The evolution of the (log) efficient priceis:
m; = my_1 + U where ; isdistributedasN (0,0°2)

The (level) efficient price istherefore M; = €™. (The units here are "dollars.") The half-spread in
levelsis C. The bid and ask quotes are:

B: = Floor(M; — C)
A = Ce|||ng(Mt +0)

Note that the rounding is asymmetric. The bid is rounded down to the next available increment;
the ask is rounded up. It is assumed that the variables are scaled so that the tick size isunity. The
buy/sell indicator is

_ (+1, abuy, withprobability1/2
G = { —1, asell, withprobability1/2
The obseved transaction price is

P — Atifqt:+1
t_{Btifqt:—l

In the model without discreteness, the cost parameter (here, C) can be estimated from the regres-
sion specification eg. (2). With the rounding transformations in the present case, there is no corre-
sponding regression. We discuss the draw of C below.

The latent data draw is aso complicated. Without discreteness, p; = m + c g, So (given ¢) any
variablein {p;, m, g;} is determined by the other two. Thisis not the case here: g; and my must be
drawn separately. The steps are:

1. Dra\N qT | rn\t, q\t! Pt
2. Draw m | my, q, Pt

Note that the conditioning set at step 2 includes ¢;.

b. Drawing ¢ | my, oy, Py

From the properties of conditional probabilities:
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Pr(at [ me-1, Mev1, Pr)
_ Pr(Prlmg, Meg, G) XPr(Ge, | Mg, Meeg) X F(meg, M)
) Pr(P | Mg, Meep) F(Mg, M) -
oc Pr(Py [ M1, Meyq, Qo) X Pr(Qe, | Me—1, Meya)
= Pr(Py | M1, M, G) < Pray)
where we have used the fact that the denominator will be a constant of proportionality. The last
equality follows from the fact that g is independent of the evolution of my. Next,

Pr(Pe| my_1, Mya, ) = [ F (M| my_g, M) dmy (12)

where mand m are the limits established by g; and the Floor and Ceiling rounding functions (see
below). f(m; | m_1, my1) isgivenineg. (6). Using (12), we compute unnormalized probabilities
for gt = +1and g; = — 1. We normalize these probabilities and draw ¢;. We then proceed to the my
draw.

The limits of integration in eq. (12) are computed as follows. From the definition of the Floor and
Ceiling functions,

C+Bi<M<C+Bi+1
and
—-C+A-1<M<A-C
Whenq; = -1, P; = By and:
C+Pi<Mi<C+P+1
Whenq; = +1, Py = A; and:
—-C+P—1<Mi<P-C
Aslong asq; € {-—1, +1}, the lower and upper limits may be expressed as functions:

M(a)=(3 (2P -2Cq - g - 1)
and (13)
M(a)=(Pi~ 2 2C+1)g + 7

The limits on the log efficient price are then m(q;) = log[ M (q;)] and m(q;) = log[ M (qy)].
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Recall that
fOme | M-, M) =¢lum, om, M] with {/lm = (M1 +M11)/2, om = O'U/\/E}-
Fromeq. (12), Pr(q: | m_q1, Mky1, Pp) <« @[pem, oom, M(Qr), M(Qr)] for gr = + 1. Therefore, the normal-
ized probability of abuy is:
(um, om, M(+1), M(+1))
Q(pm, om, M(—1), M(=1)) + Q(tm, om, M+1), M(+1))

At the values {m;_; =10g(100), m; 1 =10g(104), P; = 101, C=0.2, o, = 0.01} this becomes 0.092.
Intuitively, given the locations of my,_; and my, 1, Em; ~ 102. Since P lies below this, it ismore
likely that the transaction was a sale, and the buy probability is below one-half.

c. Drawing m; | my, g, P;

Asnoted, f(m|m—_1, M1) = dlpm, om, M] Where uy and oy, are given above. Conditioning on
g: and P; merely restricts the range of the distribution. Therefore, the draw is from the normal
distribution @[ ttm, oom, Mk] truncated to the range (m[q; ], M ]).

d. DrawingC| P, m, g

The upper and lower bounds on C, given everything else, can be computed in afashion similar to
that used above for M;. If g = -1,

Mt—Pt—1<C< Mt_Pt
If o = +1,
—Mt+Pt—1<C<Pt—Mt

Written as a linear function of g, the lower and upper bounds on C are:

i _iyq_ 1
Ct =(—=M+Py 2)Qt 5

and
C=(—Mt+Pt+%)Qt—%

These bounds cause difficulty because, if we are taking P and M as fixed when we make the C
draw, then the new value C* is bounded by:

MaxC; < C* < I\/Itinc
Xt
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As the maxima and minima are over the full sample, these bounds are likely to be extremely confin-
ing. Thisislikely to prevent the C draws from mixing well.

e. Alternative approach: A joint draw of C, m| P, q

The preceding discussion demonstrated the difficulty of drawing C from its full conditional distribu-
tion. One way of viewing the problem is to note that if a hypothetical new draw of C were to move
more than avery small step away from the present value, it would be likely that for some observa-
tion in the sample, the existing value of m lie outside of the (m, ;) bounds implied by the newly
drawn C, i.e., that the new draw would not be feasible. This suggests that a new draw of C would
have greater latitude if new m; were also drawn as well.

Thisisfeasible. An overview of the procedure is as follows. We start with the current values of C
and m. Suppose for the moment that we have some new candidate draw C*. We assume only that
C* > 0. It might be the case that C* implies infeasibility for some or all elements of the current m. A
smple way of generating new feasible mis via a deterministic shift. Consider the upper and lower
bounds for the level efficient price given in eg. (13), holding P; and ¢; fixed. In moving from C to
C*, these bounds shift from (Mg, My) to (M{*, M{). The shifts in bounds are identical:

M — My = M{ — My. This suggests setting the new value

My = M{ + (M¢ — Mp)

(and setting my = log(My") ). In doing this, we are keeping the relative position of the efficient price
the same within the new set of bounds.

There are two remaining problems. First, how should the C* be generated? Second, how can this
procedure be integrated into the Gibbs sweep in avalid manner?

Thefirst issue is straightforward. In the basic Roll model, the new draws for the cost parameter ¢
arose fromthe linear regression A p; = CAQ; + Uy (where the variables in the model were in logs).
This equation doesn't hold in the present case due to the discreteness transformations. 1t does
suggest, however, away for generating new values of C. We could randomly generated

Ut~ N(0, o§)), and then set up the regression:

(CAqt + Ut) = C*Aqt + Ut (14)
That is, we use the current value C to simulate a dependent variable, regress it against the Ag;, and

draw C* from the coefficient posterior. Obviously, this regression loosely corresponds to the one
used in the basic model.

This procedure defines what is generally termed a candidate or proposal distribution for generating
anew parameter value from an existing one. It defines a conditional distribution g(C* | C). The
convention, however, isto write thisas g(C, C*), where g is atransition density in aMarkov
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chain. Since a new value C* implies new values m*, this candidate/proposal/transition density is
more properly written g(C, m, C*, m*). (In this case, though, once we've chosen the new value C*,
however, the new m*are automatically determined.)

We now turn to the second question, viz., how to use this candidate density. The Gibbs sampler
turns out to be a special case of amore general sampling scheme called the Metropolis-Hastings
sampler. The program for this sampler can be described as follows. Suppose that we enter sweep
j + 1 with values C1) and m). Then:

1. Draw C* and m* from the candidate density g(C, m, C*, m")

2. Compute

, f(C*, m*) g(C*, m¢, C), m()
a=Min 1, - - - - (15)
f(CD), mD) g(c(J), mi), Cx, m*)

where f(C*, m*) isthe true ("target") density evaluated at the proposal draws, f(C), m)) isthe
true density evaluated at the sweep- j values, g(CY, m'), C*, m*) isthe transition probability
associated with generating the new values (conditional on the old ones), and g(C*, m#, C1), m(1)

is the reverse transition probability (i.e., the probability of generating the old valuesif we'd started
with the new ones).

3. Generate z a uniform random number between zero and one.

4.1f z< a, "accept the proposal”. That is, set CU* = C* and mfI*D) = .
If z= «, "reject the proposa”. That is, set CU*D = C) and m{I+D = m(D,

As with the Gibbs sampler, in the limit as j — oo, (C?, m)) are random numbers distributed in
accordance with the target density f.

In the present case, the target density is the conditional density f(C, m| o, q, P), i.e., the full
conditional density given the observed data, the latent data and remaining parameter.

Pr(PIm, g, C, oy) f(m]q, C, o) Pr(q| C, o) f(C, o)

f(C,m|oy q, P)= 16
v Pr(P, Al ow) (o) (19
Since the mapping fromm, g, and C to P is nonstochastic, Pr(P| m, g, C, oy) = 1. Fromthe
assumed independence of the prior distributions,
Pr(q| C, o) f(C, oy) = Pr(q) f(C) f(ou) (17)

Therefore

H(C, mloy, g, P)ec T(mIq, C, o) F(C) = T(m]oy) 1(C) (18)
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(since C and q are independent of m). These two quantities are simple to evaluate for the existing
and proposed draws.

In drawing from the proposal density, it is not really necessary to smulate the U; and actually run
the regression given in eq. (14). Suppose that the prior for C is N*(0, Qo). Using the classic
Bayesian regression results from section 1.1, if we simulated and ran the regression, the posterior
would be N+ (pPosterior, oPosterion yith

posterior _ [ 246 1 )7 ZAa(CAG+Uy
He | 2 (QPrior
U C

2
gu

and

2 -1
nggerior:(zt A + 1. )
O-l2J QE’(IOI’

A sensible expedient isto take

Posterior _ ( ZtAqtz + L )_1( CZtAQt2 )

Kc Pri
2 ior 2

Since C isacost parameter in levels (rather than logs), U; is aso alevel disturbance. A logical
choice for o3 is P o3 where o, is the current draw of this parameter and P is the average price
level over the sample. In taking these shortcuts, we are departing from the full conditional distribu-
tion. Thisis permissible because g( ...) isonly a proposal density.

Although thisdraw isjoint over both C and m, it does not replace the m draw described above. The
reason is that this joint draw cannot generate all values of m; it only shifts the valuesin a rather
limited fashion.

6. Clustered prices

a. Model description
Thisis an extension of the simple discreteness model. The evolution of the (log) efficient priceis:
M = M_1 + U where uy ~N (0,03)

The (level) efficient price istherefore M; = €™. (The units here are "dollars.") The half-spread in
levelsis C. The bid and ask quotes are:
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B; = Floor(M; — C, K;)
A= Ce|||ng(Mt +C, Kt)

The rounding functions here round down or up to the nearest K-multiple of the "official” tick size.
It is assumed that the variables are scaled so that the minimum tick size is unity. The K; are then
i.i.d. Bernoulli variates:

L with probability (1 — k)
t‘{ «, withprobability k

k isa"natural multiple” of the basic tick size, like 2, 5 or 10. k isthe clustering probability. The
buy/sell indicator is

+1, abuy, Withprobability%
%= -1, asell, withprobability 1
The obseved transaction price is

Aif g = +1
t:{BI:fgI:tl]

In the latent data draw, at each time t, we need to draw m, g, K¢ | my, Gy, Pt. The draw ismadein
two steps.

1. Draw o, Kt | m—1, Miyq, Pt

2. Draw my | m_1, M1, G, K, Py

The parameter draw for C proceeds exactly as in discreteness model. (That is, we make a joint
draw of C and m. See section 5.) There is also an additional parameter draw, k | K.

b. Thedraw for g, Ki| mi—1, Miy1, Pt

We have:

Pr(at, K| me-1, M1, Po)
_ Pr(Peimg, Meyg, G, Ko) XPr(gr, Kel m—g, Meeg) X F(Me-g, M)
- PPl my-g, meea) f(Meg, M) (19)
oc Pr(Pe | m-1, Meya, G, Ko) X Pra, Kl me-1, Mey1)
= Pr(Py | M1, M1, G, Ke) X Pr(ay) Pr(Ky)
The last equality follows from the fact that g and K; are mutually independent and also indepen-
dent of the evolution of m;. Next,

Pr(Pe| My_1, M1, G, Ko) = [T F(me | my_g, myq) dmy
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where m and m are the limits established by ¢; and K; (see below). The general plan is as follows.
Using (19), we compute unnormalized probabilities for the four possible combinations of g; and K;.
We normalize these probabilities and make the draw of the {q;, K;} pair. We then proceed to the m
draw. We turn now to the details.

The floor and ceiling functions in the model imply
C+Bi < Mi < C+ B + K
and
—-C+A-Ki<Mi<A-C
Whenq; = -1, B; = P, and
C+Pi <M <C+ K+ Py
Whenqg = +1, A = P, and
—-C-Ki+Pi<M <P -C

The lower and upper limit functionsfor M are:

M(c, Ko) = 3 (=0t Ke — K + 2Py - 2C qp)
and
M(a, K =P+ 2 (K = (2C+ Ky g)

The limits on the log efficient price are then m[q, K] = log[ M (g, K¢)] and
Mg, Ki] = logIM (q, Ko)l.

From eg. (19), and using the fact that Pr(q;) = 1/2,

Pr(ge, Kelme—1, My, Py) o Pr(P | me_g, Mea, G Ke) < Pr(Ky) (20)

Recall that f(m; [ M1, Mi41) = @(um, om, M) With um = (M-1 +My1)/2 and om= oy / V2.
Thus,

Pr(qe, Ke | me—q, Mg, Py) o« @[um, orm, MG, Ki), MG, Kol Pr(Ky)

for (qi, Ki) € {+1, =1} x {1, «}. Let i index the four possible combinations of (g, K;), and let

Zi = Olpm, oom, MG, Ky), M(q, Ki)] Pr(Ky)
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evaluated at the the ith values. Then the normalized probability of outcomei is Zj / XZ;.

c. Thedraw for m¢ | me_q, M1, G, K, Pt

Thisissimply adraw from f(m | my_1, m1) truncated to (m, m).

d. The parameter draw for k| K

The clustering variables are defined by K = {K1, ..., K1}, where each K; € {1, «}. Let n be the
number of t for which K; = «. If the probability of K; = « isk, then n isabinomial random variable.
The beta distribution is conjugate to the binomal (Tanner, 1996), so Betaa, b] is a convenient
prior for k. We let @™o = ™o = 1 /2, for which the Beta density is uniform on the unit interval.

The posterior for k is then Beta[aPosterior pPosterion] yyhere gPosterior — gPrior . n gng
bPosterior — bPrior +T=-n.

7. Lagged trade dependencies

a. Model description

In this extension of the informative trade model, the evolution of the efficient price isallowed to
depend on lagged signed trades (as well as the contemporaneous one).

my =M1+ Ay + U (21)
where A; isthe impact term:
Min(J,t-1
A= Zi507 aeg A iy

J isthe order of the lagged dependence. The upper limit of the sum indicates that the lags do not
extend before the beginning of the sample. The observed priceis:

pr =+ coy

The parameter draw for {1, ..., Aj, C, oy} is (mostly) straightforward. Given the observed and
latent data,

Apr=Am + CAQG = At + CAQt + Uy = 2'}’26‘”’“1)/1]- Gt—j Vi-j + CAGL + Ut (22)
Thisfitsinto the Bayesian multiple regression framework (with ¢ and the A the coefficients).
There is the potentia for multicollinearity here, however. Supposethat J =1 and V; = 1. Then

APt =20 Gt + A1 Gt—1 + CACG + Ut
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In economic terms, the impact of a trade on the efficient price depends only on the direction of the
trade, and not its size. Since Ag; = q; — G:_1, however, the cross-product matrix is singular. Some
sort of additional structure is needed. (One possibility isto simply let V; = Vol;.)

The latent datadraw isof ¢ | my, pr, Q. Thisfollows the design of the draw for the contemporane-
ous impact model, but the lagged structure extends the g; dependencies. From the structure of the
sum, it isclear that g; influencesm, ..., m,p. Therefore Pr(g; | my, o) depends on [T f(Utys)-
From inspection of these terms,

Pr(ge | m¢, pt, O) = Pr(ge | m—1, M1, ... Meep, Pt G-Py - Gt=1, Gt+1s - Gt P)-
For notational simplicity, however, the conditioning set indicated on the |.h.s. will be used below.

Analogousto eqg. (10),

fCpe | My, Oy, Gr) X Pr(oe | my, Oy)
Pr(g | my, P, Qy) = P e fq(\tpt(?tm\t q\gt M e (23)

Sinceq = {qy, G}, the first term in the numerator could have been written more concisely (but less
clearly) as f(pt | m¢, Q). The denominator can be treated as a proportionality factor. The two terms
in the numerator must be evaluated separately.

b. Evaluation of Pr(g; | my, o)

This probability is derived from the joint density of U, ..., Uning.s.1y, Which is [TMED T £ (ug,s).
Whent < T, it is convenient to write this as:
[IMIBOTD £ (g o) = (T2, #(0, oy, Us) (0, oy, U) O, oy, Urs1) (24)

Here, we've pulled out the two terms that depend on my. Substituting in for u; and U1, these terms
are:

¢(01 Tus _rn[—l + rnt - At) ¢(01 Tu _rnt + rnt+1 - At+1)
Integrating out m gives:

2
My My A AL 1)
40'u

2\/;0'u

e

Replacing thisin the joint density gives Pr(g; | my, Qy) «
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_ (mt—l—mt+1+2/\t+/\t+1)2
Min(J+t,T
e 4o oD g0,0y,u9
2\/; O'U

We evauate thisfor g; = + 1, normalize and make the draw.

The following intermediate calculations are used in the C++ code:

) 2
L = bl 25 ko ks G5 L Y P log(Tﬂ) —log(2)

406

2
_;Tsa ~log(ory) + - (~log(2) — log(m))

Mi_1 — Mg + Ar + Aggg

We evaluate this expression for g = +1 (recognizing that the ugfort + 2 < s<t + P also depend
on q;), and normalize. We now turn to the first component in the numerator of (1).

c. Evaluation of f(p| my, Q)

Consider again from the joint density for W, ..., U p in eq. (24). Thefirst two terms are:

¢(01 Tus _rn[—l + rnt - At) ¢(01 Tu _rnt + rnt+1 - At+1)

Using the definition for the normal density and simplifying gives:

(Mg e AYZ+(Mp-my 1 + A )2
206

e

2ﬂaa

Thisis proportiona to ¢(ut, o, M) where

My = (% (Mg + Meq + Ag — Agy1))

Ju
gt = —
t \/2

Thus,
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25
f(my | my, Oy, Q) « S

(M&H42 (0, oy, Us)) $luut, o1, M)

Substituting in for my gives f(pg | my, Oy, ) =

(T2 2 (0, oy, Us)) ¢(uut, T, Pr—CO)

d. Summary
To draw q: | Mg, Qg, pt, the steps are:
1. Compute the normalized Pr(g; = —1| my, Oy) and Pr(g; = +1 | my, Qy)

2. CompUte f(pt | My, q\t! qt = _1) and f(pt | My, q\t! qt = +1)

3. Compute the unnormalized probabilities 7(—1) = Pr(q; = —1 | my, qy) F(pe | Mg, Oy, G = —1)
and 7(+1) = Pr(c = +11 my, a) F(pe I My, Gy, G = +1).

n(+1)

4. The normalized probability of abuy isPr(gy = +1| my, Oy, pt) = P

5. Use this probahility to make the Bernoulli draw.

e. Endpoint modifications

(i) t=1

Att =1, therelevant joint density is (H§:3 (0, oy, Us)) ¢(0, oy, Wp). (The product termis dropped
when J < 3.) Consider the ¢(0, o, U2) term. Substituting in for u, gives:

¢(01 Tus _ml + mZ - A2)

Integrating over mygives 1. Therefore Pr(gy | my, Q) « ng:3 #(0, oy, Us). Compute ther.h.sfor
0y = £1and normalize. If J < 3, then Pr(q;) =1/ 2.

The function above is equivalent to ¢(uq, o1, M) with

H1=(Mp = Ap)

O'1=O'u

Therefore f(mg | my, Qvg, 0h) =
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(H5:3 ¢(O! Tuy US)) ¢(/'L11 a1, ml)
Ora f(pl | M1, i1, ql) =

(H5:3 ¢(O! Tuy US)) ¢(/'Ll! o1, P1— qu)

Since Pr(qy | my, Gy, P1) o f(pg | My, @) Pr(ds| my, 61), we may compute ther.h.s., normalize
and make the draw.

(i) t=T

Fort =T, the relevant joint density is ¢(0, o, ur). Substituting for ur:

¢(01 Tus —mT—l + mT - AT)

Integrating out my gives 1, so Pr(gr | mT, a7) = 1/2. From the above expression,
f(mr | my, o, a1) = ¢(ut, o1, my) with

put =(Mr_1 + A7)
O-T:O-u
Therefore f(pr | mr, &1, a1) = ¢ut, o1, PT = CAT)-

Using these results, compute f(pt | mr, i, g1) & gr = £ 1 and normalize. (Thisis the first normal-
ization.) Make the draw for gr.

8. Combined model |: Trade dependencies, discretenessand clustering

a. Model description

This model combines the features considered separately in earlier sections. The efficient price
evolution reflects a contemporaneous trade impact:

My = Mg + G AVt + U (26)
The mapping to observed prices follows the discreteness/clustering model. The bid and ask quotes
are:

B; = Floor(M; — C, Ky;)
A = Ce|||ng(Mt +C, Kp)
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where M; = €™; C isthe half-spread; the rounding functions here round down or up to the nearest
K-multiple of the "official" tick size. The clustering multipleis K; , an i.i.d. Bernoulli variate:

(1, withprobability (1 - k)
t‘{ «, withprobability k

k isa"natural multiple" of the basic tick size, like 2, 5 or 10. k isthe clustering probability.
The buy/sell indicator is

+1, abuy, withprobability%
" -1, asdl, Withprobability%

The obseved transaction price is

P Atifq[:-i-l
t_{Btifqt:—l

The parameter draws are minor modifications of those given above. That is, {A, oy} are modeled in
the regression:

Am = A + Y (27)

The clustering parameter k is modeled in the beta/binomial framework. C is drawn using the Metrop-
olis-Hastings algorithm described in section 5.

In the latent data draw, at each time t, we need to draw m, g, K¢ | my, Gy, Pt. The draw ismadein
two steps.

1. Draw ¢, K; | my, Oy, P.
2. Draw m | my, q, K, Pr.

Given the structure of the model, Pr(q, K¢ | my, o, Ky, P) = Pr(qe, K¢ | me_1, Mg, Ges, P).
Analogousto eqg. (19),

Pr(qt, Kt | rnt—la m+11 qT+11 Pt)

— Pr(Pt | m—la rnt+11 qt-‘rl! qta Kt) Xpr(qtl Kt | rnt—la rnt+11 qt+1)
Pr(Pt [ M1, Me+1, Gera)

(28)

oc Pr(Py | M1, Mer1, Cee1, G, Ke) XPr(G | Mg, Meyq, Gesr) X Pr(Ky)

The denominator is subsumed into the proportionality constant; K; isindependent of the other
variables. The first two terms must be evaluated separately.
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b. Pr(g | me—1, Mey1, Cre1)

This development is identical to the one given for the asymmetric information model above. The
joint distribution of u; and u¢,1is ¢(0, oy, Ut) #(0, oy, Uty 1). Substituting from (26) gives:

¢(01 Tu _rnt—l + rnt - Aqt Vt)¢(oa Tus _rnt + rnt+1 - Aqt+1 Vt-‘rl)
Integrating out m gives:

(Mg -Mpypq+A 0 Vi+A Gy Vt+1)2
4572
G

2\/;0'u

e

Evaluating thisat g = +1 and ¢ = —1 and normalizing gives Pr(g; = +1| m_1, My 1, Gea1) =

Amy 1Vt
. 98
Amg 1Vt AVE(MYy q+A Gy Viey)
(4 +e u

We combine this with the fact that Pr(K; = «) = k to obtain the full set of
Pr(q, K¢ | M1, My, Gera) for (o, Ke) € {=1, +1} x {1, «}.

C. Pr(Pt I Mi—1, Miyq, qt+1a qti Kt)
Thisis obtained by integrating f(m | ¢, K, M1, Mk, 1, 1) Over the range implied by g; and K;:

Pr(Pt | rnt—la rnt+11 qt+11 qt! Kt) = fr;nf(m | qta Kta m—la rnt+11 qt+1)dmt (29)

where m= m(q;, Kt) and m= m(q;, Kt) are the bounding functions derived for the clustering
model. Theintegrand is:

¢(01 Tu _rnt—l + rnt - Aqt Vt)¢(oa Tus _rnt + rnt+1 - Aqt+1 Vt-‘rl)

This can be reworked as the normal density ¢(um, om, M) where the parameters are:

pm= (5 (Mg + Moy + A0 Ve = A Gt Vi)

Ju
Tm= —
m \/2

We now use the result from eg. (28) that
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Pr(qtl Kt | rnt—la m+11 qt+11 Pt) & (30
Pr(Pe| me—1, M1, Gerts G Ke) XPr(ge | Me-1, M1, Gee) X Pr(Ky) )
We compute the r.h.s. for all values of {q;, K;}, normalize and make the draw.

9. Combined model 11: Lagged trade dependencies, discreteness and clustering

Thisisthe richest model estimated in the paper, involving all of the features considered to this
point. The model is closest to the one considered in the last section. In this version, the efficient
price evolution reflects lagged trade impacts:

My =M1 + At + Ut (31)
where A isthe impact term:
in(J,t-1
Ar= M0 P g A Ve

J isthe order of the lagged dependence. The mapping to observed pricesis the same asin the
previous section.

The draw strategies are minor modifications of those encountered earlier.
For the parameter draws, {Aj, oy} are modeled in the regression:

Am = Z'}A:igw’t_l) Aj Or-j Vi-j + Ut (32)

In discussing the corresponding regression for the lagged trade impact model without discreteness
or clustering (cf. Section 7), the potential for multicollinearity was noted. This arose from the
presence (in eg. (22)) of acAq; term. Thistermis absent in eg. (32). This alleviates the problem of
multicollinearity in the regression. The problem persists in the broader model, however, if the tick
size issmall relative to the price changes.

The clustering parameter k is modeled in the beta/binomial framework. C is drawn using the Metrop-
olis-Hastings algorithm.

In the latent data draw, at each time t, we need to draw m, ¢, K; | my, Oy, Pr. The draw ismadein
two steps:

1. Draw ¢, K; | my, Oy, P.
2. Draw m | my, q, K, Pr.

To derive the probabilities for the first draw, note:
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Pr(at, Ki | my, o, Pt)

_ Pr(Pelmy, G, G Ke) X Price, Kelmy, Gy (33
Pr(Pt | my, o) )

oc Pr(Pg | mg, Oy, O, Ki) X Pr(ce | my, o) X Pr(Ky)

Pr(g¢ | my, o) isthe same as in the lagged trade impact model (see section 7), since the results of
this analysis do not involve the clustering or discreteness effects.

Pr(P¢ | my, Oy, &, K¢)iscomputed as:
Pr(Pe| my, ai, o, Ko = [7f(me | my, ay, o) dmy

where the limits of the integral are the clustering limits discussed in section 6. The integrand isthe
m density for the lagged trade impact model.

To summarize, compute ther.h.s. of eg. (33) for the four possible values of {q;, K;}. Normalize and
make the draw. Finally, draw m, from f(m | my, Qy, Gt) restricted to the range (m, m) implied by
the (just-drawn) {q;, Kt}.
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