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Abstract

Illiquidity is well-known to be a significant determinant of stock and bond returns. We

report on illiquidity premia in equity option markets. An increase in option illiquidity

decreases the current option price and predicts higher expected option returns. This

effect is statistically and economically significant. It is robust across different empirical

approaches and when including various control variables. The illiquidity of the under-

lying stock affects the option return negatively, consistent with a hedging argument:

When stock market illiquidity increases, the cost of replicating the option goes up,

which increases the option price and reduces its expected return.
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1 Introduction

The existing literature contains a wealth of evidence regarding illiquidity premia in stock

and bond markets. It has been shown in both markets that illiquidity affects returns, with

more illiquid assets having higher expected returns. In equity markets, Amihud and Mendel-

son (1986, 1989), Eleswarapu and Reinganum (1993), Brennan and Subrahmanyam (1996),

Amihud (2002), Jones (2002), Pastor and Stambaugh (2003), and Acharya and Pedersen

(2005) compare stock market illiquidity to ex-post returns on equities. In bond markets,

Amihud and Mendelson (1991), Warga (1992), Boudoukh and Whitelaw (1993), Kamara

(1994), Krishnamurthy (2002), Longstaff (2004), Goldreich, Hanke and Nath (2005), and

Beber, Brandt and Kavajecz (2009) analyze the impact of bond illiquidity on expected bond

returns.

There is also a growing body of evidence on the existence of illiquidity premia in other

markets, see for instance Deuskar, Gupta, and Subrahmanyam (2011) for evidence on interest

rate derivatives and Bongaerts, de Jong, and Driessen (2010) for evidence on the credit

default swap market. Vijh (1990) measures liquidity premia and market depth in the equity

options market, and George and Longstaff (1993) measure bid-ask spreads in index options

and explain the nature of cross-sectional differences in these spreads. However, the literature

has been mostly silent so far about the relationship between illiquidity and expected returns

in equity option markets. This is surprising, because similar to stock and bond markets,

market makers in option markets incur order processing and asymmetric information costs.

George and Longstaff (1993) find that a substantial fraction of the bid-ask spread in option

markets is attributed to premia compensating dealers for the risk of holding uncovered

positions in illiquid options.

Our contribution is to study the effect of option and stock illiquidity on equity option

returns. We document the statistical significance and economic magnitude of the impact of

option illiquidity on option returns. We also estimate the effect of illiquidity in the underlying

stocks on option returns. In a frictionless, complete-market model, the price of the option

can be replicated by trading in the underlying asset and a risk free bond. If the underlying

asset is illiquid, then the trading strategy replicating the price of the option is harder to

implement and the illiquidity costs of this trade should affect the price and thus return of

the option.

We establish our main results using cross-sectional Fama-MacBeth (1973) regressions for

daily and weekly returns. We present univariate regressions but also multivariate regres-

sions controlling for stock volatility, stock returns, lagged option returns, and other firm

characteristics, as in Duan and Wei (2009). An increase in option illiquidity has a positive

2



and significant impact on next period’s option returns, across all moneyness and maturity

categories. This evidence is consistent with the existence of an illiquidity premium in the

options market, similar to the effect of stock illiquidity on stock returns reported by Amihud

(2002). The effect is also economically significant: for example, a two standard deviation

shock to out-of-the-money short-term call illiquidity results in a 2.37% change in the next

day out-of-the-money short-term call returns. A two standard deviation shock to out-of-the-

money short-term put illiquidity results in a 1.61% change in the next day out-of-the-money

short-term put returns.

We find that the illiquidity of underlying stocks also has a significant impact on option

prices. As expected, this effect is opposite to the effect of option illiquidity on option returns.

A positive shock to stock illiquidity decreases next period’s option returns. This finding

is consistent with trading motivated by hedging considerations. Whenever stock market

illiquidity increases, the higher stock transaction costs will increase the cost of replicating

the option, which will increase the option price and reduce its expected return. This effect

is also economically meaningful, although it is smaller compared to the impact of option

illiquidity: for example, a two standard deviation shock to stock illiquidity would result in a

0.87% change in the next day short-term out of the money call returns and a 0.59% change in

the next day short-term out of the money put returns. This is consistent with Cetin, Jarrow,

Protter and Warachka (2006), who suggest that illiquidity of underlying stocks constitutes

a significant part of option prices.

Analyzing the effects of illiquidity in the cross-section of option returns is empirically

more challenging than analyzing the cross-section of stock returns, because of the strong

dependence of option returns on the returns of the underlying. We therefore investigate the

robustness of our results by analyzing the cross-section of implied volatilities in addition

to the cross-section of returns. We find that both the illiquidity of the options and the

underlying assets help explain the level of implied volatility, and that the sign of the effect is

consistent with the evidence from the cross-section of returns. Moreover, option illiquidity

significantly affects the slope of the implied volatility curve: the implied volatility curve is

steeper for more illiquid option contracts.

Finally, we report time-series evidence for liquidity decile portfolios. We find that a

contemporaneous increase in option illiquidity has a significantly negative effect on option

prices, consistent with the cross-sectional evidence. This result is again similar to the effect

of stock illiquidity on stock returns reported by Amihud (2002). A contemporaneous shock

to option illiquidity decreases the current price and increases expected option returns to

compensate traders for holding illiquid contracts.

To the best of our knowledge these results are new to the literature. The existing empirical
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evidence on equity option illiquidity is very limited. Using data from an interesting natural

experiment, Brenner, Eldor and Hauser (2001) compare central bank issued and exchange

traded options and report a 21% illiquidity discount for non-tradable central bank issued

options. Cao and Wei (2010) document commonality in the illiquidity on equity option

markets, but do not investigate the impact of illiquidity on option returns.1

The paper is organized as follows. Section 2 lays out our main hypotheses and discusses

the theoretical literature on expected option returns. Section 3 describes the data and

variables we use, in particular, the construction of option returns and illiquidity measures.

Section 4 presents empirical results on the impact of illiquidity on the cross-section of option

returns. Section 5 investigates the cross-section of implied volatilities and the slope of the

implied volatility curve. Section 6 presents time-series evidence, and Section 7 concludes.

2 Illiquidity and Expected Option Returns

Motivated by the literature on liquidity risk in the bond and equity markets, we investigate

the following hypotheses in our empirical work:

1. In the cross-section, illiquid options earn on average higher expected returns, support-

ing the existence of a positive illiquidity premium.

2. The illiquidity of the underlying stock negatively affects expected option returns, which

is consistent with the following hedging argument: Higher stock transaction costs

increase the cost of replicating the option, which increases the option price and reduces

its expected return.

3. Option illiquidity and the illiquidity of the underlying stock are important determinants

of the level and slope of the implied volatility curve.

4. In a time series analysis, lagged option illiquidity predicts future expected option re-

turns and illiquidity shocks are negatively related to contemporaneous option returns,

consistent with a positive illiquidity premium.

Before forging ahead with empirical tests of these hypotheses, we briefly review existing

theoretical results on expected option returns. These results will be used to provide guidance

in the design of the illiquidity tests.

1The equity option literature also contains related results on trading activity and demand pressures.
Prominent papers include Garleanu, Pedersen, and Poteshman (2009), Easley, O’Hara, and Srinivas (1998),
Lakonishok, Lee, and Poteshman (2007), Mayhew (2002), Pan and Poteshman (2006), and Roll, Schwartz,
and Subrahmanyam (2010).
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Mainstream option valuation theory assumes away illiquidity in option markets as well

as in the market for the underlying and bond markets.2 This is done in order to arrive at

option valuation expressions that are deterministic functions of the underlying asset price

and the interest rate as well as other variables, including volatility.

In the standard Black and Scholes (1973) model, the option price, O, for a non-dividend

paying stock with price S is a function of the strike price, K, the risk-free rate, r, maturity,

T, and constant volatility, σ, which we can write

O = BS (S,K, r, T, σ) (2.1)

Coval and Shumway (2001) show that in this basic model with constant risk-free rate and

constant volatility, the expected instantaneous return on an option E
[
RO
]
is given by

E
[
RO
]

=

(
r + (E

[
RS
]
− r)S

O

∂O

∂S

)
dt (2.2)

where E
[
RS
]
is the expected return on the stock. The sensitivity of the option price to the

underlying stock price (the option delta), denoted by ∂O
∂S
, will depend on the variables in

(2.1). The delta is positive for call options and negative for puts. Thus the expected excess

return on call options is positive and the expected excess return on put options is negative.

The presence of E
[
RS
]
and ∂O

∂S
on the right-hand side of equation (2.2) shows that it

is critical to properly control for the return on the underlying stock when regressing option

returns on illiquidity measures.

In the Black-Scholes model, the risk-free rate is assumed to be constant across maturities.

Bakshi, Cao and Chen (1997) show empirically that allowing for stochastic interest rates does

not change the value of the option by much, compared to the simple use of maturity-specific

risk-free rates in the Black-Scholes model. Thus we do not control for stochastic interest

rates in our empirical analysis below.

The absence of stochastic volatility in the Black-Scholes model is much more critical. Hull

andWhite (1987) and Scott (1987) develop option valuation models with stochastic volatility.

Heston (1993) develops a stochastic volatility model that allows for correlation between the

shock to returns and the shock to volatility, as well as for a volatility risk premium to

compensate sellers of options for volatility risk. Broadie, Chernov, and Johannes (2009) and

Duarte and Jones (2007) show that in a standard stochastic volatility model, the expected

2Black and Scholes (1973), Hull and White (1987), and Heston (1993) are classic examples of papers in
this literature. See Jones (2006) for a detailed analysis of returns on S&P500 index options.
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option return is given by

E
[
RO
]

=

(
r + (E

[
RS
]
− r)S

O

∂O

∂S
+ λ

σ

O

∂O

∂σ

)
dt (2.3)

where the sensitivity of the option price to volatility (the option vega), denoted by ∂O
∂σ
, is

positive for all options, and where the price of volatility risk, λ, is negative because the added

volatility risk increases the option value.3 Equation (2.3) shows that it will be important to

control for the dynamic volatility of the stock when regressing option returns on illiquidity

measures.

The standard option valuation models discussed above do not allow for transactions costs

or liquidity risk. A much smaller option valuation literature allows for illiquidity effects in the

underlying asset. Prominent papers include Cetin, Jarrow and Protter (2004), Jarrow and

Protter (2005), and Cetin, Jarrow, Protter and Warachka (2006). The latter paper shows

that the Black-Scholes pricing model holds in the presence of liquidity costs associated with

trading the underlying asset, but also that the optimal hedging strategy changes compared

to Black-Scholes. Toft (1996) studies option valuation in the presence of trading costs.

Constantinides and Perrakis (2002, 2007), Oancea and Perrakis (2007), and Constantinides,

Jackwerth, and Perrakis (2009) rely on a stochastic dominance approach to characterize

bounds on option prices. As this approach establishes option valuation bounds rather than

option prices, expressions for the relationship between expected option returns and liquidity

measures are not readily available.

In recent work, Bongaerts, de Jong and Driessen (2010) develop an equilibrium asset

pricing model with liquidity risk where the underlying asset is in positive net supply and

the derivative asset is in zero net supply. The model contains heterogeneous investors who

differ with respect to their degree of risk-aversion, initial wealth and investment horizon. In

a linear special case of their model, the expected option return can be derived as

E
[
RO
]

= δ1E
[
RS
]

+ β2E
[
ILO

]
+ β3E

[
ILS

]
(2.4)

where ILO is the illiquidity (in terms of transaction cost) of the option and ILS is the

illiquidity of the underlying stock. Bongaerts, de Jong and Driessen (2010) show that when

the less risk-averse investors have long positions in the option, the coeffi cient on E
[
ILO

]
is positive and the option buyers will earn a positive illiquidity premium. These investors

are more sensitive to transaction costs and will therefore require compensation for illiquidity

risk. The model is not conclusive with respect to the sign of the coeffi cient on E
[
ILS

]
,

3The derivation of (2.3) assumes that the diffusion to volatility is linear in the volatility level.
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which therefore remains an open question in the empirical analysis, to which we now turn.

3 Data and Variable Construction

3.1 Option Returns

We investigate the impact of option illiquidity as well as stock illiquidity on option re-

turns. The construction of these two measures is complicated by the large number of option

contracts and the need to construct stock illiquidity measures using high-frequency data.

Moreover, data on option contracts for smaller firms is less readily available when research-

ing longer time periods. We therefore limit ourselves to options data for S&P500 index

constituents from OptionMetrics, which includes daily closing bid and ask quotes on Ameri-

can options, as well as their implied volatilities and deltas. By limiting ourselves to S&P500

firms, we bias our results towards not finding evidence of the importance of illiquidity. The

sample period is January 1996 to December 2007. We limit the sample to firms that have op-

tions trading throughout the entire sample period. We implement this by verifying whether

the firms have options trading on the first trading day of each calendar year in the sample,

as well as the last day in our sample, December 31, 2007. This yields a sample of 341 firms.

We repeat our analysis for six different option samples. For each firm, we consider put

and call options for two maturity categories: short-term, with time to maturity between

20 and 70 days, and long-term, with time to maturity between 71 and 180 days. Each

maturity category is in turn divided according to moneyness into in-the-money (ITM), at-

the-money (ATM), and out-of-the-money (OTM) options. We follow Driessen, Maenhout,

and Vilkov (2009) and Bollen and Whaley (2004) and define moneyness according to the

option delta from OptionMetrics,4 which we denote by ∆. OTM options are defined by

0.125 < ∆ ≤ 0.375 for calls and −0.375 < ∆ ≤ −0.125 for puts. ATM options correspond

to 0.375 < ∆ ≤ 0.625 for calls and −0.625 < ∆ ≤ −0.375 for puts, and the ITM category is

defined by 0.625 < ∆ ≤ 0.875 for calls and −0.875 < ∆ ≤ −0.625 for puts.

Following Goyal and Saretto (2009) and Cao andWei (2010), we apply filters to the option

data and eliminate the following contracts: (i) prices that violate no-arbitrage conditions;

(ii) observations with ask price lower than or equal to the bid price; (iii) options with open

interest equal to zero; (iv) options with missing prices, implied volatilities or deltas; (v)

options with prices lower than $3 and bid-ask spread below $0.05, or prices equal or higher

than $3 and bid-ask spread below $0.10, on the grounds that the bid-ask spread is lower

4For American options, OptionMetrics relies on the Cox, Ross, and Rubinstein (1979) binomial tree model
for computing implied volatilities and deltas.
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than the minimum tick size which signals a data error. We have also re-run the empirical

tests without imposing any filters, and the results are robust.

For all remaining options, our method for computing option returns follows Coval and

Shumway (2001). We compute daily returns using quoted end-of-day bid-ask midpoints if

quotes are available on the respective days. We compute equally-weighted average daily

returns on a firm-by-firm basis for each moneyness and maturity category by averaging

option returns for all available contracts. For each option category and for each firm, the

return from t to t+ 1 is defined by

RO
t+1 =

1

N

N∑
n=1

Ot+1(Kn, Tn − 1)× ft+1 −Ot(Kn, Tn)× ft
Ot(Kn, Tn)× ft

(3.1)

where N is the number of available contracts in the particular category at time t with

legitimate quotes at time t + 1. Ot(Kn, Tn) is the mid-point quote, (ask+bid)/2, for an

option with strike price Kn and maturity Tn, and ft is the cumulative adjustment factor for

splits or other distribution events, provided by OptionMetrics.

Weekly option returns are constructed similar to daily returns using Friday-to-Friday

data wherever possible, and alternatively using a minimum of four daily returns.5

Figure 1 plots the daily option returns over time. Figure 1A contains the call option

returns and Figure 1B has the put option returns. The short-term returns in the left panels

are clearly more volatile than the long-term returns in the right panels. This is true for both

calls and puts. All the option returns display volatility clustering and strong evidence of

non-normality. As is typical of daily speculative returns, the mean is completely dominated

by the dispersion.

Table 1 reports summary statistics. We first compute the respective statistics for each

firm and report the average across firms. Table 1 shows that call returns on average are

positive and put returns are negative, for daily data as well as weekly data in all categories.

This is as expected from the option deltas as shown in (2.2). The option returns exhibit

positive skewness and excess kurtosis in all categories as well, which is also as expected due

to option gamma. Returns on OTM options are higher than returns on ITM options. They

are also more variable and exhibit higher kurtosis. Returns on short-term options are higher

and more variable than returns on long-term options, confirming the visual impression from

Figure 1. The option returns display little evidence of serial dependence judging from the

first-order autocorrelation, ρ (1), but the absolute return autocorrelation ρabs (1) is positive

5We try the following combinations: Friday-to-Friday, then Friday-to-Thursday, then Thursday-to-Friday,
then Thursday-to-Thursday. If none of these are available then we discard the weekly observation for that
option.
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for all categories, confirming the volatility clustering apparent from Figure 1.

3.2 Illiquidity Measures for Stocks and Options

We investigate the impact on option returns of option illiquidity but also of illiquidity in the

underlying stock market. There is an extensive literature on stock market illiquidity as we

discussed in the introduction. We follow the convention in the literature and compute stock

illiquidity as the effective spread obtained from high-frequency intraday TAQ (Trade and

Quote) data. Specifically, for a given stock, the TAQ effective spread on the trade is defined

as

ILSk = 2 |ln(Pk)− ln(Mk)| , (3.2)

where Pk is the price of the kth trade and Mk is the midpoint of the consolidated (from

different exchanges) best bid and offer prevailing at the time of the kth trade. The daily

stock’s effective spread, ILS, is the dollar-volume weighted average of all ILSk computed over

all trades during the day

ILS =

∑
kDolV olkIL

S
k∑

kDolV olk

where the dollar-volume, DolV olk, is the stock price multiplied by the trading volume.

The literature on equity option illiquidity is in its infancy, and therefore it is less clear

how to define the option illiquidity measure. Furthermore, transaction prices to estimate

effective spreads are not available for options. Similar to conventional illiquidity measures

for stocks, we therefore measure illiquidity in the option market with relative quoted bid-ask

spreads.6 This is a transparent measure of illiquidity, and better alternatives are not readily

available.7 We compute relative quoted bid-ask spreads using end-of-day quoted bid and ask

prices provided by Ivy DB OptionMetrics.8 For each contract, we compute the daily relative

quoted spread

ILOt,n =
OAt(Kn, Tn)−OBt(Kn, Tn)

Ot(Kn, Tn)
(3.3)

where the prices Ot(Kn, Tn), OAt(Kn, Tn), and OBt(Kn, Tn) are, respectively, the end of day

closing mid-point, ask, and bid quotes reported in OptionMetrics, for an option with strike

price Kn and maturity Tn. Note Ot(Kn, Tn) = (OAt(Kn, Tn) +OBt(Kn, Tn))/2.

6For studies on stock market illiquidity that use relative bid-ask spreads, see for instance Hasbrouck and
Seppi (2001), Huberman and Halka (2001), Chordia, Roll, and Subrahmanyam (2000, 2001), and Chordia,
Sarkar, and Subrahmanyam (2005).

7Dollar quoted bid-ask spreads are not a good alternative as liquidity indicators, because they are mainly
driven by the maturity and moneyness of the option contract. See Cao and Wei (2010) for a discussion.

8We use the following fields in OptionMetrics: “Best bid”defined as the best, or highest, closing bid price
across all exchanges on which the option trades. Similarly for “Best offer”.
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The equally-weighted average spreads are then computed for each option category as

ILOt =
1

N

∑N

n=1
ILOt,n (3.4)

where N is the number of available contracts that are within the particular category at time

t.

Given the data constraints, using quoted spreads as an alternative to effective spreads is

reasonable. Battalio, Hatch and Jennings (2004), who use data for January 2000 through

June 2002, which is part of our sample period, find that for large stocks the ratio of effective

spread to quoted spread fluctuates between 0.8 and 1. Since our sample is limited to S&P500

firms, quoted spreads are a good substitute for effective spreads.

Panel A of Table 2 presents summary statistics for the relative bid-ask spread illiquidity

measure using our cross-section of 341 firms. For the option illiquidity, ILO, we find that

short-term contracts are more illiquid than long-term contracts, regardless of whether the

options are OTM, ATM, or ITM. For example, the average relative spread of short-term

OTM call options is 34.02%, while for long-term OTM calls the average spread is 22.67%.9

Table 2 also shows that illiquidity is highest on average for OTM options, followed by

ATM options, which in turn are more illiquid than ITM options. We therefore conclude

there are strong moneyness and maturity effects in liquidity. In order to control for this, we

will run our empirical tests separately on six different moneyness and maturity categories.

An alternative to the use of relative spreads as an illiquidity measure is Amihud’s (2002)

illiquidity measure, the price impact value, which is also considered by Bongaerts et al.

(2010). We construct this measure for options as follows: For each day and for each option

category we compute the average return and the average dollar volume across all available

contracts. Dollar volume is computed as the bid-ask midpoint multiplied by trading volume.

We then compute the ratio of the absolute return to the dollar volume for each day and

average it for each week. This is similar Amihud’s (2002) implementation, with the difference

that we construct a weekly rather than a monthly measure.

Table 3 reports summary statistics for Amihud’s illiquidity measure. Across option cat-

egories, OTM options have the highest price impact value. This is consistent with the

evidence on relative spreads in Table 2, which shows that OTM options are most illiquid.

Among other categories, similar to Table 2, ITM options are the least illiquid and ATM

options are in between. The cross-sectional correlation between Amihud’s price-impact mea-

sure and relative quoted bid-ask spreads ranges between 0.20 and 0.33 (not reported). This

9To put the magnitudes of these relative spreads in perspective, the average dollar spread in our sample
is 22.9 cents for calls and 23.8 cents for puts. This is very similar to the 21.3 cent average dollar spread
reported by Vijh (1990).
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is comparable to the evidence presented in Goyenko et al. (2009) for stocks.

For our purpose, the disadvantage of Amihud’s (2002) price impact measure is that

our empirical investigation uses daily and weekly returns on options, because constructing

monthly option returns is much less straightforward. Goyenko, Holden, and Trzcinka (2009)

argue against aggregating Amihud’s (2002) price impact measure at lower than monthly

frequencies, on the grounds that it yields a noisy estimate of illiquidity. We therefore use

the relative spreads for our main results. Nevertheless, we replicate our main results using

Amihud’s (2002) measure, and we obtain qualitatively similar results. These results are

available from the authors on request.

Trading volume and open interest are sometimes used as illiquidity measures. Table 3

reports on option trading volume and open interest. Table 3 shows that, as is well-known in

the empirical option valuation literature, open interest and volume are highest for ATM and

OTM options and lower for ITM options. So, while ITM options are the cheapest to trade in

a relative bid-ask sense, which is our measure of liquidity, the ATM and OTM options have

the highest trading volume. This is consistent with existing literature, which suggests that

volume is not informative about illiquidity in option markets. For instance, Mayhew (2002)

argues that an option can be liquid even if it has low trading volume. This may occur if other

options on the same stock are actively traded. In that case it is easy for a market maker to

hedge the low-volume option with actively traded options at other strikes and maturities,

as well as to hedge calls with puts and vice versa. Therefore, when thinking of illiquidity

in terms of trading costs, one should not expect an obvious relationship between illiquidity

and trading volume in option markets. The apparent incongruity between option volume

and trading cost also has interesting parallels to the literature on stock market liquidity.

Pastor and Stambaugh (2003) discuss the October 19, 1987 crash when the NYSE set a

record in trading volume but where the stock market was highly illiquid from a trading cost

perspective.

The right-most column in Table 2 shows that in our sample, stocks are on average sub-

stantially more liquid than options. The average relative bid-ask spread for stocks is 0.26%

in our sample. This is lower than most estimates reported in the literature, which is due

to the fact that our sample is limited to S&P500 firms, which are the most liquid. Panel

A of Table 2 also indicates that option illiquidity is substantially more volatile than stock

illiquidity.

Figure 2A depicts the evolution of our call illiquidity measure over time for all six option

categories, and Figure 2B does the same for put illiquidity. For all six option categories,

we report the average of the liquidity measure. Option illiquidity clearly declines over the

sample period, but not in a monotonic fashion. As in Pastor and Stambaugh (2003), we see

11



occasional large spikes in the illiquidity measures. The largest spike took place on September

17-18, 2001, which were the first days of trading after the September 11 attacks. Smaller

spikes occur towards the end of the sample as the credit crisis gets underway.

The top panel of Figure 3 plots stock illiquidity over time. Stock illiquidity clearly

decreases over time, which the literature attributes to decreases in tick size, the increase in

electronic trading, and decimalization. There are illiquidity spikes associated with the 1997

Asian crisis, the 1998 LTCM collapse, 9/11, and the WorldCom bankruptcy in 2002.

In order to put our liquidity data into perspective, Figure 3 also plots the S&P500 index

level (middle panel) and the VIX volatility index from the CBOE (bottom panel). The

inverse relationship between market returns and volatility, the so-called “leverage effect”is

evident when comparing the S&P500 level with VIX. Figure 3 also shows some evidence of

dependence between spikes in stock illiquidity and spikes in the VIX.

Panels B and C of Table 2 show that option illiquidity has a sizeable positive correlation

with stock market illiquidity for all option categories, with somewhat higher correlations

for call options. This finding suggests co-movement between illiquidity in the two markets.

Table 2 also indicates that the illiquidity of OTM call and put contracts is substantially

more volatile than the other categories. Illiquidity of OTM short-term calls and puts is

highly correlated, at 0.59 (not reported in Table 2). This supports the findings of George

and Longstaff (1993), who suggest that traders regard call and put options as substitutes

(via put-call parity) with trading activity in calls and puts being positively related to the

bid-ask spreads in calls and puts.

3.3 Other Variables

We obtain daily stock returns, prices, and the number of outstanding shares from CRSP.

Weekly stock returns are compounded from daily returns. Data on long-term debt and the

par value of preferred stock, which are used to compute firm leverage, are from Compustat.

The S&P 500 constituents are also from Compustat. The returns on the Fama-French and

momentum factors are from Ken French’s online data library.

4 Illiquidity and the Cross-Section of Option Returns

We investigate the cross-sectional relationship between option illiquidity and expected op-

tion returns. We proceed by running daily and weekly cross-sectional regressions, and sub-

sequently testing the significance of the time-series means of the estimated coeffi cients, as in

Fama and MacBeth (1973).
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4.1 Computing Adjusted Option Returns

Variations in the price of the underlying security are by far the biggest determinant of returns,

and it is important to account for this when analyzing determinants of option returns as we

showed in equation (2.2). The common practice in the literature is to use delta-hedged option

returns. While this transformation is appropriate for studying factors affecting option returns

other than illiquidity, it creates a bias when testing the effect of illiquidity on option returns.

In particular, Cetin, Jarrow, Protter and Warachka (2006) show that in a Black-Scholes

economy with frictions, hedging does not eliminate the risk of the underlying stock. The

hedging error due to the illiquidity of the underlying stock inflates option prices. Therefore,

using delta-hedged returns biases our test results for stock illiquidity. We instead proceed

as follows: we first run a cross-sectional regression of option returns on the returns of the

underlying stock and their lagged values. We also include squared stock returns to control

for the nonlinear dependence between the two variables

RO
i,t = δ0,t + δ1,tR

S
i,t + δ2,tR

S
i,t−1 + δ3,t

(
RS
i,t

)2
+ εi,t, i = 1, 2, ...

and we refer to the residuals plus the intercept from these regressions as adjusted option

returns, which we denote

R̃O
i,t = δ̂0,t + ε̂i,t

Below, we regress these adjusted option returns cross-sectionally on the illiquidity measures

and a number of control variables.10

4.2 Capturing Liquidity Effects

Our treatment of illiquidity as an explanatory variable in the cross-section follows Amihud’s

(2002) investigation of expected stock returns, which is in turn inspired by the analysis of

French, Schwert, and Stambaugh (1987). Table 2 reports average estimates of the first-

order autocorrelation of individual illiquidity. The estimated values of ρ (1) clearly indicate

a rather persistent process, in line with the results for stock illiquidity reported by Amihud

(2002).

We compute the lagged illiquidity measure, ILOi,t−1, as described in Section 3, for every

firm in the sample and use it as a measure of expected liquidity.11 Following Amihud (2002)

10For robustness we also run the regressions in one step, i.e. we control for stock return, lagged stock
return and squared stock return on the right hand side together with the other control variables. The results
are qualitatively similar, but obviously the regression R-square is much higher.
11The illiquidity measure, ILOi,t−1, described in Section 3, is based on the contracts available at time

t− 1. However, only contracts with returns available at time t are considered in the computation of ILOi,t−1,
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and French, Schwert, and Stambaugh (1987), we use ex-post realized returns as a measure of

expected returns. We run cross-sectional regressions of returns between times t− 1 and t on

the liquidity measure at time t − 1; we also run similar regressions controlling for multiple

other return determinants.

Since the illiquidity of the underlying asset can affect trading activity in the option

markets via hedging pressures, we also include our measure of stock illiquidity ILSi,t−1.

4.3 Control Variables

We use a number of control variables in the liquidity regressions. To account for stale prices

in the daily data, we include the lagged adjusted option return RO
i,t−1 in the regression.

Another important determinant of expected option returns is volatility, as we showed in

equation (2.3). We estimate historical volatility from the daily stock return data using a

simple GARCH(1, 1) model:

RS
i,t = µi + σi,t−1zi,t (4.1)

σ2i,t = α0,i + α1,iσ
2
i,t−1 + α2,iσ

2
i,t−1z

2
i,t−1 (4.2)

where RS
i,t is the stock return, µi is the conditional mean, σ

2
i,t is the conditional variance,

and zi,t is a standard normal i.i.d. innovation.

Duan and Wei (2009) argue that the proportion of systematic risk affects the prices of

individual options, and therefore option returns. We thus include bt−1 in the regression,

which is the square root of the R-square from the regression of stock returns on the Fama-

French and momentum factors. Following Duan and Wei (2009), we obtain daily estimates

of bt−1 by using one-year rolling windows to run daily OLS regressions of the excess stock

returns on the standard four equity factors (the market, size and book-to-market factors

from Fama and French, 1993, and the momentum factor from Carhart, 1997). Furthermore,

we control for firm-specific characteristics such as size and leverage which have been shown

to affect the distribution of options prices, see for instance Dennis and Mayhew (2002) and

Duan and Wei (2009). Following Duan and Wei (2009),we measure size using the natural

logarithm of the firm’s market capitalization. We define leverage as the sum of long-term

debt and the par value of the preferred stock, divided by the sum of long-term debt, the par

value of the preferred stock, and the market value of equity.

ensuring consistency between returns and illiquidity used in the regressions. As a robustness check, we repeat
the tests using illiquidity based on all contracts, and the results are qualitatively very similar.
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4.4 Firm-Level Results using Daily Returns

Our most general cross-sectional regression is motivated by the theoretical model in Bon-

gaerts, de Jong and Driessen (2010), as discussed in equation (2.4) in Section 2. We run

this regression with and without the control variables discussed above. The most general

regression we consider is given by

R̃O
i,t = αt+β1,tR̃

O
i,t−1+β2,tIL

O
i,t−1+β3,tIL

S
i,t−1+β4,tσi,t−1+β5,tbi,t−1+β6,t ln(sizei,t−1)+β7,tlevi,t−1+εi,t

(4.3)

We run this cross-sectional regression on every day t using all firms available for a given

moneyness/maturity category, and subsequently compute the time-series averages of the esti-

mated coeffi cients.12 These averages are reported in Table 4. To control for serial correlation,

the Fama-MacBeth (1973) t-statistics are corrected according to the Newey and West (1987)

procedure using twenty-two lags for daily data.

Panel A of Table 4 reports the results for daily call option returns for all money-

ness/maturity categories, and Panel B reports on put options. For call contracts, option

illiquidity ILOi,t−1 significantly predicts higher option returns the next day at the 1% sig-

nificance level, across all maturity and moneyness categories. The coeffi cient on ILOi,t−1 is

statistically significant when ILOi,t−1 is the only regressor, but also when including the control

variables as in (4.3). Moreover, the ILOi,t−1 coeffi cient is not much affected when including

the control variables. This suggests that option illiquidity is an independent determinant

of option returns, and that its effect is not captured by other well-known determinants of

option returns.

Ignoring option illiquidity is tantamount to overestimating option prices. The effect is

also economically significant. For example, for OTM short-term options, the coeffi cient on

ILOi,t−1 is 0.062. Table 2 indicates that the standard deviation for OTM short-term call option

illiquidity is 0.191. Therefore, a two standard deviation positive shock to OTM short-term

call option illiquidity would result in a 2.37% increase in the next-day return on the call

option. This is a significant magnitude for daily changes in prices. The coeffi cient on ILOi,t−1
is higher for short-term contracts than for long-term contracts, implying that the illiquidity

impact is especially pronounced for short-term options. Short-term OTM contracts have the

highest illiquidity risk.

The positive predictive effect of option illiquidity on expected option returns is consistent

with existing findings on the effect of stock illiquidity on stock returns (Amihud, 2002).

The positive contemporaneous illiquidity shock decreases current prices and thus increases

12In all our tests, we require at least 30 firm-observations with all data available for each time t (day or
week or month) to run a cross-sectional regression.
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the expected return over the next period. Option markets are characterized by a positive

illiquidity premium, because buyers of illiquid contracts seek higher expected returns.

These results have implications for the option valuation literature. Bakshi, Kapadia and

Madan (2003) and others find that S&P500 index options are relatively more expensive than

individual equity options, particularly in the case of short-term and OTM options: Index

options display much larger risk-neutral kurtosis, (negative) skewness and volatility than

equity options. This is regarded as somewhat of a puzzle because an index is a portfolio

of equities and so one would expect index options to display less evidence of nonnormality

than individual equity options. Our results suggest that this valuation difference could be

driven by differences in liquidity. Index options are well-known to be much more liquid than

individual equity options. Thus individual equity option prices are relatively more depressed

by illiquidity than are index options. This is particularly true for short-term OTM options

where the difference in pricing between index and equity options is the greatest.

Our results also have implications for option trading. In the well-known dispersion trade

(see Driessen, Maenhout and Vilkov, 2009), investors sell index options, which are relatively

expensive, and buy a portfolio of (cheaper) equity options as a hedge. This trade is commonly

regarded as being driven mainly by correlation risk: When correlation increases, index options

become relatively more expensive, which is bad for the dispersion seller. Our results suggest

that this trade is also nontrivially exposed to liquidity risk because the equity options bought

are much less liquid than the index options sold.

The illiquidity of the underlying stock ILSi,t−1 has a negative effect on expected call option

returns, and this effect is statistically significant for all categories of short-term calls and for

long-term ITM calls. Given the positive coeffi cient on ILOi,t−1, the negative coeffi cient on

ILSi,t−1 is consistent with a hedging argument. When stocks become more illiquid, the higher

stock transaction costs will increase the cost of replicating the option, which will increase

the option price and reduce its expected return.

These results for short-term options are consistent with the evidence reported in Cetin,

Jarrow, Protter and Warachka (2006), who suggest ITM options are the least exposed to the

illiquidity of underlying stocks, since with ITM options most of the rebalancing of option

payoff replicating portfolios occurs only as the stock price decreases. This argument suggests

the largest effects for OTM options, where the replicating portfolio rebalancing occurs as

the stock price changes in either direction, with ATM options somewhere in between. The

coeffi cient on ILSt−1 is more negative for OTM options, -2.077, and the least negative for ITM

options, -0.428, with the coeffi cient for ATM options being in between, -0.873. For long-term

calls the effect of stock illiquidity is less pronounced. Our estimate of -2.077 implies that a

two standard deviation shock to stock illiquidity results in a 87 basis point change next day
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for short-term out of the money call returns. Therefore, while the effect of stock illiquidity on

call returns is small compared to that of option illiquidity, it is still economically meaningful.

Among other variables, the effect of the lagged option return R̃O
i,t−1 is negative and

significant, which indicates negative mean reversion in option returns, consistent with the

evidence on stock returns at the daily frequency. The volatility of the underlying also has a

negative and significant effect on expected option returns. This finding is consistent with an

option pricing model allowing for stochastic volatility and negative volatility risk premium

(e.g. Heston, 1993). As discussed in Section 2, in a stochastic volatility model, the expected

option return, E
[
RO
]
, is negatively related to volatility through the positive option vega,

∂O
∂σ
, and the negative price of volatility risk, λ, as in equation (2.3), which we repeat here for

convenience

E
[
RO
]

=

(
r + (E

[
RS
]
− r)S

O

∂O

∂S
+ λ

σ

O

∂O

∂σ

)
dt (4.4)

Further, the proportion of systematic risk, bi.t−1, is typically small and insignificant. Among

firm-specific characteristics, size exhibits a strong influence while leverage is typically in-

significant.

For the put options in Panel B, we obtain similar results for option illiquidity ILOt−1, which

positively predicts next period put returns. This effect is significant across all moneyness and

maturity categories in the univariate regression, but also when controlling for other variables.

Also confirming the results for call options, the effect of put illiquidity on expected put returns

is more pronounced for the short-term contracts compared to the long-term contracts. For

example, the coeffi cient on ILOi,t−1 for OTM short-term contracts is 0.048, almost twice the

coeffi cient for the long-term contracts, which is 0.023. In economic terms, the coeffi cient of

0.043 implies that a two standard deviation shock to OTM short-term put illiquidity results

in a 1.61% change in the next day put return. This is also an economically meaningful

number.

The results for stock illiquidity are also quite robust for the put options. The coeffi cient

on ILSi,t−1 is negative in all six categories and significant in four of six categories.

The total risk σi,t−1 has a significant impact on put returns across all moneyness and

maturity categories, whereas the effect from the share of systematic risk, bt−1, is small and

insignificant. Among other firm characteristics, size and leverage also seem to affect put

returns, consistent with the evidence in Dennis and Mayhew (2002).

We verified the robustness of the results in Table 4 by using raw option returns and

including current and lagged stock returns as regressors. This yields very similar results for

the variables of interest. The resulting R-squares are of course much higher, as the stock

return explains a significant part of the variation in option returns.
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4.5 Firm-Level Results using Weekly Returns

Daily prices may be subject to problems such as stale quotes and microstructure noise.

Table 5 therefore repeats the exercise from Table 4 using weekly data. To control for serial

correlation, the Fama-MacBeth (1973) t-statistics are corrected according to the Newey and

West (1987) procedure using eight lags. We classify the options as OTM, ATM, or ITM,

as well as short-term and long-term according to their average delta and maturity over the

week. The weekly results reported in Panel A of Table 5 for call options confirm the results

from Panel A of Table 4. The coeffi cients on lagged option illiquidity, ILOi,t−1, are robustly

positive, and the estimates are statistically significant. The coeffi cients on lagged stock

illiquidity, ILSi,t−1, are negative and statistically significant. This is true for the univariate

as well as the multivariate regressions.

The evidence on weekly put returns in Panel B of Table 5 also broadly confirms the

results from daily returns in Panel B of Table 4. Option illiquidity is significantly positively

related to option returns in four of the six categories in the multivariate regression. Stock

illiquidity is strongly negatively related with option returns for all categories.

Overall, the evidence in Tables 4 and 5 documents a statistically and economically sig-

nificant impact of option illiquidity on expected option returns. This effect is similar to

the effect of stock illiquidity on expected stocks returns (Amihud, 2002) and suggests a

positive illiquidity premium in equity option markets. The call option results are robust

to controlling for lagged option returns, stock returns, and stock volatility, as well as stock

illiquidity and firm-specific characteristics. Moreover, the illiquidity of the underlying stock

has a significantly negative impact on expected call and put option returns.

4.6 Portfolio Results

In the regression approach used in Tables 4 and 5, noise in returns on individual option

contracts may weaken inference. It is therefore of interest to confirm the results using

different empirical techniques. A simple alternative approach is to sort firms in liquidity

portfolio baskets, and investigate the resulting patterns in portfolio returns. This portfolio

approach can reduce the noise in returns on individual contracts. Panel A of Table 6 presents

portfolio results for daily call returns, and Panel B for daily put returns. Table 7 presents

results for weekly data. At time t − 1 (day or week) all options are sorted into liquidity

deciles. Subsequently we compute the average option return, stock return, illiquidity and

market capitalization for each decile portfolio at time t.

Consistent with the liquidity premium hypothesis, option returns are monotonically in-

creasing from the most liquid decile portfolio to the most illiquid decile portfolio for both

18



calls and puts. For the call options in Panel A, stock returns are increasing across decile

portfolios, for daily as well as weekly data; for the put options in panel B, stock returns

are decreasing across decile portfolios, as expected. Consistent with liquidity co-movement

between stock and option markets, stock illiquidity monotonically increases with option illiq-

uidity for both calls and puts, for weekly as well as daily data. It is also seen that the more

illiquid firms are on average smaller.

We can use portfolios to investigate whether returns on different horizon investments out-

weigh the substantial transaction costs. Similar to Amihud and Mendelson (1986), we com-

pute returns net of transaction costs, using the bid and ask quotes. The net return RO
net-Long

is computed as (bidt−askt−1)/askt−1 and RO
net-Short is computed as (-askt+bidt−1)/bidt−1.

Not surprisingly, the net returns after-trading costs for both long and short option posi-

tions are negative, clearly indicating that at short horizons liquidity premia are absorbed by

market frictions.

5 Illiquidity and Implied Volatility

In Section 4, we study the impact of option illiquidity on the cross-section of option returns.

This is a natural starting point, because it is straightforward to build intuition for illiquidity’s

expected effects on returns. The existing literature on illiquidity in bond and stock markets

also investigates the effects of illiquidity on returns, and provides a natural reference point.

However, there are some obvious differences between the analysis of options markets and

stock markets, and we have to keep these in mind when interpreting our results. Most

importantly, even though an analysis of the effect of illiquidity on stock returns also needs to

control for other return determinants, in the case of option returns an overriding concern is

that the return on the underlying is the first-order determinant of option returns (see equation

(2.2)). As explained above, we control for this in our empirical work in Section 4 by either

using the residuals from a regression on stock returns in our analysis, or alternatively by

including stock returns in the regression. But it is worthwhile to investigate if our results

are robust to an alternative empirical setup.

For equity options, an alternative approach is provided by the analysis of implied volatil-

ities. This is interesting from two perspectives. First, the analysis of implied volatilities is

well-established in the option literature. In fact, the importance of some of the control vari-

ables used in (4.3) was previously demonstrated in the context of the study of the structure

of implied volatilities, see for instance Bakshi, Kapadia, and Madan (2003) and Duan and

Wei (2009). Deuskar, Gupta, and Subrahmanyam (2011), who study the effect of liquidity on

bond options, exclusively use implied volatilities as left-side variables, presumably because
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of potential problems with the analysis of returns. Second, because the structure of implied

volatilities can simply be thought of as a (nonlinear) transformation of the structure of option

prices, its analysis can be easily linked to the illiquidity literature, which often presents its

arguments in terms of prices rather than returns. For example, Amihud (2002) investigates

the hypothesis that higher expected liquidity raises expected returns, which lowers prices,

assuming that liquidity does not affect corporate cash flows.

We therefore investigate whether option illiquidity affects the structure of implied volatil-

ities. Following Duan and Wei (2009), we investigate several aspects of the implied volatility

curve by first estimating the following model for each firm i for each moneyness and maturity

category used in Section 4

ivi,t(χk, Tk) = κi,t + θi,t(χk − χ̄k) + ηi,t(Tk − T̄k) + uki,t, k = 1, 2, ..., K (5.1)

where ivi.t(χk, Tk) is the implied volatility for option k with maturity Tk and moneyness

χk defined as the strike price over the stock price at time t. To ensure that suffi cient

contracts are available, we run the regression every month. Implied volatility and option

characteristics are provided by Ivy DB OptionMetrics. We include only months with more

than ten contracts available. T̄k and χ̄k are the average time to maturity and moneyness,

respectively, for each category. Using these regressions, we obtain for each firm i a monthly

time series κi,t which corresponds to the estimated level of implied volatility, and a monthly

time series θi,t which corresponds to the estimated moneyness slope of the implied volatility.

We define κ̃i,t as the residuals plus the intercept from the cross-sectional regression of κi,t
on the monthly volatility, estimated by the square root of the sum of squared daily returns

for the month. This is needed in order to eliminate the first-order determinant of implied

volatility, similar to the use of adjusted option returns in Section 4.

Using both call and put contracts, we first estimate the illiquidity impact on the level

of implied volatility by running monthly cross-sectional Fama-MacBeth regressions for the

following model

κ̃i,t = a0,t + a1,tIL
O
i,t + a2,tIL

S
i,t + a3,tR

S
i,t + a4,tbi,t + a5,t ln(sizei,t) + a6,tlevi,t + εki,t (5.2)

where RS
i,t is the firm’s stock return, IL

O
i,t is the average for the month of daily option illiq-

uidity, and ILSi.t is the dollar-volume weighted average of daily stock illiquidity, respectively.

The proportion of systematic risk averaged throughout the month is denoted by bi,t and

defined as in Duan and Wei (2009). To capture size we use the last daily observation each

month and to capture leverage we use the observation available in the previous quarter. As

in Section 4, the regression is run using all firms available for a given moneyness/maturity
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category.

Table 8 presents the results of this approach for calls and puts respectively. Option

illiquidity ILOt negatively affects the level of implied volatility at the 1% significance level

across all moneyness and maturity categories. These results are consistent with the positive

predictive impact of option illiquidity ILOt−1 on option returns in Tables 4 and 5. An in-

crease in illiquidity decreases current prices, and therefore also the level of implied volatility,

and increases expected option returns. Moreover, stock illiquidity, ILSt , has a positive and

significant impact on the level of implied volatility, which is also consistent with the results

in Tables 4 and 5, and with a hedging argument. An increase in stock illiquidity facilitates

trading in options to hedge long/short positions in more illiquid stocks. This causes an in-

crease in contemporaneous option prices, i.e. the level of implied volatility. These findings

suggest illiquidity spillovers between stock and option markets. Overall, we observe a strong

and statistically significant effect of both option illiquidity and stock illiquidity on the level of

implied volatility across all option categories. The robustness of this effect across all option

categories suggests a systematic impact of illiquidity on option prices.

We next examine the effect of option illiquidity on the moneyness slope of the implied

volatility curve. It is well known that the data exhibit a smile or smirk in the moneyness

dimension, implying that the slope is sometimes negative and sometimes positive. We test

the hypothesis that illiquidity increases the absolute value of the slope by estimating

|θi,t| = c0,t + c1,tIL
O
i,t + c2,tIL

S
i,t + c3,tR

S
i,t + c4,tbi,t + c5,t ln(sizei,t) + c6,tlevi,t + εki,t (5.3)

where θi,t is obtained from equation (5.1).

Table 9 reports the regression results. Option illiquidity ILOt significantly increases the

implied volatility moneyness slope, while the effect of stock illiquidity ILSt is less robust.

Overall, the results of Tables 8 and 9 suggest that option illiquidity is an important

determinant of the structure of implied volatilities. Stock illiquidity is also an important

determinant of the level and slope of implied volatility.

6 Option Illiquidity: Time Series Evidence

The cross-sectional results in Sections 4 and 5 provide substantial evidence of the importance

of both option and stock illiquidity for option returns at the firm level. We now present

time series evidence for portfolios. Portfolio-level time-series evidence can potentially yield

additional insights as firm-specific risks are largely diversified away in this case. We use

the time-series framework of French, Schwert, and Stambaugh (1987) and Amihud (2002).
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Conducting portfolio-level time series analyses is more involved for options than for stocks.

We proceed as follows. For each firm i and for each period t, we compute the option return

RO
i,t as the equally-weighted average return in (3.1) for all eligible contracts available at time

t. For these contracts we also compute the average illiquidity at time t, denote it ILi,t.

Some contracts are not available at both times t − 1 and time t, due to the data filters.

Therefore, the illiquidity at time t− 1 is only computed for the option contracts with quotes

available to compute their returns at time t, which ensures that RO
i,t, ILi,t and ILi,t−1 are

based on the same contracts. As in the cross-sectional regressions, we adjust option returns

for variation in the price and volatility of the underlying stock. We do so by regressing the

raw option return on the current and lagged stock return and squared stock return and using

the residuals from this regression instead of the raw option returns.

Then, as in Section 4.6, we rank the returns into deciles based on ILi,t−1, and for each

decile, we compute the equally weighted average of RO
i,t, ILi,t and ILi,t−1. We also compute

the equally weighted average of lagged stock illiquidity ILSi,t−1 for each decile portfolio.

We are interested in the time series dynamics of the effect of option illiquidity on option

returns at the portfolio level. Following the methodology in Amihud (2002), we test the

predictive power of option illiquidity on option returns as well as the effect of a contem-

poraneous and unexpected shock to option illiquidity on option returns. We estimate the

illiquidity shock of each decile, j, in the following time series regression in logarithms, using

weekly data:

ln (ILj,t) = ωj,0 + ωj,1 ln
(
ILj,t−1

)
+ vILj,t (6.1)

We use the residuals from this regression as a proxy for unexpected shocks to option illiquid-

ity, defined as ILuj,t ≡ vILj,t . The effect of option illiquidity on option returns is subsequently

estimated for each decile portfolio using the following regression

R̃O
j,t = γ0 + γ1 ln

(
IL′j,t−1

)
+ γ2IL

u
j,t + γ3 ln

(
ILSj,t−1

)
+ vj,t (6.2)

Based on our cross-sectional findings, we expect γ1 to be positive and significant. More-

over, we expect γ1 to monotonically increase from less illiquid to more illiquid portfolios

since we expect the illiquidity impact to be higher for more illiquid assets, similar to Ami-

hud’s (2002) findings for stocks. Given that lagged illiquidity has a positive impact, the

contemporaneous unexpected shock should have a negative effect on option returns, i.e. an

unexpected positive illiquidity shock should decrease current option prices and thus increase

expected option returns. Similar to the evidence on the impact of illiquidity on stock market

returns (Amihud, 2002), we also expect the effect of γ2 to be stronger, i.e. more negative,

for more illiquid portfolios.
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Finally, the expected sign for the effect of stock illiquidity on expected option returns

can be motivated by the discussion in Cetin et al (2006). A positive illiquidity shock in the

stock market increases the cost of the replicating portfolio and therefore increases the current

option price. Since options become more expensive for more illiquid stocks, the expected

return on these options decrease. Moreover, they decrease more for more illiquid options.

We therefore expect γ3 to be negative.

The illiquidity portfolio level results for all option categories are reported in Table 10.

The results are more pronounced for the call options reported in Panel A. For both short-

term and long-term OTM calls, γ1 is positive and significant and increases with portfolio

illiquidity. This coeffi cient is higher for short-term contracts, suggesting higher illiquidity

premia for short-term calls. The unexpected illiquidity has a significantly negative effect on

short-termOTM calls and the magnitude of this effect is monotonically increasing in portfolio

illiquidity. This is similar to the effect of stock illiquidity on stock returns (Amihud, 2002).

The unexpected illiquidity shock is only significant for high-illiquidity portfolios and for long-

term OTM calls but its coeffi cient has the expected negative sign and monotonically increases

in absolute value with portfolio illiquidity. The results on option illiquidity are qualitatively

similar across ATM and ITM short-term and long-term contracts, but the effect is more

pronounced for short-term contracts. This is consistent with Amihud and Mendelson’s (1986)

clientele effect, where the holders of longer term assets are able to amortize illiquidity costs

due to longer holding periods and thus require lower compensation for bearing illiquidity

costs. This assumes of course that long-term options are indeed held for longer periods on

average.

We obtain similar results for put options in Panel B, but with the exception of OTM

put options, the results for call options are stronger in terms of magnitude and significance

than for put options. Even though the two are linked via put-call parity, for ATM and

ITM contracts, call options appear to be more exposed to illiquidity in the option and stock

markets.

Finally, we find that stock illiquidity has a negative and significant impact on expected

option returns across both calls and puts and for different maturity and moneyness categories.

The pattern of γ3 across illiquidity portfolios is not monotone. It is higher in absolute value

for medium-illiquidity portfolios and lower for extreme decile portfolios. This suggests that

even though stock illiquidity does affect option returns, it represents a different type of risk

than option illiquidity.
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7 Conclusion

We present evidence on illiquidity premia in equity option markets. Using cross-sectional and

time series evidence, we find an economically and statistically significant positive impact of

option illiquidity on expected option returns. The cross-sectional results obtain in univariate

regressions, as well as in multivariate regressions controlling for returns and volatility of the

underlying equity, lagged option returns, and a variety of other variables. The results are

robust across six different moneyness and maturity categories, and estimates obtained using

the cross-section of implied volatilities confirm the positive impact of option illiquidity on

option returns. Our results are similar to the findings of Amihud (2002), who reports a

positive effect of stock illiquidity on stock returns. A shock to option illiquidity decreases the

current price and increases expected option returns, thus compensating traders for holding

illiquid contracts.

The illiquidity of the underlying stocks also has an economically significant impact on

option returns. A positive shock to stock illiquidity increase current option prices and de-

creases expected option returns. This effect is consistent with an increase in hedging trades

due to higher stock illiquidity: Whenever stock market illiquidity increases, the higher stock

transaction costs increase the cost of replicating the option, which in turn increases the

option price and reduces its expected return.
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Figure 1A 
Daily Call Option Returns 

We plot daily returns on equally-weighted portfolios of call options. Option returns are computed from closing bid-
ask price midpoints. For call options, OTM (out-of-the-money) corresponds to 0.125 < 𝛥 ≤ 0.375, ATM (at-the-
money) corresponds to 0.375 < 𝛥 ≤ 0.625, and ITM (in-the-money) corresponds to 0.625 < 𝛥 ≤ 0.875.  Short-
term options have maturities between 20 and 70 days, whereas long-term options have maturities between 71 and 
180 days. The option data are from Ivy DB OptionMetrics. The sample includes the S&P 500 constituents as of 
December 31, 2007 for which options trade throughout the entire sample period, which is from January 1996 
through December 2007.  
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Figure 1B 
Daily Put Option Returns 

We plot daily returns on equally-weighted portfolios of put options. Option returns are computed from closing bid-
ask price midpoints. For put options, OTM (out-of-the-money) corresponds to −0.375 < 𝛥 ≤ −0.125, ATM (at-
the-money) corresponds to −0.625 < 𝛥 ≤ −0.375, and ITM (in-the-money) corresponds to −0.875 < 𝛥 <
−0.625. Short-term options have maturities between 20 and 70 days, whereas long-term options have maturities 
between 71 and 180 days. The option data are from Ivy DB OptionMetrics. The sample includes the S&P 500 
constituents as of December 31, 2007 for which options trade throughout the entire sample period, which is from  
January 1996 through December 2007. 
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Figure 2A 
Aggregate Illiquidity for Call Options  

We plot aggregate daily illiquidity measures for call options. The illiquidity measure is based on the average relative 
bid-ask spread, where ask and bid are end-of-day closing quoted ask and bid prices available from Ivy DB 
OptionMetrics. The sample includes the S&P 500 constituents as of December 31, 2007 for which options trade 
throughout the entire sample period, which is from January 1996 through December 2007. 
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Figure 2B 
Aggregate Illiquidity for Put Options  

We plot aggregate daily illiquidity measures for put options. The illiquidity measure is based on the average relative 
bid-ask spread, where ask and bid are end of day closing quoted ask and bid prices available from Ivy DB 
OptionMetrics. The sample includes the S&P 500 constituents as of December 31, 2007 for which options trade 
throughout the entire sample period, which is from January 1996 through December 2007. 
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Figure 3 
Aggregate Stock Illiquidity, S&P 500 Index, and VIX 

We plot the aggregate stock illiquidity measure, the level of S&P 500 index, and the VIX. Stock illiquidity is 
estimated from TAQ (Trade and Quote) intra-day data as the dollar-volume-weighted average of effective relative 
spreads for each day. The sample period is from January 1996 through December 2007. 
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Table 1 
Descriptive Statistics 

We provide descriptive statistics for daily and weekly option returns. First we compute the descriptive statistics for 
each firm and then we take the cross-sectional averages of these statistics. We report the mean (in percentages), the 
standard deviation, the skewness, the kurtosis, the first-order autocorrelation of returns 𝜌(1), and the first-order 
autocorrelation of absolute value of returns, 𝜌𝑎𝑏𝑠(1). The option returns are computed using closing bid-ask price 
midpoints. OTM (out-of-the-money) corresponds to 0.125 < 𝛥 ≤ 0.375 for calls and −0.375 < 𝛥 ≤ −0.125 for 
puts. ATM (at-the-money) corresponds to 0.375 < 𝛥 ≤ 0.625 for calls and −0.625 < 𝛥 ≤ −0.375 for puts. ITM 
(in-the-money) corresponds to 0.625 < 𝛥 ≤ 0.875 for calls and −0.875 < 𝛥 ≤ −0.625 for puts.  Short-term 
options have maturity between 20 and 70 days, whereas long-term options have maturity between 71 and 180 days. 
The option data are from Ivy DB OptionMetrics. The sample includes the S&P 500 constituents as of December 31, 
2007 for which options trade throughout the entire sample period, which is from January 1996 through December 
2007. 
 

 Short-term Long-term 
 OTM ATM ITM OTM ATM ITM 
Daily Call Returns 
Mean 1.740 0.496 0.173 0.864 0.414 0.258 
Std 0.361 0.256 0.177 0.217 0.157 0.110 
Skew 2.941 1.347 0.742 1.940 1.107 0.667 
Kurt 34.621 10.487 8.044 22.097 12.518 12.997 
𝜌(1) -0.009 -0.005 -0.011 -0.013 -0.009 -0.009 
𝜌𝑎𝑏𝑠(1) 0.061 0.065 0.082 0.087 0.093 0.105 
Avr. Nb. Firms 221 213 236 262 291 300 
Daily Put Returns 
Mean -0.137 -0.460 -0.643 -0.138 -0.199 -0.229 
Std 0.313 0.227 0.166 0.175 0.129 0.098 
Skew 4.039 1.466 0.645 3.555 1.411 0.748 
Kurt 74.910 17.852 9.315 86.911 22.639 14.844 
𝜌(1) -0.001 -0.002 -0.010 0.001 0.000 -0.002 
𝜌𝑎𝑏𝑠(1) 0.065 0.065 0.073 0.086 0.087 0.087 
Avr. Nb. Firms 232 199 194 301 274 227 
Weekly Call Returns 
Mean 10.020 2.572 0.172 4.287 1.975 1.148 
Std 0.887 0.581 0.380 0.497 0.344 0.238 
Skew 3.213 1.616 0.803 2.257 1.248 0.658 
Kurt 22.379 8.766 5.273 16.497 8.249 5.537 
𝜌(1) 0.003 -0.008 -0.022 -0.011 -0.025 -0.035 
𝜌𝑎𝑏𝑠(1) 0.019 0.013 0.020 0.032 0.031 0.039 
Avr. Nb. Firms 244 243 260 280 306 312 
Weekly Put Returns 
Mean -0.874 -3.585 -4.627 -1.072 -1.363 -1.572 
Std 0.739 0.508 0.357 0.398 0.284 0.212 
Skew 3.668 1.713 0.796 2.980 1.354 0.722 
Kurt 31.715 10.998 5.584 31.259 10.487 6.780 
𝜌(1) 0.015 0.011 0.002 0.005 -0.006 0.003 
𝜌𝑎𝑏𝑠(1) 0.034 0.023 0.014 0.052 0.039 0.041 
Avr. Nb. Firms 252 229 220 311 290 245 



Table 2 
Illiquidity Measures 

We present summary statistics for the illiquidity measures in percentages (in Panel A) and the correlations between 
the illiquidity measures for call and put options (in Panels B and C respectively). Stock illiquidity 𝐼𝐿𝑆 is estimated 
from TAQ (Trade and Quote) intra-day data as the dollar-volume weighted average of the effective relative spread 
for each day. The option illiquidity measure 𝐼𝐿𝑂 is based on the average relative bid-ask spread, where ask and bid 
are end-of-day closing quoted ask and bid prices available from Ivy DB OptionMetrics. For each firm and for each 
day, we compute the average of the relative bid-ask spreads of all the available options in a given category, and then 
we take the mean, the minimum, the maximum, the standard deviation and the first-order autocorrelation, 𝜌(1),  of 
these averages. We report the cross-sectional averages of these statistics in Panel A. We compute the cross-sectional 
correlations between the illiquidity measures on each day and report the time-series averages of these correlations in 
Panel B for call options and Panel C for put options. The option data are from Ivy DB OptionMetrics. The sample 
includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire sample 
period, which is from January 1996 through December 2007. 

Panel A: Descriptive Statistics 
 Options   Stocks 

 Short-term Long-term    
 OTM ATM ITM OTM ATM ITM  
𝐼𝐿𝑡𝑂   for call options   𝐼𝐿𝑡𝑆 
Mean 34.02 12.97 7.86 22.67 9.48 6.05  0.26 
Min 3.89 2.18 1.56 2.74 1.78 1.23  0.03 
Max 123.40 48.33 30.85 91.45 35.35 22.54  3.85 
Std 19.10 6.10 3.32 12.25 3.96 2.33  0.21 
𝜌(1) 0.61 0.65 0.69 0.70 0.69 0.76  0.58 
 𝐼𝐿𝑡𝑂   for put options   
Mean 29.21 11.72 7.46 18.12 8.23 5.52   
Min 3.62 2.07 1.54 2.55 1.59 1.18   
Max 115.51 45.09 29.03 76.15 31.53 20.93   
Std 16.78 5.52 3.12 9.60 3.44 2.23   
𝜌(1) 0.67 0.69 0.68 0.77 0.74 0.75   

 
Panel B: Correlation Matrix for Call Options 

  𝐼𝐿𝑡𝑂      Short-term 𝐼𝐿𝑡𝑂     Long-term 
  OTM ATM ITM OTM ATM ITM 

𝐼𝐿𝑡𝑂  
Short-term 

ATM 0.66      
ITM 0.58 0.65     

𝐼𝐿𝑡𝑂  
Long-term 

OTM 0.58 0.62 0.60    
ATM 0.59 0.67 0.67 0.67   
ITM 0.64 0.70 0.74 0.67 0.74  

𝐼𝐿𝑡𝑆  0.24 0.25 0.26 0.30 0.26 0.29 
 

Panel C: Correlation Matrix for Put Options 
  𝐼𝐿𝑡𝑂      Short-term 𝐼𝐿𝑡𝑂     Long-term 
  OTM ATM ITM OTM ATM ITM 

𝐼𝐿𝑡𝑂  
Short-term 

ATM 0.69      
ITM 0.60 0.64     

𝐼𝐿𝑡𝑂  
Long-term 

OTM 0.69 0.69 0.64    
ATM 0.65 0.69 0.67 0.72   
ITM 0.64 0.67 0.70 0.70 0.75  

𝐼𝐿𝑡𝑆  0.23 0.21 0.20 0.24 0.22 0.19 



Table 3 
Descriptive Statistics for Volume, Open Interest and Amihud’s Illiquidity Measure  

We present summary statistics for option volume, open interest and Amihud’s Illiquidity measure for call options 
(Panel A) and put options (Panel B). For each firm and each day, we compute the average volume and open interest 
for all available options in a given category, and then we take the mean, the minimum, the maximum, the standard 
deviation and the first-order autocorrelation 𝜌(1) of these averages. We compute Amihud’s illiquidity measure on a 
weekly basis for each firm, and we take the mean, the minimum, the maximum, the standard deviation and the first-
order autocorrelation 𝜌(1) of these weekly measures. We report the cross-sectional averages of these statistics. The 
sample includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire 
sample period, which is from January 1996 through December 2007. 

 Panel A: Call Options 
 Short-term Long-term 
 OTM ATM ITM OTM ATM ITM 
Amihud’s Illiquidity Measure 
Mean 3.527 0.736 0.309 1.815 0.352 0.165 
Min 0.004 0.001 0.000 0.002 0.001 0.000 
Max 105.010 22.586 8.231 49.345 8.256 3.583 
Std 8.729 1.846 0.727 4.072 0.691 0.329 
𝜌(1) 0.077 0.126 0.107 0.117 0.156 0.118 
Volume       
Mean 198 271 108 88 114 34 
Min 0 0 0 0 0 0 
Max 10222 11246 8385 7004 8824 5261 
Std 516 633 364 294 365 171 
𝜌(1) 0.20 0.24 0.17 0.14 0.15 0.12 
Open Interest       
Mean 2295 2418 1743 2493 2587 1483 
Min 2 3 1 2 12 3 
Max 31024 30416 27355 27964 29252 22486 
Std 3586 3731 3164 3443 3541 2497 
𝜌(1) 0.84 0.85 0.86 0.89 0.91 0.89 

 
Panel B: Put Options 

 Short-term Long-term 
 OTM ATM ITM OTM ATM ITM 
Amihud’s Illiquidity Measure 
Mean 2.492 0.644 0.313 1.117 0.296 0.152 
Min 0.003 0.001 0.001 0.002 0.000 0.000 
Max 76.468 18.916 7.684 28.185 6.808 2.641 
Std 6.421 1.666 0.761 2.448 0.623 0.304 
𝜌(1) 0.072 0.100 0.084 0.100 0.112 0.087 
Volume       
Mean 141 151 59 56 54 16 
Min 0 0 0 0 0 0 
Max 9639 8598 5750 6309 6064 3045 
Std 433 441 242 233 231 99 
𝜌(1) 0.19 0.19 0.14 0.12 0.13 0.10 
Open Interest       
Mean 1689 1537 1075 1809 1580 940 
Min 2 1 1 7 2 1 
Max 27047 25244 20654 23298 22106 16473 
Std 2835 2725 2179 2757 2567 1811 
𝜌(1) 0.86 0.84 0.83 0.91 0.91 0.87 



Table 4 
Fama-MacBeth Regressions for Daily Adjusted Option Returns 

We report the results of cross-sectional Fama-MacBeth regressions for daily adjusted call and put option returns ( 𝑅� 𝑂), i.e. the residuals plus the intercept from 
the regression of option returns on stock returns, lagged stock returns and squared stock returns. We include the lagged values of the following regressors: option 
illiquidity 𝐼𝐿𝑂, the illiquidity of the underlying asset 𝐼𝐿𝑆, the conditional volatility, which is estimated using a GARCH(1,1) model, the systematic risk proportion 
b, which corresponds to the square root of the R2 from the regression of stock returns on Fama-French and momentum factors, and the logarithm of size and firm 
leverage. The option illiquidity measure 𝐼𝐿𝑂 is based on the average relative bid-ask spread, where ask and bid are end-of-day closing quoted ask and bid prices 
available from Ivy DB OptionMetrics. Stock illiquidity is obtained as the dollar-volume average of the effective relative spreads from TAQ. The sample includes 
the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire sample period, which is from January 1996 through December 
2007. The symbols *, † and ‡ denote, respectively, significance at the 10%, 5% and 1% levels using Fama-MacBeth t-statistics with Newey-West correction for 
serial correlation, using 22 lags.  

 Panel A: Call Options   Panel B: Put Options 
 Short-Term Long-Term  Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM  OTM ATM ITM OTM ATM ITM 
𝐼𝐿𝑡−1𝑂  0.062‡ 0.038‡ 0.046‡ 0.027‡ 0.019‡ 0.026‡  0.045‡ 0.025‡ 0.034‡ 0.020‡ 0.014‡ 0.020‡ 
Adj R2 0.012 0.013 0.018 0.010 0.010 0.013  0.011 0.013 0.015 0.011 0.012 0.014 
# Obs in CS (avr.) 220 213 236 262 290 300  232 199 194 301 274 227 
# CS regressions 2984 2984 2984 2982 2982 2982  2984 2983 2984 2982 2982 2982 
              
𝐼𝐿𝑡−1𝑆  -4.071‡ -2.149‡ -0.761‡ -1.216‡ -0.721‡ -0.280‡  -2.913‡ -2.109‡ -0.249 -0.982‡ -0.589‡ -0.169† 
Adj R2 0.009 0.010 0.009 0.008 0.010 0.010  0.010 0.013 0.014 0.009 0.012 0.014 
# Obs in CS (avr.) 220 213 236 261 290 299  231 199 193 300 273 227 
# CS regressions 2984 2984 2984 2982 2982 2982  2984 2983 2984 2982 2982 2982 
              
𝐼𝐿𝑡−1𝑂  0.062‡ 0.035‡ 0.045‡ 0.030‡ 0.022‡ 0.033‡  0.048‡ 0.023‡ 0.027‡ 0.023‡ 0.012‡ 0.021‡ 
𝐼𝐿𝑡−1𝑆  -2.077‡ -0.873‡ -0.428‡ -0.598‡ -0.223‡ -0.205‡  -1.399‡ -1.109‡ -0.064 -0.416‡ -0.238‡ -0.084 
𝑅�𝑡−1𝑂   -0.032‡ -0.015‡ -0.010‡ -0.031‡ -0.014‡ -0.011‡  -0.030‡ -0.013‡ -0.011‡ -0.027‡ -0.014‡ -0.012‡ 
𝜎𝑡−1 -0.112‡ -0.049‡ -0.014‡ -0.041‡ -0.018‡ -0.005‡  -0.064‡ -0.031‡ -0.007‡ -0.019‡ -0.011‡ -0.003† 
𝑏𝑡−1 -0.002 0.000 0.001 0.000 0.000 0.000  -0.003* -0.004‡ -0.001 -0.002 -0.001 0.000 
ln (𝑠𝑖𝑧𝑒𝑡−1) 0.004‡ 0.002‡ 0.001‡ 0.001‡ 0.001‡ 0.001‡  0.004‡ 0.002‡ 0.000‡ 0.001‡ 0.000‡ 0.000‡ 
𝑙𝑒𝑣𝑡−1 -0.001 0.000 -0.001† -0.001 0.000 0.002  -0.002† -0.002† 0.000 -0.001 0.000 0.000 
Adj R2  0.060 0.075 0.080 0.057 0.071 0.080  0.065 0.087 0.094 0.067 0.088 0.098 
# Obs in CS (avr.) 189 179 207 240 270 283  204 166 163 285 252 206 
# CS regressions 2968 2968 2968 2965 2965 2965  2968 2965 2965 2965 2965 2965 

 



Table 5 
Fama-MacBeth Regressions for Weekly Adjusted Option Returns 

We report the results of cross-sectional Fama-MacBeth regressions for weekly adjusted call and put option returns ( 𝑅� 𝑂), i.e. the residuals plus the intercept from 
the regression of option returns on stock returns, lagged stock returns and squared stock returns. We include the lagged values of the following regressors: option 
illiquidity 𝐼𝐿𝑂 , computed from relative daily quoted bid-ask spreads, 𝐼𝐿𝑆 , the dollar-volume weighted average of daily stock illiquidity for the previous week, the 
conditional volatility of returns, computed as the square root of the sum of squared daily returns for the previous week, b, the average of daily systematic risk 
proportion for the previous week, the logarithm of the firm size and the firm leverage. We use the size observed on the last day of the previous week, and the 
leverage from the previous quarter. The sample includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire sample 
period, which is from January 1996 through December 2007. The symbols *, † and ‡ denote, respectively, significance at the 10%, 5% and 1% levels using 
Fama-MacBeth t-statistics with Newey-West correction for serial correlation, using 8 lags. 

 
 Panel A: Call Options   Panel B: Put Options 

 Short-Term Long-Term  Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM  OTM ATM ITM OTM ATM ITM 

𝐼𝐿𝑡−1𝑂  0.211‡ 0.101‡ -0.004 0.076‡ 0.059‡ 0.048‡  0.159‡ 0.012 -0.081‡ 0.059‡ 0.000 -0.023 
Adj R2 0.015 0.009 0.015 0.008 0.008 0.012  0.012 0.010 0.014 0.008 0.011 0.013 
# Obs in CS (avr.) 244 243 260 279 305 311  251 229 220 311 290 244 
# CS regressions 622 622 622 622 622 622  622 622 622 622 622 622 
              
𝐼𝐿𝑡−1𝑆  -23.676‡ -11.526‡ -6.029‡ -9.116‡ -5.307‡ -2.422‡  -17.129‡ -9.846‡ -2.625‡ -5.925‡ -3.371‡ -0.895* 
Adj R2 0.010 0.011 0.011 0.012 0.012 0.013  0.011 0.012 0.013 0.012 0.014 0.018 
# Obs in CS (avr.) 244 242 259 279 305 311  251 228 220 310 290 244 
# CS regressions 622 622 622 622 622 622  622 622 622 622 622 622 
              
𝐼𝐿𝑡−1𝑂  0.262‡ 0.193‡ 0.073‡ 0.122‡ 0.132‡ 0.105‡  0.192‡ 0.055* -0.100‡ 0.091‡ 0.041* -0.032 
𝐼𝐿𝑡−1𝑆  -20.355‡ -7.431‡ -3.664‡ -9.239‡ -3.888‡ -1.872‡  -14.206‡ -5.626‡ -0.151 -4.969‡ -2.169‡ -0.173 
𝑅�𝑡−1𝑂   0.003 0.001 -0.007‡ -0.011‡ -0.006‡ -0.007‡  -0.002 -0.001 -0.004† -0.008† -0.009‡ -0.008‡ 
𝜎𝑡−1 -0.213‡ -0.102‡ -0.039‡ -0.051‡ -0.028‡ -0.017‡  -0.078‡ -0.047‡ -0.025‡ -0.008 -0.014‡ -0.011‡ 
𝑏𝑡−1 -0.015 -0.004 -0.004 -0.012 -0.005 -0.001  -0.042‡ -0.034‡ -0.010* -0.015† -0.008† -0.001 
ln (𝑠𝑖𝑧𝑒𝑡−1) 0.024‡ 0.013‡ 0.005‡ 0.008‡ 0.005‡ 0.002‡  0.019‡ 0.009‡ 0.002‡ 0.007‡ 0.003‡ 0.001* 
𝑙𝑒𝑣𝑡−1 0.049‡ 0.025‡ 0.005† 0.021‡ 0.006‡ 0.002  0.028‡ 0.014‡ 0.011‡ 0.007† 0.003* 0.002 
Adj R2  0.058 0.050 0.054 0.049 0.054 0.060  0.055 0.057 0.060 0.052 0.066 0.071 
# Obs in CS (avr.) 200 199 222 252 284 294  215 184 176 293 266 217 
# CS regressions 621 621 621 621 621 621  621 621 621 621 621 621 



Table 6 
Daily Portfolio Strategies 

 
We show portfolio sorting results for call options (Panel A) and put options (Panel B). Each day, we sort the firms 
into deciles based on their lagged option illiquidity 𝐼𝐿𝑂. For each decile, we report (in percentages) the time-series 
average of raw option returns 𝑅𝑂, the net (after transaction costs) option returns, 𝑅𝑛𝑒𝑡𝑂 -Long for the long position and 
𝑅𝑛𝑒𝑡𝑂 -Short for the short position, stock returns 𝑅𝑆, the option quoted relative bid-ask spread 𝐼𝐿𝑂, the effective 
relative bid-ask spread 𝐼𝐿𝑆 for the stock, and size in millions of dollars. The sample includes the S&P 500 
constituents as of December 31, 2007 for which options trade throughout the entire sample period, which is from 
January 1996 through December 2007. 
 

Panel A: Call Options 
  Short-Term  Long-Term 

Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM 𝑅𝑡𝑂 0.17 0.93 0.71 1.49 5.72  0.46 0.73 1.10 0.87 1.94 

𝑅𝑛𝑒𝑡𝑂 -Long -12.67 -17.21 -23.77 -31.47 -51.34  -9.25 -12.45 -16.24 -23.01 -42.02 
𝑅𝑛𝑒𝑡𝑂 -Short -15.01 -23.50 -33.88 -52.89 -165.82  -11.27 -16.12 -22.55 -33.28 -96.73 
𝑅𝑡𝑆 0.07 0.08 0.07 0.09 0.21  0.05 0.07 0.11 0.06 0.10 
𝐼𝐿𝑡𝑂 15.87 21.92 30.92 42.55 77.80  11.01 14.62 19.48 28.00 57.50 
𝐼𝐿𝑡𝑆 0.22 0.23 0.26 0.28 0.35  0.22 0.24 0.26 0.30 0.39 

 𝑠𝑖𝑧𝑒𝑡 33189 23496 19543 13868 7880  38163 26299 18749 13073 7000 
ATM 𝑅𝑡𝑂 0.06 0.26 0.43 0.54 1.43  0.34 0.41 0.45 0.46 0.84 

𝑅𝑛𝑒𝑡𝑂 -Long -6.32 -8.02 -9.92 -12.76 -22.42  -5.01 -6.34 -7.85 -10.02 -16.34 
𝑅𝑛𝑒𝑡𝑂 -Short -6.88 -9.33 -12.08 -16.03 -34.53  -6.00 -7.68 -9.57 -12.24 -22.29 
𝑅𝑡𝑆 0.07 0.05 0.07 0.07 0.09  0.05 0.07 0.07 0.06 0.08 
𝐼𝐿𝑡𝑂 7.33 9.07 11.24 14.63 27.70  5.87 7.12 8.70 11.01 18.51 
𝐼𝐿𝑡𝑆 0.22 0.23 0.24 0.27 0.37  0.22 0.24 0.25 0.29 0.38 
𝑠𝑖𝑧𝑒𝑡 38866 26397 19811 14445 7202  39591 26969 18087 12266 6447 

ITM 𝑅𝑡𝑂 0.11 0.13 -0.08 0.39 0.47  0.24 0.19 0.16 0.28 0.45 
𝑅𝑛𝑒𝑡𝑂 -Long -4.29 -5.45 -6.81 -8.21 -13.39  -3.28 -4.36 -5.42 -6.56 -10.60 
𝑅𝑛𝑒𝑡𝑂 -Short -4.71 -6.05 -7.17 -9.87 -16.95  -3.90 -4.97 -6.09 -7.65 -13.05 
𝑅𝑡𝑆 0.05 0.03 0.02 0.06 0.03  0.06 0.04 0.02 0.06 0.06 
𝐼𝐿𝑡𝑂 4.82 5.88 7.03 9.00 14.79  3.75 4.74 5.77 7.01 11.46 
𝐼𝐿𝑡𝑆 0.21 0.23 0.25 0.28 0.35  0.21 0.24 0.26 0.29 0.39 
𝑠𝑖𝑧𝑒𝑡 41649 29545 21687 14415 7302  40327 27161 19072 12798 5874 

 
  



Table 6 (continued) 
Daily Portfolio Strategies 

 
Panel B: Put Options 

  Short-Term  Long-Term 
Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM 𝑅𝑡𝑂 -0.51 -0.30 -0.15 -0.13 3.02  0.15 0.05 0.06 -0.01 0.47 

𝑅𝑛𝑒𝑡𝑂 -Long -11.70 -15.77 -20.68 -28.39 -47.97  -8.14 -10.90 -14.06 -18.89 -35.23 
𝑅𝑛𝑒𝑡𝑂 -Short -12.24 -18.38 -26.44 -40.75 -127.51  -9.27 -12.55 -16.83 -23.94 -63.84 
𝑅𝑡𝑆 0.06 0.05 0.03 0.05 -0.06  0.03 0.04 0.05 0.05 0.05 
𝐼𝐿𝑡𝑂 13.42 18.46 24.93 35.78 69.90  9.16 11.99 15.62 21.49 45.29 
𝐼𝐿𝑡𝑆 0.22 0.23 0.25 0.28 0.33  0.22 0.24 0.25 0.28 0.36 

 𝑠𝑖𝑧𝑒𝑡 36242 28023 21599 15759 8667  36849 27907 20584 13984 7312 
ATM 𝑅𝑡𝑂 -0.50 -0.41 -0.50 0.01 -0.50  0.02 -0.11 -0.11 -0.12 -0.05 

𝑅𝑛𝑒𝑡𝑂 -Long -6.31 -7.88 -9.88 -11.99 -21.71  -4.65 -6.02 -7.32 -9.31 -14.94 
𝑅𝑛𝑒𝑡𝑂 -Short -5.68 -7.72 -9.94 -13.76 -27.77  -4.93 -6.20 -7.71 -10.08 -17.85 
𝑅𝑡𝑆 0.05 0.06 0.06 0.02 0.08  0.03 0.05 0.06 0.06 0.06 
𝐼𝐿𝑡𝑂 6.57 8.14 10.24 13.04 25.08  5.06 6.24 7.55 9.67 15.99 
𝐼𝐿𝑡𝑆 0.22 0.23 0.25 0.27 0.36  0.23 0.24 0.26 0.28 0.36 
𝑠𝑖𝑧𝑒𝑡 39024 30491 22602 16936 8830  38333 30040 21287 14210 7229 

ITM 𝑅𝑡𝑂 -0.30 -0.51 -0.27 -0.43 -0.60  -0.06 -0.14 -0.17 -0.19 -0.23 
𝑅𝑛𝑒𝑡𝑂 -Long -4.49 -5.83 -6.69 -8.46 -13.68  -3.24 -4.33 -5.35 -6.55 -10.46 
𝑅𝑛𝑒𝑡𝑂 -Short -4.08 -5.14 -6.62 -8.37 -14.77  -3.23 -4.26 -5.31 -6.62 -11.32 
𝑅𝑡𝑆 0.06 0.11 0.07 0.10 0.13  0.05 0.06 0.08 0.08 0.11 
𝐼𝐿𝑡𝑂 4.60 5.67 6.71 8.44 14.08  3.38 4.39 5.36 6.54 10.69 
𝐼𝐿𝑡𝑆 0.23 0.24 0.26 0.28 0.35  0.23 0.25 0.27 0.30 0.38 
𝑠𝑖𝑧𝑒𝑡 40702 32555 25423 17446 8847  40411 32022 23561 16917 7070 

 
  



Table 7 
Weekly Portfolio Strategies 

We show portfolio sorting results for calls (Panel A) and puts (Panel B). Each week, we sort the firms into deciles 
based on their lagged illiquidity 𝐼𝐿𝑂 . For each decile, we report (in percentages) the time-series average of raw 
option returns 𝑅𝑂, the net (after transaction costs) option returns (𝑅𝑛𝑒𝑡𝑂 -Long for the long position and 𝑅𝑛𝑒𝑡𝑂 -Short for 
the short position), stock returns 𝑅𝑆, the option quoted relative bid-ask spread 𝐼𝐿𝑂 , the stock effective relative bid-
ask spreads 𝐼𝐿𝑆, and size, in millions of dollars. The sample includes the S&P 500 constituents as of December 31, 
2007 for which options trade throughout the entire sample period, which is from January 1996 through December 
2007. 
 

Panel A: Call Options 
  Short-Term  Long-Term 

Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM 𝑅𝑡𝑂 3.02 4.85 6.80 10.62 25.97  3.09 3.12 3.76 4.92 7.82 

𝑅𝑛𝑒𝑡𝑂 -Long -10.20 -13.52 -18.16 -23.25 -35.59  -6.82 -10.37 -13.88 -19.56 -37.04 
𝑅𝑛𝑒𝑡0 -Short -18.24 -27.61 -40.37 -62.64 -195.71  -14.12 -18.85 -25.54 -38.03 -104.13 
𝑅𝑡𝑆 0.25 0.41 0.56 0.69 1.28  0.30 0.32 0.37 0.47 0.61 

𝐼𝐿𝑡0 22.53 29.01 38.38 49.78 75.22  12.47 16.77 22.05 31.39 59.16 
𝐼𝐿𝑡𝑆 0.21 0.23 0.25 0.28 0.34  0.21 0.23 0.26 0.30 0.39 

 𝑠𝑖𝑧𝑒𝑡 35487 24695 20669 15097 8559  39044 26609 19270 13631 7386 
ATM 𝑅𝑡𝑂 2.10 1.98 2.45 1.92 3.22  1.61 2.22 1.66 2.48 2.57 

𝑅𝑛𝑒𝑡𝑂 -Long -4.49 -6.58 -8.31 -11.88 -21.36  -3.81 -4.64 -6.76 -8.22 -14.98 
𝑅𝑛𝑒𝑡0 -Short -9.14 -11.37 -14.56 -18.03 -37.57  -7.35 -9.62 -10.90 -14.53 -24.51 
𝑅𝑡𝑆 0.32 0.33 0.35 0.34 0.46  0.32 0.38 0.30 0.39 0.40 

𝐼𝐿𝑡0 9.28 11.47 14.44 18.99 35.18  6.23 7.51 9.24 11.65 20.10 
𝐼𝐿𝑡𝑆 0.22 0.23 0.24 0.27 0.37  0.22 0.23 0.25 0.28 0.39 
𝑠𝑖𝑧𝑒𝑡 39486 27685 20045 14555 7511  40679 27471 18667 12519 6614 

ITM 𝑅𝑡𝑂 0.63 0.79 0.20 0.18 0.08  0.95 1.31 1.17 1.43 1.69 
𝑅𝑛𝑒𝑡𝑂 -Long -3.82 -4.85 -6.60 -8.48 -13.96  -2.62 -3.30 -4.47 -5.49 -9.45 
𝑅𝑛𝑒𝑡0 -Short -5.29 -6.79 -7.53 -9.73 -16.80  -4.65 -6.16 -7.17 -8.89 -14.41 
𝑅𝑡𝑆 0.25 0.28 0.21 0.25 0.29  0.29 0.35 0.33 0.37 0.42 

𝐼𝐿𝑡0 5.29 6.45 7.78 10.12 17.37  3.89 4.88 5.91 7.17 11.63 
𝐼𝐿𝑡𝑆 0.21 0.23 0.25 0.28 0.36  0.21 0.23 0.25 0.29 0.39 
𝑠𝑖𝑧𝑒𝑡 41875 29476 21757 14436 7531  41879 27644 19737 12853 5928 

 
  



Table 7 (continued) 
Weekly Portfolio Strategies 

 
 

Panel B: Put Options 
  Short-Term  Long-Term 

Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM 𝑅𝑡𝑂 -3.81 -3.29 -2.08 -1.64 7.87  -0.77 -1.34 -1.22 -0.98 -0.40 

𝑅𝑛𝑒𝑡𝑂 -Long -14.94 -18.66 -22.48 -29.51 -43.02  -9.12 -12.33 -15.38 -19.98 -36.19 
𝑅𝑛𝑒𝑡0 -Short -8.84 -15.23 -24.25 -38.43 -129.43  -8.43 -11.21 -15.62 -23.16 -64.01 
𝑅𝑡𝑆 0.34 0.31 0.17 0.14 -0.34  0.28 0.32 0.29 0.28 0.28 

𝐼𝐿𝑡0 19.03 25.58 33.23 45.79 74.32  10.25 13.47 17.58 24.21 50.16 
𝐼𝐿𝑡𝑆 0.21 0.23 0.24 0.28 0.33  0.22 0.23 0.25 0.28 0.36 

 𝑠𝑖𝑧𝑒𝑡 36413 28377 22343 16838 9556  37853 28216 20604 14338 7768 
ATM 𝑅𝑡𝑂 -2.93 -3.66 -3.20 -3.59 -5.11  -0.92 -1.38 -1.40 -1.25 -1.99 

𝑅𝑛𝑒𝑡𝑂 -Long -8.77 -11.10 -12.58 -15.63 -26.20  -5.61 -7.29 -8.61 -10.44 -16.83 
𝑅𝑛𝑒𝑡0 -Short -3.28 -4.44 -7.26 -10.26 -23.17  -4.00 -4.92 -6.41 -8.95 -15.95 
𝑅𝑡𝑆 0.32 0.38 0.31 0.29 0.37  0.26 0.35 0.35 0.32 0.37 

𝐼𝐿𝑡0 8.18 10.13 13.07 17.37 33.38  5.39 6.59 8.01 10.27 17.42 
𝐼𝐿𝑡𝑆 0.22 0.23 0.24 0.27 0.35  0.22 0.23 0.25 0.28 0.36 
𝑠𝑖𝑧𝑒𝑡 39778 31261 22381 16994 8937  39042 29917 21032 14001 7340 

ITM 𝑅𝑡𝑂 -3.19 -4.28 -4.09 -4.66 -5.75  -1.20 -1.47 -1.64 -1.60 -1.96 
𝑅𝑛𝑒𝑡𝑂 -Long -7.35 -9.49 -10.36 -12.54 -18.60  -4.40 -5.66 -6.80 -7.90 -12.15 
𝑅𝑛𝑒𝑡0 -Short -1.16 -1.25 -2.64 -3.98 -9.46  -2.12 -2.92 -3.82 -5.17 -9.63 
𝑅𝑡𝑆 0.41 0.55 0.46 0.47 0.53  0.35 0.40 0.39 0.41 0.44 

𝐼𝐿𝑡0 5.19 6.35 7.59 9.80 17.50  3.58 4.58 5.57 6.74 11.11 
𝐼𝐿𝑡𝑆 0.22 0.24 0.25 0.27 0.35  0.23 0.24 0.26 0.29 0.38 
𝑠𝑖𝑧𝑒𝑡 42684 33442 25285 17437 8929  41827 33106 23666 16708 7021 



 Table 8 
Fama-MacBeth Regressions for the Level of Implied Volatility  

For each month and for each category, we run the following regression using all observed options within the month. 
The regression is run separately for call and put options 

 𝑖𝑣𝑖,𝑡(𝜒𝑘 ,𝑇𝑘)  = 𝜅𝑖,𝑡 + 𝛳𝑖 ,𝑡 ( 𝜒𝑘 − 𝜒̅𝑘) + 𝜂𝑖,𝑡 (𝑇𝑘 − 𝑇�𝑘) + 𝜀𝑖,𝑡𝑘 ,   𝑘 = 1,2, … .𝐾 
where 𝑖𝑣𝑖 ,𝑡�𝜒𝑘, 𝑇𝑘� is the implied volatility for an option with moneyness 𝜒𝑘 and maturity 𝑇𝑘. The subscripts t, i and k 
correspond to month t, firm i and contract k, respectively. K is the number of contracts available for a given month 
and category. We consider only months for which K is larger than ten. For each firm i, we obtain a monthly time 
series for 𝜅𝑖,𝑡 which corresponds to the estimated level of implied volatility. Then, for each month t, we run the 
following regression 

 𝜅̃𝑖,𝑡 = 𝑎0,𝑡 + 𝑎1,𝑡𝐼𝐿𝑖,𝑡𝑂  +𝑎2,𝑡𝐼𝐿𝑖,𝑡𝑆  + 𝑎3,𝑡𝑅𝑖,𝑡𝑆 + 𝑎4,𝑡𝑏𝑖,𝑡 + 𝑎5,𝑡ln (𝑠𝑖𝑧𝑒𝑖,𝑡) + 𝑎6,𝑡𝑙𝑒𝑣𝑖,𝑡 + 𝜀𝑖,𝑡 ,   𝑖 = 1,2, … 𝐼 
where 𝜅̃𝑖,𝑡 is the residual plus the intercept from the cross-sectional regression of 𝜅𝑖,𝑡 on the volatility 𝜎𝑡. 𝐼𝐿𝑡𝑂 is the 
monthly average of daily option illiquidity for the K contracts used to run the first regression, and 𝐼𝐿𝑡𝑆 is the dollar-
volume weighted average of daily stock illiquidity. 𝑅𝑡𝑆 is the monthly stock return. The option illiquidity is the 
relative bid-ask spread and the stock illiquidity is the effective bid-ask spread estimated from TAQ data. 𝑏𝑡 is the 
systematic risk proportion, which corresponds to the square root of the R2 from the regression of stock returns on 
Fama-French and momentum factors. We use the monthly average of the daily systematic risk proportion. ln (𝑠𝑖𝑧𝑒𝑡) 
and 𝑙𝑒𝑣𝑡  are respectively the logarithm of firm size and the firm leverage. We use the firm size observed on the last 
day of the month and leverage from the last available quarter. The sample includes the S&P 500 constituents as of 
December 31, 2007 for which options trade throughout the entire sample period, which is from January 1996 
through December 2007. The symbols *, † and ‡ denote, respectively, significance at the 10%, 5% and 1% levels 
using Fama-MacBeth t-statistics with Newey-West correction for serial correlation, with 8 lags. 
 

Panel A: Call Options 
 Short-Term Long-Term 
  OTM    ATM ITM OTM ATM ITM 
𝐼𝐿𝑡𝑂 -0.102‡ -0.381‡ -0.803‡ -0.121‡ -0.547‡ -1.006‡ 
𝐼𝐿𝑡𝑆 13.418‡ 11.651‡ 13.956‡ 11.880‡ 11.490‡ 13.174‡ 
𝑅𝑡𝑆 -0.030‡ -0.025† -0.040‡ -0.008 -0.018 -0.025* 
𝑏𝑡 -0.002 0.012 0.018* -0.001 0.009 0.013 
ln (𝑠𝑖𝑧𝑒𝑡) -0.018‡ -0.019‡ -0.019‡ -0.015‡ -0.018‡ -0.017‡ 
𝑙𝑒𝑣𝑡 -0.012‡ -0.014‡ -0.007 -0.017‡ -0.013‡ -0.005 
Adj R2  0.191 0.195 0.190 0.170 0.190 0.186 
# Obs in CS (avr.) 272 257 276 289 310 313 
# CS regressions 144 144 144 144 144 144 

 
 

Panel B: Put Options 
 Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM 
𝐼𝐿𝑡𝑂 -0.129‡ -0.417‡ -0.733‡ -0.204‡ -0.673‡ -0.958‡ 
𝐼𝐿𝑡𝑆 12.665‡ 11.507‡ 14.199‡ 11.755‡ 10.689‡ 11.849‡ 
𝑅𝑡𝑆 -0.017 -0.006 -0.008 -0.002 0.005 0.026† 
𝑏𝑡 0.020* 0.016† 0.012 0.009 0.012 0.007 
ln (𝑠𝑖𝑧𝑒𝑡) -0.018‡ -0.020‡ -0.021‡ -0.015‡ -0.019‡ -0.019‡ 
𝑙𝑒𝑣𝑡 -0.011* -0.015‡ -0.009† -0.007 -0.013‡ -0.016‡ 
Adj R2  0.172 0.204 0.213 0.165 0.214 0.215 
# Obs in CS (avr.) 274 241 234 314 296 248 
# CS regressions 144 144 144 144 144 144 



Table 9 
Fama-MacBeth Regressions for the Moneyness-Slope of Implied Volatility 

  
For each month and for each option category, we run the following regression using all observed options within the 
month. The regression is run separately for call and put options 

 𝑖𝑣𝑖,𝑡(𝜒𝑘 ,𝑇𝑘)  = 𝜅𝑖,𝑡 + 𝛳𝑖 ,𝑡 ( 𝜒𝑘 − 𝜒̅𝑘) + 𝜂𝑖,𝑡 (𝑇𝑘 − 𝑇�𝑘) + 𝜀𝑖,𝑡𝑘 ,   𝑘 = 1,2, … .𝐾 
where 𝑖𝑣𝑖 ,𝑡�𝜒𝑘, 𝑇𝑘� is the implied volatility for an option with moneyness 𝜒𝑘 and maturity 𝑇𝑘. The subscripts t, i and k 
correspond to month t, firm i and contract k, respectively. K is the number of contracts available for the considered 
month and category. We consider only months for which K is larger than ten. For each firm i, we obtain a monthly 
time series for 𝛳𝑖,𝑡 which corresponds to the estimated moneyness-slope of implied volatility.  Then, for each month 
t, we run the following regression 

 |𝛳𝑖,𝑡| = 𝑐0,𝑡 + 𝑐1,𝑡𝐼𝐿𝑖,𝑡𝑂 + 𝑐2,𝑡𝐼𝐿𝑖,𝑡𝑆  + 𝑐3,𝑡𝑅𝑖,𝑡𝑆 + 𝑐4,𝑡𝑏𝑖,𝑡 + 𝑐5,𝑡ln(𝑠𝑖𝑧𝑒𝑖,𝑡) + 𝑐6,𝑡𝑙𝑒𝑣𝑖,𝑡 + 𝜀𝑖,𝑡 ,   𝑖 = 1,2, … 𝐼 
where 𝐼𝐿𝑡𝑂 is the average across the month of daily option illiquidity of the K contracts used to run the first 
regression, and  𝐼𝐿𝑡𝑆 is the dollar-volume weighted average of daily stock illiquidity. 𝑅𝑡𝑆 is the monthly stock return. 
The option illiquidity is the relative bid-ask spread, and the stock illiquidity is the effective bid-ask spread estimated 
from TAQ data. 𝑏𝑡 is the systematic risk proportion, which corresponds to the square root of the R2 from the 
regression of stock returns on Fama-French and momentum factors. We take the monthly average of the daily 
systematic risk proportion. ln (𝑠𝑖𝑧𝑒𝑡) and 𝑙𝑒𝑣𝑡 are respectively the logarithm of firm size and the firm leverage. We 
use the firm size observed on the last day of the month and the leverage from the last available quarter. The sample 
includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire sample 
period, which is from January 1996 through December 2007. The symbols *, † and ‡ denote, respectively, 
significance at the 10%, 5% and 1% levels using Fama-MacBeth t-statistics with Newey-West correction for serial 
correlation, using 8 lags. 

Panel A: Call Options 
 Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM 
𝐼𝐿𝑡𝑂 0.516‡ 1.188‡ 2.221‡ 0.273‡ 0.953‡ 1.353‡ 
𝐼𝐿𝑡𝑆 26.359‡ 20.333‡ 32.015‡ -3.671† -0.040 10.682‡ 
𝑅𝑡𝑆 -0.033 -0.045 0.093† 0.050† -0.040‡ -0.044† 
𝑏𝑡 -0.110‡ -0.128‡ -0.109‡ -0.031† -0.020* 0.005 
ln (𝑠𝑖𝑧𝑒𝑡) 0.022‡ 0.024‡ 0.056‡ 0.001 0.013‡ 0.022‡ 
𝑙𝑒𝑣𝑡 0.125‡ 0.094‡ 0.137‡ 0.057‡ 0.063‡ 0.108‡ 
Adj R2  0.125 0.074 0.078 0.101 0.080 0.090 
# Obs in CS (avr.) 272 257 276 289 310 313 
# CS regressions 144 144 144 144 144 144 

 
 

Panel B: Put Options 
 Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM 
𝐼𝐿𝑡𝑂 0.231‡ 1.122‡ 3.289‡ 0.171‡ 0.893‡ 2.088‡ 
𝐼𝐿𝑡𝑆 33.532‡ 21.504‡ 32.683‡ 11.647‡ 1.365 5.363† 
𝑅𝑡𝑆 -0.042 -0.083† -0.199‡ -0.056‡ -0.032* 0.008 
𝑏𝑡 -0.081* -0.123‡ -0.136‡ 0.003 -0.017 -0.034‡ 
ln (𝑠𝑖𝑧𝑒𝑡) 0.039‡ 0.017‡ 0.035‡ 0.020‡ 0.009‡ 0.002 
𝑙𝑒𝑣𝑡 0.158‡ 0.097‡ 0.116‡ 0.099‡ 0.056‡ 0.048‡ 
Adj R2  0.071 0.060 0.108 0.085 0.072 0.124 
# Obs in CS (avr.) 274 241 234 314 296 248 
# CS regressions 144 144 144 144 144 144 

  



Table 10  
Time-Series Regressions for Weekly Option Returns 

 
Each week, we sort the firms into deciles based on their lagged option illiquidity. The lagged illiquidity corresponds 
to the average of relative bid-ask spreads on the previous Friday of the contracts used to compute returns for the 
week. For each decile j, we take the average across firms of illiquidity, lagged illiquidity, and adjusted option 
returns, which are the residuals from time-series regression of option returns on current and lagged stock returns and 
squared stock returns. We thus obtain a weekly time-series for 𝐼𝐿𝑗 ,𝑡 , and 𝑅�𝑗,𝑡

𝑂  over the entire sample period.  Then we 
run the following regression: 

ln (𝐼𝐿𝑗 ,𝑡
𝑂 )  = 𝜔𝑗,0 + 𝜔𝑗,1ln (𝐼𝐿𝑗,𝑡−1

𝑂 ) + 𝑣𝑗,𝑡
𝐼𝐿 . 

Defining the unexpected illiquidity by 𝐼𝐿𝑗,𝑡
𝑢 = 𝑣𝑗,𝑡

𝐼𝐿 , we estimate the following time-series regression: 
𝑅�𝑗,𝑡
𝑂  = 𝛾0 + 𝛾1ln (𝐼𝐿𝑗,𝑡−1

𝑂 ) + 𝛾2𝐼𝐿𝑗,𝑡
𝑢 + 𝛾3ln(𝐼𝐿𝑗,𝑡−1

𝑆 ) + 𝑣𝑗,𝑡 
where 𝐼𝐿𝑗 ,𝑡−1

𝑆  is lagged stock illiquidity.  
The sample includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the 
entire sample period, which is from January 1996 through December 2007. The symbols *, † and ‡ denote, 
respectively, significance at the 10%, 5% and 1% levels with Newey-West correction for serial correlation, using 8 
lags. 

Panel A: Call Options 
 

  Short-Term  Long-Term 
Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2.𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM ln (𝐼𝐿𝑗,𝑡−1

𝑂 ) 0.195‡ 0.262‡ 0.405‡ 0.388‡ 0.446‡  0.093‡ 0.135‡ 0.183‡ 0.207‡ 0.191‡ 
𝐼𝐿𝑗,𝑡
𝑢  -0.053† -0.061† -0.089† -0.149‡ -0.342‡  -0.012 -0.034 -0.027 -0.078† -0.139‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.098‡ -0.119‡ -0.152‡ -0.121‡ -0.098‡  -0.038‡ -0.056‡ -0.070‡ -0.061‡ -0.030‡ 

Adj R2  0.177 0.195 0.230 0.195 0.203  0.121 0.154 0.144 0.160 0.121 
# Obs  621 621 621 621 621  621 621 621 621 621 

ATM ln (𝐼𝐿𝑗,𝑡−1
𝑂 ) 0.062‡ 0.111‡ 0.136‡ 0.196‡ 0.103‡  0.034‡ 0.054‡ 0.072‡ 0.126‡ 0.073‡ 

𝐼𝐿𝑗,𝑡
𝑢  -0.053‡ -0.070‡ -0.095‡ -0.120‡ -0.177‡  -0.009 -0.025 -0.052† -0.077‡ -0.112‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.053‡ -0.070‡ -0.086‡ -0.087‡ -0.039‡  -0.022‡ -0.034‡ -0.043‡ -0.048‡ -0.012‡ 

Adj R2  0.124 0.173 0.204 0.210 0.227  0.070 0.117 0.136 0.160 0.150 
# Obs  621 621 621 621 621  621 621 621 621 621 

ITM ln (𝐼𝐿𝑗,𝑡−1
𝑂 ) 0.030‡ 0.038‡ 0.047‡ 0.073‡ 0.034  0.014‡ 0.025‡ 0.040‡ 0.056‡ 0.038* 

𝐼𝐿𝑗,𝑡
𝑢  -0.029 -0.058† -0.077‡ -0.114‡ -0.170‡  -0.017 -0.043† -0.047† -0.075‡ -0.104‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.022‡ -0.030‡ -0.035‡ -0.038‡ -0.018‡  -0.010‡ -0.017‡ -0.019‡ -0.022‡ -0.009† 

Adj R2  0.065 0.094 0.127 0.195 0.287  0.045 0.097 0.086 0.128 0.163 
# Obs  621 621 621 621 621  621 621 621 621 621 

 
  



Table 10 (continued) 
Time-Series Regressions for Weekly Option Returns 

 

Panel B: Put Options 

  Short-Term  Long-Term 
Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM ln (𝐼𝐿𝑗,𝑡−1

𝑂 ) 0.107‡ 0.156‡ 0.188‡ 0.185‡ 0.266‡  0.032‡ 0.044‡ 0.060‡ 0.069‡ -0.001 
𝐼𝐿𝑗,𝑡
𝑢  -0.101‡ -0.130‡ -0.183‡ -0.211‡ -0.388‡  -0.112‡ -0.115‡ -0.149‡ -0.186‡ -0.274‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.053‡ -0.067‡ -0.075‡ -0.063‡ -0.034†  -0.011* -0.023‡ -0.029‡ -0.018‡ 0.008 

Adj R2  0.160 0.210 0.248 0.235 0.217  0.079 0.143 0.176 0.227 0.327 
# Obs  621 621 621 621 621  621 621 621 621 621 

ATM ln (𝐼𝐿𝑗,𝑡−1
𝑂 ) 0.041‡ 0.031‡ 0.055‡ 0.013 -0.007  0.018‡ 0.020‡ 0.020† 0.011 0.002 

𝐼𝐿𝑗,𝑡
𝑢  -0.084‡ -0.126‡ -0.139‡ -0.168‡ -0.232‡  -0.067‡ -0.122‡ -0.132‡ -0.156‡ -0.195‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.033‡ -0.040‡ -0.047‡ -0.034‡ -0.011  -0.014‡ -0.013‡ -0.017‡ -0.013† -0.002 

Adj R2  0.119 0.182 0.177 0.272 0.338  0.067 0.103 0.129 0.141 0.269 
# Obs  621 621 621 621 621  621 621 621 621 621 

ITM ln (𝐼𝐿𝑗,𝑡−1
𝑂 ) 0.001 -0.007 -0.010 -0.029† -0.091‡  0.002 -0.001 -0.009 -0.024‡ -0.036‡ 

𝐼𝐿𝑗,𝑡
𝑢  -0.076‡ -0.088‡ -0.128‡ -0.154‡ -0.206‡  -0.037* -0.062* -0.108‡ -0.132‡ -0.198‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.010† -0.004 -0.010 -0.001 0.006  -0.006† -0.005 -0.004 0.003 0.012‡ 

Adj R2  0.062 0.060 0.132 0.193 0.367  0.021 0.029 0.086 0.103 0.248 
# Obs  621 621 621 621 621  621 621 621 621 621 

 
 

 


