
 

Price Discovery Analysis in SAS 
Version 1.0 

Joel Hasbrouck 

Department of Finance 
Stern School of Business 

New York University 
44 West 4th St. Suite 9-190 
New York, NJ 10012-1126 

212.998.0310 

jhasbrou@stern.nyu.edu 

web site: www.stern.nyu.edu/~jhasbrou 

January 10, 2002 

Preliminary draft 
Not for attribution 

Comments welcome 

 

Abstract 

This paper describes a suite of SAS programs to analyze price discovery high-frequency 
market microstructure price data.  The most recent versions of the program, data and this 
paper are available at my web site. 

Key words: price discovery, cointegration, vector error correction, market microstructure.

 

mailto:jhasbrou@stern.nyu.edu


Page 1 

I. Introduction 

This paper describes the estimation of price discovery models using a suite of SAS 
programs.  

There are three programs:   

• CointTest01.sas implements an illustrative analysis using simulated data.   

• Coint04.sas implements the price discovery analysis described in Hasbrouck 
(2001), for the S&P 500 index futures contract, the exchange traded fund (ETF) 
and the E-Mini futures contract. 

• A third program (Build01.sas) performs data setup for Coint04.sas. 

• A list and description of key files is given in the Appendix. 

Other notes: 

• I’m not distributing this code and documentation in the spirit of: “Here’s a ready-
to-go package that anyone with no experience of SAS or price discovery models 
can use.”  The programs are instead properly viewed as working analyses that are 
reasonably complete and documented.  At best, they will serve as a starting point 
for a researcher applying these techniques to a new dataset.  I’ve found that it’s 
usually easier to modify someone else’s code, rather than write the whole thing 
from the ground up. 

• These programs are distributed at no charge as shareware.  Although I believe the 
code and programs to be correct, I make no guarantees. 

• While I welcome comments, feedback and inquiries regarding these programs, I 
can’t promise a response.  The programs are distributed “as is” and unsupported. 

• The results reported in Hasbrouck (2001) are based on estimations performed 
with a suite of Matlab programs.  The complexity of these programs is such that I 
doubt their general usefulness to others.  The routines described in this document 
are written in SAS.  Relative to the Matlab programs, they are simpler, though 
less computationally efficient.  The results obtained in the SAS programs are 
substantially similar, though not identical to the Matlab results. 

• The SAS code is also available (at my web site) for the cointegration analyses 
reported in Hasbrouck (2002).  The code for Hasbrouck (2002) illustrates some 
stylized models.  It is somewhat simpler than the present code, but not well suited 
to the analysis of real (as opposed to simulated) data. 

• These programs use the basic SAS data handling and reporting tools.  Estimation 
and forecasting is performed using PROC MODEL from the SAS/ETS (Economic 

 



Page 2 

Time Series) package.  Random-walk analysis is conducted using SAS/IML 
(Interactive Matrix Language).  I also make extensive use of the SAS macro 
facility.  SAS/ETS, SAS/IML and the macro facility are documented in separate 
SAS manuals and online documentation. 

II. Principles 

Price discovery analysis is based on the econometrics of cointegrated vector 
autoregressions.  Hamilton (1994) provides an excellent textbook discussion of 
cointegration.  Hasbrouck (1995) and Hasbrouck (1996) discusses microstructure 
applications.  Recent discussions of alternative views of price discovery are presented in 
Baillie et al. (2002), de Jong (2002), Harris, McInish, and Wood (2002), Hasbrouck 
(2002) and Lehmann (2002) 

Consider a price vector [ 1 2 ...t t t n ]tp p p p ′= , where the pi all refer to the “same” 
security (e.g., bid, ask and/or transaction prices at one or more market venues).  A vector 
correction model of order K can be written as: 

 ( )1 1 1...t t K t k t z tp A p A p z uγ µ− − −∆ = ∆ + + ∆ + − +  (1) 

where the Ai are square matrices of order n.  The covariance matrix of the disturbances is 

 ( )t t tCov u Eu u ′= = Ω  (2) 

The ( t zz )γ µ−  term contains the error correction coefficients. There are n–1 
cointegrating vectors: 

  (3) [

1 2

1 3
1

1 1,

,  where 

t t

t t
t t

t n t

p p
p p

z Fp F

p p

ι −

−

− 
 − = = =
 
 −  

# ]nI−

for 1  the identity matrix of order 1nI n− −  and ι a vector of ones; µz is the mean vector for 
the deviations; the elements of γ are the error correction coefficients. 

Implementation note: The Matlab routines used to produce the estimates in Hasbrouck 
(2001) employed a two-step estimation procedure.  In the first step, µz was estimated as 
the sample average tz .  This estimate was then plugged in to equation (1) and the 
remaining parameters were determined via OLS.  In the SAS programs described here, all 
parameters are estimated jointly using nonlinear least squares. 

The vector moving average (VMA) representation of the model is: 

 



Page 3 

 0 1 1 2 2 0, where t t t tp B u B u B u B I− −∆ = + + + ="  (4) 

The B coefficients may be calculated by “forecasting” the system subsequent to a unit 
perturbation.  For example, suppose that 0 and  for 1, 2,t t zp z t …

[ ]1 0 0

.  At time t 

= 0, suppose that there is a shock of 0u ′= … .  Then, 

µ∆ = = = − −

 

0

0 0

1 1 0 0

1 0 1

2 1 1 2 0

1
0

0

z

p

z F p
p A p z

z z F p

1p A p A p z

µ
γ

γ

 
 
 ∆ =
 
 
 

= + ∆
∆ = ∆ +

= + ∆
∆ = ∆ + ∆ +

#

#

 (5) 

 

The first column of B0 is 0p∆ ; the first column of B1 is 1p∆ , and so forth.  To obtain the 
second column of B0, B1, etc., we forecast the system subsequent to an initial shock of 

0 0 1 0 0u = "  and so forth. In this setting, we are primarily interested in the 
cumulative price changes: 

[ ]

 
0

k

k
i

C
=

= kB∑  (6) 

These are the cumulative impulse response functions.  The first columns of the Ck 
describe the prices subsequent to a shock in the first price.  It is useful to study the graphs 
of these.  Of particular importance in the present setting is 

 lim kk
C

→∞
C=  (7) 

(When the B’s are written as the lag polynomial B(L), C is equivalent to B(1).)  The rows 
of C are all identical.  Let c be any row of C.  Then the variance of the (common) 
random-walk component of the prices is: 

 2
w c cσ ′= Ω  (8) 

If Ω is diagonal, 

 



Page 4 

 

2
1

2
2

2

0 0
0

0 0 n

σ
σ 0

σ

 
 
 Ω =
 
 
  

%
. (9) 

The information share of the ith market is defined as 

 
2 2

2
i i

i
w

cIS σ
σ

=  (10) 

If Ω is not diagonal, then ISi is not uniquely defined.  Instead, we determine lower and 
upper bounds   and i iIS IS  by considering the Cholesky factorizations of all of the 
rotations (permutations) of the disturbances. 

III.  Implementation considerations 

This section describes various issues that arise in the SAS implementation of the model 
described above. 

A. Calculating the impulse response functions 

The model actually specified in the code is the model given in equation (1) transformed 
by moving the lagged price level on the r.h.s., to obtain: 

 ( )1 1 1 1...t t t K t k t z tp p A p A p zγ µ− − − −= + ∆ + + ∆ + − + u  (11) 

The impulse response functions are computed by setting 1 2

0

z

p p
µ− −


= = = − 

"

 .  That is, 

the system is “at rest”.  At time t = 0, the system is shocked with a unit impulse to one of 
the prices.  A unit shock to the jth price corresponds to setting 

 0

0j
j

z

p e
µ
 

= −  
 

 (12) 

where ej is a vector of zeros with a “1” in the jth place.  The system is then stepped 
forward from this point, with u1=u2=…=0, to obtain .  Each of the 1 2, ,p p …j j j

tp  is an n×1 
vector that specifies the prices at time t implied by the initial shock at time 0.  We 
normalize these as: 

 * 0j j
t t

z

p p
µ
 

= +  
 

 (13) 

 



Page 5 

The impulse response functions are then given as 

 *1 *2 *n
k k k kC p p p =  "  (14) 

B. Reducing the number of coefficients 

If t indexes seconds then even a brief lag length will result in an enormous number of 
coefficients.  A five minute maximum lag, for example, will result in K = 300.  The total 
number of coefficients is n2K, so the problem quickly becomes unworkable.  

To reduce the number of coefficients, I use two expedients. 

• Constraining a set of coefficients (say, the coefficients of ∆p2 in the ∆p1 equation, 
for lags 21-30) to be constant.   

• Constraining a set of coefficients to lie on a polynomial function of the lag. 

To illustrate both of these techniques, , consider the univariate (n=1) autoregression: 

 1 1 2 2t t t K t K tp a p a p a p u− − −∆ = ∆ + ∆ + + ∆ +"  (15) 

where K is large. 

Important Note: What I have described here is most emphatically a computational 
expedient.  There is nothing in the (hypothetical) handbook of multivariate time series 
that ensures I can get away with this.  The only way to have any confidence in the results 
of such an analysis is to perform sensitivity testing on the lag structure. 

1. Polynomial distributed lags (PDL’s) 

Here, we reduce the number of parameters by constraining the ai to lie on 
polynomials (in i).  That is: 

  (16) 2
0 1 2

d
ia c c i c i c i= + + + +" d

where d is the maximum degree of the polynomial.  (In practice, I’ve never used d 
higher than 2 or 3.)  Rather than fit a high-degree polynomial to the full set of K 
coefficients, I prefer to break up the set of K into smaller ranges, and fit a 
polynomial within each range.  I keep the ranges short at the near lags, and let the 
ranges become larger at the distant lags. 

Polynomial distributed lags are implemented using the SAS %PDL macro 

2. Constant coefficients (Moving averages) 

Here, we constrain the ai to be constant over pre-specified ranges, for example, 

 



Page 6 

 

1 2 5

6 7 10

11 12 20

21 22 30

31 32 60

61 62 120

121 122 180

181 182 240

241 242 300

a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a

= = =
= = =
= = =
= = =

= = =
= = =
= = =
= = =
= = =

"
"
"
"
"
"
"
"
"

 

These intervals correspond to the first five seconds, the second five seconds, and 
so on.  Notice that the ranges are shorter for the near lags.  This is sensible 
because the price dynamics are likely to be most rapidly changing over short lags. 

In programming this, it is efficient to make use of SAS’s moving average function 
movavg.  For a time series xt , the SAS function movavgk(x) returns the moving average 
of order k, i.e., 

 ( ) ( )1movavg t t t t kk x x x x k− −= + + +"  

Consider the initial terms of the univariate autoregressive model: 

 
( ) ( )

( ) ( )
1 1 5 6 6 10

1 1 6 65 movavg5 5 movavg5
t t t t t

t t

p a p p a p p

a p a p
− − − −

− −

∆ = ∆ + + ∆ + ∆ + + ∆ +

= ∆ + ∆

" "

"+

"
 

There is yet one more little programming trick.  As written above, the MA specifications 
require the computation to carry (in a named variable) the sixth lagged price change 

6tp −∆ .  We may eliminate this explicit reference by noting that (using the definition of the 
moving average function given above) 

 ( ) ( ) ( )( )6 1
1movavg5 5 movavg5 10 movavg10
5t tx x− −= × + × 1tx −

)

, 

i.e., ( 6movavg5 tx −  is a linear combination of ( )1movavg5 tx −  and ( 1movavg10 t )x − .  The 
constrained autoregression therefore has an equivalent representation, the first two terms 
of which are: 

 ( ) ( )* *
1 1 6movavg5 movavg10t tp a p a p− −∆ = ∆ + ∆ +"1t  

 



Page 7 

C. Daily estimation and summary 

The VECM price discovery model is generally valid only within a trading session.  We 
would not normally expect overnight prices to follow the same dynamics.  I therefore 
estimate the model (and all statistics) separately for each day.  For any statistic, the upper 
bound of the first information share, for example, this results in a set 

 1 for 1, ,
k

IS k = … D  

where D is the number of days in the sample.  I then compute the mean estimate of 1IS  
averaged across days, and the usual standard error of this mean. 

Alternatively, one might estimate jointly over all days.  This would involve adding logic 
to the PROC MODEL specification that would set overnight lagged variables to 
“missing”. 

IV.  A sample program: CointTest.sas 

CointTest.sas simulates a two-price system, estimates a VECM, computes impulse 
response functions, and performs a random-walk decomposition analysis (including 
information shares).  It is a sample program designed to demonstrate the estimation 
procedure as cleanly as possible.  It is therefore a stripped-down program, not a general 
one. 

A. The model 

The model involves a latent “true price” that follows a random-walk: 

( )1 where ~ 0,1
d

t t t tm m u u N−= +  

The first price is: 

( )1 1 1where ~ 0,1
d

t t t tp m e e N= +  

The second price is: 

( )( )2
2 2 2 24  where ~ 0, 0.1

d

t t t tp m e e N−= + +  

Thus, p2t is lagged signal, but one with relatively higher precision.  Where did the “4” 
come from?  If you’d like a story, let’s call p1t the bid price of the security; p2t is the 
ask price; the ask adjusts somewhat later than the bid.  Yes, it’s a simple story, but the 
point of this program is illustration rather than realism. 

 



Page 8 

B. CointTest01.sas: Notes 

1. The relevant files are: 
CointTest01.sas     The program file 
.\Log Files\CointTest01.log  The log output file 
.\Listing Files\CointTest01.lst  The listing output file 
.\SasMacros\RandomWalkAnalysis.sas (see below). 

I’ve put the log and listing files from my runs into separate directories, so that 
they won’t be overwritten when you run the program. 

2. The program contains some internal documentation. 

3. The first line of the program is: 
x 'cd c:\Active\SPY\Sp04'; 
On my machine, I run this program from the directory c:\Active\SPY\Sp04.  The 
command sets this to the current directory.  It is necessary because certain files 
(and in particular, the macro library) are located relative to the current directory.  
Obviously, you may wish to change this line to point to the directory that you are 
running from. 

4. I make modest use of the SAS macro facility.   
SAS macro variables can be identified by the “&” prefix, e.g., &nObs.  SAS 
macro functions are prefixed by a “%”, e.g., “%RandomWalkAnalysis”. 

V. A full analysis with real data 

This section describes the programs used to perform the estimations reported in 
Hasbrouck (2001).   

A. Relevant files 

Build01.sas     program file 
.\Listing Files\Build01.lst  listing file 
.\Log Files\Build01.log  log file 

Coint04.sas     program file 
.\Log Files\Coint04.log  log output file 
.\Listing Files\Coint04.lst  listing output file 

B. General conventions 

1. See the notes to CointTest01.sas (above) 

2. I make extensive use of the SAS macro facility.  SAS macro variables can be 
identified by the “&” prefix, e.g., &TempLib.  SAS macro functions are prefixed 
by a “%”, e.g., %ModelVECM. 

 



Page 9 

3. I have set the system options to NOMPRINT and NONOTES to minimize the log 
output.  If you’d like to see the SAS code generated by the macros, use 
“MPRINT”. 

4. Some of my SAS macro routines have a provision for diagnostic output.  This is 
controlled by the PrintLevel variable in the calling sequence.  The default is 
generally 1 (printout), but for the iterations after the first, I set PrintLevel=0 (to 
suppress output). 

5. Some of the macro subroutines are defined within the main program.  Others are 
placed in a subdirectory called “SasMacros”.  

6. The program constructs a large number of temporary datasets. I place these in a 
library (directory) called &TempLib. 

7. Variable names 

a) The prices are denoted p1, p2, …, p&nPrice. 

b) The zi are denoted z2,…,z&nPrice .   

c) The µz are denoted zmean2,…,zmean&nPrice. 

C. Overview of the programs (Figure 1) 

1. The original dataset (bdata.dat) is a binary file with fixed length records.  The 
program BUILD01.sas generates a SAS dataset named Prices.  This dataset is 
sorted by date.  BUILD01.sas also generates a dataset PriceMap. PriceMap has 
one record per date, and contains pointers to the data.  (If you’re familiar with the 
TAQ index files, you’ll note the similarity.) 

To modify BUILD01 for your data, you’ll probably have to change the infile 
statement and the input statement. 

2. COINT04 actually runs the analysis and generates the summary statistics.  The 
impulse response functions are saved in a dataset called.   

D. COINT04 

This program is arranged as follows.  Ultimately, the program will loop over all of the 
days in the sample.  The key macros are generally written, though, to perform analysis for 
one day only.  The macros and their functions are: 

1. %DayBuild extracts the price data for a single day and builds a dataset (matrix) in 
which observation (row) corresponds to one second.  The columns are the prices. 

Using the index information from the PriceMap dataset, DayBuild first extracts 
(from the Prices dataset) all of the data for the day.  The transpose step results in a 

 



Page 10 

dataset that is a matrix with a row for each second of the day and a column for 
each price.  At this stage, some of the prices are missing: 

Obs      time        FES        FSP        SPY 
 
 868    10:00:04    1378.50        .          . 
 869    10:00:06    1379.75        .          . 
 870    10:00:07    1379.50        .          . 
 871    10:00:08        .      1379.50        . 
 872    10:00:13    1378.25        .          . 
 873    10:00:15    1379.00    1379.80        . 
 874    10:00:18    1378.25        .          . 
 875    10:00:19        .      1380.00        . 
 876    10:00:22        .          .      1380.78 
 877    10:00:23    1378.00        .          . 

The key step in %DayBuild is a call to PROC EXPAND. PROC EXPAND is a 
SAS/ETS procedure that replaces the missing values with the most recent 
observation.  After PROC EXPAND has run, the dataset looks like this: 

 
  Obs      time         p3         p2         p1 
 
 1800    10:00:01    1379.50    1379.80    1381.09 
 1801    10:00:02    1379.50    1379.80    1381.09 
 1802    10:00:03    1379.50    1379.80    1381.09 
 1803    10:00:04    1378.50    1379.80    1381.09 
 1804    10:00:05    1378.50    1379.80    1381.09 
 1805    10:00:06    1379.75    1379.80    1381.09 
 1806    10:00:07    1379.50    1379.80    1381.09 
 1807    10:00:08    1379.50    1379.50    1381.09 
 1808    10:00:09    1379.50    1379.50    1381.09 
 1809    10:00:10    1379.50    1379.50    1381.09 
 1810    10:00:11    1379.50    1379.50    1381.09 
 1811    10:00:12    1379.50    1379.50    1381.09 
 1812    10:00:13    1378.25    1379.50    1381.09 
 1813    10:00:14    1378.25    1379.50    1381.09 
 1814    10:00:15    1379.00    1379.80    1381.09 
 1815    10:00:16    1379.00    1379.80    1381.09 
 1816    10:00:17    1379.00    1379.80    1381.09 
 1817    10:00:18    1378.25    1379.80    1381.09 
 1818    10:00:19    1378.25    1380.00    1381.09 
 1819    10:00:20    1378.25    1380.00    1381.09 

2. %GraphPrices produces a price plot for the given day.  It is not generally called.  I 
use it as a diagnostic/utility routine. 

3. %ModelVECM estimates the VECM 

4. %ImpulseResponse constructs the vector moving average (VMA) representation 
of the model.  The impulse response functions are computed using the PROC 
MODEL solve statement. 

5. %GraphImpulseResponse produces impulse response plots. 

 



Page 11 

6. %RandomWalkAnalysis2 computes the information shares and related statistics.  
This is perhaps the most complicated of the macros.  The guts of the calculation is 
in the macro %RandomWalkAnalysis.  This is a SAS IML (“Interactive Matrix 
Language”) program. 

7. %DoAllDates loops over all the days in the sample.  It calls (in order) the macros 
previously defined. 

8. After %DoAllDates has run, there are invocations of PROC MEAN to summarize 
(across days in the sample) the information shares and impulse response 
functions. 

9. A final call to %GraphImpulseResponse produces the impulse response functions 
(Figure 2). 

E. Other notes 

1. The last lines of Coint04.sas contain code to produce the impulse response 
function graphs.  These lines are commented out. 

2. The program regularly writes out the current date and time.  On my machine (800 
mHz Pentium, running Windows XP), the program took about an hour.  (See the 
log file.) 

VI. Modifying these programs for your own analyses: How to proceed. 

A. Play around with CointTest01 

This will give you a feel for how a price discovery VECM is estimated. 

B. Modify the input statements of Build01.sas to conform to your data. 

C. Modifying and running Coint04.sas 

1. You should be able to use the principal estimation program, Coint04.sas without 
extensive modification.  There are, however, some macro variables in the first 
part of the program that will almost certainly have to be changed.  These include 
variables that name the price variables and point to temporary directories. 

2. After you’ve modified Coint04.sas, try to run it for one day.  After each macro 
definition is an invocation that has been commented out.  Uncomment these and 
run to verify that each macro is functioning correctly.   

3. Run %DoAllDates with &nDates set to 2.  (This will execute the program for the 
first days in your sample.)   

4. Run %DoAllDates for all dates.   

 



Page 12 

5. Fine-tune the last part of the program, which produces summary statistics and 
graphs.  %DoAllDates saves the key estimates in two datsets: RWSummary and 
IRSummary.  You shouldn’t have to rerun %DoAllDates (which is likely to be 
quite time consuming) when you’re playing around with the summary reporting 
and graphing. 

VII. References 

 

 

Baillie, R. T., Booth, G. G., Tse, Y., Zabotina, T., 2002. Price discovery and common 
factor models. Journal of Financial Markets, forthcoming. 

de Jong, F., 2002. Measures of contributions to price discovery: A comparison. Journal of 
Financial Markets, forthcoming. 

Hamilton, J.D., 1994. Time Series Analysis.  (Princeton: Princeton University Press). 

Harris, F. H. d., McInish, T. H., Wood, R. A., 2002. Common factor components vs. 
information shares: alternative approaches to price discovery research. Journal of 
Financial Markets, forthcoming. 

Hasbrouck, J., 1995. One security, many markets:  Determining the contributions to price 
discovery. Journal of Finance 50, 1175-99. 

Hasbrouck, J., 1996. Modeling microstructure time series. In: Maddala, G. S. and Rao, C. 
R. (Eds.), Handbook of Statistics 14: Statistical Methods in Finance. Elsevier 
North Holland, Amsterdam, 647-692. 

Hasbrouck, J., 2001. Intraday price formation in US equity index markets.  Unpublished 
working paper. Stern School of Business, New York University. 

Hasbrouck, J., 2002. Stalking the efficient price in empirical microstructure 
specifications. Journal of Financial Markets, forthcoming. 

Lehmann, B. N., 2002. Some desiderata for the measurement of price discovery across 
markets. Journal of Financial Markets, forthcoming. 

 

 



Page 13 

Appendix: List of files distributed 

Directory File Description 

Root directory (“.\”) CointTest01.sas Sas program file 

 Coint04.sas “” 

 Build01.sas “” 

 CointDocumentation01.pdf This file 

 Bdata.dat Binary data file containing 
S&P 500 ETF and futures 
data 

 Prices.sas7bdat Sas dataset 

 PriceMap.sas7bdat “” 

.\SasMacros ComputeCorrelations.sas Sas macro program file 

 CurrentDate.sas “” 

 NumObs.sas “” 

 RandomWalkAnalysis.sas “” 

 RowDifference.sas “” 

.\Listing Files CointTest01.lst Sas listing file 

 Coint04.lst “” 

 Build01.lst “” 

.\Log Files CointTest01.log Sas log file 

 Coint04.log “” 

 Build01.log “” 

 



Page 14 

Figure 1 

 

bdata.dat  
(data/time/symbol/price) 

Build01.sas

prices.sas7bdat 
(symbol/price/time) 

PriceMap.sas7bdatat 

Coint04.sas

RWSummary.sas7bdat 
(Random walk 
summary) 

IRSummary.sas7bdat 
(Impulse response 
summary) 

 

 



Page 15 

Figure 2.  Impulse response functions 

 

 

 

 


	Introduction
	Principles
	Implementation considerations
	Calculating the impulse response functions
	Reducing the number of coefficients
	Polynomial distributed lags \(PDL’s\)
	Constant coefficients (Moving averages)

	Daily estimation and summary

	A sample program: CointTest.sas
	The model
	CointTest01.sas: Notes
	The relevant files are:�CointTest01.sasThe program file�.\Log Files\CointTest01.logThe log output file�.\Listing Files\CointTest01.lstThe listing output file�.\SasMacros\RandomWalkAnalysis.sas (see below).
	The program contains some internal documentation.
	The first line of the program is:�x 'cd c:\Active\SPY\Sp04';�On my machine, I run this program from the directory c:\Active\SPY\Sp04.  The command sets this to the current directory.  It is necessary because certain files (and in particular, the m
	I make modest use of the SAS macro facility.  �S�


	A full analysis with real data
	Relevant files
	General conventions
	See the notes to CointTest01.sas (above)
	I make extensive use of the SAS macro facility.  
	I have set the system options to NOMPRINT and NON
	Some of my SAS macro routines have a provision for diagnostic output.  This is controlled by the PrintLevel variable in the calling sequence.  The default is generally 1 (printout), but for the iterations after the first, I set PrintLevel=0 (to suppre
	Some of the macro subroutines are defined within 
	The program constructs a large number of temporary datasets. I place these in a library (directory) called &TempLib.
	Variable names
	The prices are denoted p1, p2, …, p&nPrice.
	The zi are denoted z2,…,z&nPrice .
	The ?z are denoted zmean2,…,zmean&nPrice.


	Overview of the programs (Figure 1)
	The original dataset (bdata.dat) is a binary file with fixed length records.  The program BUILD01.sas generates a SAS dataset named Prices.  This dataset is sorted by date.  BUILD01.sas also generates a dataset PriceMap. PriceMap has one record per dat
	COINT04 actually runs the analysis and generates the summary statistics.  The impulse response functions are saved in a dataset called.

	COINT04
	%DayBuild extracts the price data for a single day and builds a dataset (matrix) in which observation (row) corresponds to one second.  The columns are the prices.
	%GraphPrices produces a price plot for the given day.  It is not generally called.  I use it as a diagnostic/utility routine.
	%ModelVECM estimates the VECM
	%ImpulseResponse constructs the vector moving average (VMA) representation of the model.  The impulse response functions are computed using the PROC MODEL solve statement.
	%GraphImpulseResponse produces impulse response plots.
	%RandomWalkAnalysis2 computes the information sha
	%DoAllDates loops over all the days in the sample.  It calls (in order) the macros previously defined.
	After %DoAllDates has run, there are invocations of PROC MEAN to summarize (across days in the sample) the information shares and impulse response functions.
	A final call to %GraphImpulseResponse produces the impulse response functions (Figure 2).

	Other notes
	The last lines of Coint04.sas contain code to produce the impulse response function graphs.  These lines are commented out.
	The program regularly writes out the current date and time.  On my machine (800 mHz Pentium, running Windows XP), the program took about an hour.  (See the log file.)


	Modifying these programs for your own analyses: How to proceed.
	Play around with CointTest01
	Modify the input statements of Build01.sas to conform to your data.
	Modifying and running Coint04.sas
	You should be able to use the principal estimation program, Coint04.sas without extensive modification.  There are, however, some macro variables in the first part of the program that will almost certainly have to be changed.  These include variables tha
	After you’ve modified Coint04.sas, try to run it 
	Run %DoAllDates with &nDates set to 2.  (This will execute the program for the first days in your sample.)
	Run %DoAllDates for all dates.
	Fine-tune the last part of the program, which pro


	References

