
Program for the Stern Microstructure Meeting, Friday, May 20, 2011

Organizer Joel Hasbrouck, Stern School
Program 
Committee

Charles Jones, Columbia University
Bruce Lehmann, UCSD
Avanidhar Subrahmanyam, UCLA

 

Call for papers

Registration: email to Mary Jaffier (mjaffier@stern.nyu.edu, please include "Stern Microstructure" in 
the subject).  Other inquiries: jhasbrou@stern.nyu.edu. 

Download program and all papers as a single pdf

Friday, May 20, 2011

8:30 am - 9:00 Continental Breakfast

9:00 - 10:00 The Growth and Limits of Arbitrage: Evidence from Short Interest  
Samuel Hanson, Harvard Business School  
Adi Sunderam, Harvard Business School 

Discussant: Antti Petajisto, Stern School, New York University

10:00 - 11:00 Subsidizing Liquidity: The Impact of Make/Take Fees on Market Quality  
Katya Malinova, University of Toronto  
Andreas Park, University of Toronto 

Discussant: Ohad Kadan, Olin School, Washington University, St. Louis

11:00 - 11:15 Break

11:15 - 12:15
Trading Frenzies and Their Impact on Real Investment  
Itay  Goldstein, Wharton  

Page 1 of 2Stern Microstructure Meeting Program

5/11/2011file://C:\Active\Webs\Dream01\SternMicroMeeting\program.html



Emre Ozdenoren, London Business School  
Kathy Yuan, LSE 

Discussant: Wei Xiong, Princeton University

12:15-1:15 Lunch 
Speaker: TBA

1:15-2:15 Learning from Prices, Liquidity Spillovers, and Market Segmentation  
Giovanni Cespa, Cass Business School  
Thierry Foucault, HEC, Paris

Discussant: David Skeie, Federal Reserve Bank of New York

2:15-3:15

 

Notes on Bonds: Liquidity at All Costs in the Great Recession  
David  Musto, The Wharton School, University of Pennsylvania  
Greg Nini, The Wharton School, University of Pennsylvania  
Krista Schwarz, The Wharton School, University of Pennsylvania

Discussant: Michael Fleming, Federal Reserve Bank of New York

3:15-3:30 Break

3:30-4:30 Illiquidity Premia in the Equity Options Market  
Peter Christoffersen, University of Torornto  
Ruslan Goyenko, McGill University   
Kris Jacobs, University of Houston  
Mehdi Karoui, McGill University

Discussant, Menachem Brenner, Stern School, NYU

4:30 Adjourn

 

 

Page 2 of 2Stern Microstructure Meeting Program

5/11/2011file://C:\Active\Webs\Dream01\SternMicroMeeting\program.html



 
 
 

The Growth and Limits of Arbitrage: 
Evidence from Short Interest∗

 
 

 
Samuel G. Hanson 
shanson@hbs.edu 

Harvard Business School 
 

Adi Sunderam 
asunderam@hbs.edu 

Harvard Business School 
 
 

April 2011 
 
 

Abstract 
 
 

We develop a novel methodology to infer the amount of capital allocated to quantitative equity 
arbitrage strategies from stock-level short interest data. Using this technique, which exploits 
time-series variation in the cross-section of short interest, we document that the amount of 
capital devoted to quantitative equity strategies such as value and momentum has increased 
significantly since the early 1990s. We find evidence suggesting that arbitrageurs have reacted to 
heightened competition by altering their strategies. Specifically, arbitrageurs increasingly favor 
stocks where the risk of over-crowding is lower such as small stocks and stocks with weaker 
mispricing signals. We then use these strategy-level capital measures to test theories about the 
limits of arbitrage. We find that strategy-level capital flows are influenced by past strategy 
returns, strategy return volatility, and past returns to other strategies in the directions predicted 
by these theories. Finally, we find that arbitrageurs have invested more capital in strategies prior 
to periods when those strategies perform poorly. 
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 I.  Introduction 

The professional arbitrage industry devoted to exploiting so-called equity market 

“anomalies” such as the value and momentum effects has grown explosively in recent years. 

Assets managed by long-short equity hedge funds, which pursue strategies that seek to profit 

from these anomalies, grew from $103 billion in 2000 to $364 billion at the end of 2009 

according to Lipper – an average annual growth rate exceeding 15%. This growth has been 

accompanied by increased interest from market participants and academics alike. 

Of primary concern to both groups is the interaction between arbitrage capital and 

strategy returns. Such interactions may occur at two frequencies. First, long-run returns to 

anomaly strategies may eventually be competed away by the long-term growth of arbitrage 

capital (Stein (2009)). Second, there may be higher-frequency feedback between returns and 

capital, such as performance chasing and deleveraging spirals, which may limit the extent to 

which anomaly returns are arbitraged away. 

Both types of feedback have been studied extensively in the theoretical literature. 

However, empirical work has been hindered by the lack of appropriate data. In particular, while 

arbitrage strategies are often the relevant unit of economic analysis for assessing these theories, 

the amount of capital allocated to various strategies is unknown because existing data are 

aggregated to (at least) the fund level. As a result, researchers have often been forced to test 

these theories at either the individual stock level or the fund level.1

In this paper, we propose a novel technique for measuring the amount of capital allocated 

to an equity arbitrage strategy at a given time. We focus on quantitative equity strategies, which 

attempt to exploit the return anomalies uncovered by academic finance over the past 25 years. 

 

                                                
1 See e.g., Aragon and Strahan (2010), Ben-David Franzoni, and Moussawi (2010), Savor and Gamboa-Cavazos 
(2011). 
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These strategies typically use short sales to construct low- or zero-beta portfolios that generate 

abnormal risk-adjusted returns or “alpha.” 

Our key insight is that the cross-section of short interest reveals how intensely 

arbitrageurs are using a particular quantitative equity strategy at a given time. For instance, when 

the cross section of short interest is particularly weighted towards growth stocks, we should infer 

that a lot of capital is playing a value strategy. We can then interpret time-series variation in the 

cross-section of short interest as variation in the amount of capital playing various strategies. We 

formalize this intuition in a regression setting. Specifically, we run cross-sectional regressions 

explaining stock-level short interest and interpret the coefficients from these regressions as 

proxies for strategy-level capital. 

Short interest is a good laboratory for studying strategy-level arbitrage capital flows for 

several reasons. First, short sellers are typically sophisticated investors.2

Focusing on the value and price momentum strategies, we first use our capital measures 

to explore low-frequency trends in arbitrage capital. We show that capital in both strategies has 

increased dramatically, particularly since the early 2000s. We consider several possible 

explanations for these trends. First, we ask whether the trends could be driven by an expansion of 

 Second, the costs of 

short selling make it more likely that short positions are put on by managers who are actively 

seeking alpha. Finally, short interest data may be more informative than long-side data because, 

in the aggregate, long-side institutional investors hold the market portfolio and show little 

tendency to bet on characteristics known to predict returns (Lewellen 2010). In other words, any 

long-side analysis must screen out the large number of institutions that passively index; 

otherwise, it will have little power to detect time variation in arbitrage capital. 

                                                
2 By some estimates, hedge funds account for 85% of short positions in the U.S. equity market (see e.g., Goldman 
Sachs Hedge Fund Trend Monitor, February 20, 2008). 
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share lending supply. We attempt to disentangle demand and supply shifts by using institutional 

ownership as a proxy for lendable share supply. Interestingly, we find similar upward trends 

when we focus only on stocks with high institutional ownership, which are less likely to 

experience a significant easing of supply constraints. Thus, we argue that shifts in shorting 

demand have played an important role in driving the trends we find. 

We next consider the possibility that the increases in arbitrage capital we observe could 

be the result of slow diffusion of information about strategy profitability, leading to increased 

shorting demand. If this is the case, the degree of competition among arbitrageurs may have 

increased as the pool of arbitrage capital has grown. We find some evidence consistent with this 

interpretation. For instance, as more capital uses a reliable signal of mispricing, arbitrageurs may 

become concerned about the capacity or profitability of the signal. As a result, they may begin 

using a signal that is less crowded but has historically been a weaker indicator of expected 

returns. Similarly, if crowding or diminished strategy profitability is a greater concern in large, 

liquid stocks, then smaller stocks might become more appealing. Consistent with these 

predictions, we find that arbitrageurs have shifted to weaker signals and smaller stocks in recent 

years. 

The low frequency growth of arbitrage capital we document suggests that the returns to 

the value and momentum strategies may be competed away over time. However, a large 

theoretical literature suggests that agency problems and funding constraints may create limits of 

arbitrage that allow abnormal returns to persist even in the face of substantial arbitrage capital.3

                                                
3 A partial list includes Shleifer and Vishny (1997), Barberis and Shleifer (2003), Brunnermeier and Pedersen 
(2009), Stein (2009), and Gromb and Vayanos (2010). 

 

Thus, we explore the higher-frequency feedback between capital and strategy returns and ask 

whether the observed patterns are consistent with theories of limited arbitrage. 
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We first explore the relationship between capital flows and past performance. We find 

evidence of a positive performance-flow relationship for momentum. After low returns, capital 

tends to flow out of momentum strategies. We also explore how arbitrage capital responds to 

changes in the volatility of strategy returns. For both value and momentum, we find that capital 

tends to exit strategies following increases in volatility. We also find evidence of cross-strategy 

spillovers and that funding constraints may impede arbitrage activity. Specifically, we find that 

capital exits momentum when other arbitrage strategies do poorly and when the Treasury 

Eurodollar spread widens. This suggests that hedge funds may choose to liquidate momentum 

positions in order to meet margin requirements or capital redemptions.  

Finally, we examine the relationship between arbitrage capital and subsequent strategy 

returns. We find that capital flows into both value and momentum negatively forecast future 

returns. This finding, combined with the fact that strategy returns mean revert in our sample, 

means that arbitrage capital demonstrates negative market timing ability. Taken together, these 

results suggest that quantitative equity arbitrage does suffer from the limits suggested by the 

theoretical literature. 

The remainder of this paper is organized as follows. Section II describes the data. Section 

III describes our methodology and examines trends in arbitrage capital since 1992. Section IV 

describes our results concerning the feedback between arbitrage capital and strategy returns. 

Section V concludes. 

 

II.  Data 

We use monthly data on short interest from January 1992 through December 2010. From 

1992-2007, short interest data for NYSE and AMEX stocks is downloaded from Bloomberg and 
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data for NASDAQ stocks is obtained directly from the exchange. From 2008-2010, we obtain 

short interest data for all stocks from Compustat.4

Several trends in the short interest data are worth highlighting. Figure 1 shows that short 

interest rose significantly during our 1992-2010 sample on both an equal- and value-weighted 

basis. Short interest ratios trended upwards during the mid-1990s, declined somewhat during the 

technology bubble as noted by Lamont and Stein (2004), and rose dramatically from 2001 to 

2007. The financial crisis period from 2007 to 2009 saw large swings in short interest. Short 

interest peaked in July 2007 and registered a marked drop over the following three months, 

presumably due to the fire-sale induced de-leveraging associated with the “quant meltdown” of 

August 2007 (see e.g., Khandani and Lo (2007, 2008) and Pedersen (2009)). Short interest rose 

rapidly again in the first half of 2008, peaking in July 2008 before declining sharply after 

September 2008 when the SEC imposed a partial ban on short sales for financial stocks.

 Short interest for stock i in month t, SHORTi,t, 

is the total number of uncovered shares sold short for transactions settling on or before the 15th of 

the month. We normalize short interest by total shares outstanding as of the reporting date to 

form short interest ratios: SRi,t =SHORTi,t /SHROUTi,t. Short interest ratios are winsorized at the 

99.5%-tile in each cross-section. 

5

Moreover, short interest among small stocks has surged since 2000. In fact, the entire 

 

Aggregate short interest levels stabilized in 2009 and 2010. 

                                                
4 Compustat’s short interest data is provided by FT Interactive and is available in the Security Monthly file 
beginning in 2003. From 2003-2008, short interest ratios constructed using Compustat data are virtually 
indistinguishable from ratios constructed using our Bloomberg and NASDAQ data. The few discrepancies appear to 
stem from disagreements about the exact timing of stock splits. 
 
5 On September 19, 2008, the Securities and Exchange Commission adopted an emergency order that temporarily 
banned most short sales in over 900 financial stocks. However, Figure A3 in the Internet Appendix shows that short 
interest ratios declined for both nonfinancial and financial firms following the imposition of the ban. Boehmer, 
Jones, and Zhang (2009) provide a detailed examination of the market impact of the short sales ban. 
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cross-sectional relationship between size and short interest has shifted dramatically. In Figure 2 

we plot average short interest ratios by NYSE size decile at six different years in our sample. 

Short interest ratios for firms in size deciles 2 through 5 have risen sharply since 1999, all 

hovering near 10% as of year-end 2007 (short interest for small stocks declined somewhat from 

2007 to 2009).6 Average short interest for size decile 1 has also grown, but still lags other small 

stocks. By contrast, short interest for size decile 10 has been remarkably stable. Although we will 

see that quantitative equity signals are associated with significant differences in short interest, the 

growth of quantitative equity arbitrage does not appear to completely explain the broad surge in 

short interest among small stocks.7

To this short interest data, we add stock characteristics from CRSP and Compustat, 

including size (ME) deciles, book-to-market (B/M) deciles, and past 12-month return deciles 

(i.e., “momentum” deciles). All deciles are based on NYSE breakpoints. We also compute the 

fraction of shares held by 13-F institutions as of the most recent quarter-end, the three month 

moving average of share turnover (volume over shares outstanding), trailing 12-month return 

volatility, exchange dummies (i.e., a NASDAQ dummy and an NYSE dummy), and a dummy 

indicating whether a firm has convertible securities outstanding. All continuous variables are 

winsorized in each cross-section at the 0.5% and 99.5%-tiles. Appendix A provides further detail 

on the data and relevant variable definitions. 

 

 

 III.  The Evolution of Arbitrage Capital: 1992-2010 

                                                
6 These trends are not driven by outliers: the entire distribution of SR shifted to the right for small stocks. 
 
7 Possible explanations include the rapid growth of non-quantitative hedge funds, the expansion of institutional 
share-lending programs, and technological changes (e.g., the evolution of the prime-brokerage and information 
technology may have lowered search and other transaction costs associated with short sales). 
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A.  Short Interest for Extreme Growth and Loser Stocks 

The basic premise of our methodology for measuring arbitrage capital is that short 

interest should be high for stocks that an arbitrage strategy recommends shorting. We test this 

key assumption before further fleshing out our approach. To do so, we trace out the “event-time” 

path of short interest ratios for stocks falling into the lowest B/M decile by estimating the 

following quarterly panel regression: 

8 8 0 0 8 81 { / } 1 { / } 1 { / }

.MOM MOM SIZE
it it it it

SIZE
it it it i t it

S
Stock

R B M B M
Time

B Mδ δ δ

ε

− − + += + + + +

′⋅ + + +⋅+ + +δ xβ1δ1
 

 (1) 

Here the 1 { / }k
it B M−  dummy indicates that stock i will enter the lowest B/M decile in k quarters 

(i.e., at t+k). By contrast, the 1 { / }k
it B M+  dummy indicate that stock i exited the lowest B/M 

decile k quarters ago.8 1 { / }k
it B M− While the  indicators are forward-looking, our goal is not to 

forecast short interest. Rather it is simply to understand the dynamics of short interest for the 

group of stocks that eventually fall into the extreme growth decile. 

The regression includes a full set of size ( SIZE
it1 ) and momentum ( MOM

it1 ) decile dummies 

as well as a vector (xit) of additional controls that have previously been shown to be important 

determinants of short interest, namely, institutional ownership, 3-month turnover, trailing 12-

month return volatility, dummies for the exchange on which a stock trades, and a convertible 

dummy. Since equation (1) includes a full set of stock fixed effects, identification is based 

exclusively on within-stock variation consistent with our “event-time” interpretation of the 

results. Equation (1) also includes a full set of time effects. To trace out the event-time path of 

                                                
8 If a firm has a “spell” of consecutive quarters in the lowest B/M decile, the  dummies are coded relative 
to the first quarter in the spell. Similarly, the  dummies are coded relative to the last quarter in the spell. 
Thus, the event-time path is identified using true transitions into and out of the extreme decile. We also include 
dummies for the number of consecutive quarters that a stock has spent in the lowest B/M decile. While not shown 
here, we find that SR increases with each quarter that a firm spends in the extreme growth decile. 
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short interest for momentum losers, we estimate an analogous regression. Since momentum 

deciles are updated each month, this regression is run with monthly data. 

Figure 3 plots the coefficients on the event-time dummies from regression (1). We draw 

95% confidence bands around the estimates using standard errors that cluster by both stock and 

time as in Thompson (2011). Over our 1992-2010 sample, entering the lowest B/M decile raised 

SR by 59 bps, while entering the lowest momentum decile raised SR by 75 bps. The average 

short interest ratio over our sample is 240 bps, so these magnitudes are economically significant. 

Thus, Figure 3 confirms the basic premise underlying our methodology.9

B.  Measuring Capital Intensities Using Short Interest 

 

Figure 3 confirms that short interest is high for stocks that familiar quantitative strategies 

recommend shorting. This means that each cross-section of short interest is potentially 

informative about the distribution of capital across arbitrage strategies. To see this, imagine a 

situation where there are only two stocks A and B, and the only short sellers are quantitative 

investors. If A is the only stock momentum traders short and B is the only stock value traders 

short, then by observing the cross-section of short interest, we are actually observing the amounts 

of short-side capital playing momentum and value, respectively. 

Two caveats follow from this simple thought experiment. First, if the value and 

momentum strategies perfectly overlap and both recommend going long B and short A, then the 

cross-section of short interest contains no information about the allocation of capital across 

strategies. Empirically, momentum and value are not highly collinear, but do have some overlap. 

For this reason, we favor an approach based on cross-sectional regressions over univariate 

                                                
9 Figure 3 shows that the increase in short interest for growth stocks is concentrated in the quarter when they enter 
the lowest B/M decile, whereas the increase in SR for 12-month momentum losers is more gradual. Presumably, this 
reflects the fact that some arbitrageurs play shorter horizon (e.g., 6-month) momentum strategies. 
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alternatives (e.g., averaging SR by momentum decile) to handle overlapping recommendations 

across strategies and to control for other determinants of SR. If we did not use a cross-sectional 

regression framework, we would be mixing these confounds together in varying proportions, 

making it difficult to compare the resulting measures over time. 

Second, our methodology assumes that we know which stocks particular strategies would 

short. Clearly, quantitative investors use more sophisticated expected return models than those 

implicit in the simple cross-sectional sorts we use below. While our sorts will not perfectly 

capture the value or momentum portfolios generated by state-of-the-art quantitative investing 

techniques, our approach is a reasonable first approximation. Furthermore, Figure 3 confirms 

that arbitrageurs do respond to the information contained in these cross-sectional sorts. 

We adopt a relatively non-parametric specification for our cross-sectional regressions. 

For each cross-section t, we regress stock i’s short interest ratio on a full set of size, book-to-

market, and momentum decile dummies (the omitted dummy is always decile 5). We also 

include the same set of additional controls xit that were used in equation (1) above. Thus, our 

baseline specification for each cross section is: 

/ / .B M B M MOM M
it t t t t

OM SIZE SIZE
it it it it ittSR α ε′= + + + + +⋅ ⋅ ⋅1 1 1 xδ δ δ β  (2) 

The coefficient on the dummy for the lowest momentum decile, (1)
t
MOMδ , reflects the 

increase in short interest at time t associated with being an extreme loser relative to the omitted 

decile 5. Thus, (1)
t
MOMδ  forms our main proxy for the quantity of short-side capital devoted to 

momentum strategies at time t.10

                                                
10 The coefficients for the other deciles are also potentially informative. For instance, if arbitrage capital is flowing 
into momentum, we might also expect to see reductions in short interest for extreme. As discussed in the Internet 
Appendix, we have experimented with other measures of strategy intensities such as the spread in SR between 
extreme losers and winners. These other measures lead to similar conclusions. 
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One practical issue is whether and how to smooth the raw time series of monthly 

coefficients. Smoothing reduces the measurement error associated with monthly cross-sectional 

estimates. Since we explore low and medium frequency variation in strategy capital, we smooth 

coefficients by estimating annual and quarterly panel regressions. That is, we stack all firm-

month observations for a given year (or quarter) in a panel and estimate a single pooled 

regression that includes month fixed effects.11

We have examined a number of other equity anomaly strategies in addition to value and 

price-momentum, including earnings-momentum (i.e., post-earnings-announcement-drift or 

“PEADs”), net stock issuance, accruals, distress (as proxied by Shumway’s (2001) bankruptcy 

hazard rate), idiosyncratic volatility, and asset growth. Many of the patterns we describe below 

for value and price-momentum also hold for these other anomalies. We provide a brief overview 

of these results in the Internet Appendix. 

 However, all our results are qualitatively 

unchanged if we do not smooth, albeit with slightly reduced significance in a few cases. 

C.  Trends in Value and Momentum Capital from 1992-2010  

We now turn to the time series of our estimated capital intensities, which are estimated 

from annual cross-sectional regressions. In the Internet Appendix, we plot and discuss the cross-

sectional R2, number of observations, and the coefficients on the additional control variables. 

Figure 4 plots the coefficients for the lowest B/M and momentum deciles along with the 

associated 95% confidence intervals. Figure 4 shows that the coefficient for B/M decile 1 is 

significant in each year of our 1992-2010 sample, while the coefficient for momentum decile 1 is 

significant in all but one year. Consistent with anecdotal evidence, the figure suggests that large 

                                                                                                                                                       
 
11 Consistent with our cross-sectional interpretation, virtually all of the identification in these short panels is from 
between- as opposed to within-firm variation. Thus, the resulting annual coefficients are indistinguishable from 12-
month averages of the coefficients from monthly cross-sectional regressions (e.g., the correlations exceed 0.99). 
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quantities of arbitrage capital have flowed into value and momentum strategies, particularly 

since 2001. Specifically, Figure 4 shows that there has been a steady increase in short interest for 

extreme growth stocks and momentum losers. Regressing / (1)
t̂
B Mδ  on a time trend reveals a trend 

of +8.0 bps per annum (t = 7.3). While the trend for (1)ˆMOM
tδ  is slightly smaller at +3.6 bps per 

annum (t = 3.9), both / (1)
t̂
B Mδ  and (1)ˆMOM

tδ  have tripled over the past 19 years. 

The relative magnitudes of our capital proxies are also interesting. We find that / (1)
t̂
B Mδ  is 

greater than (1)ˆMOM
tδ  in each year of our sample. This suggests that more short-side capital has 

been allocated to value strategies than to momentum strategies. Value strategies have a longer 

history among both practitioners and academics than momentum strategies (e.g., dating back to 

Graham and Dodd (1934)) and are use by a variety of sophisticated investors other than 

quantitative hedge funds. Thus, it is not surprising to find more short-side capital dedicated to 

value strategies. 

Figure 4 also reports estimates based on 3-month rolling windows as discussed above 

which allow us to examine higher frequency movements in arbitrage capital. For instance, there 

is a clear decline in the shorting of growth stocks during the tech bust from 2000 to 2001. Short 

interest for momentum losers is also noticeably more volatile than that for extreme growth 

stocks. Specifically, Figure 4 shows that short interest for extreme momentum losers spiked 

during the beginning of the tech bust in 2000 and again in 2004. Short interest for extreme loser 

stocks reached all at time peak in June 2007, just before the quant meltdown of August 2007. 

Short interest for extreme losers plummeted following the imposition of the short interest ban in 
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September 2008, before spiking again in early 2010.12 The divergence of our value and 

momentum capital measures during the 2007-2009 financial crisis is also interesting. 

Specifically, short-side capital devoted to value strategies continued to grow in late 2008 even as 

short-side momentum capital was retreating.13

D. Why has Short-side Value and Momentum Capital Grown? 

 

We consider several possible explanations for the long-run trends we observe in our 

short-side capital proxies. First, the shifts we observe could be driven by an expansion of share 

lending supply. Second, shorting demand may have risen due to a rise in the expected returns to 

the value and momentum strategies. Third, shorting demand may have grown due to a slow 

diffusion of information about the profitability of these strategies. Such a diffusion of 

information would have lead additional arbitrageurs to enter these strategies, potentially resulting 

in heightened competition or strategy crowding over time. 

D.1. Disentangling Supply and Demand Shifts 

We first consider explanations that hinge on an expansion of share lending supply over 

time. Specifically, it could be that the demand to short a particular set of stocks has always been 

high, but has only gradually been revealed in equilibrium short interest quantities as supply 

constraints have relaxed over time. However, we argue that shifts in shorting demand have 

played an important, though perhaps not exclusive, role in shaping the trends described above. 

Since we do not have data on the relevant prices (i.e., share lending fees), we cannot 

separate supply and demand shifts using the approach of Cohen, Diether, and Malloy (2008). 

                                                
12 As discussed in the Internet Appendix, short interest for extreme losers falls for both nonfinancial and financial 
stocks post September 2008. However, the decline for financials is far more pronounced than that for nonfinancials. 
 
13 This might either be because investors recognized that momentum strategies are often not very profitable in 
volatile bear markets (Daniel (2011)) or because momentum strategies were employed by a set of institutions who 
were more heavily exposed to funding disruptions during the crisis (e.g., highly levered hedge funds). 
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Instead, we use institutional ownership, IOit, as a proxy for the shortable supply of stock i at time 

t. Consider the stylized view of the equity lending market is depicted in Figure 5. D’Avolio 

(2002) suggests that shorting supply curves are kinked; being highly elastic for it it itSR c IO< ⋅  

and inelastic beyond that kink. Here [0,1]itc ∈  represents the fraction of institutional owners with 

active share lending programs. If it it itSR c IO< ⋅  so shorting supply is highly elastic, the stock is 

considered “general collateral” and the lending fee will typically be quite small. If it it itSR c IO> ⋅  

and short sales constraints bind, the stock is said to be on “special” and short-sellers wishing to 

borrow shares will have to pay a larger fee. The figure suggests that short interest in stocks with 

high institutional ownership is unlikely to be affected by loosening supply constraints. For such 

stocks, it is likely that it it itSR c IO< ⋅ , so outward shifts in the kink or changes in the cost of 

shorting constrained stocks will not affect equilibrium short interest quantities.14

This analysis leads us to an important prediction of the supply-driven explanation. If 

shorting demand has been relatively constant, we should not see significant time trends once we 

condition on institutional ownership. Instead, we should simply find that the time series for 

unconstrained stocks lies above that for constrained stocks. Under a pure supply shift hypothesis, 

our aggregate trend simply reflects a changing mix of these two flat lines. By contrast, if there 

have been important shifts in shorting demand, we would expect to see trends for both the 

unconstrained and constrained stocks. A time trend for the unconstrained (i.e., high IO) stocks 

would be especially suggestive of an outward shift in shorting demand. 

  

Since shifts in lending supply are likely to be most important for small stocks, we look 
                                                
14 However, the fee for shorting unconstrained stocks may have dropped (i.e., the horizontal segment of the supply 
curve may have shifted). Shifts in the general collateral lending fee will affect equilibrium short interest for 
unconstrained stocks and are thus harder to disentangle from demand shifts. Anecdotally, general collateral lending 
fees have been relatively constant over time. Furthermore, such shifts will only have large effects on equilibrium SR 
if shorting demand curves are extremely price elastic which seems unlikely. 
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for evidence supporting these predictions. We group stocks into small (NYSE size deciles 1-2), 

medium (deciles 3-5), and big (deciles 6-10) stocks (me∈{S,M,B}). To explore the importance of 

the supply shifts, we use a fixed ownership cut-off of 30%, so stocks with IOit < 30% are 

considered to have “low” institutional ownership. This 30% cut-off is close to the median 

institutional ownership across all observations in our sample of 35.3%.15

( , )t me ioα

 Thus, we have a set of 

6= 3×2 size by IO bins in each cross-section. For each cross-section, we run our baseline 

specification, allowing each of the 6 size by IO bins to have its own intercept ( ) and its 

own coefficients on the B/M and momentum quintile dummies ( /
( , )

B M
t me ioδ and ( , )

MOM
t me ioδ ). 

Figure 6 plots the time series of coefficients for the lowest B/M and momentum quintiles 

for small stocks, broken out by high and low institutional ownership. These coefficients show the 

boost in SR relative to stocks of similar size and similar institutional ownership. Shorting of 

small growth stocks with low IO has increased, consistent with the idea that short-sales 

constraints have eased for this group. Furthermore, there is essentially no increase in short 

interest for small loser stocks with low institutional ownership. One possible explanation for this 

contrast with value is that the high turnover rates of momentum strategies makes them less 

profitable in small stocks with low IO. The key to our argument are the results for small-caps 

with high institutional ownership. Here we find large increases in short interest for both growth 

and loser stocks. Since these high-IO stocks have likely always been unconstrained, Figure 10 

suggests that there have large increases in shorting demand for small growth and loser stocks. 

D.2. Changing Expected Returns 

What explains these shifts in shorting demand? One possibility is that the expected 

returns to value and momentum strategies have increased. Arbitrageurs would naturally respond 

                                                
15 We obtain similar results if the IO cut-off for each period is based on the cross-sectional median. 
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to such increases in expected returns by allocating more capital to the strategies. Empirically, 

however, there is little evidence of a secular increase in the expected returns associated with 

value and momentum strategies. If anything, there is weak evidence of a secular decline in 

expected returns and a secular rise in the volatility of these strategies. 

D.3. Information Diffusion and Increased Competition 

Another explanation for the low-frequency trends we observe in value and momentum 

capital is that information on the profitability of these strategies has diffused slowly over time. 

An emerging literature in finance, including Duffie and Manso (2007), Stein (2008), and Duffie, 

Malamud, and Manso (2009), studies the diffusion of value-relevant information among 

competitive agents. These papers show that under certain conditions competitors have incentives 

to truthfully share information, so that the number of informed agents increases over time.16

D.3.1. Shifting Out of Large and into Small Stocks 

 In 

our setting, this suggests that the degree of competition among arbitrageurs may be increasing 

over time, as the pool of informed capital has grown. And, interestingly, we find some evidence 

consistent with concerns about heightened strategy-level competition or crowding. 

If diminished strategy profitability or strategy crowding are a greater concern in large, 

liquid stocks, then smaller stocks might have become more appealing over time. As a result, 

arbitrageurs may shift out of large stocks and into smaller stocks as competition increases. For 

both value and momentum, we find that arbitrageurs have moved away from large stocks and 

into small stocks. This is consistent with the idea that increases in competition have been 
                                                
16 In Stein’s (2008) model an investor might choose to share information on a new trading strategy with a competitor 
because he hopes that the competitor will be able to further refine the strategy. Furthermore, Stein argues that there 
may be a tendency for broad or underdeveloped ideas to diffuse more widely than specific and well developed ideas. 
For instance, researchers affiliated with quantitative equity funds often publish articles outlining the general 
contours of trading strategies (e.g., “beta arbitrage is profitable,” “momentum and value are everywhere,” “don’t 
fight the fed,” “there is an interaction between value and momentum,” etc.), but rarely publish on the specific 
implementation of these ideas (e.g., exactly how they construct a given signal.). 
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particularly significant among large, informationally efficient stocks.  

To understand these size interactions, we break each of the B/M decile into size groups: 

small stocks (NYSE size deciles 1-2), medium stocks (deciles 3-5), and big stocks (deciles 6-10). 

In Figure 7, we plot the size interactions associated with extreme growth stocks (B/M decile 1). 

These coefficients represent the boost in SR associated with being an extreme growth stock 

relative to a value-neutral (decile 5) stock in the same size category. 

As expected, Figure 7 reveals a steady increase in short interest for small-and medium 

cap growth stocks. A regression of / (1),ˆB M S
t

MALLδ  on time yields a trend of +10.5 bps per annum (t 

= 7.2). The trend for medium stocks is similar at +9.9 bps per annum (t = 4.2). The patterns for 

large growth stocks are perhaps most interesting. Specifically, we see that large growth stocks 

were actively shorted in the early 1990s. This activity began to decline in 1995 and during the 

fallout from the tech bubble there was actually less short interest for large-cap growth stocks 

than large-caps in B/M decile 5. Shorting activity among large-cap growth stocks has staged a 

modest rebound in recent years and is again comparable to levels in the early 1990s. 

We find similar patterns for extreme momentum losers. Specifically, we see increased 

shorting of small losers since the mid-1990s. The trend for (1),ˆMOM S
t

MALLδ  is +6.0 bps per annum (t 

= 6.3). Large-cap loser stocks were actively shorted in mid-1990s, but this has not been the case 

since 2000. Specifically, (1),
t̂
MOM BIGδ  rises from zero during 1992 to a level of approximately 1% 

from 1995-1998 before falling off in the late 1990s. Evidently, arbitrageurs were fairly reluctant 

to short large-cap losers during 2001-2003 and 2007-2009. 

D.3.2. Trading on Lower Quality Signals 

Similarly, as more capital uses a reliable signal of mispricing, arbitrageurs may become 

concerned about either the capacity or profitability of the signal. As a result, they may begin 
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using a signal that is less “crowded” but has historically been a weaker indicator of mispricing. 

Consistent with this intuition, we find that arbitrageurs have begun trading on “lower quality” 

signals. Specifically, short interest for firms in B/M or momentum decile 2 has increased 

substantially in recent years. This is consistent with the idea that arbitrageurs facing increased 

competition are concerned about the capacity or profitability of previously “high quality” signals 

such as being in B/M or momentum decile 1. Such concerns then lead them to use historically 

less profitable signals such as being in B/M or momentum decile 2. 

In Figure 8 we plot the coefficients for B/M decile 2, / (2)
t̂
B Mδ . While / (2)

t̂
B Mδ  is significant 

in all but 4 years in our sample, we see a steady trend toward more aggressive shorting of decile 

2 growth stocks over our sample. A simple regression of / (2)
t̂
B Mδ  on a time trend reveals a trend 

of +4.1 bps per annum (t = 6.0). Turning to momentum decile 2, we again see statistically and 

economically significant shorting of these stocks during most years in our sample. However, the 

overall time trend is less apparent. While a simple regression of (2)ˆMOM
tδ  yields a trends of +1.1 

bps (t = 2.4), Figure 8 shows that short interest for decile 2 losers has been more uneven.17

Another way to examine these issues is to plot the full set of decile dummies for 

momentum and B/M. These plots reveal time variation in the full mapping from characteristics to 

short-interest. Examining short interest for stocks that a strategy recommends going long is 

useful since the stocks that investors choose not to short are also potentially informative about 

allocation of arbitrage capital across strategies. For example, if the amount of short-side arbitrage 

capital playing momentum increases relative to other strategies, we would expect to see less 

shorting of momentum winners (i.e., deciles 9 and 10). 

 

                                                
17 Furthermore, the ratio of  to  has risen over time. However, there is little trend in . 
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We turn first to momentum. In Figure 9 we plot the full set of momentum decile 

dummies, ( 10
1

)ˆ{ }MOM d
t dδ = for the odd years in our sample. As noted above, there has been a 

significant increase in short interest for extreme losers (i.e., momentum decile 1) during our 

sample. However, the most striking feature of Figure 9 is the large reduction in short interest 

among winners in recent years. A possible interpretation of this reduction is that short-sellers 

have become increasingly concerned about price pressure from long-side momentum investors. 

Interestingly, however, the reluctance to short past winners appears to have reversed in 2009. 

In Figure 10 we plot the full cross-sectional relationship between B/M and short interest 

for the odd years in our sample. In examining this relationship, it is informative to examine 

whether value investors use a raw B/M signal or an industry-adjusted B/M signal. Specifically, 

we augment our baseline specification which already includes a full set of raw B/M decile 

dummies by adding a set of industry-adjusted B/M decile dummies (each firm’s B/M is 

demeaned using the 8-quarter trailing average B/M of its Fama-French-48 industry).  

The increase in short interest among stocks in unadjusted B/M deciles 1 through 3 is 

readily apparent in Figure 10. For the first dozen years of our sample, industry-adjusted B/M had 

no impact on short interest after controlling for unadjusted B/M. However, since 2003 we see an 

increased tendency to short stocks that have low industry-adjusted B/M, suggesting the industry-

adjusted signal has become significantly more popular. 

What caused this shift toward industry-adjusted value strategies? Industry-adjusted B/M 

strategies typically have higher Sharpe ratios than unadjusted B/M strategies because industry-

adjusted strategies function as within-sector allocation rules, while unadjusted strategies may 

also place large cross-sector bets. The strong performance of the intra-industry B/M strategy was 

first noted by Asness and Stevens (1995) and Cohen and Polk (1996) and may have taken several 
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years to diffuse throughout the quantitative investment community. Furthermore, industry-

adjusted strategies outperformed unadjusted strategies during the growth of the tech bubble from 

1998-1999, but then underperformed unadjusted strategies during the subsequent bust. Thus, 

quantitative investors may have shifted into industry-adjusted value strategies in response to their 

lower volatility and outperformance during the tech bubble. 

 

IV.  Arbitrage Capital and Asset Prices 

The low frequency growth of arbitrage capital suggests that the returns to the value and 

momentum strategies may be competed away over time. However, a large theoretical literature 

suggests that there may be limits of arbitrage that allow abnormal returns to persist. To explore 

this possibility, we now turn our attention to the high-frequency feedback between our measures 

of arbitrage capital and returns. We first examine the effects of past returns and volatilities on 

changes in arbitrage capital. We then turn to the relationship between arbitrage capital and future 

returns. 

We use k
tδ  to denote the coefficient on the decile 1 dummy for strategy k from the cross-

sectional short interest regression at time t. We work with quarterly data, so the k
tδ  are estimated 

by running regression (2) where all monthly observations in a given quarter are pooled together 

in a single panel. Using coefficients from monthly cross-sectional regressions introduces greater 

noise into the k
tδ  measures, but yields similar results. We use quarterly changes in these 

coefficients, 1
k k k
t t tδ δ δ −∆ = − , to proxy for strategy-level capital flows. Our k

tδ  and k
tδ∆  

measures have units of basis points of short interest. 

We use the HML and UMD factors returns available from Ken French’s web-site to proxy 

for the returns to value and momentum strategies, respectively. We cumulate the monthly returns 
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to form quarterly and annual factor returns. We also compute 1-quarter rolling factors 

volatilities, k
tσ , as the standard deviation of daily factor returns during quarter t. The quarterly 

and annual returns are in percentages and our factor volatility measures are in annualized 

percentages. To proxy for the returns to hedge funds more generally we use the return indices for 

“Equity Hedge” and “Event Driven” hedge funds available from Hedge Fund Research (HFR). 

We present the results both for our entire sample period and the period 1992-2007, which 

excludes the recent financial crisis. While the crisis was a period when arbitrage constraints may 

have bound tightly, the short sales bans and withdrawal of share supply due to concerns about 

the re-investment portfolios of securities lenders led to wild fluctuations in short interest. Thus, 

we also present results for the pre-crisis period to understand how these outlying observations 

may affect the results. 

A. Determinants of Capital Flows 

We set the stage with some simple plots that show that there is a strong relationship 

between our capital measures and strategy returns and volatility. Figure 11 plots the 4-quarter 

moving average of our capital measures (the k
tδ  coefficients) versus annual strategy returns and 

realized volatilities over the same 4-quarter period. A few noticeable relationships stand out. 

First, there is a strong negative correlation between the level of B/M capital and past HML 

returns (ρ = –0.27). Second, there is a strong positive correlation between the level of momentum 

capital and past UMD returns before 2001 (ρ = 0.62). However, the correlation is more modest in 

the latter half of the sample (ρ = 0.26). Third, there is also a strong negative relationship between 

the level of B/M capital and past HML return volatility (ρ = –0.47) prior to 2008. The 

relationship between capital and realized volatility for momentum is less apparent over this 

period. However, from 2008-2010 there was a strong inverse relationship between momentum 
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capital and realized UMD volatility. 

A.1. Effects of Past Strategy Returns on Capital Flows 

A critical assumption of much of the literature on limits of arbitrage, beginning with 

Shleifer and Vishny (1997), is the existence of a performance-flow relationship.18

Existing empirical work has focused on individual mutual funds and hedge funds and 

found such performance-flow relationships at the individual fund level.

 If arbitrageurs 

suffer outflows after their trades move against them, then they may exacerbate the very 

mispricing they set out to arbitrage. In equilibrium, this may discourage arbitrageurs from 

attempting to arbitrage the mispricing ex ante. 

19 A handful of papers 

have also found evidence of a positive performance flow relationship at the level of the 

aggregate mutual fund or hedge fund industry.20

In Table 1, we regress capital flows in quarter t on strategy returns in quarter t–1: 

 Why might we expect a performance-flow 

relationship to exist at the strategy level? First, fund managers may themselves chase 

performance across strategies. Second, a fund-level performance-flow may naturally lead to a 

strategy-level performance-flow relationship if end investors chase performance across funds 

that mix strategies in different proportions. 

1 .k k k k k
t t trδ α β ε−⋅∆ = + +  (3) 

The t-statistics are computed using heteroskedasticty robust standard errors. There is little 

                                                
18 While Shleifer and Vishny (1997) take the performance-flow relationship as given, Barberis and Shleifer (2003) 
and Berk and Green (2004) micro-found it using as the result of performance chasing and rational updating about 
fund manager ability, respectively. 
 
19 Chevalier and Ellison (1997) and Sirri and Tufano (1998) find a convex performance-flow relationship for mutual 
funds. Ding, Liang, Gemansky, and Wermers (2009) find that the flow-performance relationship for hedge funds is 
also convex in the absence of share restrictions, but that the relation becomes concave in the presence of restrictions. 
 
20 Goetzmann and Massa (2003) find evidence of daily performance flow relationship using U.S. index funds. 
Specifically, outflows increase following down-market days. Wang and Zheng (2008) find a positive relation 
between quarterly aggregate hedge fund flows and past aggregate hedge fund returns using Lipper TASS data. 
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evidence of a quarterly performance-flow relationship for value strategies. In fact, the point 

estimate for kβ  is slightly negative. By contrast, we find a reliably positive performance-flow 

relationship for momentum at a quarterly frequency in the pre-2008 period. The magnitudes here 

seem reasonable. The estimates indicate that a 10% quarterly momentum return generates capital 

flows of 8.8 bps; the mean and standard deviation of quarterly momentum flows are 0.3 and 31 

bps respectively. 

A.2. Effects of Strategy Volatility and Funding Constraints on Capital Flows 

Even in the absence of a performance-flow relationship, arbitrage may be limited if the 

leverage supplied to arbitrageurs is a function of past return volatility. For instance, in 

Brunnermeier and Pedersen (2009) a rise in volatility leads risk-averse lenders to raise margins 

on both long and short positions. As a result, leveraged arbitrageurs with limited capital are 

forced to scale back both long and short positions in order to meet margin requirements, 

potentially further raising volatility and margins in a “margin spiral.”21

Arbitrageur positions are also decreasing in margins in Garleanu and Pedersen (2011). 

Furthermore, they argue that the difference between uncollateralized and collateralized short-

term interest rates is a good proxy for the tightness of arbitrageurs’ margins constraints.
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21 Since strategy-level volatility is persistent, standard mean-variance considerations would predict a similar 
relationship between volatility and capital. For instance, the quarterly auto-correlations of HML and UMD volatility 
realizations are 0.77 and 0.79, respectively, in our 1992-2010 sample. Thus, a rational arbitrageur would forecast 
high future volatility for strategy k if past volatility has been high and, if he has a short performance horizon, this 
would lead him to reduce his allocation to strategy k. 

 Thus, 

we investigate whether short-side capital declines following a tightening of funding constraints, 

proxied using changes in the Treasury Eurodollar (TED) spread as in Frazzini and Pedersen 

(2010). Of course, without detailed micro-data on hedge fund leverage and margins, we cannot 

 
22 This is because uncollateralized borrowing effectively relaxes an arbitrageur’s margins constraint which 
collateralized borrowing does not. Thus, the difference between the uncollateralized rate and the collateralized rate 
equal the multiplier on the arbitrageur’s margins constraint. 
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distinguish between these various mechanisms, but we can verify their common prediction. 

Table 2 considers the effect of changes in strategy return volatility on strategy capital: 

1 .k k k k k
t t tδ α ψ σ ε−⋅∆∆ = + +  (4) 

There is evidence of the predicted negative relationship between capital and volatility for value. 

Regressing our capital flow measure on lagged changes in 1-quarter HML volatility yields a 

negative and significant coefficient. Again, the magnitudes seem reasonable. A 10% spike in 

annual HML volatility is associated with a 27 bps decline in our capital measure. For reference, 

the mean and standard deviation of the value flow measure are 1.8 bps and 24 bps respectively. 

For momentum, there is no evidence of the hypothesized negative relationship. This may 

be due to the fact that realized 1-quarter volatility fluctuates more for momentum than for value. 

Changes in 1-quarter momentum volatility have a standard deviation that is 65% higher than that 

for changes in 1-quarter value volatility. However, there does appear to be a negative 

relationship between momentum capital and overall market volatility, which is driven by the 

financial crisis period. 

When we examine the relationship between strategy capital and funding constraints, 

proxied by the Treasury Eurodollar (TED) spread, we find a strong negative relationship for 

momentum, but no relationship for value. 

A.3. Contagion and Spillovers Across Strategies 

We next investigate the effects of the returns on other strategies on the capital in a given 

strategy. This allows us to quantify the extent of wealth contagion or deleveraging spillovers 

across strategies. For instance, suppose there are two strategies, A and B, and that there is an 

initial adverse shock to the returns of strategy A. In the regression, 

1 1 ,B A
t t

B
t

B
tr rδ α γ β ε− −∆ = + ⋅ + ⋅ +  (5) 
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the coefficient γ  captures the effects of strategy-A returns on strategy-B capital flows. Limits-to-

arbitrage or deleveraging stories would suggest that γ  will be large and positive when many 

arbitrageurs play both strategies A and B. By contrast, if strategies A and B are used by entirely 

distinct sets of arbitrageurs, γ  would be close to zero. 

In Table 3 we regress OM
t
Mδ∆  on lagged of its own factor return (i.e., UMD), the market 

return, and HFR Indices tracking the performance of Event Driven and Equity Hedge 

(long/short) hedge funds. Hedge fund returns, rather than individual returns to other strategies, 

are likely to be the most powerful indicators of contagion because they “correctly” weight 

returns to other strategies. The table shows strong evidence that momentum capital flows, 

OM
t
Mδ∆ , respond to several other factor returns in addition to UMDt-1.

23

M
t
MOδ

 Column 3 shows that, 

holding MKTRFt-1 and UMDt-1 fixed, the effect of a one percentage point increase in the lagged 

return on HFR’s Equity Hedge index (EHEDGEt-1) is associated with a 4 bps increase in short 

interest for extreme losers. Thus, a one standard deviation increase in EHEDGEt-1 is associated 

with a 19.5 bps increase in  (the standard deviation of OM
t
Mδ∆  is 29 bps). In untabulated 

results, we find that the effect of EHEDGEt-1 is nearly three times larger for negative returns than 

for positive returns. Column 4 finds a similar effect for the returns to HFR’s Event Driven Index 

(EVENTt-1). Both of these hedge fund returns are included in column 5, and the magnitudes of 

the effects fall but remain significant. 

These results are suggestive of cross-strategy spillovers. When other equity strategies do 

                                                
23 We find little evidence that these other return factors help explain . One possibility is that there is a large 
group of arbitrageurs that only play value which may contrast with momentum. These value investors may have 
longer horizons and use relatively low leverage, so they are both willing and able to withstand wealth or contagion 
effects. To our knowledge, there are no pure momentum arbitrageurs. Momentum is a highly volatile strategy and so 
it is typically paired with other strategies to diversify away some of its idiosyncratic risk. 
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poorly, it seems that arbitrageurs liquidate momentum positions, presumably to meet margin 

requirements or capital redemptions. The sensitivity to event-driven returns is particularly 

suggestive since it is likely that only large multi-strategy hedge funds combine momentum and 

event-driven arbitrage. 

It is interesting to note that when we control for hedge fund returns the coefficient on the 

market return becomes negative and significant. Holding fixed how hedge funds are doing, 

capital flows into momentum when the market does poorly. One possibility is that end investors 

find the purported low-β of hedge funds more appealing when the overall market is doing poorly. 

This fits with anecdotal evidence that large quantities of capital flowed into hedge funds during 

the tech bust as institutions sought low-β alternatives to equities. Alternatively, hedge funds may 

be trying to inflate their returns by attempting to time the market. When the market does poorly, 

they stop closet indexing and put their capital back into β-neutral long-short strategies. 

B. Arbitrageur Capital and Future Strategy Returns 

A third, less direct way to assess theories of limited arbitrage is to examine the 

relationship between arbitrage capital and future returns to anomaly strategies. If arbitrageurs are 

unconstrained, then they should increase their strategy capital allocations when they anticipate 

high returns going forward. If, on the other hand, they are constrained by binding capital or 

leverage constraints when expected returns are high, the relationship between capital allocations 

and future returns will be negative. 

In Table 4 we forecast strategy returns over the following 4-quarters using capital flows: 

4 4 4( ) ,k k k kk k
t t t t t tr µ ϕ δ δ ε→ + − → ++−= + ⋅  (6) 

Due to the overlapping returns, the t-statistics here are computed using Newey-West (1987) 

standard errors allowing for 6 lags. There is reliable evidence that recent capital flows negatively 
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forecast future value returns. This result continues to hold even after controlling for the value 

spread, tVS , and for past returns, /
4
M

t
B

tr − → , to capture the mean reversion in HML identified in Teo 

and Woo (2004). The effects in the table are economically large. The returns here are in 

percentage points and the coefficients are in basis points. Thus, the coefficient for /
4

/B M B M
t tδ δ −−  

implies that a 1 bp increase in our capital measure forecasts that future annual HML returns will 

decline by 0.13%. 

This is unlikely to be purely a price pressure effect. An alternate interpretation is that 

returns to value are mean reverting and capital slowly chases value returns. This means that 

arbitrage capital wound up mistiming the value returns quite substantially. We examine this 

possibility in more detail. Regressing 4
/ /B M

t t
B Mδ δ+ −  on /

4
M

t
B

tr − →  yields an estimated coefficient of 

0.99 (t = 4.67) which suggests a strong low-frequency performance flow relationship. This result 

is driven by events surrounding the tech bubble and bust. Brunnermeier and Nagel (2004) study 

this period, finding that most hedge funds rode the tech bubble, while short sellers timed it well. 

Our measures reveal a more complicated story. Short sellers began shorting growth 

stocks during 1999, sustaining massive losses in the last two quarters of that year. While their 

short positions peaked at the height of the bubble in the first quarter of 2000, they closed out 

these positions too quickly during 2000. Perhaps capital withdrawals or tightening funding and 

margin constraints limited the ability of arbitrageurs to maintain these short positions. Whatever 

the reason, short sellers missed the rebound in value and collapse of growth stocks during late 

2000 and 2001. They began aggressively shorting growth stocks again in late 2001 and 2002, 

after the rally in value and collapse of growth had already taken place. 

Table 4 also examines the low-frequency relationship between returns and capital for 

momentum. As with value, regressing future UMD returns on past capital flows, 4
MOM MOM
t tδ δ −−  
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reveals evidence that arbitrageurs have negative ability to time momentum at longer horizons in 

the pre-2008 period. However, this result disappears during the financial crisis period, as 

arbitrageurs appear to have successfully exited momentum before it incurred low returns. 

 V.  Conclusion 

We propose a novel methodology for measuring strategy-level capital using time-series 

variation in the cross section of short interest. We find evidence suggesting that arbitrageurs have 

reacted to heightened competition by altering their strategies. In particular, they increasingly 

short moderate growth and moderate loser stocks, which we interpret as a shift towards using 

historically weaker signals of mispricing due to concerns that stronger signals have become over-

crowded. Furthermore, quantitative investors have shifted away from shorting large stocks and 

into small stocks. We interpret this as a shift away from more informationally efficient, liquid 

stocks that is also driven by concerns about crowding. 

Next we explore the determinants of capital flows into arbitrage strategies. We assess the 

evidence in favor of phenomena posited by the theoretical literature on the limits-to and 

destabilizing consequences of arbitrage, including responses to past returns (performance-flow), 

past volatility, and past returns in other strategies (cross-strategy spillovers). We find strong 

evidence of a performance-flow relationship for momentum, while capital flows for both value 

and momentum respond to volatility. For momentum, we also find evidence of spillovers using 

hedge fund return indices as a proxy for the performance of other arbitrage strategies. We also 

examine the forecasting power of capital flows for strategy returns and volatilities. For both 

value and momentum, lagged capital flows have strong negative forecasting power for returns, 

indicating that arbitrage capital has mistimed returns over our sample. 

Our methodology for measuring strategy-level capital may be of independent interest to 
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policymakers interested in detecting “crowded trades” because of the systemic risks they might 

pose. Existing approaches to detecting time-variation in crowding such as Adrian (2007), 

Pericoli and Sbracia (2010), and Pojarliev and Levich (2011) analyze changes in correlation 

structure of ex post returns. However, our approach may be better suited to detecting crowding 

ex ante because in relies on changing patterns in arbitrageurs positions. 

  



 29 

Appendix: Data Construction 

Our timing conventions ensure all firm characteristics are publicly available as of the date 

on which short interest is measured. Below we provide detailed definitions for each of the 

anomaly sort variables used in the paper. 

Value (B/M): B/M deciles are refreshed quarterly, allowing for at least 3 months between 

the fiscal quarter-end when book equity is measured and the sort date. For instance, short interest 

observations for July, August, and September are associated with a B/M sorts performed at the 

end of June. These book-to-market ratios are based on market equity as of the end of the prior 

quarter (March) and on book-equity from fiscal quarters ending in the prior calendar quarter 

(January, February, or March). This is the quarterly analog of the familiar timing conventions 

established by Fama and French (1992). Book equity is defined as stockholder’s equity, plus 

balance sheet deferred taxes and investment tax credits (when available), minus the book value 

of preferred stock. 

We also sort firms on the basis of industry-adjusted B/M using the 48 Fama-French 

(1997) industries. Specifically, we subtract the 8-quarter moving average of aggregate industry 

B/M (industry book over industry market value) from each individual firm’s book-to-market 

ratio. 

Price/return momentum: 12-month return momentum deciles are based on cumulative 

returns from months t–12 to t–1. That is, we skip a month when computing past returns to avoid 

contaminating over measures with the short-term reversal phenomenon documented by 

Jegadeesh (1990). Momentum deciles are refreshed each month. For instance, short interest 

observations for July are associated with momentum sorts performed at the end of June. These 

sorts are based on the 11 month cumulative returns from July (of the previous year) through 

May. 

Earnings momentum: For earnings momentum or post-earnings-announcement-drict 

(i.e. “PEADs”) we follow Chan, Jegadeesh, and Titman (1996) and use a standardized 

unexpected earnings measure based on the seasonal random-walk earnings model. This “earnings 

surprise” is normalized by share price, 4( ) /it it it itSUE EPS EPS P−= − . 

Share issuance: Following Fama and French (2008), we compute the year-over-year 

change in split-adjusted shares from quarterly Compustat data: 4log[ / ]Adj Adj
it it itNS SHR SHR −=  
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where Adj
itSHR is the product of common shares outstanding (CSHOQ) and Compustat’s 

adjustment factor (AJEXQ). 

Accruals: Balance sheet accruals in quarter t are defined as in Sloan (1996): 

( ) ( ) .it it it it it it itACC CurrAssets Cash CurrLiab STDebt TaxesPayable Deprec= ∆ −∆ − ∆ −∆ −∆ −  

Our measure of accruals is just then sum of balance sheet accruals over the past 4 quarters 

divided by average quarterly assets. The accruals measure and associated decile is refreshed each 

quarter following the timing conventions discussed above. Following Bergstresser and Philippon 

(2006), we also compute a cashflow-based measure of quarterly accruals as it itEBXI CFO−  

where EBXI is reported earnings before extraordinary items and CFO is cash flows from 

continuing operations (operating cash-flows minus cash-flows from extraordinary items and 

discontinued operations). 

CAPM Residual Volatility: ( )itσ ε  is the residual volatility from a trailing 24-month 

CAPM regression. In order to compute ( )itσ ε  we require that a firm has valid returns for at least 

12 of the past 24 months. 

Distress: We use the bankruptcy hazard rate estimated by Shumway (2001). The hazard 

model estimated by Shumway is exp[ ] / (1 exp[ ])it it itH SHUM SHUM= +  where 

0.467 1.809 ( ) 513. .791303 1.982 ( / ) 3.593 ( / )it it it it it iMt tSHUM NI A L A RE SIZE R RL σ= − − ⋅ + ⋅ ⋅ ⋅ + ⋅− − −
NI/A is 4-quarter trailing net income over period-end total assets, L/A is total liabilities over total 

assets, RELSIZE is the log of a firm’s market equity divided by the total capitalization of all 

NYSE and AMEX stocks, Rit – RMt is firm’s cumulative return over the prior 12-months minus 

the cumulative return on the value-weighted CRSP NYSE/AMEX index, and σit is volatility of 

residuals from trailing 12-month market-model regression (treating the CRSP NYSE/AMEX 

index as the market return). This distress measured is refreshed each quarter. 

Asset Growth: Following Fama and French (2008), we also compute measures of gross 

and net asset. Gross asset growth is simply the percentage change in assets over previous 4 

quarters. Net asset growth is asset growth per split-adjusted share. Daniel and Titman (2006) and 

Fama and French (2008) argue that the forecasting ability of gross asset growth measures is 

driven largely by the net share issuance component as opposed to net growth component. These 

growth measures are refreshed each quarter. 
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Figure 1: Average short interest ratios, 1992-2010. This figure plots the monthly equal- and value- (i.e., market equity) 
weighted average short interest ratio for all stocks in our sample. The short interest ratio for stock i in month t is defined as 
SRi,t = SHORTi,t /SHROUTi,t where SHORTi,t is short interest as of the mid-month reporting date and SHROUTi,t is shares 
outstanding as of the reporting date. 

 

 

Figure 2: Average short interest ratios by size decile. This figure shows the average short interest ratio by NYSE size 
decile as of year-end 1995, 1999, 2003, 2005, 2007, and 2009. 
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Figure 3: Short interest for stocks entering the extreme B/M (growth) or momentum (loser) deciles. The figure plots the 
“event time” coefficients which show the path of short interest for the typical stock entering the extreme growth or 
momentum deciles. Specifically, Panel A plots the δk for k = -8, …,-1,0,+1,..,+8 obtained from estimating:  
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Panel B repeats this for the analogous specification for stocks entering the extreme momentum (i.e., past “loser”) decile. 
 
Panel A: SR for stocks entering B/M decile 1 (i.e., extreme growth stocks) 

 
 
Panel B: SR for stocks entering momentum decile 1 (i.e., past return “losers”) 
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Figure 4: Estimated capital intensities for value and momentum strategies. The figure plots the time series of estimated coefficients on the extreme growth decile 
( ) and extreme momentum loser decile (  from the following specification: 

/ / .B M B M MOM M
it t t t t

OM SIZE SIZE
it it it it ittSR α ε′= + + + + +⋅ ⋅ ⋅1 1 1 xδ δ δ β  

In Panel A, these regressions are estimated annually, pooling all observations in a given year. In Panel B, these regressions are estimating on a rolling quarterly basis, 
pooling all observations in a given 3 month period. Thus, both specifications also include a full set of month fixed effects. We compute confidence intervals for the 
estimated coefficients using standard errors that cluster by firm and, thus, are robust to serial correlation at the firm level. 
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Figure 5: Stylized depiction of the equity lending market. The figure shows shorting demand and share lending supply in 
(SR,Lending Fee) space. Following D’Avolio (2002), we assume that shorting supply curves are kinked; being highly elastic 
for  and inelastic beyond that kink. Here  represents the fraction of institutional owners with active 
share lending programs. If  so shorting supply is highly elastic, the stock is considered “general collateral” and 
the lending fee will typically be quite small. If  and short sales constraints bind, the stock is said to be on 
“special” and short-sellers wishing to borrow shares will have to pay a larger fee. The figure shows the effect of an outward 
shift in both demand and supply for a stock that initially has a high level of institutional ownership. The figure suggests that 
short interest in stocks with high institutional ownership is unlikely to be affected by loosening supply constraints. For such 
stocks, it is likely that

 
, so outward shifts in the kink or changes in the cost of shorting constrained stocks will 

not affect equilibrium short interest quantities.  
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Figure 6: Capital intensities for small stocks by institutional ownership. The figure plots the time series of estimated 
coefficients on the extreme growth quintile and momentum quintile, allowing for separate effects by size and institutional 
ownership group: 
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Figure 7: Size interactions. The figure plots the time series of estimated coefficients on the extreme growth decile and 
momentum decile, allowing for separate effects by size group: 
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These regressions are estimated annually. 
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Figure 8: Trading on lower quality signals. The figure plots the time series of estimated coefficients on the growth decile 2 
( ) and momentum decile 2 (  from the following specification: 
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These regressions are estimated annually, pooling all observations in a given year, and include a full set of month fixed 
effects. We compute confidence intervals for the estimated coefficients using standard errors that cluster by firm and, thus, 
are robust to serial correlation at the firm level. 
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Figure 9: Full cross-sectional relationships for momentum. The figure plots the full set of estimated coefficients on the 10 momentum deciles dummies from 
the following specification: 
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These regressions are estimated annually, pooling all observations in a given year, and include a full set of month fixed effects. We compute confidence intervals 
for the estimated coefficients using standard errors that cluster by firm and, thus, are robust to serial correlation at the firm level. 
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Figure 10: Standard versus industry-adjusted value. The figure plots the full set of estimated coefficients on the standard B/M decile dummies and industry-
adjusted B/M decile dummies from the following specification: 
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These regressions are estimated annually, pooling all observations in a given year, and include a full set of month fixed effects. We compute confidence intervals 
for the estimated coefficients using standard errors that cluster by firm and, thus, are robust to serial correlation at the firm level. 
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Figure 11: Strategy capital, returns, and volatility. The figure plots the 4-quarter moving average of the estimated quarterly coefficients on the extreme 
growth decile ( ) and extreme momentum loser decile (  versus annual strategy returns and realized volatilities over the same 4-quarter period. 
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Table 1: The effect of strategy returns on strategy-level capital flows. This table shows regressions of the form: 

1 .k k k k k
t t trδ α β ε−⋅∆ = + +

 
for value and momentum. t-statistics are computed using heteroskedasticity robust standard errors. 
 
 Value Momentum 
 Full Sample Pre-2008 Full Sample Pre-2008 
 (1) (2) (3) (4) (5) (6) (7) (8) 

 -0.460 -0.567 -0.377 -0.623 0.239 0.563 0.881 1.093 

 [-1.17] [-1.27] [-1.07] [-1.58] [0.60] [1.54] [2.53] [3.13] 

  -0.338  -0.406  1.057  0.777 

  [-0.77]  [-0.75]  [2.55]  [1.83] 

Constant 2.358 3.002 1.968 3.152 -0.134 -2.236 -0.158 -2.172 
 [0.84] [0.93] [0.72] [0.91] [-0.03] [-0.59] [-0.04] [-0.53] 

T 75 75 63 63 75 75 63 63 

R2 0.018 0.032 0.013 0.027 0.005 0.082 0.057 0.097 
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Table 2: The effect of strategy volatility on strategy-level capital flows. This table shows regressions of the form: 

1 .k k k k k
t t tδ α ψ σ ε−⋅∆∆ = + +

 
for value and momentum.  is the standard deviation of daily factor returns during quarter t. The quarterly and annual returns are in percentages and factor 
volatility measures are in annualized percentages. We measure the TED spread using the difference between the rate on 3-month Eurodollar deposits (i.e., 3-
month LIBOR) and the yield on 3-month Treasury bill. Both rates are taken from the Federal Reserve H.15 release. t-statistics are computed using 
heteroskedasticity robust standard errors. 
 

 Value Momentum 
 Full Sample Pre-2008 Full Sample Pre-2008 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 -2.655 -3.742 -3.325 -3.209 -3.484 -3.478 -0.811 -0.413 -0.940 0.651 0.891 1.140 

 [-4.10] [-5.16] [-3.98] [-3.10] [-2.29] [-2.30] [-0.83] [-0.43] [-1.08] [0.81] [1.06] [1.50] 

   1.044 0.417  0.256 0.267  -0.793 0.548  -0.398 -0.231 

  [3.20] [0.69]  [0.27] [0.28]  [-2.84] [0.87]  [0.62] [-0.35] 

   17.606   -2.619   -39.142   -58.588 

   [1.81]   [-0.21]   [-2.88]   [-2.86] 

Constant 1.598 1.444 1.499 1.089 1.034 1.072 -0.042 0.068 -0.044 1.577 1.637 2.475 

 [0.61] [0.58] [0.61] [0.41] [0.40] [0.40] [-0.01] [0.02] [-0.01] [0.42] [0.44] [0.71] 

T 74 74 74 62 62 62 74 74 74 62 62 62 

R2 0.150 0.229 0.264 0.157 0.159 0.159 0.023 0.053 0.155 0.010 0.013 0.122 
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Table 3: Investigating contagion: The effect of other strategy returns on momentum capital flows. This table shows regressions of the form: 

1 1 ,MOM A MO
t t t t

Mr UMDδ α γ β ε− −∆ = + ⋅ + ⋅ +
 

where  is the lagged quarterly return on some other strategy A. t-statistics are computed using heteroskedasticity robust standard errors. 
 

 Full Sample Pre-2008 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 0.239 0.563 0.041 0.660 0.287 0.881 1.093 0.415 1.288 0.809 

 [0.60] [1.54] [0.11] [1.94] [0.84] [2.53] [3.13] [1.04] [4.11] [1.90] 

  1.057 -1.324 -0.673 -1.520  0.777 -1.454 -0.662 -1.526 

  [2.55] [-1.83] [-1.31] [-2.14]  [1.83] [-1.90] [-1.41] [-2.07] 

   4.057  2.600   3.937  2.395 

   [4.07]  [2.32]   [3.29]  [1.75] 

    4.348 2.640    4.232 2.783 

    [4.58] [2.72]    [4.04] [2.54] 

Constant -0.134 -2.236 -10.611 -13.028 -14.155 -0.158 -2.172 -11.085 -14.718 -15.848 
 [-0.03] [-0.59] [-2.59] [-3.20] [-3.53] [0.04] [0.53] [-2.50] [-3.32] [-3.60] 

T 75 75 75 75 75 63 63 63 63 63 

R2 0.005 0.082 0.209 0.205 0.238 0.057 0.097 0.215 0.222 0.251 
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Table 4: The relationship between arbitrage capital and future returns. This table shows regressions of the form: 

4 4 4( ) ,k k k kk k
t t t t t tr µ ϕ δ δ ε→ + − → ++−= + ⋅

 
where  is the 4-quarter annual return from quarter t to quarter t+4.  is the value spread. 
 

 Value Momentum 
 Full Sample Pre-2008 Full Sample Pre-2008 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 -0.125 -0.123 -0.147 -0.144 -0.135 -0.132 -0.161 -0.170 0.032 0.050 -0.109 -0.085 

 [-1.99] [-2.75] [-1.61] [-1.98] [-2.14] [-3.59] [-1.68] [-2.98] [0.29] [0.46] [-1.97] [-1.86] 

  0.129  0.129  0.224  0.253     

  [1.93]  [1.74]  [2.71]  [2.96]     

   -0.173 -0.171   -0.202 -0.297  -0.274  -0.300 

   [-0.86] [-0.85]   [-0.92] [-1.42]  [-1.83]  [-2.09] 

Constant 4.851 -11.312 5.803 -10.320 5.552 -20.827 6.923 -22.204 6.053 8.310 10.726 13.581 

 [1.42] [-1.55] [1.31] [-1.36] [1.50] [2.22] [1.37] [-2.40] [1.47] [1.79] [3.24] [3.71] 

T 68 68 68 68 60 60 60 60 68 68 60 60 

R2 0.063 0.172 0.091 0.194 0.072 0.255 0.111 0.215 0.004 0.074 0.073 0.159 

 



 48 

Internet Appendix: Additional Results 

A. Cross-Sectional Regression Summary Statistics 

In this Appendix, we provide further details on our annual cross-sectional regressions 

which take the form given in equation (2). In Figure A1 we plot the cross-sectional R2 and 

average number of stocks each month in our annual regressions. The R2 hovers between 0.25 and 

0.30 during the first 10 years of the sample before rising markedly in recent years. The increase 

in R2 since 2000 is largely driven by the growing importance of size (ME) and institutional 

ownership (IO) in determining the cross-section short interest. 

Figure A2 plots the coefficients for our six additional controls: institutional ownership, 

past turnover, trailing volatility, exchange dummies for NYSE and NASDAQ (AMEX is the 

omitted category), and a dummy indicating if the firm has convertible securities outstanding. 

First, we see that the impact of institutional ownership has increased over time and particularly 

since 2000. By 2007, a one percentage point increase in IO was associated with a 0.07% increase 

in SR. The growing impact of IO (i.e. the difference in SR between supply-constrained and 

unconstrained stocks) is consistent with a parallel shift in shorting demand for most stocks. 

When shorting demand is low, the supply constraint doesn’t bind for either high or low IO 

stocks. However, when demand shifts out the constraint will bind for firms with low IO, but not 

for those with high IO. Thus, a broad increase in shorting demand (not captured by our other 

controls) would cause the difference in SR between high and low-IO firms to rise. Interestingly, 

the coefficient on IO fell significantly in 2009 and 2010, and the rolling monthly results show 

that the coefficient dropped sharply after September 2008. Anecdotally, this likely reflects the 

withdrawal of several large institutional investors from share lending programs in the late 2008 

due to concerns about the re-investment portfolios of securities lenders. 
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Second, we see that SR is reliably increasing in past turnover. Throughout much of our 

sample a one percentage point increase in average turnover over the previous quarter is 

associated with a 0.20% to 0.25% increase in SR. The effect of past turnover on short interest 

declined somewhat in the late 1990s, recovered during the early 200s, and declined again 

following 2008. Third, we see that short-sellers were somewhat less willing to short highly 

volatile stocks during the 1990s. However, this effect has not been significant in recent years. 

Fourth, all else equal, we find that short interest is slightly lower for NYSE stocks when 

compared with AMEX stocks (the omitted group). Fifth, beginning in 2003, we find that SR has 

been noticeably larger for NASDAQ stocks than AMEX stocks. Finally, we find that the impact 

of having convertible securities outstanding grew steadily from 1991 to 2000. This effect 

declined following 2000 and from 2006-2008 there was little effect associated with having 

outstanding convertibles. However, the impact of convertibles on SR reemerged in 2009-2010. 

 

B. The Impact of Financial Stocks 

In this section, we explore how the short interest patterns for the 2007-2009 financial 

crisis differ between financial and non-financial stocks. In Figure A3, we plot equal- and value-

weighted short interest ratios separately for nonfinancial and financial stocks. On an equal-

weighted basis, average short interest for both nonfinancial and financial stocks soared prior to 

the crisis, peaked in July 2008, and dropped sharply following the imposition of the short sales 

limitations for financial stocks in September 2008. While Figure A3 shows that short interest 

followed essentially parallel trends for nonfinancials and financials on an equal-weighted basis, 

the run-up in SR was far more pronounced for financial firms on a valued-weighted basis. 

 We next estimate our baseline cross-sectional specification in equation (2) separately for 
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nonfinancial and financial stocks. In Figure A4, we plot the coefficients associated with the 

extreme growth and loser deciles. These figures replicate Figure 4 for all stocks separately for 

nonfinancial stocks in Panel A and financial stocks in Panel B. The figures for nonfinancials in 

Panel A are similar to those reported in the main text which makes sense given that the vast 

majority of all stocks are nonfinancial. The results for financials in Panel B show that there is 

little tendency to short financial stocks with low B/M (relative to other financial stocks). 

However, there was significant shorting of financial losers during the financial crisis and the 

monthly results suggest that the sharp contradiction in loser short interest in October 2008 may 

have been driven by the short interest ban for financials. 

 

C. Time-series Plots for Other Quantitative Strategies 

C.1. Annual Short-Only Measures for Other Anomaly Strategies 

The plots below show the coefficients on our decile 1 dummies for other quantitative 

arbitrage strategies. First consider the SUE measure of earnings momentum. To obtain capital 

measures for earnings momentum, we add a full set of SUE decile dummies to our baseline 

model, estimating: 

/ / .SUE SUE B M B M MOM MOM
it t t t t

SIZE SIZE
it it it it i it t ttSR α ε+ + ′= + ⋅ + ⋅ ⋅ + +⋅δ δ δ δ β1 1 1 1 x  (A1) 

Our estimates for other strategies are obtained by estimating analogous regressions. When 

computing deciles for these other strategies, we always code the deciles so that decile 1 is 

associated with abnormally low returns and decile 10 is associated with abnormally high returns. 

In Figure A5, we plot our baseline short-side capital measure, (1)
t
kδ , the boost to SR 

associated with being a decile 1 stock for quant signal k relative to the omitted decile 5. Given 

our coding conventions, we should expect to find (1) 0t
kδ > . Turning to the results, we see little 
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effect from having poor earnings momentum (SUE). Large net stock issuance is associated with 

being highly shorted, particularly since 2000. This is consistent with the idea that arbitrageurs 

have added this signal to their models over this period. There is little effect from having high 

balance sheet accruals, though high cash-flow based accruals have been associated with high 

short interest in the years prior to the crisis. The Shumway (1997) distress measure has little 

effect on short interest, except for 2001 during the tech and telecom bust and 2008-2009 during 

the financial crisis. High CAPM residual volatility has been important in recent years, suggesting 

it too has gained popularity as a signal. Both gross and net asset growth have a consistent effect 

on short interest that has grown somewhat in recent years. 

C.2. Annual Long-Short Capital Measures for Value and Momentum 

In Figures A6 below we plot the alternate measures of strategy capital described in the 

text. The lighter lines are the difference between our decile 1 dummies and our decile 10 

dummies from regression (2) in the main text – i.e., (1) (10)
t t
k kδ δ− . As discussed above, the 

reluctance to short stocks that an arbitrage strategy recommends buying contains information 

about the amount capital playing that strategy. Given our coding of the deciles we expect to find

(1) (10) 0t t
k kδ δ− > . The darker lines are the results of running cross-sectional regressions of the 

form in equation (2) on raw characteristic deciles, rather than a full set of characteristic 

dummies. These regressions deliver a single coefficient for each characteristic summarizing its 

impact of SR. As seen below, while this “raw decile” approach imposes linearity on the mapping 

from characteristics to short interest, it appears to capture similar information from the long and 

short sides as that contained in the more flexible specification (2). 

In Figure A6 we see that for B/M and momentum, the results using these short-long 

measures (1) (10)
t t
k kδ δ−  are quite similar to those presented in the main text, which only use decile 
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1 dummies (1)
t
kδ . The one difference is that in recent years the level of momentum capital has 

generally been higher than the level of value capital. As discussed above, the reason is that in 

recent years investors have been extremely reluctant to short winners but not value stocks. 

C.3. Annual Long-Short Capital Measures for Other Anomaly Strategies 

Turning to the other arbitrage strategies in Figure A7, we find an increase in the amount 

of capital playing SUE in recent years. This differs from the conclusion reached above using only 

the short side, which suggests that while arbitrageurs are reluctant to short stocks with positive 

earnings momentum, but they are not particularly eager to short stocks with negative earnings 

momentum. By contrast, the effects for net stock issuance (NS) are smaller than those seen 

above. This is because, somewhat surprisingly, we find that SR is also fairly high for large net 

repurchasers (i.e. (10) 0NS
tδ > ). Turning to our accrual measures, we find that they have little 

effect, except for the period 2001-2004 which was marked by significant accounting scandals 

and 2006-2008. Next, we see that while the Shumway distress metric has a meaningful impact on 

SR, the effect is relatively constant over time with the exception of 2008. Residual CAPM 

volatility has little effect throughout most of the sample, but has gained popularity in 2009 and 

2010. The effect of asset growth is similar to what we saw using only the short side. 
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Figure A1: Regression summary statistics: This figure plots the cross-sectional R2 and average number of stocks 
each month in our annual regressions (see equation (2)). 
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Figure A2: Coefficients for additional controls: This figure plots the time series of coefficients for the additional 
controls used in our annual cross-sectional regressions (see equation (2)). 
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Figure A3. Average short interest ratios for nonfinancial and financial stocks. Panel A plots the monthly equal- and value- (i.e., market equity) weighted 
average short interest ratio for all nonfinancial stocks in our sample. Panel B plots short interest ratios for financial stocks. Financial stocks are stocks with Fama-
French (1997) industry codes 44 (banking), 45 (insurance), 46 (real estate), or 47 (trading) based on their 48 industry classification scheme. 
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Figure A4: Estimated capital intensities for value and momentum strategies for nonfinancial stocks and financial stocks. The figure plots the time series 
of estimated coefficients on the extreme growth decile ( ) and extreme momentum loser decile (  from the following specification: 

/ / .B M B M MOM M
it t t t t

OM SIZE SIZE
it it it it ittSR α ε′= + + + + +⋅ ⋅ ⋅1 1 1 xδ δ δ β  

These regressions are estimated annually, pooling all observations in a given year or on a rolling quarterly basis, pooling all observations in a given 3 month 
period. Both specifications also include a full set of month fixed effects. We compute confidence intervals using standard errors that cluster by firm and, thus, are 
robust to serial correlation at the firm level. In Panel A, we include only nonfinancial stocks. In Panel B, we include only financial stocks.  
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Figure A4: Estimated capital intensities for value and momentum strategies for financial stocks and nonfinancial stocks (continued) 
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Figure A5: Short-side capital measures for other anomaly strategies: This figure plots the time series of for 
other anomaly strategies based on annual cross-sectional regressions (see equation (A1)). 
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Figure A6: Short-long capital measures for value and momentum: This figure plots difference in coefficients between decile 1 and decile 10 from equation 
(2), i.e. , alongside the coefficient from a regression of SR on raw characteristic deciles. 
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Figure A7: Long-short capital measures for other anomaly strategies: This figure plots difference in coefficients 
between deciles 1 and 10 from (A1) and the coefficient from a regression of SR on raw characteristic deciles. 
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Illiquidity is well-known to be a significant determinant of stock and bond returns. We

report on illiquidity premia in equity option markets. An increase in option illiquidity

decreases the current option price and predicts higher expected option returns. This

effect is statistically and economically significant. It is robust across different empirical

approaches and when including various control variables. The illiquidity of the under-

lying stock affects the option return negatively, consistent with a hedging argument:

When stock market illiquidity increases, the cost of replicating the option goes up,

which increases the option price and reduces its expected return.
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1 Introduction

The existing literature contains a wealth of evidence regarding illiquidity premia in stock

and bond markets. It has been shown in both markets that illiquidity affects returns, with

more illiquid assets having higher expected returns. In equity markets, Amihud and Mendel-

son (1986, 1989), Eleswarapu and Reinganum (1993), Brennan and Subrahmanyam (1996),

Amihud (2002), Jones (2002), Pastor and Stambaugh (2003), and Acharya and Pedersen

(2005) compare stock market illiquidity to ex-post returns on equities. In bond markets,

Amihud and Mendelson (1991), Warga (1992), Boudoukh and Whitelaw (1993), Kamara

(1994), Krishnamurthy (2002), Longstaff (2004), Goldreich, Hanke and Nath (2005), and

Beber, Brandt and Kavajecz (2009) analyze the impact of bond illiquidity on expected bond

returns.

There is also a growing body of evidence on the existence of illiquidity premia in other

markets, see for instance Deuskar, Gupta, and Subrahmanyam (2011) for evidence on interest

rate derivatives and Bongaerts, de Jong, and Driessen (2010) for evidence on the credit

default swap market. Vijh (1990) measures liquidity premia and market depth in the equity

options market, and George and Longstaff (1993) measure bid-ask spreads in index options

and explain the nature of cross-sectional differences in these spreads. However, the literature

has been mostly silent so far about the relationship between illiquidity and expected returns

in equity option markets. This is surprising, because similar to stock and bond markets,

market makers in option markets incur order processing and asymmetric information costs.

George and Longstaff (1993) find that a substantial fraction of the bid-ask spread in option

markets is attributed to premia compensating dealers for the risk of holding uncovered

positions in illiquid options.

Our contribution is to study the effect of option and stock illiquidity on equity option

returns. We document the statistical significance and economic magnitude of the impact of

option illiquidity on option returns. We also estimate the effect of illiquidity in the underlying

stocks on option returns. In a frictionless, complete-market model, the price of the option

can be replicated by trading in the underlying asset and a risk free bond. If the underlying

asset is illiquid, then the trading strategy replicating the price of the option is harder to

implement and the illiquidity costs of this trade should affect the price and thus return of

the option.

We establish our main results using cross-sectional Fama-MacBeth (1973) regressions for

daily and weekly returns. We present univariate regressions but also multivariate regres-

sions controlling for stock volatility, stock returns, lagged option returns, and other firm

characteristics, as in Duan and Wei (2009). An increase in option illiquidity has a positive
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and significant impact on next period’s option returns, across all moneyness and maturity

categories. This evidence is consistent with the existence of an illiquidity premium in the

options market, similar to the effect of stock illiquidity on stock returns reported by Amihud

(2002). The effect is also economically significant: for example, a two standard deviation

shock to out-of-the-money short-term call illiquidity results in a 2.37% change in the next

day out-of-the-money short-term call returns. A two standard deviation shock to out-of-the-

money short-term put illiquidity results in a 1.61% change in the next day out-of-the-money

short-term put returns.

We find that the illiquidity of underlying stocks also has a significant impact on option

prices. As expected, this effect is opposite to the effect of option illiquidity on option returns.

A positive shock to stock illiquidity decreases next period’s option returns. This finding

is consistent with trading motivated by hedging considerations. Whenever stock market

illiquidity increases, the higher stock transaction costs will increase the cost of replicating

the option, which will increase the option price and reduce its expected return. This effect

is also economically meaningful, although it is smaller compared to the impact of option

illiquidity: for example, a two standard deviation shock to stock illiquidity would result in a

0.87% change in the next day short-term out of the money call returns and a 0.59% change in

the next day short-term out of the money put returns. This is consistent with Cetin, Jarrow,

Protter and Warachka (2006), who suggest that illiquidity of underlying stocks constitutes

a significant part of option prices.

Analyzing the effects of illiquidity in the cross-section of option returns is empirically

more challenging than analyzing the cross-section of stock returns, because of the strong

dependence of option returns on the returns of the underlying. We therefore investigate the

robustness of our results by analyzing the cross-section of implied volatilities in addition

to the cross-section of returns. We find that both the illiquidity of the options and the

underlying assets help explain the level of implied volatility, and that the sign of the effect is

consistent with the evidence from the cross-section of returns. Moreover, option illiquidity

significantly affects the slope of the implied volatility curve: the implied volatility curve is

steeper for more illiquid option contracts.

Finally, we report time-series evidence for liquidity decile portfolios. We find that a

contemporaneous increase in option illiquidity has a significantly negative effect on option

prices, consistent with the cross-sectional evidence. This result is again similar to the effect

of stock illiquidity on stock returns reported by Amihud (2002). A contemporaneous shock

to option illiquidity decreases the current price and increases expected option returns to

compensate traders for holding illiquid contracts.

To the best of our knowledge these results are new to the literature. The existing empirical
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evidence on equity option illiquidity is very limited. Using data from an interesting natural

experiment, Brenner, Eldor and Hauser (2001) compare central bank issued and exchange

traded options and report a 21% illiquidity discount for non-tradable central bank issued

options. Cao and Wei (2010) document commonality in the illiquidity on equity option

markets, but do not investigate the impact of illiquidity on option returns.1

The paper is organized as follows. Section 2 lays out our main hypotheses and discusses

the theoretical literature on expected option returns. Section 3 describes the data and

variables we use, in particular, the construction of option returns and illiquidity measures.

Section 4 presents empirical results on the impact of illiquidity on the cross-section of option

returns. Section 5 investigates the cross-section of implied volatilities and the slope of the

implied volatility curve. Section 6 presents time-series evidence, and Section 7 concludes.

2 Illiquidity and Expected Option Returns

Motivated by the literature on liquidity risk in the bond and equity markets, we investigate

the following hypotheses in our empirical work:

1. In the cross-section, illiquid options earn on average higher expected returns, support-

ing the existence of a positive illiquidity premium.

2. The illiquidity of the underlying stock negatively affects expected option returns, which

is consistent with the following hedging argument: Higher stock transaction costs

increase the cost of replicating the option, which increases the option price and reduces

its expected return.

3. Option illiquidity and the illiquidity of the underlying stock are important determinants

of the level and slope of the implied volatility curve.

4. In a time series analysis, lagged option illiquidity predicts future expected option re-

turns and illiquidity shocks are negatively related to contemporaneous option returns,

consistent with a positive illiquidity premium.

Before forging ahead with empirical tests of these hypotheses, we briefly review existing

theoretical results on expected option returns. These results will be used to provide guidance

in the design of the illiquidity tests.

1The equity option literature also contains related results on trading activity and demand pressures.
Prominent papers include Garleanu, Pedersen, and Poteshman (2009), Easley, O’Hara, and Srinivas (1998),
Lakonishok, Lee, and Poteshman (2007), Mayhew (2002), Pan and Poteshman (2006), and Roll, Schwartz,
and Subrahmanyam (2010).
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Mainstream option valuation theory assumes away illiquidity in option markets as well

as in the market for the underlying and bond markets.2 This is done in order to arrive at

option valuation expressions that are deterministic functions of the underlying asset price

and the interest rate as well as other variables, including volatility.

In the standard Black and Scholes (1973) model, the option price, O, for a non-dividend

paying stock with price S is a function of the strike price, K, the risk-free rate, r, maturity,

T, and constant volatility, σ, which we can write

O = BS (S,K, r, T, σ) (2.1)

Coval and Shumway (2001) show that in this basic model with constant risk-free rate and

constant volatility, the expected instantaneous return on an option E
[
RO
]
is given by

E
[
RO
]

=

(
r + (E

[
RS
]
− r)S

O

∂O

∂S

)
dt (2.2)

where E
[
RS
]
is the expected return on the stock. The sensitivity of the option price to the

underlying stock price (the option delta), denoted by ∂O
∂S
, will depend on the variables in

(2.1). The delta is positive for call options and negative for puts. Thus the expected excess

return on call options is positive and the expected excess return on put options is negative.

The presence of E
[
RS
]
and ∂O

∂S
on the right-hand side of equation (2.2) shows that it

is critical to properly control for the return on the underlying stock when regressing option

returns on illiquidity measures.

In the Black-Scholes model, the risk-free rate is assumed to be constant across maturities.

Bakshi, Cao and Chen (1997) show empirically that allowing for stochastic interest rates does

not change the value of the option by much, compared to the simple use of maturity-specific

risk-free rates in the Black-Scholes model. Thus we do not control for stochastic interest

rates in our empirical analysis below.

The absence of stochastic volatility in the Black-Scholes model is much more critical. Hull

andWhite (1987) and Scott (1987) develop option valuation models with stochastic volatility.

Heston (1993) develops a stochastic volatility model that allows for correlation between the

shock to returns and the shock to volatility, as well as for a volatility risk premium to

compensate sellers of options for volatility risk. Broadie, Chernov, and Johannes (2009) and

Duarte and Jones (2007) show that in a standard stochastic volatility model, the expected

2Black and Scholes (1973), Hull and White (1987), and Heston (1993) are classic examples of papers in
this literature. See Jones (2006) for a detailed analysis of returns on S&P500 index options.
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option return is given by

E
[
RO
]

=

(
r + (E

[
RS
]
− r)S

O

∂O

∂S
+ λ

σ

O

∂O

∂σ

)
dt (2.3)

where the sensitivity of the option price to volatility (the option vega), denoted by ∂O
∂σ
, is

positive for all options, and where the price of volatility risk, λ, is negative because the added

volatility risk increases the option value.3 Equation (2.3) shows that it will be important to

control for the dynamic volatility of the stock when regressing option returns on illiquidity

measures.

The standard option valuation models discussed above do not allow for transactions costs

or liquidity risk. A much smaller option valuation literature allows for illiquidity effects in the

underlying asset. Prominent papers include Cetin, Jarrow and Protter (2004), Jarrow and

Protter (2005), and Cetin, Jarrow, Protter and Warachka (2006). The latter paper shows

that the Black-Scholes pricing model holds in the presence of liquidity costs associated with

trading the underlying asset, but also that the optimal hedging strategy changes compared

to Black-Scholes. Toft (1996) studies option valuation in the presence of trading costs.

Constantinides and Perrakis (2002, 2007), Oancea and Perrakis (2007), and Constantinides,

Jackwerth, and Perrakis (2009) rely on a stochastic dominance approach to characterize

bounds on option prices. As this approach establishes option valuation bounds rather than

option prices, expressions for the relationship between expected option returns and liquidity

measures are not readily available.

In recent work, Bongaerts, de Jong and Driessen (2010) develop an equilibrium asset

pricing model with liquidity risk where the underlying asset is in positive net supply and

the derivative asset is in zero net supply. The model contains heterogeneous investors who

differ with respect to their degree of risk-aversion, initial wealth and investment horizon. In

a linear special case of their model, the expected option return can be derived as

E
[
RO
]

= δ1E
[
RS
]

+ β2E
[
ILO

]
+ β3E

[
ILS

]
(2.4)

where ILO is the illiquidity (in terms of transaction cost) of the option and ILS is the

illiquidity of the underlying stock. Bongaerts, de Jong and Driessen (2010) show that when

the less risk-averse investors have long positions in the option, the coeffi cient on E
[
ILO

]
is positive and the option buyers will earn a positive illiquidity premium. These investors

are more sensitive to transaction costs and will therefore require compensation for illiquidity

risk. The model is not conclusive with respect to the sign of the coeffi cient on E
[
ILS

]
,

3The derivation of (2.3) assumes that the diffusion to volatility is linear in the volatility level.
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which therefore remains an open question in the empirical analysis, to which we now turn.

3 Data and Variable Construction

3.1 Option Returns

We investigate the impact of option illiquidity as well as stock illiquidity on option re-

turns. The construction of these two measures is complicated by the large number of option

contracts and the need to construct stock illiquidity measures using high-frequency data.

Moreover, data on option contracts for smaller firms is less readily available when research-

ing longer time periods. We therefore limit ourselves to options data for S&P500 index

constituents from OptionMetrics, which includes daily closing bid and ask quotes on Ameri-

can options, as well as their implied volatilities and deltas. By limiting ourselves to S&P500

firms, we bias our results towards not finding evidence of the importance of illiquidity. The

sample period is January 1996 to December 2007. We limit the sample to firms that have op-

tions trading throughout the entire sample period. We implement this by verifying whether

the firms have options trading on the first trading day of each calendar year in the sample,

as well as the last day in our sample, December 31, 2007. This yields a sample of 341 firms.

We repeat our analysis for six different option samples. For each firm, we consider put

and call options for two maturity categories: short-term, with time to maturity between

20 and 70 days, and long-term, with time to maturity between 71 and 180 days. Each

maturity category is in turn divided according to moneyness into in-the-money (ITM), at-

the-money (ATM), and out-of-the-money (OTM) options. We follow Driessen, Maenhout,

and Vilkov (2009) and Bollen and Whaley (2004) and define moneyness according to the

option delta from OptionMetrics,4 which we denote by ∆. OTM options are defined by

0.125 < ∆ ≤ 0.375 for calls and −0.375 < ∆ ≤ −0.125 for puts. ATM options correspond

to 0.375 < ∆ ≤ 0.625 for calls and −0.625 < ∆ ≤ −0.375 for puts, and the ITM category is

defined by 0.625 < ∆ ≤ 0.875 for calls and −0.875 < ∆ ≤ −0.625 for puts.

Following Goyal and Saretto (2009) and Cao andWei (2010), we apply filters to the option

data and eliminate the following contracts: (i) prices that violate no-arbitrage conditions;

(ii) observations with ask price lower than or equal to the bid price; (iii) options with open

interest equal to zero; (iv) options with missing prices, implied volatilities or deltas; (v)

options with prices lower than $3 and bid-ask spread below $0.05, or prices equal or higher

than $3 and bid-ask spread below $0.10, on the grounds that the bid-ask spread is lower

4For American options, OptionMetrics relies on the Cox, Ross, and Rubinstein (1979) binomial tree model
for computing implied volatilities and deltas.
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than the minimum tick size which signals a data error. We have also re-run the empirical

tests without imposing any filters, and the results are robust.

For all remaining options, our method for computing option returns follows Coval and

Shumway (2001). We compute daily returns using quoted end-of-day bid-ask midpoints if

quotes are available on the respective days. We compute equally-weighted average daily

returns on a firm-by-firm basis for each moneyness and maturity category by averaging

option returns for all available contracts. For each option category and for each firm, the

return from t to t+ 1 is defined by

RO
t+1 =

1

N

N∑
n=1

Ot+1(Kn, Tn − 1)× ft+1 −Ot(Kn, Tn)× ft
Ot(Kn, Tn)× ft

(3.1)

where N is the number of available contracts in the particular category at time t with

legitimate quotes at time t + 1. Ot(Kn, Tn) is the mid-point quote, (ask+bid)/2, for an

option with strike price Kn and maturity Tn, and ft is the cumulative adjustment factor for

splits or other distribution events, provided by OptionMetrics.

Weekly option returns are constructed similar to daily returns using Friday-to-Friday

data wherever possible, and alternatively using a minimum of four daily returns.5

Figure 1 plots the daily option returns over time. Figure 1A contains the call option

returns and Figure 1B has the put option returns. The short-term returns in the left panels

are clearly more volatile than the long-term returns in the right panels. This is true for both

calls and puts. All the option returns display volatility clustering and strong evidence of

non-normality. As is typical of daily speculative returns, the mean is completely dominated

by the dispersion.

Table 1 reports summary statistics. We first compute the respective statistics for each

firm and report the average across firms. Table 1 shows that call returns on average are

positive and put returns are negative, for daily data as well as weekly data in all categories.

This is as expected from the option deltas as shown in (2.2). The option returns exhibit

positive skewness and excess kurtosis in all categories as well, which is also as expected due

to option gamma. Returns on OTM options are higher than returns on ITM options. They

are also more variable and exhibit higher kurtosis. Returns on short-term options are higher

and more variable than returns on long-term options, confirming the visual impression from

Figure 1. The option returns display little evidence of serial dependence judging from the

first-order autocorrelation, ρ (1), but the absolute return autocorrelation ρabs (1) is positive

5We try the following combinations: Friday-to-Friday, then Friday-to-Thursday, then Thursday-to-Friday,
then Thursday-to-Thursday. If none of these are available then we discard the weekly observation for that
option.
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for all categories, confirming the volatility clustering apparent from Figure 1.

3.2 Illiquidity Measures for Stocks and Options

We investigate the impact on option returns of option illiquidity but also of illiquidity in the

underlying stock market. There is an extensive literature on stock market illiquidity as we

discussed in the introduction. We follow the convention in the literature and compute stock

illiquidity as the effective spread obtained from high-frequency intraday TAQ (Trade and

Quote) data. Specifically, for a given stock, the TAQ effective spread on the trade is defined

as

ILSk = 2 |ln(Pk)− ln(Mk)| , (3.2)

where Pk is the price of the kth trade and Mk is the midpoint of the consolidated (from

different exchanges) best bid and offer prevailing at the time of the kth trade. The daily

stock’s effective spread, ILS, is the dollar-volume weighted average of all ILSk computed over

all trades during the day

ILS =

∑
kDolV olkIL

S
k∑

kDolV olk

where the dollar-volume, DolV olk, is the stock price multiplied by the trading volume.

The literature on equity option illiquidity is in its infancy, and therefore it is less clear

how to define the option illiquidity measure. Furthermore, transaction prices to estimate

effective spreads are not available for options. Similar to conventional illiquidity measures

for stocks, we therefore measure illiquidity in the option market with relative quoted bid-ask

spreads.6 This is a transparent measure of illiquidity, and better alternatives are not readily

available.7 We compute relative quoted bid-ask spreads using end-of-day quoted bid and ask

prices provided by Ivy DB OptionMetrics.8 For each contract, we compute the daily relative

quoted spread

ILOt,n =
OAt(Kn, Tn)−OBt(Kn, Tn)

Ot(Kn, Tn)
(3.3)

where the prices Ot(Kn, Tn), OAt(Kn, Tn), and OBt(Kn, Tn) are, respectively, the end of day

closing mid-point, ask, and bid quotes reported in OptionMetrics, for an option with strike

price Kn and maturity Tn. Note Ot(Kn, Tn) = (OAt(Kn, Tn) +OBt(Kn, Tn))/2.

6For studies on stock market illiquidity that use relative bid-ask spreads, see for instance Hasbrouck and
Seppi (2001), Huberman and Halka (2001), Chordia, Roll, and Subrahmanyam (2000, 2001), and Chordia,
Sarkar, and Subrahmanyam (2005).

7Dollar quoted bid-ask spreads are not a good alternative as liquidity indicators, because they are mainly
driven by the maturity and moneyness of the option contract. See Cao and Wei (2010) for a discussion.

8We use the following fields in OptionMetrics: “Best bid”defined as the best, or highest, closing bid price
across all exchanges on which the option trades. Similarly for “Best offer”.
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The equally-weighted average spreads are then computed for each option category as

ILOt =
1

N

∑N

n=1
ILOt,n (3.4)

where N is the number of available contracts that are within the particular category at time

t.

Given the data constraints, using quoted spreads as an alternative to effective spreads is

reasonable. Battalio, Hatch and Jennings (2004), who use data for January 2000 through

June 2002, which is part of our sample period, find that for large stocks the ratio of effective

spread to quoted spread fluctuates between 0.8 and 1. Since our sample is limited to S&P500

firms, quoted spreads are a good substitute for effective spreads.

Panel A of Table 2 presents summary statistics for the relative bid-ask spread illiquidity

measure using our cross-section of 341 firms. For the option illiquidity, ILO, we find that

short-term contracts are more illiquid than long-term contracts, regardless of whether the

options are OTM, ATM, or ITM. For example, the average relative spread of short-term

OTM call options is 34.02%, while for long-term OTM calls the average spread is 22.67%.9

Table 2 also shows that illiquidity is highest on average for OTM options, followed by

ATM options, which in turn are more illiquid than ITM options. We therefore conclude

there are strong moneyness and maturity effects in liquidity. In order to control for this, we

will run our empirical tests separately on six different moneyness and maturity categories.

An alternative to the use of relative spreads as an illiquidity measure is Amihud’s (2002)

illiquidity measure, the price impact value, which is also considered by Bongaerts et al.

(2010). We construct this measure for options as follows: For each day and for each option

category we compute the average return and the average dollar volume across all available

contracts. Dollar volume is computed as the bid-ask midpoint multiplied by trading volume.

We then compute the ratio of the absolute return to the dollar volume for each day and

average it for each week. This is similar Amihud’s (2002) implementation, with the difference

that we construct a weekly rather than a monthly measure.

Table 3 reports summary statistics for Amihud’s illiquidity measure. Across option cat-

egories, OTM options have the highest price impact value. This is consistent with the

evidence on relative spreads in Table 2, which shows that OTM options are most illiquid.

Among other categories, similar to Table 2, ITM options are the least illiquid and ATM

options are in between. The cross-sectional correlation between Amihud’s price-impact mea-

sure and relative quoted bid-ask spreads ranges between 0.20 and 0.33 (not reported). This

9To put the magnitudes of these relative spreads in perspective, the average dollar spread in our sample
is 22.9 cents for calls and 23.8 cents for puts. This is very similar to the 21.3 cent average dollar spread
reported by Vijh (1990).
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is comparable to the evidence presented in Goyenko et al. (2009) for stocks.

For our purpose, the disadvantage of Amihud’s (2002) price impact measure is that

our empirical investigation uses daily and weekly returns on options, because constructing

monthly option returns is much less straightforward. Goyenko, Holden, and Trzcinka (2009)

argue against aggregating Amihud’s (2002) price impact measure at lower than monthly

frequencies, on the grounds that it yields a noisy estimate of illiquidity. We therefore use

the relative spreads for our main results. Nevertheless, we replicate our main results using

Amihud’s (2002) measure, and we obtain qualitatively similar results. These results are

available from the authors on request.

Trading volume and open interest are sometimes used as illiquidity measures. Table 3

reports on option trading volume and open interest. Table 3 shows that, as is well-known in

the empirical option valuation literature, open interest and volume are highest for ATM and

OTM options and lower for ITM options. So, while ITM options are the cheapest to trade in

a relative bid-ask sense, which is our measure of liquidity, the ATM and OTM options have

the highest trading volume. This is consistent with existing literature, which suggests that

volume is not informative about illiquidity in option markets. For instance, Mayhew (2002)

argues that an option can be liquid even if it has low trading volume. This may occur if other

options on the same stock are actively traded. In that case it is easy for a market maker to

hedge the low-volume option with actively traded options at other strikes and maturities,

as well as to hedge calls with puts and vice versa. Therefore, when thinking of illiquidity

in terms of trading costs, one should not expect an obvious relationship between illiquidity

and trading volume in option markets. The apparent incongruity between option volume

and trading cost also has interesting parallels to the literature on stock market liquidity.

Pastor and Stambaugh (2003) discuss the October 19, 1987 crash when the NYSE set a

record in trading volume but where the stock market was highly illiquid from a trading cost

perspective.

The right-most column in Table 2 shows that in our sample, stocks are on average sub-

stantially more liquid than options. The average relative bid-ask spread for stocks is 0.26%

in our sample. This is lower than most estimates reported in the literature, which is due

to the fact that our sample is limited to S&P500 firms, which are the most liquid. Panel

A of Table 2 also indicates that option illiquidity is substantially more volatile than stock

illiquidity.

Figure 2A depicts the evolution of our call illiquidity measure over time for all six option

categories, and Figure 2B does the same for put illiquidity. For all six option categories,

we report the average of the liquidity measure. Option illiquidity clearly declines over the

sample period, but not in a monotonic fashion. As in Pastor and Stambaugh (2003), we see
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occasional large spikes in the illiquidity measures. The largest spike took place on September

17-18, 2001, which were the first days of trading after the September 11 attacks. Smaller

spikes occur towards the end of the sample as the credit crisis gets underway.

The top panel of Figure 3 plots stock illiquidity over time. Stock illiquidity clearly

decreases over time, which the literature attributes to decreases in tick size, the increase in

electronic trading, and decimalization. There are illiquidity spikes associated with the 1997

Asian crisis, the 1998 LTCM collapse, 9/11, and the WorldCom bankruptcy in 2002.

In order to put our liquidity data into perspective, Figure 3 also plots the S&P500 index

level (middle panel) and the VIX volatility index from the CBOE (bottom panel). The

inverse relationship between market returns and volatility, the so-called “leverage effect”is

evident when comparing the S&P500 level with VIX. Figure 3 also shows some evidence of

dependence between spikes in stock illiquidity and spikes in the VIX.

Panels B and C of Table 2 show that option illiquidity has a sizeable positive correlation

with stock market illiquidity for all option categories, with somewhat higher correlations

for call options. This finding suggests co-movement between illiquidity in the two markets.

Table 2 also indicates that the illiquidity of OTM call and put contracts is substantially

more volatile than the other categories. Illiquidity of OTM short-term calls and puts is

highly correlated, at 0.59 (not reported in Table 2). This supports the findings of George

and Longstaff (1993), who suggest that traders regard call and put options as substitutes

(via put-call parity) with trading activity in calls and puts being positively related to the

bid-ask spreads in calls and puts.

3.3 Other Variables

We obtain daily stock returns, prices, and the number of outstanding shares from CRSP.

Weekly stock returns are compounded from daily returns. Data on long-term debt and the

par value of preferred stock, which are used to compute firm leverage, are from Compustat.

The S&P 500 constituents are also from Compustat. The returns on the Fama-French and

momentum factors are from Ken French’s online data library.

4 Illiquidity and the Cross-Section of Option Returns

We investigate the cross-sectional relationship between option illiquidity and expected op-

tion returns. We proceed by running daily and weekly cross-sectional regressions, and sub-

sequently testing the significance of the time-series means of the estimated coeffi cients, as in

Fama and MacBeth (1973).
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4.1 Computing Adjusted Option Returns

Variations in the price of the underlying security are by far the biggest determinant of returns,

and it is important to account for this when analyzing determinants of option returns as we

showed in equation (2.2). The common practice in the literature is to use delta-hedged option

returns. While this transformation is appropriate for studying factors affecting option returns

other than illiquidity, it creates a bias when testing the effect of illiquidity on option returns.

In particular, Cetin, Jarrow, Protter and Warachka (2006) show that in a Black-Scholes

economy with frictions, hedging does not eliminate the risk of the underlying stock. The

hedging error due to the illiquidity of the underlying stock inflates option prices. Therefore,

using delta-hedged returns biases our test results for stock illiquidity. We instead proceed

as follows: we first run a cross-sectional regression of option returns on the returns of the

underlying stock and their lagged values. We also include squared stock returns to control

for the nonlinear dependence between the two variables

RO
i,t = δ0,t + δ1,tR

S
i,t + δ2,tR

S
i,t−1 + δ3,t

(
RS
i,t

)2
+ εi,t, i = 1, 2, ...

and we refer to the residuals plus the intercept from these regressions as adjusted option

returns, which we denote

R̃O
i,t = δ̂0,t + ε̂i,t

Below, we regress these adjusted option returns cross-sectionally on the illiquidity measures

and a number of control variables.10

4.2 Capturing Liquidity Effects

Our treatment of illiquidity as an explanatory variable in the cross-section follows Amihud’s

(2002) investigation of expected stock returns, which is in turn inspired by the analysis of

French, Schwert, and Stambaugh (1987). Table 2 reports average estimates of the first-

order autocorrelation of individual illiquidity. The estimated values of ρ (1) clearly indicate

a rather persistent process, in line with the results for stock illiquidity reported by Amihud

(2002).

We compute the lagged illiquidity measure, ILOi,t−1, as described in Section 3, for every

firm in the sample and use it as a measure of expected liquidity.11 Following Amihud (2002)

10For robustness we also run the regressions in one step, i.e. we control for stock return, lagged stock
return and squared stock return on the right hand side together with the other control variables. The results
are qualitatively similar, but obviously the regression R-square is much higher.
11The illiquidity measure, ILOi,t−1, described in Section 3, is based on the contracts available at time

t− 1. However, only contracts with returns available at time t are considered in the computation of ILOi,t−1,
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and French, Schwert, and Stambaugh (1987), we use ex-post realized returns as a measure of

expected returns. We run cross-sectional regressions of returns between times t− 1 and t on

the liquidity measure at time t − 1; we also run similar regressions controlling for multiple

other return determinants.

Since the illiquidity of the underlying asset can affect trading activity in the option

markets via hedging pressures, we also include our measure of stock illiquidity ILSi,t−1.

4.3 Control Variables

We use a number of control variables in the liquidity regressions. To account for stale prices

in the daily data, we include the lagged adjusted option return RO
i,t−1 in the regression.

Another important determinant of expected option returns is volatility, as we showed in

equation (2.3). We estimate historical volatility from the daily stock return data using a

simple GARCH(1, 1) model:

RS
i,t = µi + σi,t−1zi,t (4.1)

σ2i,t = α0,i + α1,iσ
2
i,t−1 + α2,iσ

2
i,t−1z

2
i,t−1 (4.2)

where RS
i,t is the stock return, µi is the conditional mean, σ

2
i,t is the conditional variance,

and zi,t is a standard normal i.i.d. innovation.

Duan and Wei (2009) argue that the proportion of systematic risk affects the prices of

individual options, and therefore option returns. We thus include bt−1 in the regression,

which is the square root of the R-square from the regression of stock returns on the Fama-

French and momentum factors. Following Duan and Wei (2009), we obtain daily estimates

of bt−1 by using one-year rolling windows to run daily OLS regressions of the excess stock

returns on the standard four equity factors (the market, size and book-to-market factors

from Fama and French, 1993, and the momentum factor from Carhart, 1997). Furthermore,

we control for firm-specific characteristics such as size and leverage which have been shown

to affect the distribution of options prices, see for instance Dennis and Mayhew (2002) and

Duan and Wei (2009). Following Duan and Wei (2009),we measure size using the natural

logarithm of the firm’s market capitalization. We define leverage as the sum of long-term

debt and the par value of the preferred stock, divided by the sum of long-term debt, the par

value of the preferred stock, and the market value of equity.

ensuring consistency between returns and illiquidity used in the regressions. As a robustness check, we repeat
the tests using illiquidity based on all contracts, and the results are qualitatively very similar.
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4.4 Firm-Level Results using Daily Returns

Our most general cross-sectional regression is motivated by the theoretical model in Bon-

gaerts, de Jong and Driessen (2010), as discussed in equation (2.4) in Section 2. We run

this regression with and without the control variables discussed above. The most general

regression we consider is given by

R̃O
i,t = αt+β1,tR̃

O
i,t−1+β2,tIL

O
i,t−1+β3,tIL

S
i,t−1+β4,tσi,t−1+β5,tbi,t−1+β6,t ln(sizei,t−1)+β7,tlevi,t−1+εi,t

(4.3)

We run this cross-sectional regression on every day t using all firms available for a given

moneyness/maturity category, and subsequently compute the time-series averages of the esti-

mated coeffi cients.12 These averages are reported in Table 4. To control for serial correlation,

the Fama-MacBeth (1973) t-statistics are corrected according to the Newey and West (1987)

procedure using twenty-two lags for daily data.

Panel A of Table 4 reports the results for daily call option returns for all money-

ness/maturity categories, and Panel B reports on put options. For call contracts, option

illiquidity ILOi,t−1 significantly predicts higher option returns the next day at the 1% sig-

nificance level, across all maturity and moneyness categories. The coeffi cient on ILOi,t−1 is

statistically significant when ILOi,t−1 is the only regressor, but also when including the control

variables as in (4.3). Moreover, the ILOi,t−1 coeffi cient is not much affected when including

the control variables. This suggests that option illiquidity is an independent determinant

of option returns, and that its effect is not captured by other well-known determinants of

option returns.

Ignoring option illiquidity is tantamount to overestimating option prices. The effect is

also economically significant. For example, for OTM short-term options, the coeffi cient on

ILOi,t−1 is 0.062. Table 2 indicates that the standard deviation for OTM short-term call option

illiquidity is 0.191. Therefore, a two standard deviation positive shock to OTM short-term

call option illiquidity would result in a 2.37% increase in the next-day return on the call

option. This is a significant magnitude for daily changes in prices. The coeffi cient on ILOi,t−1
is higher for short-term contracts than for long-term contracts, implying that the illiquidity

impact is especially pronounced for short-term options. Short-term OTM contracts have the

highest illiquidity risk.

The positive predictive effect of option illiquidity on expected option returns is consistent

with existing findings on the effect of stock illiquidity on stock returns (Amihud, 2002).

The positive contemporaneous illiquidity shock decreases current prices and thus increases

12In all our tests, we require at least 30 firm-observations with all data available for each time t (day or
week or month) to run a cross-sectional regression.
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the expected return over the next period. Option markets are characterized by a positive

illiquidity premium, because buyers of illiquid contracts seek higher expected returns.

These results have implications for the option valuation literature. Bakshi, Kapadia and

Madan (2003) and others find that S&P500 index options are relatively more expensive than

individual equity options, particularly in the case of short-term and OTM options: Index

options display much larger risk-neutral kurtosis, (negative) skewness and volatility than

equity options. This is regarded as somewhat of a puzzle because an index is a portfolio

of equities and so one would expect index options to display less evidence of nonnormality

than individual equity options. Our results suggest that this valuation difference could be

driven by differences in liquidity. Index options are well-known to be much more liquid than

individual equity options. Thus individual equity option prices are relatively more depressed

by illiquidity than are index options. This is particularly true for short-term OTM options

where the difference in pricing between index and equity options is the greatest.

Our results also have implications for option trading. In the well-known dispersion trade

(see Driessen, Maenhout and Vilkov, 2009), investors sell index options, which are relatively

expensive, and buy a portfolio of (cheaper) equity options as a hedge. This trade is commonly

regarded as being driven mainly by correlation risk: When correlation increases, index options

become relatively more expensive, which is bad for the dispersion seller. Our results suggest

that this trade is also nontrivially exposed to liquidity risk because the equity options bought

are much less liquid than the index options sold.

The illiquidity of the underlying stock ILSi,t−1 has a negative effect on expected call option

returns, and this effect is statistically significant for all categories of short-term calls and for

long-term ITM calls. Given the positive coeffi cient on ILOi,t−1, the negative coeffi cient on

ILSi,t−1 is consistent with a hedging argument. When stocks become more illiquid, the higher

stock transaction costs will increase the cost of replicating the option, which will increase

the option price and reduce its expected return.

These results for short-term options are consistent with the evidence reported in Cetin,

Jarrow, Protter and Warachka (2006), who suggest ITM options are the least exposed to the

illiquidity of underlying stocks, since with ITM options most of the rebalancing of option

payoff replicating portfolios occurs only as the stock price decreases. This argument suggests

the largest effects for OTM options, where the replicating portfolio rebalancing occurs as

the stock price changes in either direction, with ATM options somewhere in between. The

coeffi cient on ILSt−1 is more negative for OTM options, -2.077, and the least negative for ITM

options, -0.428, with the coeffi cient for ATM options being in between, -0.873. For long-term

calls the effect of stock illiquidity is less pronounced. Our estimate of -2.077 implies that a

two standard deviation shock to stock illiquidity results in a 87 basis point change next day
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for short-term out of the money call returns. Therefore, while the effect of stock illiquidity on

call returns is small compared to that of option illiquidity, it is still economically meaningful.

Among other variables, the effect of the lagged option return R̃O
i,t−1 is negative and

significant, which indicates negative mean reversion in option returns, consistent with the

evidence on stock returns at the daily frequency. The volatility of the underlying also has a

negative and significant effect on expected option returns. This finding is consistent with an

option pricing model allowing for stochastic volatility and negative volatility risk premium

(e.g. Heston, 1993). As discussed in Section 2, in a stochastic volatility model, the expected

option return, E
[
RO
]
, is negatively related to volatility through the positive option vega,

∂O
∂σ
, and the negative price of volatility risk, λ, as in equation (2.3), which we repeat here for

convenience

E
[
RO
]

=

(
r + (E

[
RS
]
− r)S

O

∂O

∂S
+ λ

σ

O

∂O

∂σ

)
dt (4.4)

Further, the proportion of systematic risk, bi.t−1, is typically small and insignificant. Among

firm-specific characteristics, size exhibits a strong influence while leverage is typically in-

significant.

For the put options in Panel B, we obtain similar results for option illiquidity ILOt−1, which

positively predicts next period put returns. This effect is significant across all moneyness and

maturity categories in the univariate regression, but also when controlling for other variables.

Also confirming the results for call options, the effect of put illiquidity on expected put returns

is more pronounced for the short-term contracts compared to the long-term contracts. For

example, the coeffi cient on ILOi,t−1 for OTM short-term contracts is 0.048, almost twice the

coeffi cient for the long-term contracts, which is 0.023. In economic terms, the coeffi cient of

0.043 implies that a two standard deviation shock to OTM short-term put illiquidity results

in a 1.61% change in the next day put return. This is also an economically meaningful

number.

The results for stock illiquidity are also quite robust for the put options. The coeffi cient

on ILSi,t−1 is negative in all six categories and significant in four of six categories.

The total risk σi,t−1 has a significant impact on put returns across all moneyness and

maturity categories, whereas the effect from the share of systematic risk, bt−1, is small and

insignificant. Among other firm characteristics, size and leverage also seem to affect put

returns, consistent with the evidence in Dennis and Mayhew (2002).

We verified the robustness of the results in Table 4 by using raw option returns and

including current and lagged stock returns as regressors. This yields very similar results for

the variables of interest. The resulting R-squares are of course much higher, as the stock

return explains a significant part of the variation in option returns.
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4.5 Firm-Level Results using Weekly Returns

Daily prices may be subject to problems such as stale quotes and microstructure noise.

Table 5 therefore repeats the exercise from Table 4 using weekly data. To control for serial

correlation, the Fama-MacBeth (1973) t-statistics are corrected according to the Newey and

West (1987) procedure using eight lags. We classify the options as OTM, ATM, or ITM,

as well as short-term and long-term according to their average delta and maturity over the

week. The weekly results reported in Panel A of Table 5 for call options confirm the results

from Panel A of Table 4. The coeffi cients on lagged option illiquidity, ILOi,t−1, are robustly

positive, and the estimates are statistically significant. The coeffi cients on lagged stock

illiquidity, ILSi,t−1, are negative and statistically significant. This is true for the univariate

as well as the multivariate regressions.

The evidence on weekly put returns in Panel B of Table 5 also broadly confirms the

results from daily returns in Panel B of Table 4. Option illiquidity is significantly positively

related to option returns in four of the six categories in the multivariate regression. Stock

illiquidity is strongly negatively related with option returns for all categories.

Overall, the evidence in Tables 4 and 5 documents a statistically and economically sig-

nificant impact of option illiquidity on expected option returns. This effect is similar to

the effect of stock illiquidity on expected stocks returns (Amihud, 2002) and suggests a

positive illiquidity premium in equity option markets. The call option results are robust

to controlling for lagged option returns, stock returns, and stock volatility, as well as stock

illiquidity and firm-specific characteristics. Moreover, the illiquidity of the underlying stock

has a significantly negative impact on expected call and put option returns.

4.6 Portfolio Results

In the regression approach used in Tables 4 and 5, noise in returns on individual option

contracts may weaken inference. It is therefore of interest to confirm the results using

different empirical techniques. A simple alternative approach is to sort firms in liquidity

portfolio baskets, and investigate the resulting patterns in portfolio returns. This portfolio

approach can reduce the noise in returns on individual contracts. Panel A of Table 6 presents

portfolio results for daily call returns, and Panel B for daily put returns. Table 7 presents

results for weekly data. At time t − 1 (day or week) all options are sorted into liquidity

deciles. Subsequently we compute the average option return, stock return, illiquidity and

market capitalization for each decile portfolio at time t.

Consistent with the liquidity premium hypothesis, option returns are monotonically in-

creasing from the most liquid decile portfolio to the most illiquid decile portfolio for both

18



calls and puts. For the call options in Panel A, stock returns are increasing across decile

portfolios, for daily as well as weekly data; for the put options in panel B, stock returns

are decreasing across decile portfolios, as expected. Consistent with liquidity co-movement

between stock and option markets, stock illiquidity monotonically increases with option illiq-

uidity for both calls and puts, for weekly as well as daily data. It is also seen that the more

illiquid firms are on average smaller.

We can use portfolios to investigate whether returns on different horizon investments out-

weigh the substantial transaction costs. Similar to Amihud and Mendelson (1986), we com-

pute returns net of transaction costs, using the bid and ask quotes. The net return RO
net-Long

is computed as (bidt−askt−1)/askt−1 and RO
net-Short is computed as (-askt+bidt−1)/bidt−1.

Not surprisingly, the net returns after-trading costs for both long and short option posi-

tions are negative, clearly indicating that at short horizons liquidity premia are absorbed by

market frictions.

5 Illiquidity and Implied Volatility

In Section 4, we study the impact of option illiquidity on the cross-section of option returns.

This is a natural starting point, because it is straightforward to build intuition for illiquidity’s

expected effects on returns. The existing literature on illiquidity in bond and stock markets

also investigates the effects of illiquidity on returns, and provides a natural reference point.

However, there are some obvious differences between the analysis of options markets and

stock markets, and we have to keep these in mind when interpreting our results. Most

importantly, even though an analysis of the effect of illiquidity on stock returns also needs to

control for other return determinants, in the case of option returns an overriding concern is

that the return on the underlying is the first-order determinant of option returns (see equation

(2.2)). As explained above, we control for this in our empirical work in Section 4 by either

using the residuals from a regression on stock returns in our analysis, or alternatively by

including stock returns in the regression. But it is worthwhile to investigate if our results

are robust to an alternative empirical setup.

For equity options, an alternative approach is provided by the analysis of implied volatil-

ities. This is interesting from two perspectives. First, the analysis of implied volatilities is

well-established in the option literature. In fact, the importance of some of the control vari-

ables used in (4.3) was previously demonstrated in the context of the study of the structure

of implied volatilities, see for instance Bakshi, Kapadia, and Madan (2003) and Duan and

Wei (2009). Deuskar, Gupta, and Subrahmanyam (2011), who study the effect of liquidity on

bond options, exclusively use implied volatilities as left-side variables, presumably because
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of potential problems with the analysis of returns. Second, because the structure of implied

volatilities can simply be thought of as a (nonlinear) transformation of the structure of option

prices, its analysis can be easily linked to the illiquidity literature, which often presents its

arguments in terms of prices rather than returns. For example, Amihud (2002) investigates

the hypothesis that higher expected liquidity raises expected returns, which lowers prices,

assuming that liquidity does not affect corporate cash flows.

We therefore investigate whether option illiquidity affects the structure of implied volatil-

ities. Following Duan and Wei (2009), we investigate several aspects of the implied volatility

curve by first estimating the following model for each firm i for each moneyness and maturity

category used in Section 4

ivi,t(χk, Tk) = κi,t + θi,t(χk − χ̄k) + ηi,t(Tk − T̄k) + uki,t, k = 1, 2, ..., K (5.1)

where ivi.t(χk, Tk) is the implied volatility for option k with maturity Tk and moneyness

χk defined as the strike price over the stock price at time t. To ensure that suffi cient

contracts are available, we run the regression every month. Implied volatility and option

characteristics are provided by Ivy DB OptionMetrics. We include only months with more

than ten contracts available. T̄k and χ̄k are the average time to maturity and moneyness,

respectively, for each category. Using these regressions, we obtain for each firm i a monthly

time series κi,t which corresponds to the estimated level of implied volatility, and a monthly

time series θi,t which corresponds to the estimated moneyness slope of the implied volatility.

We define κ̃i,t as the residuals plus the intercept from the cross-sectional regression of κi,t
on the monthly volatility, estimated by the square root of the sum of squared daily returns

for the month. This is needed in order to eliminate the first-order determinant of implied

volatility, similar to the use of adjusted option returns in Section 4.

Using both call and put contracts, we first estimate the illiquidity impact on the level

of implied volatility by running monthly cross-sectional Fama-MacBeth regressions for the

following model

κ̃i,t = a0,t + a1,tIL
O
i,t + a2,tIL

S
i,t + a3,tR

S
i,t + a4,tbi,t + a5,t ln(sizei,t) + a6,tlevi,t + εki,t (5.2)

where RS
i,t is the firm’s stock return, IL

O
i,t is the average for the month of daily option illiq-

uidity, and ILSi.t is the dollar-volume weighted average of daily stock illiquidity, respectively.

The proportion of systematic risk averaged throughout the month is denoted by bi,t and

defined as in Duan and Wei (2009). To capture size we use the last daily observation each

month and to capture leverage we use the observation available in the previous quarter. As

in Section 4, the regression is run using all firms available for a given moneyness/maturity
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category.

Table 8 presents the results of this approach for calls and puts respectively. Option

illiquidity ILOt negatively affects the level of implied volatility at the 1% significance level

across all moneyness and maturity categories. These results are consistent with the positive

predictive impact of option illiquidity ILOt−1 on option returns in Tables 4 and 5. An in-

crease in illiquidity decreases current prices, and therefore also the level of implied volatility,

and increases expected option returns. Moreover, stock illiquidity, ILSt , has a positive and

significant impact on the level of implied volatility, which is also consistent with the results

in Tables 4 and 5, and with a hedging argument. An increase in stock illiquidity facilitates

trading in options to hedge long/short positions in more illiquid stocks. This causes an in-

crease in contemporaneous option prices, i.e. the level of implied volatility. These findings

suggest illiquidity spillovers between stock and option markets. Overall, we observe a strong

and statistically significant effect of both option illiquidity and stock illiquidity on the level of

implied volatility across all option categories. The robustness of this effect across all option

categories suggests a systematic impact of illiquidity on option prices.

We next examine the effect of option illiquidity on the moneyness slope of the implied

volatility curve. It is well known that the data exhibit a smile or smirk in the moneyness

dimension, implying that the slope is sometimes negative and sometimes positive. We test

the hypothesis that illiquidity increases the absolute value of the slope by estimating

|θi,t| = c0,t + c1,tIL
O
i,t + c2,tIL

S
i,t + c3,tR

S
i,t + c4,tbi,t + c5,t ln(sizei,t) + c6,tlevi,t + εki,t (5.3)

where θi,t is obtained from equation (5.1).

Table 9 reports the regression results. Option illiquidity ILOt significantly increases the

implied volatility moneyness slope, while the effect of stock illiquidity ILSt is less robust.

Overall, the results of Tables 8 and 9 suggest that option illiquidity is an important

determinant of the structure of implied volatilities. Stock illiquidity is also an important

determinant of the level and slope of implied volatility.

6 Option Illiquidity: Time Series Evidence

The cross-sectional results in Sections 4 and 5 provide substantial evidence of the importance

of both option and stock illiquidity for option returns at the firm level. We now present

time series evidence for portfolios. Portfolio-level time-series evidence can potentially yield

additional insights as firm-specific risks are largely diversified away in this case. We use

the time-series framework of French, Schwert, and Stambaugh (1987) and Amihud (2002).
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Conducting portfolio-level time series analyses is more involved for options than for stocks.

We proceed as follows. For each firm i and for each period t, we compute the option return

RO
i,t as the equally-weighted average return in (3.1) for all eligible contracts available at time

t. For these contracts we also compute the average illiquidity at time t, denote it ILi,t.

Some contracts are not available at both times t − 1 and time t, due to the data filters.

Therefore, the illiquidity at time t− 1 is only computed for the option contracts with quotes

available to compute their returns at time t, which ensures that RO
i,t, ILi,t and ILi,t−1 are

based on the same contracts. As in the cross-sectional regressions, we adjust option returns

for variation in the price and volatility of the underlying stock. We do so by regressing the

raw option return on the current and lagged stock return and squared stock return and using

the residuals from this regression instead of the raw option returns.

Then, as in Section 4.6, we rank the returns into deciles based on ILi,t−1, and for each

decile, we compute the equally weighted average of RO
i,t, ILi,t and ILi,t−1. We also compute

the equally weighted average of lagged stock illiquidity ILSi,t−1 for each decile portfolio.

We are interested in the time series dynamics of the effect of option illiquidity on option

returns at the portfolio level. Following the methodology in Amihud (2002), we test the

predictive power of option illiquidity on option returns as well as the effect of a contem-

poraneous and unexpected shock to option illiquidity on option returns. We estimate the

illiquidity shock of each decile, j, in the following time series regression in logarithms, using

weekly data:

ln (ILj,t) = ωj,0 + ωj,1 ln
(
ILj,t−1

)
+ vILj,t (6.1)

We use the residuals from this regression as a proxy for unexpected shocks to option illiquid-

ity, defined as ILuj,t ≡ vILj,t . The effect of option illiquidity on option returns is subsequently

estimated for each decile portfolio using the following regression

R̃O
j,t = γ0 + γ1 ln

(
IL′j,t−1

)
+ γ2IL

u
j,t + γ3 ln

(
ILSj,t−1

)
+ vj,t (6.2)

Based on our cross-sectional findings, we expect γ1 to be positive and significant. More-

over, we expect γ1 to monotonically increase from less illiquid to more illiquid portfolios

since we expect the illiquidity impact to be higher for more illiquid assets, similar to Ami-

hud’s (2002) findings for stocks. Given that lagged illiquidity has a positive impact, the

contemporaneous unexpected shock should have a negative effect on option returns, i.e. an

unexpected positive illiquidity shock should decrease current option prices and thus increase

expected option returns. Similar to the evidence on the impact of illiquidity on stock market

returns (Amihud, 2002), we also expect the effect of γ2 to be stronger, i.e. more negative,

for more illiquid portfolios.
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Finally, the expected sign for the effect of stock illiquidity on expected option returns

can be motivated by the discussion in Cetin et al (2006). A positive illiquidity shock in the

stock market increases the cost of the replicating portfolio and therefore increases the current

option price. Since options become more expensive for more illiquid stocks, the expected

return on these options decrease. Moreover, they decrease more for more illiquid options.

We therefore expect γ3 to be negative.

The illiquidity portfolio level results for all option categories are reported in Table 10.

The results are more pronounced for the call options reported in Panel A. For both short-

term and long-term OTM calls, γ1 is positive and significant and increases with portfolio

illiquidity. This coeffi cient is higher for short-term contracts, suggesting higher illiquidity

premia for short-term calls. The unexpected illiquidity has a significantly negative effect on

short-termOTM calls and the magnitude of this effect is monotonically increasing in portfolio

illiquidity. This is similar to the effect of stock illiquidity on stock returns (Amihud, 2002).

The unexpected illiquidity shock is only significant for high-illiquidity portfolios and for long-

term OTM calls but its coeffi cient has the expected negative sign and monotonically increases

in absolute value with portfolio illiquidity. The results on option illiquidity are qualitatively

similar across ATM and ITM short-term and long-term contracts, but the effect is more

pronounced for short-term contracts. This is consistent with Amihud and Mendelson’s (1986)

clientele effect, where the holders of longer term assets are able to amortize illiquidity costs

due to longer holding periods and thus require lower compensation for bearing illiquidity

costs. This assumes of course that long-term options are indeed held for longer periods on

average.

We obtain similar results for put options in Panel B, but with the exception of OTM

put options, the results for call options are stronger in terms of magnitude and significance

than for put options. Even though the two are linked via put-call parity, for ATM and

ITM contracts, call options appear to be more exposed to illiquidity in the option and stock

markets.

Finally, we find that stock illiquidity has a negative and significant impact on expected

option returns across both calls and puts and for different maturity and moneyness categories.

The pattern of γ3 across illiquidity portfolios is not monotone. It is higher in absolute value

for medium-illiquidity portfolios and lower for extreme decile portfolios. This suggests that

even though stock illiquidity does affect option returns, it represents a different type of risk

than option illiquidity.
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7 Conclusion

We present evidence on illiquidity premia in equity option markets. Using cross-sectional and

time series evidence, we find an economically and statistically significant positive impact of

option illiquidity on expected option returns. The cross-sectional results obtain in univariate

regressions, as well as in multivariate regressions controlling for returns and volatility of the

underlying equity, lagged option returns, and a variety of other variables. The results are

robust across six different moneyness and maturity categories, and estimates obtained using

the cross-section of implied volatilities confirm the positive impact of option illiquidity on

option returns. Our results are similar to the findings of Amihud (2002), who reports a

positive effect of stock illiquidity on stock returns. A shock to option illiquidity decreases the

current price and increases expected option returns, thus compensating traders for holding

illiquid contracts.

The illiquidity of the underlying stocks also has an economically significant impact on

option returns. A positive shock to stock illiquidity increase current option prices and de-

creases expected option returns. This effect is consistent with an increase in hedging trades

due to higher stock illiquidity: Whenever stock market illiquidity increases, the higher stock

transaction costs increase the cost of replicating the option, which in turn increases the

option price and reduces its expected return.
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Figure 1A 
Daily Call Option Returns 

We plot daily returns on equally-weighted portfolios of call options. Option returns are computed from closing bid-
ask price midpoints. For call options, OTM (out-of-the-money) corresponds to 0.125 < 𝛥 ≤ 0.375, ATM (at-the-
money) corresponds to 0.375 < 𝛥 ≤ 0.625, and ITM (in-the-money) corresponds to 0.625 < 𝛥 ≤ 0.875.  Short-
term options have maturities between 20 and 70 days, whereas long-term options have maturities between 71 and 
180 days. The option data are from Ivy DB OptionMetrics. The sample includes the S&P 500 constituents as of 
December 31, 2007 for which options trade throughout the entire sample period, which is from January 1996 
through December 2007.  
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Figure 1B 
Daily Put Option Returns 

We plot daily returns on equally-weighted portfolios of put options. Option returns are computed from closing bid-
ask price midpoints. For put options, OTM (out-of-the-money) corresponds to −0.375 < 𝛥 ≤ −0.125, ATM (at-
the-money) corresponds to −0.625 < 𝛥 ≤ −0.375, and ITM (in-the-money) corresponds to −0.875 < 𝛥 <
−0.625. Short-term options have maturities between 20 and 70 days, whereas long-term options have maturities 
between 71 and 180 days. The option data are from Ivy DB OptionMetrics. The sample includes the S&P 500 
constituents as of December 31, 2007 for which options trade throughout the entire sample period, which is from  
January 1996 through December 2007. 
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Figure 2A 
Aggregate Illiquidity for Call Options  

We plot aggregate daily illiquidity measures for call options. The illiquidity measure is based on the average relative 
bid-ask spread, where ask and bid are end-of-day closing quoted ask and bid prices available from Ivy DB 
OptionMetrics. The sample includes the S&P 500 constituents as of December 31, 2007 for which options trade 
throughout the entire sample period, which is from January 1996 through December 2007. 
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Figure 2B 
Aggregate Illiquidity for Put Options  

We plot aggregate daily illiquidity measures for put options. The illiquidity measure is based on the average relative 
bid-ask spread, where ask and bid are end of day closing quoted ask and bid prices available from Ivy DB 
OptionMetrics. The sample includes the S&P 500 constituents as of December 31, 2007 for which options trade 
throughout the entire sample period, which is from January 1996 through December 2007. 
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Figure 3 
Aggregate Stock Illiquidity, S&P 500 Index, and VIX 

We plot the aggregate stock illiquidity measure, the level of S&P 500 index, and the VIX. Stock illiquidity is 
estimated from TAQ (Trade and Quote) intra-day data as the dollar-volume-weighted average of effective relative 
spreads for each day. The sample period is from January 1996 through December 2007. 
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Table 1 
Descriptive Statistics 

We provide descriptive statistics for daily and weekly option returns. First we compute the descriptive statistics for 
each firm and then we take the cross-sectional averages of these statistics. We report the mean (in percentages), the 
standard deviation, the skewness, the kurtosis, the first-order autocorrelation of returns 𝜌(1), and the first-order 
autocorrelation of absolute value of returns, 𝜌𝑎𝑏𝑠(1). The option returns are computed using closing bid-ask price 
midpoints. OTM (out-of-the-money) corresponds to 0.125 < 𝛥 ≤ 0.375 for calls and −0.375 < 𝛥 ≤ −0.125 for 
puts. ATM (at-the-money) corresponds to 0.375 < 𝛥 ≤ 0.625 for calls and −0.625 < 𝛥 ≤ −0.375 for puts. ITM 
(in-the-money) corresponds to 0.625 < 𝛥 ≤ 0.875 for calls and −0.875 < 𝛥 ≤ −0.625 for puts.  Short-term 
options have maturity between 20 and 70 days, whereas long-term options have maturity between 71 and 180 days. 
The option data are from Ivy DB OptionMetrics. The sample includes the S&P 500 constituents as of December 31, 
2007 for which options trade throughout the entire sample period, which is from January 1996 through December 
2007. 
 

 Short-term Long-term 
 OTM ATM ITM OTM ATM ITM 
Daily Call Returns 
Mean 1.740 0.496 0.173 0.864 0.414 0.258 
Std 0.361 0.256 0.177 0.217 0.157 0.110 
Skew 2.941 1.347 0.742 1.940 1.107 0.667 
Kurt 34.621 10.487 8.044 22.097 12.518 12.997 
𝜌(1) -0.009 -0.005 -0.011 -0.013 -0.009 -0.009 
𝜌𝑎𝑏𝑠(1) 0.061 0.065 0.082 0.087 0.093 0.105 
Avr. Nb. Firms 221 213 236 262 291 300 
Daily Put Returns 
Mean -0.137 -0.460 -0.643 -0.138 -0.199 -0.229 
Std 0.313 0.227 0.166 0.175 0.129 0.098 
Skew 4.039 1.466 0.645 3.555 1.411 0.748 
Kurt 74.910 17.852 9.315 86.911 22.639 14.844 
𝜌(1) -0.001 -0.002 -0.010 0.001 0.000 -0.002 
𝜌𝑎𝑏𝑠(1) 0.065 0.065 0.073 0.086 0.087 0.087 
Avr. Nb. Firms 232 199 194 301 274 227 
Weekly Call Returns 
Mean 10.020 2.572 0.172 4.287 1.975 1.148 
Std 0.887 0.581 0.380 0.497 0.344 0.238 
Skew 3.213 1.616 0.803 2.257 1.248 0.658 
Kurt 22.379 8.766 5.273 16.497 8.249 5.537 
𝜌(1) 0.003 -0.008 -0.022 -0.011 -0.025 -0.035 
𝜌𝑎𝑏𝑠(1) 0.019 0.013 0.020 0.032 0.031 0.039 
Avr. Nb. Firms 244 243 260 280 306 312 
Weekly Put Returns 
Mean -0.874 -3.585 -4.627 -1.072 -1.363 -1.572 
Std 0.739 0.508 0.357 0.398 0.284 0.212 
Skew 3.668 1.713 0.796 2.980 1.354 0.722 
Kurt 31.715 10.998 5.584 31.259 10.487 6.780 
𝜌(1) 0.015 0.011 0.002 0.005 -0.006 0.003 
𝜌𝑎𝑏𝑠(1) 0.034 0.023 0.014 0.052 0.039 0.041 
Avr. Nb. Firms 252 229 220 311 290 245 



Table 2 
Illiquidity Measures 

We present summary statistics for the illiquidity measures in percentages (in Panel A) and the correlations between 
the illiquidity measures for call and put options (in Panels B and C respectively). Stock illiquidity 𝐼𝐿𝑆 is estimated 
from TAQ (Trade and Quote) intra-day data as the dollar-volume weighted average of the effective relative spread 
for each day. The option illiquidity measure 𝐼𝐿𝑂 is based on the average relative bid-ask spread, where ask and bid 
are end-of-day closing quoted ask and bid prices available from Ivy DB OptionMetrics. For each firm and for each 
day, we compute the average of the relative bid-ask spreads of all the available options in a given category, and then 
we take the mean, the minimum, the maximum, the standard deviation and the first-order autocorrelation, 𝜌(1),  of 
these averages. We report the cross-sectional averages of these statistics in Panel A. We compute the cross-sectional 
correlations between the illiquidity measures on each day and report the time-series averages of these correlations in 
Panel B for call options and Panel C for put options. The option data are from Ivy DB OptionMetrics. The sample 
includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire sample 
period, which is from January 1996 through December 2007. 

Panel A: Descriptive Statistics 
 Options   Stocks 

 Short-term Long-term    
 OTM ATM ITM OTM ATM ITM  
𝐼𝐿𝑡𝑂   for call options   𝐼𝐿𝑡𝑆 
Mean 34.02 12.97 7.86 22.67 9.48 6.05  0.26 
Min 3.89 2.18 1.56 2.74 1.78 1.23  0.03 
Max 123.40 48.33 30.85 91.45 35.35 22.54  3.85 
Std 19.10 6.10 3.32 12.25 3.96 2.33  0.21 
𝜌(1) 0.61 0.65 0.69 0.70 0.69 0.76  0.58 
 𝐼𝐿𝑡𝑂   for put options   
Mean 29.21 11.72 7.46 18.12 8.23 5.52   
Min 3.62 2.07 1.54 2.55 1.59 1.18   
Max 115.51 45.09 29.03 76.15 31.53 20.93   
Std 16.78 5.52 3.12 9.60 3.44 2.23   
𝜌(1) 0.67 0.69 0.68 0.77 0.74 0.75   

 
Panel B: Correlation Matrix for Call Options 

  𝐼𝐿𝑡𝑂      Short-term 𝐼𝐿𝑡𝑂     Long-term 
  OTM ATM ITM OTM ATM ITM 

𝐼𝐿𝑡𝑂  
Short-term 

ATM 0.66      
ITM 0.58 0.65     

𝐼𝐿𝑡𝑂  
Long-term 

OTM 0.58 0.62 0.60    
ATM 0.59 0.67 0.67 0.67   
ITM 0.64 0.70 0.74 0.67 0.74  

𝐼𝐿𝑡𝑆  0.24 0.25 0.26 0.30 0.26 0.29 
 

Panel C: Correlation Matrix for Put Options 
  𝐼𝐿𝑡𝑂      Short-term 𝐼𝐿𝑡𝑂     Long-term 
  OTM ATM ITM OTM ATM ITM 

𝐼𝐿𝑡𝑂  
Short-term 

ATM 0.69      
ITM 0.60 0.64     

𝐼𝐿𝑡𝑂  
Long-term 

OTM 0.69 0.69 0.64    
ATM 0.65 0.69 0.67 0.72   
ITM 0.64 0.67 0.70 0.70 0.75  

𝐼𝐿𝑡𝑆  0.23 0.21 0.20 0.24 0.22 0.19 



Table 3 
Descriptive Statistics for Volume, Open Interest and Amihud’s Illiquidity Measure  

We present summary statistics for option volume, open interest and Amihud’s Illiquidity measure for call options 
(Panel A) and put options (Panel B). For each firm and each day, we compute the average volume and open interest 
for all available options in a given category, and then we take the mean, the minimum, the maximum, the standard 
deviation and the first-order autocorrelation 𝜌(1) of these averages. We compute Amihud’s illiquidity measure on a 
weekly basis for each firm, and we take the mean, the minimum, the maximum, the standard deviation and the first-
order autocorrelation 𝜌(1) of these weekly measures. We report the cross-sectional averages of these statistics. The 
sample includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire 
sample period, which is from January 1996 through December 2007. 

 Panel A: Call Options 
 Short-term Long-term 
 OTM ATM ITM OTM ATM ITM 
Amihud’s Illiquidity Measure 
Mean 3.527 0.736 0.309 1.815 0.352 0.165 
Min 0.004 0.001 0.000 0.002 0.001 0.000 
Max 105.010 22.586 8.231 49.345 8.256 3.583 
Std 8.729 1.846 0.727 4.072 0.691 0.329 
𝜌(1) 0.077 0.126 0.107 0.117 0.156 0.118 
Volume       
Mean 198 271 108 88 114 34 
Min 0 0 0 0 0 0 
Max 10222 11246 8385 7004 8824 5261 
Std 516 633 364 294 365 171 
𝜌(1) 0.20 0.24 0.17 0.14 0.15 0.12 
Open Interest       
Mean 2295 2418 1743 2493 2587 1483 
Min 2 3 1 2 12 3 
Max 31024 30416 27355 27964 29252 22486 
Std 3586 3731 3164 3443 3541 2497 
𝜌(1) 0.84 0.85 0.86 0.89 0.91 0.89 

 
Panel B: Put Options 

 Short-term Long-term 
 OTM ATM ITM OTM ATM ITM 
Amihud’s Illiquidity Measure 
Mean 2.492 0.644 0.313 1.117 0.296 0.152 
Min 0.003 0.001 0.001 0.002 0.000 0.000 
Max 76.468 18.916 7.684 28.185 6.808 2.641 
Std 6.421 1.666 0.761 2.448 0.623 0.304 
𝜌(1) 0.072 0.100 0.084 0.100 0.112 0.087 
Volume       
Mean 141 151 59 56 54 16 
Min 0 0 0 0 0 0 
Max 9639 8598 5750 6309 6064 3045 
Std 433 441 242 233 231 99 
𝜌(1) 0.19 0.19 0.14 0.12 0.13 0.10 
Open Interest       
Mean 1689 1537 1075 1809 1580 940 
Min 2 1 1 7 2 1 
Max 27047 25244 20654 23298 22106 16473 
Std 2835 2725 2179 2757 2567 1811 
𝜌(1) 0.86 0.84 0.83 0.91 0.91 0.87 



Table 4 
Fama-MacBeth Regressions for Daily Adjusted Option Returns 

We report the results of cross-sectional Fama-MacBeth regressions for daily adjusted call and put option returns ( 𝑅� 𝑂), i.e. the residuals plus the intercept from 
the regression of option returns on stock returns, lagged stock returns and squared stock returns. We include the lagged values of the following regressors: option 
illiquidity 𝐼𝐿𝑂, the illiquidity of the underlying asset 𝐼𝐿𝑆, the conditional volatility, which is estimated using a GARCH(1,1) model, the systematic risk proportion 
b, which corresponds to the square root of the R2 from the regression of stock returns on Fama-French and momentum factors, and the logarithm of size and firm 
leverage. The option illiquidity measure 𝐼𝐿𝑂 is based on the average relative bid-ask spread, where ask and bid are end-of-day closing quoted ask and bid prices 
available from Ivy DB OptionMetrics. Stock illiquidity is obtained as the dollar-volume average of the effective relative spreads from TAQ. The sample includes 
the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire sample period, which is from January 1996 through December 
2007. The symbols *, † and ‡ denote, respectively, significance at the 10%, 5% and 1% levels using Fama-MacBeth t-statistics with Newey-West correction for 
serial correlation, using 22 lags.  

 Panel A: Call Options   Panel B: Put Options 
 Short-Term Long-Term  Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM  OTM ATM ITM OTM ATM ITM 
𝐼𝐿𝑡−1𝑂  0.062‡ 0.038‡ 0.046‡ 0.027‡ 0.019‡ 0.026‡  0.045‡ 0.025‡ 0.034‡ 0.020‡ 0.014‡ 0.020‡ 
Adj R2 0.012 0.013 0.018 0.010 0.010 0.013  0.011 0.013 0.015 0.011 0.012 0.014 
# Obs in CS (avr.) 220 213 236 262 290 300  232 199 194 301 274 227 
# CS regressions 2984 2984 2984 2982 2982 2982  2984 2983 2984 2982 2982 2982 
              
𝐼𝐿𝑡−1𝑆  -4.071‡ -2.149‡ -0.761‡ -1.216‡ -0.721‡ -0.280‡  -2.913‡ -2.109‡ -0.249 -0.982‡ -0.589‡ -0.169† 
Adj R2 0.009 0.010 0.009 0.008 0.010 0.010  0.010 0.013 0.014 0.009 0.012 0.014 
# Obs in CS (avr.) 220 213 236 261 290 299  231 199 193 300 273 227 
# CS regressions 2984 2984 2984 2982 2982 2982  2984 2983 2984 2982 2982 2982 
              
𝐼𝐿𝑡−1𝑂  0.062‡ 0.035‡ 0.045‡ 0.030‡ 0.022‡ 0.033‡  0.048‡ 0.023‡ 0.027‡ 0.023‡ 0.012‡ 0.021‡ 
𝐼𝐿𝑡−1𝑆  -2.077‡ -0.873‡ -0.428‡ -0.598‡ -0.223‡ -0.205‡  -1.399‡ -1.109‡ -0.064 -0.416‡ -0.238‡ -0.084 
𝑅�𝑡−1𝑂   -0.032‡ -0.015‡ -0.010‡ -0.031‡ -0.014‡ -0.011‡  -0.030‡ -0.013‡ -0.011‡ -0.027‡ -0.014‡ -0.012‡ 
𝜎𝑡−1 -0.112‡ -0.049‡ -0.014‡ -0.041‡ -0.018‡ -0.005‡  -0.064‡ -0.031‡ -0.007‡ -0.019‡ -0.011‡ -0.003† 
𝑏𝑡−1 -0.002 0.000 0.001 0.000 0.000 0.000  -0.003* -0.004‡ -0.001 -0.002 -0.001 0.000 
ln (𝑠𝑖𝑧𝑒𝑡−1) 0.004‡ 0.002‡ 0.001‡ 0.001‡ 0.001‡ 0.001‡  0.004‡ 0.002‡ 0.000‡ 0.001‡ 0.000‡ 0.000‡ 
𝑙𝑒𝑣𝑡−1 -0.001 0.000 -0.001† -0.001 0.000 0.002  -0.002† -0.002† 0.000 -0.001 0.000 0.000 
Adj R2  0.060 0.075 0.080 0.057 0.071 0.080  0.065 0.087 0.094 0.067 0.088 0.098 
# Obs in CS (avr.) 189 179 207 240 270 283  204 166 163 285 252 206 
# CS regressions 2968 2968 2968 2965 2965 2965  2968 2965 2965 2965 2965 2965 

 



Table 5 
Fama-MacBeth Regressions for Weekly Adjusted Option Returns 

We report the results of cross-sectional Fama-MacBeth regressions for weekly adjusted call and put option returns ( 𝑅� 𝑂), i.e. the residuals plus the intercept from 
the regression of option returns on stock returns, lagged stock returns and squared stock returns. We include the lagged values of the following regressors: option 
illiquidity 𝐼𝐿𝑂 , computed from relative daily quoted bid-ask spreads, 𝐼𝐿𝑆 , the dollar-volume weighted average of daily stock illiquidity for the previous week, the 
conditional volatility of returns, computed as the square root of the sum of squared daily returns for the previous week, b, the average of daily systematic risk 
proportion for the previous week, the logarithm of the firm size and the firm leverage. We use the size observed on the last day of the previous week, and the 
leverage from the previous quarter. The sample includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire sample 
period, which is from January 1996 through December 2007. The symbols *, † and ‡ denote, respectively, significance at the 10%, 5% and 1% levels using 
Fama-MacBeth t-statistics with Newey-West correction for serial correlation, using 8 lags. 

 
 Panel A: Call Options   Panel B: Put Options 

 Short-Term Long-Term  Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM  OTM ATM ITM OTM ATM ITM 

𝐼𝐿𝑡−1𝑂  0.211‡ 0.101‡ -0.004 0.076‡ 0.059‡ 0.048‡  0.159‡ 0.012 -0.081‡ 0.059‡ 0.000 -0.023 
Adj R2 0.015 0.009 0.015 0.008 0.008 0.012  0.012 0.010 0.014 0.008 0.011 0.013 
# Obs in CS (avr.) 244 243 260 279 305 311  251 229 220 311 290 244 
# CS regressions 622 622 622 622 622 622  622 622 622 622 622 622 
              
𝐼𝐿𝑡−1𝑆  -23.676‡ -11.526‡ -6.029‡ -9.116‡ -5.307‡ -2.422‡  -17.129‡ -9.846‡ -2.625‡ -5.925‡ -3.371‡ -0.895* 
Adj R2 0.010 0.011 0.011 0.012 0.012 0.013  0.011 0.012 0.013 0.012 0.014 0.018 
# Obs in CS (avr.) 244 242 259 279 305 311  251 228 220 310 290 244 
# CS regressions 622 622 622 622 622 622  622 622 622 622 622 622 
              
𝐼𝐿𝑡−1𝑂  0.262‡ 0.193‡ 0.073‡ 0.122‡ 0.132‡ 0.105‡  0.192‡ 0.055* -0.100‡ 0.091‡ 0.041* -0.032 
𝐼𝐿𝑡−1𝑆  -20.355‡ -7.431‡ -3.664‡ -9.239‡ -3.888‡ -1.872‡  -14.206‡ -5.626‡ -0.151 -4.969‡ -2.169‡ -0.173 
𝑅�𝑡−1𝑂   0.003 0.001 -0.007‡ -0.011‡ -0.006‡ -0.007‡  -0.002 -0.001 -0.004† -0.008† -0.009‡ -0.008‡ 
𝜎𝑡−1 -0.213‡ -0.102‡ -0.039‡ -0.051‡ -0.028‡ -0.017‡  -0.078‡ -0.047‡ -0.025‡ -0.008 -0.014‡ -0.011‡ 
𝑏𝑡−1 -0.015 -0.004 -0.004 -0.012 -0.005 -0.001  -0.042‡ -0.034‡ -0.010* -0.015† -0.008† -0.001 
ln (𝑠𝑖𝑧𝑒𝑡−1) 0.024‡ 0.013‡ 0.005‡ 0.008‡ 0.005‡ 0.002‡  0.019‡ 0.009‡ 0.002‡ 0.007‡ 0.003‡ 0.001* 
𝑙𝑒𝑣𝑡−1 0.049‡ 0.025‡ 0.005† 0.021‡ 0.006‡ 0.002  0.028‡ 0.014‡ 0.011‡ 0.007† 0.003* 0.002 
Adj R2  0.058 0.050 0.054 0.049 0.054 0.060  0.055 0.057 0.060 0.052 0.066 0.071 
# Obs in CS (avr.) 200 199 222 252 284 294  215 184 176 293 266 217 
# CS regressions 621 621 621 621 621 621  621 621 621 621 621 621 



Table 6 
Daily Portfolio Strategies 

 
We show portfolio sorting results for call options (Panel A) and put options (Panel B). Each day, we sort the firms 
into deciles based on their lagged option illiquidity 𝐼𝐿𝑂. For each decile, we report (in percentages) the time-series 
average of raw option returns 𝑅𝑂, the net (after transaction costs) option returns, 𝑅𝑛𝑒𝑡𝑂 -Long for the long position and 
𝑅𝑛𝑒𝑡𝑂 -Short for the short position, stock returns 𝑅𝑆, the option quoted relative bid-ask spread 𝐼𝐿𝑂, the effective 
relative bid-ask spread 𝐼𝐿𝑆 for the stock, and size in millions of dollars. The sample includes the S&P 500 
constituents as of December 31, 2007 for which options trade throughout the entire sample period, which is from 
January 1996 through December 2007. 
 

Panel A: Call Options 
  Short-Term  Long-Term 

Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM 𝑅𝑡𝑂 0.17 0.93 0.71 1.49 5.72  0.46 0.73 1.10 0.87 1.94 

𝑅𝑛𝑒𝑡𝑂 -Long -12.67 -17.21 -23.77 -31.47 -51.34  -9.25 -12.45 -16.24 -23.01 -42.02 
𝑅𝑛𝑒𝑡𝑂 -Short -15.01 -23.50 -33.88 -52.89 -165.82  -11.27 -16.12 -22.55 -33.28 -96.73 
𝑅𝑡𝑆 0.07 0.08 0.07 0.09 0.21  0.05 0.07 0.11 0.06 0.10 
𝐼𝐿𝑡𝑂 15.87 21.92 30.92 42.55 77.80  11.01 14.62 19.48 28.00 57.50 
𝐼𝐿𝑡𝑆 0.22 0.23 0.26 0.28 0.35  0.22 0.24 0.26 0.30 0.39 

 𝑠𝑖𝑧𝑒𝑡 33189 23496 19543 13868 7880  38163 26299 18749 13073 7000 
ATM 𝑅𝑡𝑂 0.06 0.26 0.43 0.54 1.43  0.34 0.41 0.45 0.46 0.84 

𝑅𝑛𝑒𝑡𝑂 -Long -6.32 -8.02 -9.92 -12.76 -22.42  -5.01 -6.34 -7.85 -10.02 -16.34 
𝑅𝑛𝑒𝑡𝑂 -Short -6.88 -9.33 -12.08 -16.03 -34.53  -6.00 -7.68 -9.57 -12.24 -22.29 
𝑅𝑡𝑆 0.07 0.05 0.07 0.07 0.09  0.05 0.07 0.07 0.06 0.08 
𝐼𝐿𝑡𝑂 7.33 9.07 11.24 14.63 27.70  5.87 7.12 8.70 11.01 18.51 
𝐼𝐿𝑡𝑆 0.22 0.23 0.24 0.27 0.37  0.22 0.24 0.25 0.29 0.38 
𝑠𝑖𝑧𝑒𝑡 38866 26397 19811 14445 7202  39591 26969 18087 12266 6447 

ITM 𝑅𝑡𝑂 0.11 0.13 -0.08 0.39 0.47  0.24 0.19 0.16 0.28 0.45 
𝑅𝑛𝑒𝑡𝑂 -Long -4.29 -5.45 -6.81 -8.21 -13.39  -3.28 -4.36 -5.42 -6.56 -10.60 
𝑅𝑛𝑒𝑡𝑂 -Short -4.71 -6.05 -7.17 -9.87 -16.95  -3.90 -4.97 -6.09 -7.65 -13.05 
𝑅𝑡𝑆 0.05 0.03 0.02 0.06 0.03  0.06 0.04 0.02 0.06 0.06 
𝐼𝐿𝑡𝑂 4.82 5.88 7.03 9.00 14.79  3.75 4.74 5.77 7.01 11.46 
𝐼𝐿𝑡𝑆 0.21 0.23 0.25 0.28 0.35  0.21 0.24 0.26 0.29 0.39 
𝑠𝑖𝑧𝑒𝑡 41649 29545 21687 14415 7302  40327 27161 19072 12798 5874 

 
  



Table 6 (continued) 
Daily Portfolio Strategies 

 
Panel B: Put Options 

  Short-Term  Long-Term 
Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM 𝑅𝑡𝑂 -0.51 -0.30 -0.15 -0.13 3.02  0.15 0.05 0.06 -0.01 0.47 

𝑅𝑛𝑒𝑡𝑂 -Long -11.70 -15.77 -20.68 -28.39 -47.97  -8.14 -10.90 -14.06 -18.89 -35.23 
𝑅𝑛𝑒𝑡𝑂 -Short -12.24 -18.38 -26.44 -40.75 -127.51  -9.27 -12.55 -16.83 -23.94 -63.84 
𝑅𝑡𝑆 0.06 0.05 0.03 0.05 -0.06  0.03 0.04 0.05 0.05 0.05 
𝐼𝐿𝑡𝑂 13.42 18.46 24.93 35.78 69.90  9.16 11.99 15.62 21.49 45.29 
𝐼𝐿𝑡𝑆 0.22 0.23 0.25 0.28 0.33  0.22 0.24 0.25 0.28 0.36 

 𝑠𝑖𝑧𝑒𝑡 36242 28023 21599 15759 8667  36849 27907 20584 13984 7312 
ATM 𝑅𝑡𝑂 -0.50 -0.41 -0.50 0.01 -0.50  0.02 -0.11 -0.11 -0.12 -0.05 

𝑅𝑛𝑒𝑡𝑂 -Long -6.31 -7.88 -9.88 -11.99 -21.71  -4.65 -6.02 -7.32 -9.31 -14.94 
𝑅𝑛𝑒𝑡𝑂 -Short -5.68 -7.72 -9.94 -13.76 -27.77  -4.93 -6.20 -7.71 -10.08 -17.85 
𝑅𝑡𝑆 0.05 0.06 0.06 0.02 0.08  0.03 0.05 0.06 0.06 0.06 
𝐼𝐿𝑡𝑂 6.57 8.14 10.24 13.04 25.08  5.06 6.24 7.55 9.67 15.99 
𝐼𝐿𝑡𝑆 0.22 0.23 0.25 0.27 0.36  0.23 0.24 0.26 0.28 0.36 
𝑠𝑖𝑧𝑒𝑡 39024 30491 22602 16936 8830  38333 30040 21287 14210 7229 

ITM 𝑅𝑡𝑂 -0.30 -0.51 -0.27 -0.43 -0.60  -0.06 -0.14 -0.17 -0.19 -0.23 
𝑅𝑛𝑒𝑡𝑂 -Long -4.49 -5.83 -6.69 -8.46 -13.68  -3.24 -4.33 -5.35 -6.55 -10.46 
𝑅𝑛𝑒𝑡𝑂 -Short -4.08 -5.14 -6.62 -8.37 -14.77  -3.23 -4.26 -5.31 -6.62 -11.32 
𝑅𝑡𝑆 0.06 0.11 0.07 0.10 0.13  0.05 0.06 0.08 0.08 0.11 
𝐼𝐿𝑡𝑂 4.60 5.67 6.71 8.44 14.08  3.38 4.39 5.36 6.54 10.69 
𝐼𝐿𝑡𝑆 0.23 0.24 0.26 0.28 0.35  0.23 0.25 0.27 0.30 0.38 
𝑠𝑖𝑧𝑒𝑡 40702 32555 25423 17446 8847  40411 32022 23561 16917 7070 

 
  



Table 7 
Weekly Portfolio Strategies 

We show portfolio sorting results for calls (Panel A) and puts (Panel B). Each week, we sort the firms into deciles 
based on their lagged illiquidity 𝐼𝐿𝑂 . For each decile, we report (in percentages) the time-series average of raw 
option returns 𝑅𝑂, the net (after transaction costs) option returns (𝑅𝑛𝑒𝑡𝑂 -Long for the long position and 𝑅𝑛𝑒𝑡𝑂 -Short for 
the short position), stock returns 𝑅𝑆, the option quoted relative bid-ask spread 𝐼𝐿𝑂 , the stock effective relative bid-
ask spreads 𝐼𝐿𝑆, and size, in millions of dollars. The sample includes the S&P 500 constituents as of December 31, 
2007 for which options trade throughout the entire sample period, which is from January 1996 through December 
2007. 
 

Panel A: Call Options 
  Short-Term  Long-Term 

Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM 𝑅𝑡𝑂 3.02 4.85 6.80 10.62 25.97  3.09 3.12 3.76 4.92 7.82 

𝑅𝑛𝑒𝑡𝑂 -Long -10.20 -13.52 -18.16 -23.25 -35.59  -6.82 -10.37 -13.88 -19.56 -37.04 
𝑅𝑛𝑒𝑡0 -Short -18.24 -27.61 -40.37 -62.64 -195.71  -14.12 -18.85 -25.54 -38.03 -104.13 
𝑅𝑡𝑆 0.25 0.41 0.56 0.69 1.28  0.30 0.32 0.37 0.47 0.61 

𝐼𝐿𝑡0 22.53 29.01 38.38 49.78 75.22  12.47 16.77 22.05 31.39 59.16 
𝐼𝐿𝑡𝑆 0.21 0.23 0.25 0.28 0.34  0.21 0.23 0.26 0.30 0.39 

 𝑠𝑖𝑧𝑒𝑡 35487 24695 20669 15097 8559  39044 26609 19270 13631 7386 
ATM 𝑅𝑡𝑂 2.10 1.98 2.45 1.92 3.22  1.61 2.22 1.66 2.48 2.57 

𝑅𝑛𝑒𝑡𝑂 -Long -4.49 -6.58 -8.31 -11.88 -21.36  -3.81 -4.64 -6.76 -8.22 -14.98 
𝑅𝑛𝑒𝑡0 -Short -9.14 -11.37 -14.56 -18.03 -37.57  -7.35 -9.62 -10.90 -14.53 -24.51 
𝑅𝑡𝑆 0.32 0.33 0.35 0.34 0.46  0.32 0.38 0.30 0.39 0.40 

𝐼𝐿𝑡0 9.28 11.47 14.44 18.99 35.18  6.23 7.51 9.24 11.65 20.10 
𝐼𝐿𝑡𝑆 0.22 0.23 0.24 0.27 0.37  0.22 0.23 0.25 0.28 0.39 
𝑠𝑖𝑧𝑒𝑡 39486 27685 20045 14555 7511  40679 27471 18667 12519 6614 

ITM 𝑅𝑡𝑂 0.63 0.79 0.20 0.18 0.08  0.95 1.31 1.17 1.43 1.69 
𝑅𝑛𝑒𝑡𝑂 -Long -3.82 -4.85 -6.60 -8.48 -13.96  -2.62 -3.30 -4.47 -5.49 -9.45 
𝑅𝑛𝑒𝑡0 -Short -5.29 -6.79 -7.53 -9.73 -16.80  -4.65 -6.16 -7.17 -8.89 -14.41 
𝑅𝑡𝑆 0.25 0.28 0.21 0.25 0.29  0.29 0.35 0.33 0.37 0.42 

𝐼𝐿𝑡0 5.29 6.45 7.78 10.12 17.37  3.89 4.88 5.91 7.17 11.63 
𝐼𝐿𝑡𝑆 0.21 0.23 0.25 0.28 0.36  0.21 0.23 0.25 0.29 0.39 
𝑠𝑖𝑧𝑒𝑡 41875 29476 21757 14436 7531  41879 27644 19737 12853 5928 

 
  



Table 7 (continued) 
Weekly Portfolio Strategies 

 
 

Panel B: Put Options 
  Short-Term  Long-Term 

Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM 𝑅𝑡𝑂 -3.81 -3.29 -2.08 -1.64 7.87  -0.77 -1.34 -1.22 -0.98 -0.40 

𝑅𝑛𝑒𝑡𝑂 -Long -14.94 -18.66 -22.48 -29.51 -43.02  -9.12 -12.33 -15.38 -19.98 -36.19 
𝑅𝑛𝑒𝑡0 -Short -8.84 -15.23 -24.25 -38.43 -129.43  -8.43 -11.21 -15.62 -23.16 -64.01 
𝑅𝑡𝑆 0.34 0.31 0.17 0.14 -0.34  0.28 0.32 0.29 0.28 0.28 

𝐼𝐿𝑡0 19.03 25.58 33.23 45.79 74.32  10.25 13.47 17.58 24.21 50.16 
𝐼𝐿𝑡𝑆 0.21 0.23 0.24 0.28 0.33  0.22 0.23 0.25 0.28 0.36 

 𝑠𝑖𝑧𝑒𝑡 36413 28377 22343 16838 9556  37853 28216 20604 14338 7768 
ATM 𝑅𝑡𝑂 -2.93 -3.66 -3.20 -3.59 -5.11  -0.92 -1.38 -1.40 -1.25 -1.99 

𝑅𝑛𝑒𝑡𝑂 -Long -8.77 -11.10 -12.58 -15.63 -26.20  -5.61 -7.29 -8.61 -10.44 -16.83 
𝑅𝑛𝑒𝑡0 -Short -3.28 -4.44 -7.26 -10.26 -23.17  -4.00 -4.92 -6.41 -8.95 -15.95 
𝑅𝑡𝑆 0.32 0.38 0.31 0.29 0.37  0.26 0.35 0.35 0.32 0.37 

𝐼𝐿𝑡0 8.18 10.13 13.07 17.37 33.38  5.39 6.59 8.01 10.27 17.42 
𝐼𝐿𝑡𝑆 0.22 0.23 0.24 0.27 0.35  0.22 0.23 0.25 0.28 0.36 
𝑠𝑖𝑧𝑒𝑡 39778 31261 22381 16994 8937  39042 29917 21032 14001 7340 

ITM 𝑅𝑡𝑂 -3.19 -4.28 -4.09 -4.66 -5.75  -1.20 -1.47 -1.64 -1.60 -1.96 
𝑅𝑛𝑒𝑡𝑂 -Long -7.35 -9.49 -10.36 -12.54 -18.60  -4.40 -5.66 -6.80 -7.90 -12.15 
𝑅𝑛𝑒𝑡0 -Short -1.16 -1.25 -2.64 -3.98 -9.46  -2.12 -2.92 -3.82 -5.17 -9.63 
𝑅𝑡𝑆 0.41 0.55 0.46 0.47 0.53  0.35 0.40 0.39 0.41 0.44 

𝐼𝐿𝑡0 5.19 6.35 7.59 9.80 17.50  3.58 4.58 5.57 6.74 11.11 
𝐼𝐿𝑡𝑆 0.22 0.24 0.25 0.27 0.35  0.23 0.24 0.26 0.29 0.38 
𝑠𝑖𝑧𝑒𝑡 42684 33442 25285 17437 8929  41827 33106 23666 16708 7021 



 Table 8 
Fama-MacBeth Regressions for the Level of Implied Volatility  

For each month and for each category, we run the following regression using all observed options within the month. 
The regression is run separately for call and put options 

 𝑖𝑣𝑖,𝑡(𝜒𝑘 ,𝑇𝑘)  = 𝜅𝑖,𝑡 + 𝛳𝑖 ,𝑡 ( 𝜒𝑘 − 𝜒̅𝑘) + 𝜂𝑖,𝑡 (𝑇𝑘 − 𝑇�𝑘) + 𝜀𝑖,𝑡𝑘 ,   𝑘 = 1,2, … .𝐾 
where 𝑖𝑣𝑖 ,𝑡�𝜒𝑘, 𝑇𝑘� is the implied volatility for an option with moneyness 𝜒𝑘 and maturity 𝑇𝑘. The subscripts t, i and k 
correspond to month t, firm i and contract k, respectively. K is the number of contracts available for a given month 
and category. We consider only months for which K is larger than ten. For each firm i, we obtain a monthly time 
series for 𝜅𝑖,𝑡 which corresponds to the estimated level of implied volatility. Then, for each month t, we run the 
following regression 

 𝜅̃𝑖,𝑡 = 𝑎0,𝑡 + 𝑎1,𝑡𝐼𝐿𝑖,𝑡𝑂  +𝑎2,𝑡𝐼𝐿𝑖,𝑡𝑆  + 𝑎3,𝑡𝑅𝑖,𝑡𝑆 + 𝑎4,𝑡𝑏𝑖,𝑡 + 𝑎5,𝑡ln (𝑠𝑖𝑧𝑒𝑖,𝑡) + 𝑎6,𝑡𝑙𝑒𝑣𝑖,𝑡 + 𝜀𝑖,𝑡 ,   𝑖 = 1,2, … 𝐼 
where 𝜅̃𝑖,𝑡 is the residual plus the intercept from the cross-sectional regression of 𝜅𝑖,𝑡 on the volatility 𝜎𝑡. 𝐼𝐿𝑡𝑂 is the 
monthly average of daily option illiquidity for the K contracts used to run the first regression, and 𝐼𝐿𝑡𝑆 is the dollar-
volume weighted average of daily stock illiquidity. 𝑅𝑡𝑆 is the monthly stock return. The option illiquidity is the 
relative bid-ask spread and the stock illiquidity is the effective bid-ask spread estimated from TAQ data. 𝑏𝑡 is the 
systematic risk proportion, which corresponds to the square root of the R2 from the regression of stock returns on 
Fama-French and momentum factors. We use the monthly average of the daily systematic risk proportion. ln (𝑠𝑖𝑧𝑒𝑡) 
and 𝑙𝑒𝑣𝑡  are respectively the logarithm of firm size and the firm leverage. We use the firm size observed on the last 
day of the month and leverage from the last available quarter. The sample includes the S&P 500 constituents as of 
December 31, 2007 for which options trade throughout the entire sample period, which is from January 1996 
through December 2007. The symbols *, † and ‡ denote, respectively, significance at the 10%, 5% and 1% levels 
using Fama-MacBeth t-statistics with Newey-West correction for serial correlation, with 8 lags. 
 

Panel A: Call Options 
 Short-Term Long-Term 
  OTM    ATM ITM OTM ATM ITM 
𝐼𝐿𝑡𝑂 -0.102‡ -0.381‡ -0.803‡ -0.121‡ -0.547‡ -1.006‡ 
𝐼𝐿𝑡𝑆 13.418‡ 11.651‡ 13.956‡ 11.880‡ 11.490‡ 13.174‡ 
𝑅𝑡𝑆 -0.030‡ -0.025† -0.040‡ -0.008 -0.018 -0.025* 
𝑏𝑡 -0.002 0.012 0.018* -0.001 0.009 0.013 
ln (𝑠𝑖𝑧𝑒𝑡) -0.018‡ -0.019‡ -0.019‡ -0.015‡ -0.018‡ -0.017‡ 
𝑙𝑒𝑣𝑡 -0.012‡ -0.014‡ -0.007 -0.017‡ -0.013‡ -0.005 
Adj R2  0.191 0.195 0.190 0.170 0.190 0.186 
# Obs in CS (avr.) 272 257 276 289 310 313 
# CS regressions 144 144 144 144 144 144 

 
 

Panel B: Put Options 
 Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM 
𝐼𝐿𝑡𝑂 -0.129‡ -0.417‡ -0.733‡ -0.204‡ -0.673‡ -0.958‡ 
𝐼𝐿𝑡𝑆 12.665‡ 11.507‡ 14.199‡ 11.755‡ 10.689‡ 11.849‡ 
𝑅𝑡𝑆 -0.017 -0.006 -0.008 -0.002 0.005 0.026† 
𝑏𝑡 0.020* 0.016† 0.012 0.009 0.012 0.007 
ln (𝑠𝑖𝑧𝑒𝑡) -0.018‡ -0.020‡ -0.021‡ -0.015‡ -0.019‡ -0.019‡ 
𝑙𝑒𝑣𝑡 -0.011* -0.015‡ -0.009† -0.007 -0.013‡ -0.016‡ 
Adj R2  0.172 0.204 0.213 0.165 0.214 0.215 
# Obs in CS (avr.) 274 241 234 314 296 248 
# CS regressions 144 144 144 144 144 144 



Table 9 
Fama-MacBeth Regressions for the Moneyness-Slope of Implied Volatility 

  
For each month and for each option category, we run the following regression using all observed options within the 
month. The regression is run separately for call and put options 

 𝑖𝑣𝑖,𝑡(𝜒𝑘 ,𝑇𝑘)  = 𝜅𝑖,𝑡 + 𝛳𝑖 ,𝑡 ( 𝜒𝑘 − 𝜒̅𝑘) + 𝜂𝑖,𝑡 (𝑇𝑘 − 𝑇�𝑘) + 𝜀𝑖,𝑡𝑘 ,   𝑘 = 1,2, … .𝐾 
where 𝑖𝑣𝑖 ,𝑡�𝜒𝑘, 𝑇𝑘� is the implied volatility for an option with moneyness 𝜒𝑘 and maturity 𝑇𝑘. The subscripts t, i and k 
correspond to month t, firm i and contract k, respectively. K is the number of contracts available for the considered 
month and category. We consider only months for which K is larger than ten. For each firm i, we obtain a monthly 
time series for 𝛳𝑖,𝑡 which corresponds to the estimated moneyness-slope of implied volatility.  Then, for each month 
t, we run the following regression 

 |𝛳𝑖,𝑡| = 𝑐0,𝑡 + 𝑐1,𝑡𝐼𝐿𝑖,𝑡𝑂 + 𝑐2,𝑡𝐼𝐿𝑖,𝑡𝑆  + 𝑐3,𝑡𝑅𝑖,𝑡𝑆 + 𝑐4,𝑡𝑏𝑖,𝑡 + 𝑐5,𝑡ln(𝑠𝑖𝑧𝑒𝑖,𝑡) + 𝑐6,𝑡𝑙𝑒𝑣𝑖,𝑡 + 𝜀𝑖,𝑡 ,   𝑖 = 1,2, … 𝐼 
where 𝐼𝐿𝑡𝑂 is the average across the month of daily option illiquidity of the K contracts used to run the first 
regression, and  𝐼𝐿𝑡𝑆 is the dollar-volume weighted average of daily stock illiquidity. 𝑅𝑡𝑆 is the monthly stock return. 
The option illiquidity is the relative bid-ask spread, and the stock illiquidity is the effective bid-ask spread estimated 
from TAQ data. 𝑏𝑡 is the systematic risk proportion, which corresponds to the square root of the R2 from the 
regression of stock returns on Fama-French and momentum factors. We take the monthly average of the daily 
systematic risk proportion. ln (𝑠𝑖𝑧𝑒𝑡) and 𝑙𝑒𝑣𝑡 are respectively the logarithm of firm size and the firm leverage. We 
use the firm size observed on the last day of the month and the leverage from the last available quarter. The sample 
includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the entire sample 
period, which is from January 1996 through December 2007. The symbols *, † and ‡ denote, respectively, 
significance at the 10%, 5% and 1% levels using Fama-MacBeth t-statistics with Newey-West correction for serial 
correlation, using 8 lags. 

Panel A: Call Options 
 Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM 
𝐼𝐿𝑡𝑂 0.516‡ 1.188‡ 2.221‡ 0.273‡ 0.953‡ 1.353‡ 
𝐼𝐿𝑡𝑆 26.359‡ 20.333‡ 32.015‡ -3.671† -0.040 10.682‡ 
𝑅𝑡𝑆 -0.033 -0.045 0.093† 0.050† -0.040‡ -0.044† 
𝑏𝑡 -0.110‡ -0.128‡ -0.109‡ -0.031† -0.020* 0.005 
ln (𝑠𝑖𝑧𝑒𝑡) 0.022‡ 0.024‡ 0.056‡ 0.001 0.013‡ 0.022‡ 
𝑙𝑒𝑣𝑡 0.125‡ 0.094‡ 0.137‡ 0.057‡ 0.063‡ 0.108‡ 
Adj R2  0.125 0.074 0.078 0.101 0.080 0.090 
# Obs in CS (avr.) 272 257 276 289 310 313 
# CS regressions 144 144 144 144 144 144 

 
 

Panel B: Put Options 
 Short-Term Long-Term 
 OTM ATM ITM OTM ATM ITM 
𝐼𝐿𝑡𝑂 0.231‡ 1.122‡ 3.289‡ 0.171‡ 0.893‡ 2.088‡ 
𝐼𝐿𝑡𝑆 33.532‡ 21.504‡ 32.683‡ 11.647‡ 1.365 5.363† 
𝑅𝑡𝑆 -0.042 -0.083† -0.199‡ -0.056‡ -0.032* 0.008 
𝑏𝑡 -0.081* -0.123‡ -0.136‡ 0.003 -0.017 -0.034‡ 
ln (𝑠𝑖𝑧𝑒𝑡) 0.039‡ 0.017‡ 0.035‡ 0.020‡ 0.009‡ 0.002 
𝑙𝑒𝑣𝑡 0.158‡ 0.097‡ 0.116‡ 0.099‡ 0.056‡ 0.048‡ 
Adj R2  0.071 0.060 0.108 0.085 0.072 0.124 
# Obs in CS (avr.) 274 241 234 314 296 248 
# CS regressions 144 144 144 144 144 144 

  



Table 10  
Time-Series Regressions for Weekly Option Returns 

 
Each week, we sort the firms into deciles based on their lagged option illiquidity. The lagged illiquidity corresponds 
to the average of relative bid-ask spreads on the previous Friday of the contracts used to compute returns for the 
week. For each decile j, we take the average across firms of illiquidity, lagged illiquidity, and adjusted option 
returns, which are the residuals from time-series regression of option returns on current and lagged stock returns and 
squared stock returns. We thus obtain a weekly time-series for 𝐼𝐿𝑗 ,𝑡 , and 𝑅�𝑗,𝑡

𝑂  over the entire sample period.  Then we 
run the following regression: 

ln (𝐼𝐿𝑗 ,𝑡
𝑂 )  = 𝜔𝑗,0 + 𝜔𝑗,1ln (𝐼𝐿𝑗,𝑡−1

𝑂 ) + 𝑣𝑗,𝑡
𝐼𝐿 . 

Defining the unexpected illiquidity by 𝐼𝐿𝑗,𝑡
𝑢 = 𝑣𝑗,𝑡

𝐼𝐿 , we estimate the following time-series regression: 
𝑅�𝑗,𝑡
𝑂  = 𝛾0 + 𝛾1ln (𝐼𝐿𝑗,𝑡−1

𝑂 ) + 𝛾2𝐼𝐿𝑗,𝑡
𝑢 + 𝛾3ln(𝐼𝐿𝑗,𝑡−1

𝑆 ) + 𝑣𝑗,𝑡 
where 𝐼𝐿𝑗 ,𝑡−1

𝑆  is lagged stock illiquidity.  
The sample includes the S&P 500 constituents as of December 31, 2007 for which options trade throughout the 
entire sample period, which is from January 1996 through December 2007. The symbols *, † and ‡ denote, 
respectively, significance at the 10%, 5% and 1% levels with Newey-West correction for serial correlation, using 8 
lags. 

Panel A: Call Options 
 

  Short-Term  Long-Term 
Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2.𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM ln (𝐼𝐿𝑗,𝑡−1

𝑂 ) 0.195‡ 0.262‡ 0.405‡ 0.388‡ 0.446‡  0.093‡ 0.135‡ 0.183‡ 0.207‡ 0.191‡ 
𝐼𝐿𝑗,𝑡
𝑢  -0.053† -0.061† -0.089† -0.149‡ -0.342‡  -0.012 -0.034 -0.027 -0.078† -0.139‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.098‡ -0.119‡ -0.152‡ -0.121‡ -0.098‡  -0.038‡ -0.056‡ -0.070‡ -0.061‡ -0.030‡ 

Adj R2  0.177 0.195 0.230 0.195 0.203  0.121 0.154 0.144 0.160 0.121 
# Obs  621 621 621 621 621  621 621 621 621 621 

ATM ln (𝐼𝐿𝑗,𝑡−1
𝑂 ) 0.062‡ 0.111‡ 0.136‡ 0.196‡ 0.103‡  0.034‡ 0.054‡ 0.072‡ 0.126‡ 0.073‡ 

𝐼𝐿𝑗,𝑡
𝑢  -0.053‡ -0.070‡ -0.095‡ -0.120‡ -0.177‡  -0.009 -0.025 -0.052† -0.077‡ -0.112‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.053‡ -0.070‡ -0.086‡ -0.087‡ -0.039‡  -0.022‡ -0.034‡ -0.043‡ -0.048‡ -0.012‡ 

Adj R2  0.124 0.173 0.204 0.210 0.227  0.070 0.117 0.136 0.160 0.150 
# Obs  621 621 621 621 621  621 621 621 621 621 

ITM ln (𝐼𝐿𝑗,𝑡−1
𝑂 ) 0.030‡ 0.038‡ 0.047‡ 0.073‡ 0.034  0.014‡ 0.025‡ 0.040‡ 0.056‡ 0.038* 

𝐼𝐿𝑗,𝑡
𝑢  -0.029 -0.058† -0.077‡ -0.114‡ -0.170‡  -0.017 -0.043† -0.047† -0.075‡ -0.104‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.022‡ -0.030‡ -0.035‡ -0.038‡ -0.018‡  -0.010‡ -0.017‡ -0.019‡ -0.022‡ -0.009† 

Adj R2  0.065 0.094 0.127 0.195 0.287  0.045 0.097 0.086 0.128 0.163 
# Obs  621 621 621 621 621  621 621 621 621 621 

 
  



Table 10 (continued) 
Time-Series Regressions for Weekly Option Returns 

 

Panel B: Put Options 

  Short-Term  Long-Term 
Decile  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ  2. 𝐿𝑜𝑤 4 6 8 10.𝐻𝑖𝑔ℎ 
OTM ln (𝐼𝐿𝑗,𝑡−1

𝑂 ) 0.107‡ 0.156‡ 0.188‡ 0.185‡ 0.266‡  0.032‡ 0.044‡ 0.060‡ 0.069‡ -0.001 
𝐼𝐿𝑗,𝑡
𝑢  -0.101‡ -0.130‡ -0.183‡ -0.211‡ -0.388‡  -0.112‡ -0.115‡ -0.149‡ -0.186‡ -0.274‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.053‡ -0.067‡ -0.075‡ -0.063‡ -0.034†  -0.011* -0.023‡ -0.029‡ -0.018‡ 0.008 

Adj R2  0.160 0.210 0.248 0.235 0.217  0.079 0.143 0.176 0.227 0.327 
# Obs  621 621 621 621 621  621 621 621 621 621 

ATM ln (𝐼𝐿𝑗,𝑡−1
𝑂 ) 0.041‡ 0.031‡ 0.055‡ 0.013 -0.007  0.018‡ 0.020‡ 0.020† 0.011 0.002 

𝐼𝐿𝑗,𝑡
𝑢  -0.084‡ -0.126‡ -0.139‡ -0.168‡ -0.232‡  -0.067‡ -0.122‡ -0.132‡ -0.156‡ -0.195‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.033‡ -0.040‡ -0.047‡ -0.034‡ -0.011  -0.014‡ -0.013‡ -0.017‡ -0.013† -0.002 

Adj R2  0.119 0.182 0.177 0.272 0.338  0.067 0.103 0.129 0.141 0.269 
# Obs  621 621 621 621 621  621 621 621 621 621 

ITM ln (𝐼𝐿𝑗,𝑡−1
𝑂 ) 0.001 -0.007 -0.010 -0.029† -0.091‡  0.002 -0.001 -0.009 -0.024‡ -0.036‡ 

𝐼𝐿𝑗,𝑡
𝑢  -0.076‡ -0.088‡ -0.128‡ -0.154‡ -0.206‡  -0.037* -0.062* -0.108‡ -0.132‡ -0.198‡ 

ln(𝐼𝐿𝑗,𝑡−1
𝑆 ) -0.010† -0.004 -0.010 -0.001 0.006  -0.006† -0.005 -0.004 0.003 0.012‡ 

Adj R2  0.062 0.060 0.132 0.193 0.367  0.021 0.029 0.086 0.103 0.248 
# Obs  621 621 621 621 621  621 621 621 621 621 
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1 Introduction

The “flash crash” of May 6, 2010 provides a striking illustration of how a drop in the liquidity

of one security can quickly propagate to other securities. As shown in the CFTC-SEC report

on the flash crash, buy limit orders for the E-mini futures contract on the S&P 500 index

vanished in a few minutes after 2:30 p.m. on May 6, 2010.1 This evaporation of liquidity in

the E-mini futures was soon followed by a similar phenomenon in the SPY Exchange Traded

Fund (another derivative security on the S&P 500 index) and in the S&P 500 index component

stocks (see Figure 1.12 in the joint CFTC-SEC report), resulting in a very high volatility in

transaction prices (with some stocks trading as low as a penny or as high as $100, 000).

Why do such liquidity spillovers arise? Addressing this question is of broad interest. It

can shed light on sudden and short systematic liquidity crises such as the flash crash. More

generally, it can explain why liquidity co-varies across securities.2 Co-movements in liquidity

have important implications for asset pricing since they are a source of systematic risk (see for

instance Acharya and Pedersen (2005), Korajczyk and Sadka (2008) and Amihud et al. (2005)

for a survey). Yet, their cause(s) is not well understood. Co-variations in liquidity may be

driven by systematic variations in the demand for liquidity (see Hendershott and Seasholes

(2009) or Koch, Ruenzi and Starks (2010)) or systematic variations in the supply of liquidity.

One possibility is that financing constraints constitute a systematic liquidity factor because

they bind liquidity providers in different securities at the same time. This mechanism is for-

malized by Gromb and Vayanos (2002) and Brunnemeier and Pedersen (2007) and has received

empirical support from analysis of NYSE stocks (see for instance, Coughenour and Saad (2004)

or Comerton-Forde et al. (2010)). Another related explanation is that a drop in the capital

available to financial intermediaries active in multiple securities can trigger an increase in risk

aversion, impairing the supply of liquidity in these securities (as in Kyle and Xiong (2001)).

In this paper we analyze a new mechanism that generates co-movements in the supply of

liquidity in different securities, even when dealers active in these securities are distinct and

not simultaneously hit by a market wide shock. Dealers in a security often rely on the prices

of other securities to set their quotes. For instance, dealers in a stock learn information from

the prices of other stocks in their industry or stock index futures. We show that cross-security

learning by dealers causes liquidity spillovers and thereby co-movements in liquidity.

To see this intuitively, consider a dealer in security X who uses the price of security Y as a

source of information. Movements in the price of security Y are informative because they reflect

news about fundamentals known to dealers in security Y . However, this signal is noisy since

price movements in security Y also reflect transient price pressures due to uninformed trades.

These transient price pressures account for a larger fraction of price volatility when the cost of

1See “Findings regarding the market events of May 6, 2010,” CFTC-SEC joint report available at http:
//www.sec.gov/news/studies/2010/marketevents-report.pdf

2Evidence of co-variations in liquidity are provided in Chordia et al. (2000), Hasbrouck and Seppi (2001),
Huberman and Halka (2001), Korajczyk and Sadka (2008), Corwin and Lipson (2011) for stocks and Chordia
et al. (2005) for bonds and stocks.
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liquidity provision for dealers in security Y is higher.3 For this reason, the informativeness of

the price of security Y for dealers in security X is smaller when security Y is less liquid.4 Now

suppose that a shock specific to security Y decreases the cost of liquidity provision for dealers

in this security (e.g., dealers in this security face less stringent limits on their positions). Thus,

security Y becomes more liquid and, for this reason, the price of security Y becomes more

informative for dealers in security X (transient price pressures in security Y contribute less to

its volatility relative to news about fundamentals). As a result, inventory risk for dealers in

security X is lower and the cost of liquidity provision for these dealers declines as well. In this

way, the improvement in liquidity for security Y spreads to security X, as shown in Figure 1.

[Insert Figure 1 about here]

To formalize this intuition, we consider a model with distinct pools of risk averse dealers

operating in two securities, X and Y , with a two-factor structure. Dealers in a given market

have identical information on one of the risk factors. However, dealers operating in different

markets are informed on different risk factors. For this reason, dealers in one market can learn

information about the risk factor on which they have no information by watching the price of

the other security. We explore two cases: the case in which learning is two-sided (dealers in

each security learn from each other’s price) and the case in which learning is one-sided (the

price of one security is informative for dealers in another security but not vice versa).5 We

refer to dealers who engage in cross-security price monitoring as being “pricewatchers.” The

fraction of pricewatchers associated with a security sets the dealers’ level of attention to the

other security.

The model generates the spillover mechanism portrayed in Figure 1 and a rich set of impli-

cations. First, when learning is two-sided, an exogenous shock to the cost of liquidity provision

in one security (say Y ) is amplified by the propagation of this shock to the cost of liquidity

provision in the other security (say X). Indeed, as learning is two-sided, the change in the

liquidity of security X feeds back on the liquidity of security Y , which sparks a chain reaction

amplifying the initial shock. Hence, liquidity is fragile in our model: a small exogenous drop

in the liquidity of one market can ultimately result in a disproportionately large drop in the

liquidity of this market and other related markets.

3For stocks listed on the NYSE, Hendershott, Li, Menkveld and Seasholes (2010) show that 25% of the
monthly return variance is due to transitory price changes. Interestingly, they also find that transient price
pressures are stronger when market-makers’ inventories are relatively large. This finding implies that price
movements are less informative when dealers’ cost of liquidity provision is higher, in line with our model.

4In this paper, we measure liquidity by the sensitivity of prices to market order imbalances, as in Kyle
(1985). The market is more liquid when this sensitivity is low. Empirically, this sensitivity can be measured
by regressing price changes on order imbalances (see for instance Glosten and Harris (1988) or Korajczyk and
Sadka (2008)).

5For instance, consider dealers in a stock and dealers in stock index futures. The stock return is determined
both by a systematic factor and an idiosyncratic factor whereas the stock index futures return is only driven
by the systematic factor. Suppose that dealers in the stock index futures are well informed on the systematic
factor. In this case, dealers in the stock can learn information about the systematic factor from the price of the
stock index futures whereas dealers in the stock index futures have nothing to learn from the price of individual
stocks. In this case learning is one sided.
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Second, when learning is two-sided, the model can feature multiple equilibria with differing

levels of liquidity. The reason is as follows. Suppose that dealers in security X expect a drop

in the liquidity of security Y . Then, dealers in security X expect the price of security Y to be

noisier, which makes the market for security X less liquid. But as a consequence, the price of

security X becomes less informative for dealers in security Y and the liquidity of security Y

drops, which validates the expectation of dealers in security X. Hence, dealers’ expectations

about the liquidity of the other security can be self-fulfilling. For this reason, there exist cases

in which, for the same parameter values, the liquidity of securities X and Y can be either

relatively high or relatively low.6 A sudden switch from a high to a low liquidity equilibrium is

an extreme form of co-variation in liquidity and fragility since it corresponds to a situation in

which the liquidity of several related securities dries up without an apparent reason.

Third, an increase in the fraction of pricewatchers in a security has an ambiguous impact on

the liquidity of this security. On the one hand, this increase improves liquidity because price-

watchers require a smaller compensation for inventory risk (as they have more information).

On the other hand, entry of new pricewatchers impairs liquidity because it exposes inattentive

dealers (i.e., dealers without price information) to adverse selection. Indeed, pricewatchers bid

relatively conservatively for the security when they receive bad signals and relatively aggres-

sively when they receive good signals. As a result, inattentive dealers are more likely to end up

with relatively large (small) holdings when the value of the security is low (large). In reaction

to this winner’s curse, inattentive dealers shade their bids, which reduces market liquidity. The

net effect on liquidity is always positive when dealers’ risk bearing capacity (i.e., dealers’ risk

tolerance divided by the variance of dealers’ aggregate dollar inventory) is low enough. Other-

wise, an increase in the fraction of pricewatchers can impair market liquidity when the fraction

of pricewatchers is small.

Fourth, the exposure of inattentive dealers to adverse selection implies that liquidity spillovers

can be negative. To see why, suppose that the liquidity of security Y improves. This improve-

ment implies that the price of security Y conveys more precise information to pricewatchers

in security X. Thus, the informational disadvantage of inattentive dealers increases and, as a

result, the liquidity of security X may drop. For this to happen, we show that the fraction of

pricewatchers must be small enough and dealers’ risk bearing capacity must be large.

In a last step, we endogenize the fraction of pricewatchers by introducing a cost of attention

to prices. There are several possible interpretations for this cost. It may simply reflect the

fact that monitoring the price of other securities requires attention (it is time consuming) and

human dealers have limited attention.7 More importantly maybe, real-time data on prices are

costly to acquire. Data vendors (Reuters, Bloomberg, etc. . . ) or trading platforms charge a fee

for real time datafeed.8 In particular, some market-makers can choose to pay a “co-location”

6There also exist cases in which the equilibrium is unique, even if learning is two-sided.
7Recent empirical papers (Corwin and Coughenour (2008), Boulatov et al. (2010) and Chakrabarty and

Moulton (2009)) find that attention constraints for NYSE specialists have an effect on market liquidity. Thus,
modelling dealer attention is important to understand liquidity.

8Market participants often complain about these data fees.For instance, the fee charged by Nasdaq for the
dissemination of corporate bond prices has been very controversial. For accounts of these debates, see, for in-

4



fee to trading platforms in order to obtain the right to place their computers close to platforms’

matching engines. In this way, they possess a split second advantage in accessing and reacting

to changes in prices. Last, in the absence of real time price reporting (as for instance in some

OTC markets), real time price information is available only to a few privileged dealers and very

costly to collect for other participants.9

When learning is one-sided, the value of price information declines with the fraction of

pricewatchers. Thus, the equilibrium fraction of pricewatchers is unique and inversely related

to the cost of price information. When dealers’ risk bearing capacity is low, a decrease in

the cost of price information leads to an improvement in liquidity. Otherwise, liquidity is a U-

shaped function of this cost. Indeed, for relatively high values of the cost of price information, a

decrease in this cost triggers entry of a few pricewatchers, which is a source of adverse selection

risk and impairs liquidity, as explained previously.

In contrast, when learning is two-sided, the value of monitoring the price of, say, security

X for dealers in security Y can increase with the fraction of pricewatchers in either security

(for some parameter values). The reason is as follows. As explained previously, if dealers’ risk

bearing capacity is low enough, an increase in the fraction of pricewatchers in security Y makes

this security more liquid. This improvement in liquidity spreads to security X, which makes the

price of this security more informative. Thus, information on the price of security X becomes

more valuable for dealers in security Y . Furthermore, the value of information on the price of

security X for dealers in security Y also increases in the fraction of pricewatchers in security

X. Indeed, as the number of pricewatchers in security X increases, the price of this security

becomes more informative, which strengthens its informational value for dealers in security Y .

This finding is surprising since usually the value of financial information declines with the

number of investors buying information (Grossman and Stiglitz (1980) or Admati and Pfleiderer

(1986)). This principle does not necessarily apply to price information because the precision of

price information increases in the number of dealers buying this information.

One consequence is that dealers’ decisions to acquire price information on other securities

are self-reinforcing both within and across markets. As a result, there can be multiple levels

of attention in equilibrium for a fixed value of the cost of attention to prices. In particular,

for identical parameter values, the markets for the two securities can appear well integrated

(the fraction of pricewatchers is high) or segmented (the fraction of pricewatchers is low).

As an illustration we construct an example in which, for a fixed correlation in the payoffs of

both securities, the markets for securities X and Y are either fully integrated (all dealers are

pricewatchers) or segmented (no dealer is a pricewatcher). For dealers in security X, monitoring

the price of the other security does not have much value if there are no pricewatchers in security

Y and vice versa. Thus, the situation in which the two markets are segmented is self-sustaining

stance, “Latest Market Data Dispute Over NYSE’s Plan to Charge for Depth-of-Book Data Pits NSX Against
Other U.S. Exchanges,” Wall Street Technology, May 21, 2007; the letter to the SEC of the Securities Indus-
try and Financial Markets Association (SIFMA) available at http://www.sifma.org/regulatory/comment_
letters/41907041.pdf, and “TRACE Market Data Fees go to SEC,” Securities Industry News, 6/3/2002.

9For instance, a bond dealer may be an employee of a trading firm also active in credit default swaps (CDS).
In this way, the dealer may be privy of information on trades in CDSs written on the bond.
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and can persist even if the cost of attention declines.

The mechanism that leads to liquidity spillovers in our model generates predictions distinct

from the mechanisms based on funding constraints or systematic shifts in risk aversion described

in Brunnemeier and Pedersen (2008), Gromb and Vayanos (2002) or Kyle and Xiong (2001). In

our model, funding restrictions or an increase in risk aversion for dealers in one asset class (e.g.,

stocks) can initially spark a drop in the liquidity of this class of assets. However, in contrast

to other theories of co-variations in liquidity supply, our model predicts that this shock can

spread to other asset classes (e.g., bonds) even if there is no tightening of funding constraints for

dealers in other asset classes. The only requirement is that the prices of assets in the first class

are used as a source of information to value assets in other classes. Furthermore, as explained

previously, in our model liquidity spillovers can be negative while theories based on funding

constraints imply positive liquidity spillovers.

Isolating the role of cross-asset learning in liquidity spillovers is challenging empirically

because this mechanism can operate simultaneously with other sources of systematic variations

in liquidity. One way to address this difficulty consists in studying the effects of changes in

trading technologies that affect dealers’ ability to learn from the prices of other assets. One

strategy is to consider cases in which a security switches from an opaque trading system (e.g.,

an OTC market) to a more transparent trading system (a case in point is the implementation

of post trade transparency in the U.S. bond market in 2002). In this case, dealers in related

securities can more easily use the information conveyed by the price of the previously opaque

security. This is similar to a decrease in the cost of price information in our model. Another

approach is to study the effect of changes in co-location fees. Indeed, dealers who co-locate can

be seen as pricewatchers in our model (they have very quick access to prices of other securities

and can thereby make their strategies contingent on these prices). Hence, variations in co-

location fees should also affect the fraction of pricewatchers. We develop predictions about the

effects of such changes in trading technologies in the last part of the paper.

Our model is related to models of contagion (King and Wadhwani (1990), Kodres and

Pritsker (2002), or Pasquariello (2007)) and cross-asset price pressures (Andrade, Chang and

Seasholes (2008), Bernhardt and Taub (2008), Pasquariello and Vega (2009), Boulatov, Hen-

dershott and Livdan (2010). These models describe various mechanisms through which a shock

on investors’ information or liquidity traders’ demand in one security can affect the prices of

other securities.10 None of these models however studies the role of cross-asset learning in the

transmission of a liquidity shock (i.e., a change in the sensitivity of price to order imbalances)

in one security to other securities, as we do here. Our paper is also linked to the literature on

the value of financial information (e.g., Grossman and Stiglitz (1980), Admati and Pfleiderer

(1986)). We contribute to this literature by studying the value of securities price information.

As explained previously, we show that price information is special in the sense that its value

can increase with the number of investors buying this information, an effect which does not

arise in standard models of information acquisition. In this respect, our paper adds to the few

10Most of these models build upon the multi-asset pricing models of Admati (1985) and Caballe and Krishnan
(1994).
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papers identifying conditions under which the value of financial information may increase with

the number of informed investors (Barlevy and Veronesi (2000), Veldkamp (2006), Chamley

(2007), and Ganguli and Yang (2009)).

The rest of the paper is organized as follows. Section 2 describes the model. In Section 3,

we consider the case in which the fraction of pricewatchers is fixed and we show how liquidity

spillovers and multiple equilibria arise in this set-up. In Section 4, we study how the value

of price information depends on the fraction of pricewatchers and we endogenize this fraction.

Section 5 discusses testable implications of the model and Section 6 concludes. Proofs are

collected in the Appendix or the Internet Appendix.

2 The model

We consider two securities, denoted D and F . These securities pay-off at date 2 and their

payoffs, vD and vF , are given by a factor model with two risk factors δD and δF , i.e.,

vD = δD + dD × δF + η, (1)

vF = dF × δD + δF + ν. (2)

The random variables δD, δF , η and ν are independent and have a normal distribution, with

mean zero. The variance of η is denoted σ2
η. We make additional parametric assumptions that

simplify the exposition without affecting our conclusions. First, there is no idiosyncratic risk

for security F (i.e., ν = 0). Second, the variance of the factors is normalized to one. Third,

we assume that dF = 1 and dD ∈ [0, 1], so that the payoffs of the two securities are positively

correlated. To simplify notations, we therefore denote dD by d. When d = 0, the payoff of

security D does not depend on factor δF . Thus, the price of security F cannot convey new

information to dealers in security D. In this case, we say that learning is one-sided.

Trades in securities D and F take place at date 1. In each market, there are two types of

traders: (i) a continuum of risk-averse speculators and (ii) liquidity traders. The aggregate

demand of liquidity traders in market j is uj ∼ N(0, σ2
uj

). Liquidity traders’ demands in both

markets are independent and are absorbed by speculators. Hence, in the rest of the paper, we

refer to speculators as dealers and to uj as the size of the demand shock in market j.

Dealers are specialized: they are active in only one security. In this way, we rule out

co-movements in liquidity which arise simply because the same dealers are active in multiple

securities.11 Dealers specialized in security j have perfect information on factor δj and no

information on factor δ−j. However, they can follow the price of the other security to obtain

information on this factor. We denote by µj the fraction of dealers specialized in security j who

monitor the price of security −j and we refer to µj, as the level of attention to security −j.
11In reality, dealer firms are active in multiple securities. However, these firms delegate trade-related decisions

to individuals who operate on specialized trading desks. Naik and Yadav (2003) show empirically that the
decision-making of these trading desks is largely decentralized (e.g., dealers’ trading decisions within a firm are
mainly driven by their own inventory exposure rather than the aggregate inventory exposure of the dealer firm
to which they belong). Their results suggest that there is no direct centralized information sharing between
dealers within these firms.
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We refer to these dealers as being pricewatchers. Other dealers are called inattentive dealers.

We use W to index the decisions made by pricewatchers and I to index the decisions made by

inattentive dealers. The polar cases, in which there are either no pricewatchers in either market

(µD = µF = 0) or all dealers are pricewatchers (µD = µF = 1) are called the “no attention

case” and the “full attention case,” respectively. Table 1 summarizes the various possible cases

that will be considered in the paper.

Attention/Learning One-Sided: d = 0 Two-Sided: d > 0

No Attention µD = µF = 0 µD = µF = 0

Limited Attention µj > 0 and µ−j < 1 µj > 0 and µ−j < 1

Full Attention µD = µF = 1 µD = µF = 1

Table 1: Various Cases

Each dealer in market j has a CARA utility function with risk tolerance γj. Thus, if dealer

i in market j holds xij shares of the risky security, her expected utility is

E
[
U (πij) |δj,Pkj

]
= E

[
− exp

{
−γ−1

j πij
}
|δj,Pkj

]
, (3)

where πij = (vj − pj)xij and Pkj is the price information available to a dealer with type

k ∈ {W, I} operating in security j.

As dealers submit price contingent demand functions, they all act as if they were observing

the clearing price in their market. Thus, we have PWj = {pj, p−j} and PIj = {pj}. We denote

the demand function of a pricewatcher by xWj (δj, pj, p−j) and that of an inattentive dealer by

xIj (δj, pj).
12 In each period, the clearing price in security j, pj, is such that the demand for this

security is equal to its supply, i.e.,

µjx
W
j (δj, pj, p−j)di+ (1− µj)xIj (δj, pj)di+ uj = 0, for j ∈ {D,F}. (4)

As in many other papers (e.g., Kyle (1985) or Vives (1995)), we will measure the level of

illiquity in security j by the sensitivity of the clearing price to the demand shock (i.e., ∂pj/∂uj).

In equilibrium, the aggregate inventory position of dealers in security j after trading at date 1

is −uj and the total dollar value of this position at date 1 is −uj× vj. The risk associated with

this position for dealers in security j can be measured by its variance conditional on information

on risk factor δj, i.e., σ2
uj

Var[vj|δj]. Thus, the ratio of dealers’ risk tolerance to this variance

(the total amount of risk taken by the dealers) is a measure of the risk bearing capacity of the

12As pricewatchers observe the price in security −j, they can make their trading strategy in security j
contingent on this price. Alternatively, one can assume that pricewatchers do not observe directly the price of
security −j but are allowed to place limit orders (a demand function) in security j contingent on the price of
other securities. Such indexed limit orders have been proposed by Black (1995) but are typically not offered by
exchanges. See Cespa (2004) for an analysis of trading mechanisms that allow multi-price contingent orders.
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market. We denote this ratio by Rj:

Rj =
γ2
j

σ2
uj

Var[vj|δj]
. (5)

The higher is Rj, the higher is the risk bearing capacity of the dealers in security j. As we

shall see this ratio plays an important role for some of our findings.

There are several ways to interpret the two securities in our model. For instance, as in

King and Wadhwani (1990), securities D and F could be two stock market indexes for two

different countries. Alternatively, they could represent a derivative and its underlying security.

For instance, security D could be a credit default swap (CDS) and security F the stock of

the firm on which the CDS is written. When d = f = 1 and σ2
η = 0, the payoff of the two

securities is identical, as in Chowdry and Nanda (1991). In this case, the two securities can

be viewed as the stock of a cross-listed firm and its American Depository Receipt (ADR) in

the U.S. for instance. Factor δF can then be viewed as the component of the firm’s cash-flows

that comes from its sales in the U.S. In each of these cases, it is natural to assume that dealers

have specialized information. For instance, dealers in country j will be well informed on local

fundamental news but not on foreign fundamental news as in King and Wadhwani (1990).13

3 Attention and liquidity spillovers

3.1 Benchmark: No attention

We first analyze the equilibrium in the no attention case (µD = µF = 0). For instance, the

markets for securities D and F may be opaque so that dealers in each security can obtain

information on the price of the other security only after some delay. Alternatively, the prices

of each security are available in real time but accessing this information is so costly that no

dealer chooses to be informed on the price of the other security (see Section 4).

Lemma 1. (Benchmark) When µF = µD = 0, the equilibrium price in market j is:

pj = δj +Bj0uj, (6)

with BD0 = γ−1
D (σ2

η + d2) and BF0 = γ−1
F .

The sensitivity of the equilibrium price for security j to the aggregate demand shock in this

market, the illiquidity of security j, is given by Bj0 (we use index “0” to refer to the case in

which µF = µD = 0). In the no attention case, the illiquidity of security D is determined by

parameters σ2
η, d, and γD. We refer to these parameters as being the “liquidity fundamentals”

of security D. Similarly, we refer to γF as a liquidity fundamental of security F since it only

affects the illiquidity of security F . Illiquidity increases with dealers’ risk aversion (γj decreases)

and uncertainty on the securities’ payoffs (σ2
η increases).

13In the case of the CDS market, dealers in CDS are often affiliated with lenders and therefore better informed
on the likelihood of defaults (and size of associated losses) than dealers in the stock market (see Acharya and
Johnson (2007))
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Importantly, in the benchmark case, there are no liquidity spillovers: a change in the illiquid-

ity fundamental of one market does not affect the illiquidity of the other market. For instance,

an increase in the risk tolerance of dealers in security D makes this security more liquid but it

has no effect on the illiquidity of the other security.14 In contrast, with limited or full attention,

a change in the illiquidity fundamental of one security will affect the illiquidity of the other

security, as shown in the next sections.

3.2 Liquidity spillovers with full attention

In this section, we consider the case in which all dealers are pricewatchers, that is the full

attention case (µD = µF = 1). The analysis is more complex than in the benchmark case

as dealers in one security extract information about the factor that is unknown to them from

the price of the other security. To solve this signal extraction problem, dealers must form

beliefs on the relationship between clearing prices and risk factors. We will focus on equilibria

in which these beliefs are correct, i.e., the rational expectations equilibria of the model. We

first show that, in contrast to the benchmark case, the levels of illiquidity of both markets

are interdependent and this interdependence leads to multiple equilibria (Section 3.2.1). We

then provide an explanation for this finding and we show that that the interdependence in

the illiquidity of securities D and F leads to liquidity spillovers: a shock to the illiquidity

fundamental of one security propagates to the other security (Section 3.2.2). Finally, we show

that when learning is two-sided, the total effect of a small shock on the illiquidity fundamental

of one security can be much larger than the initial effect of such a shock (Section 3.2.3).

3.2.1 Equilibria with full attention

In our model, a linear rational expectations equilibrium is a set of prices {p∗j1}j∈{D,F} such that

p∗j1 = Rj1δj +Bj1uj + Aj1δ−j + Cj1u−j, (7)

and p∗j1 clears the market of asset j for each realization of {uj, δj, u−j, δ−j} when dealers

anticipate that clearing prices satisfy equation (7) and choose their trading strategy to maximize

their expected utility (given in equation (3)). We say that the equilibrium is non-fully revealing

if pricewatchers in security j cannot infer perfectly the realization of risk factor δ−j from

observing the price of security −j. The sensitivity of the price in market j to the demand

shock in this market, i.e., the “illiquidity of market j,” is measured by Bj1 in the full attention

case. Index “1” is used to refer to the equilibrium when µD = µF = 1.

Proposition 1. With full attention and σ2
η > 0, there always exists a non-fully revealing linear

rational expectations equilibrium. At any non-fully revealing equilibrium, Bj1 > 0, Rj1 = 1 and

14In our model, a variation in risk tolerance of dealers in one security is just one way to vary the cost of
liquidity provision for dealers in one asset class. In reality variations in this cost may be due to variations in
risk tolerance, inventory limits or financing constraints for dealers in this asset class. The important point is
that they do not directly affect dealers in other asset classes.
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the coefficients, Aj1 and Cj1 can be expressed as functions of Bj1 and B−j1. Moreover

BD1 = f1(BF1; γD, σ
2
η, d, σ

2
uF

) =
σ2
η

γD
+

d2B2
F1σ

2
uF

γD(1 +B2
F1σ

2
uF

)
, (8)

BF1 = g1(BD1; γF , σ
2
uD

) =
B2
D1σ

2
uD

γF (1 +B2
D1σ

2
uD

)
. (9)

Proposition 1 shows that the illiquidities of securities D and F are interdependent since BD1

is a function of BF1 and vice versa. Moreover, all coefficients in the equilibrium price function

can be expressed as functions of the illiquidity of securities D and F . Thus, the number of non-

fully revealing linear rational expectations equilibria is equal to the number of pairs {B∗D1,B∗F1}
solving the system of equations (8) and (9). In general, we cannot characterize these solutions

analytically and therefore cannot solve for the equilibria in closed-form. However, we can find

these solutions numerically. In Figure 2 we illustrate the determination of the equilibrium levels

of illiquidity by plotting the functions f1(·) and g1(·) for specific values of the parameters.

[Insert Figure 2 about here]

The equilibria are the values of BD1 and BF1 at which the curves representing the functions

f1(·) and g1(·) intersect. In panel (a) we set γj = d = 1, σuj = 2, and ση = 0.2. In this case, we

obtain three equilibria: one with a low level of illiquidity, one with a medium level of illiquidity

and one with a relatively high level of illiquidity. In panels (b) and (c), we pick values of ση or d

such that the correlation between the payoffs of securities D and F is smaller (ση = 1 in panel

(b) while d = 0.9 in panel (c)). In this case, we obtain a unique equilibrium. More generally,

when d is low relative to σ2
η, the model has a unique rational expectations equilibrium, as shown

in the next corollary.

Corollary 1. If 4d2 < σ2
η and µD = µF = 1 then there is a unique non-fully revealing rational

expectations equilibrium.

In particular, when learning is one sided (d = 0), there exists a unique non-fully revealing

linear rational expectations equilibrium. Furthermore, in this case, we can characterize the

equilibrium in closed-form (see Corollary 6 below).15

The case in which σ2
η = 0 requires a separate analysis. In this case, it is still true that if

there exists a non-fully revealing equilibrium then BD1 and BF1 solve the system of equations

(8) and (9). However, in this case, the unique solution to this system of equations can be

BD1 = BF1 = 0 so that a non-fully revealing equilibrium does not exist. As an example,

consider the case in which the two securities are identical: d = 1, σ2
η = 0, γF = γD = γ,

σ2
uj

= σ2
u. We refer to this case as the symmetric case.

15The condition given in Corollary 1 is sufficient to guarantee the existence of a unique rational expectations
equilibrium when all dealers are pricewatchers, but it is not necessary. Numerical simulations show that there
exist multiple equilibria when d is high relative to σ2

η. Moreover it can be shown formally that the model has
either one or three non-fully revealing rational expectations equilibria.
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Lemma 2. In the symmetric case with full attention, if σ2
u > 4γ2, there are two non fully

revealing linear rational expectations equilibria: a “High” illiquidity equilibrium and a “Low”

illiquidity equilibrium. The levels of illiquidity in each of these equilibria are

High : BH∗ =
σu + (σ2

u − 4γ2)1/2

2γσu
, (10)

Low: BL∗ =
σu − (σ2

u − 4γ2)1/2

2γσu
, (11)

with BH∗ > BL∗. If σ2
u < 4γ2, a non-fully revealing equilibrium does not exist.

3.2.2 Cross-asset learning and liquidity spillovers

We now explain why cross-asset learning is naturally conducive to multiple equilibria and

liquidity spillovers. To this end, it is useful to analyze in detail how dealers in one security

extract information from the price of the other security. Our starting point is the following

lemma.

Lemma 3. With full attention, in any non-fully revealing linear rational expectations equilib-

rium,

p∗j = (1− Aj1A−j1)ωj + Aj1p
∗
−j, for j ∈ {F,D}. (12)

where ωj ≡ δj + Bj1uj for j ∈ {D,F}. Hence, ω−j is a sufficient statistic for the price

information, PWj = {p∗j , p∗−j}, available to pricewatchers operating in security j.

In other words, ω−j is the signal about the risk factor δ−j that pricewatchers operating in

security j extract from the price of security −j. In the absence of information on the price of

security −j, the precision of the forecast formed by dealers in security j about the payoff of

security j is (Var[vj|δj])−1. In contrast, with access to price information, the precision of this

forecast is16

Var[vj|δj, ω−j]−1 = (Var[vj|δj]
(
1− ρ2

j1

)
)−1, (13)

where

ρ2
j1

def
=

E[vjω−j |δj ]2

Var[vj |δj ]Var[ω−j]
. (14)

Hence, the higher ρ2
j1 is, the greater the informativeness of the signal conveyed by the price of

security −j to dealers in security j. For this reason, we refer to ρ2
j1 as the informativeness of

the price of security −j about the payoff of security j for dealers operating in security j. Using

the definition of ωj, we obtain

ρ2
D1 =

d2

(σ2
η + d2)(1 +B2

F1σ
2
uF

)
, (15)

ρ2
F1 =

1

1 +B2
D1σ

2
uD

. (16)

16This result follows from the fact that if X and Y are two random variables with normal distribution then
Var[X|Y ] = Var[X]− Cov2[X,Y ]/Var[Y ] and the fact that E[ω−j |δj ] = 0.
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When d = 0, the price of security F does not convey information to dealers in security D

(ρ2
D1 = 0) since the payoff of security D does not depend on the risk factor known to dealers in

security F . Using the expressions for Bj1 given in Proposition 1, we obtain that

Bj1 = Bj0(1− ρ2
j1). (17)

This observation yields the following result.

Corollary 2. The markets for securities D and F are less illiquid with full attention than with

no attention, i.e., Bj1 ≤ Bj0. Moreover, with full attention, an increase in the informativeness

of the price of security −j for dealers in security j makes security j more liquid, i.e.,

∂Bj1

∂ρ2
j1

≤ 0. (18)

The intuition for this result is straightforward. By watching the price of another security,

dealers learn information. Hence, they face less uncertainty about the payoff of the security in

which they are active. For this reason, with full attention, dealers require a smaller premium

than with no attention to absorb a given demand shock (first part of the corollary) and this

premium decreases with the informativeness of prices (last part of the corollary).

Price movements in security j are driven both by news about factor δj and demand shocks

specific to this security. The contribution of demand shocks to price variations becomes rela-

tively higher when security j becomes more illiquid. As a consequence the price of security j

becomes less informative for dealers in other markets when security j becomes more illiquid.

To see this, remember that the signal about factor δj conveyed by the price of security j to

dealers in security −j is ωj = δj + Bj1uj. Clearly, this signal is noisier when Bj1 is higher,

which yields the following result.

Corollary 3. With full attention, an increase in the illiquidity of security j makes its price

less informative for dealers in security −j:

∂ρ2
−j1

∂Bj1

≤ 0. (19)

Corollaries 2 and 3 explain why the illiquidity of security D and F are interdependent when

dealers in the two securities learn from each other’s prices. Indeed, the illiquidity of security −j
determines the informativeness of the price of this security for dealers in security j (Corollary

3) and as a result the illiquidity of security j (Corollary 2).

This observation helps us to understand how multiple equilibria can arise when dealers

learn from each other’s prices. Consider dealers in security F . They do not directly observe the

sensitivity of the price to demand shocks in security D, i.e., the illiquidity of security D. Hence,

ultimately, the informativeness of the price of security D for dealers in security F depends on

their belief regarding the illiquidity of security D. Similarly, the informativeness of the price of

security F for dealers in security D depends on their belief regarding the illiquidity of security

F . In sum, the illiquidity of security j depends on the beliefs of the dealers active in this

13



security about the illiquidity of security −j, which itself depends on the beliefs of its dealers

about the illiquidity of security j. This loop leads to multiplicity as, for the same values of the

exogenous parameters, various systems of beliefs can be self-sustaining.17

This circularity breaks down when dealers in securityD do not use the information contained

in the price of security F (either because µD = 0 or because d = 0). In this case, the illiquidity

of security D is uniquely pinned down by its “fundamentals” (γD and σ2
η) and, as a result,

the beliefs of dealers in security F regarding the liquidity of security D are uniquely defined

as well (since dealers’ expectations about the illiquidity of the other security must be correct

in equilibrium). More generally, when d is low relative to σ2
η, security D is not much exposed

to factor δF . Thus, the beliefs of dealers in security D about the liquidity of security F play

a relatively minor role in the determination of the liquidity of security D and, for this reason,

the equilibrium is unique, as shown in Corollary 1.

The interdependence in the illiquidity of securities D and F has another implication. In

contrast to the benchmark case, an exogenous change in the illiquidity of one market (due for

instance to an increase in dealers’ risk tolerance in this market) affects the illiquidity of the

other market. We call this effect a liquidity spillover. To see this point, consider the effect of

an increase in the risk tolerance of dealers in security D. The immediate effect of this increase

is to make security D more liquid as in the benchmark case. Hence, its price becomes more

informative for dealers in security F (Corollary 3), which then becomes more liquid (Corollary

2) because inventory risk for dealers in security F is smaller when they are all better informed.

Thus, the improvement in the liquidity of security D spreads to liquidity F , although security

F experiences no change in its liquidity fundamentals.

More formally, consider the system of equations (8) and (9). Other things equal, an increase

in the risk tolerance of dealers in security D makes this security more liquid since ∂f1/∂γD <

0. In turn this improvement spreads to security F because ∂g1/∂BD1 6= 0. More generally,

any exogenous change in the illiquidity of security D will spill over to security F because

∂g1/∂BD1 6= 0. Similarly, an exogenous change in the illiquidity of security F will spill over to

security D when ∂f1/∂BF1 6= 0. The direction (positive/negative) of these liquidity spillovers

is determined by the signs of ∂g1/∂BD1 and ∂f1/∂BF1.

Corollary 4. With full attention, liquidity spillovers are always positive, i.e., ∂f1/∂BF1 ≥ 0

and ∂g1/∂BD1 > 0. Moreover when learning is one sided (d = 0), there is no spillover from

security F to security D because the price of security F conveys no information to dealers in

security D. In contrast, when learning is two-sided (d > 0), liquidity spillovers operate in both

directions.

Intuitively, positive liquidity spillovers generate positive co-movements in illiquidity across-

securities. In our model, illiquidity is not stochastic (it is a deterministic function of the

parameters). However, we can create variations in illiquidity by picking randomly the exogenous

17Ganguli and Yang (2009) consider a single security model of price formation similar to Grossman and
Stiglitz (1980). They show that multiple non-fully revealing linear rational expectations equilibria arise when
investors have private information both on the asset payoff and the aggregate supply of the security. The source
of multiplicity here is different since dealers have no supply information in our model.
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parameters of the model (e.g., the risk tolerance of dealers in security D) and compute the

resulting covariance for illiquidity of securities F and D. Figure 5 in Section 3.3 provides an

example that shows how positive liquidity spillovers result in positive covariation in liquidity.

3.2.3 Amplification: the illiquidity multiplier

With two-sided learning, liquidity spillovers operate in both directions. As a consequence, the

total effect of a small change in the illiquidity fundamentals of one security is higher than the

direct effect of these changes.

To see this consider the chain of effects that follows a small reduction, denoted by ∆γD < 0,

in the risk tolerance of dealers in security D. The direct effect of this reduction is to increase

the illiquidity of security D by (∂f1/∂γD)∆γD > 0. As a consequence, the price of this security

becomes less informative. Hence, dealers in security F face more uncertainty and security

F becomes less liquid as well, although its liquidity fundamental (γF ) is unchanged. The

immediate increase in the illiquidity of security F is equal to (∂g1/∂BD1)(∂f1/∂γD)∆γD > 0.

When learning is two sided (d > 0), this increase in illiquidity for security F leads to an even

larger increase in the illiquidity of security D, starting a new vicious loop (as the increase in

illiquidity for security D leads to a further increase in illiquidity for security F etc,. . . ). As a

result, the total effect of the initial decrease in the risk tolerance of dealers in security D is an

order of magnitude larger than its direct effect on the illiquidity of both securities. The next

corollary formalizes this discussion.

Corollary 5. Let

κ ≡ 1

(1− (∂g1/∂BD1)(∂f1/∂BF1))
, (20)

and assume that d > 0. With full attention, the total effects of a change in the risk tolerance

of dealers in security D is given by

dBD1

dγD︸ ︷︷ ︸
Total Effect

= κ
∂f1

∂γD︸︷︷︸
Direct Effect

< 0,

dBF1

dγD︸ ︷︷ ︸
Total Effect

= κ
∂g1

∂BD1

∂f1

∂γD︸ ︷︷ ︸
Direct Effect

< 0.

and there always exists at least one equilibrium in which κ > 1.

Thus, the initial effects of a small change in the risk tolerance of dealers in security D are

amplified by a factor κ. We call κ the “illiquidity multiplier.” This illiquidity multiplier can

be relatively large when the illiquidity of each market is very sensitive to the illiquidity of the

other market ((∂g1/∂BD1)(∂f1/∂BF1) is high). In this sense, cross-asset learning is a source of

fragility for financial markets.18

18Allen and Gale (2004) define a financial market as being fragile if “small shocks have disproportionately
large effects.” (Allen and Gale (2004), page 1015).
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Figure 3 illustrates this point for specific values of the parameters (in all our numerical

examples we choose the parameter values such that there is a unique rational expectations

equilibrium, except otherwise stated). It shows the value of κ for various values of the id-

iosyncratic risk of security D (ση) and the resulting values for the direct and total effects of a

change in this risk tolerance on the illiquidity of securities D and F , as a function of ση. In

this example, the total drop in illiquidity of each security after a decrease in risk tolerance for

dealers in security D can be up to ten times bigger than the direct effect of this drop.

Table 2 provides another perspective on the illiquidity multiplier by showing the elasticity,

denoted EBj1,γD , of illiquidity in each security to the risk tolerance of dealers in security D,

i.e., the percentage change in illiquidity in each security for a one percent increase in the risk

tolerance of dealers in security D. The table also shows the elasticity that would be obtained

(ÊBj1,γD) in the absence of the illiquidity multiplier (e.g., κ = 1 if µD = 0). For instance, when

γD = 1.8, a drop of 1% in the risk tolerance of dealers in security D triggers an increase of 9%

in the illiquidity of security D and 14.9% in the illiquidity of security F . This is much larger

than what would be obtained in the absence of bi-directional spillovers (e.g., if µD = 0) since in

this case the illiquidity of securities D and F would increase by only 1% and 1.5% respectively.

γD κ BD1 BF1

Elasticities

EBD1,γD ÊBD1,γD EBF1,γD ÊBF1,γD

2.2 1.54 0.19 2.11 −1.54 −1.00 −2.80 −1.81

2 2.16 0.23 2.87 −2.16 −1.00 −3.80 −1.76

1.8 9.94 0.36 5.94 −9.49 −1.00 −14.95 −1.50

1.62 2.35 0.57 11.01 −2.35 −1.00 −2.54 −1.08

1.46 1.65 0.70 13.41 −1.65 −1.00 −1.45 −0.88

1.31 1.39 0.82 15.29 −1.39 −1.00 −1.00 −0.72

Table 2: The table shows the impact of the illiquidity multiplier for different shocks to the
risk aversion of dealers in market D. Other parameter values are d = 1, ση = .62, σuF = .1,
σuD = 1.6, γD = 1.8, and γF = 1/24.

The corollary focuses on the effect of an increase in the risk tolerance of dealers in security

D but the effects of a change in the other exogenous parameters of the model (γF and σ2
η) are

also magnified for the same reasons.

Last, we note that when the equilibrium is unique, it is necessarily such that κ > 1 (an

implication of the last part of Corollary 5). When there are multiple equilibria, there is in

general one equilibrium for which κ < 0. This equilibrium delivers “unintuitive”comparative

statics.19 For instance, in this equilibrium, a reduction in the risk tolerance of dealers in, say,

security D increases the liquidity of both securities. Such an equilibrium may exist because,

19It is possible to show that the model has three equilibria when it admits multiple equilibria. The equilibrium
with κ < 0 is unstable whereas the two other equilibria (for which κ > 1) are stable.
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as explained previously, the illiquidity of each security is in part determined by dealers’ beliefs

about the illiquidity of the other market. These beliefs may be disconnected from the illiquidity

fundamentals of each security and yet be self-fulfilling.

3.3 Limited attention, adverse selection, and negative liquidity spillovers

We now turn our attention to the more general case in which 0 < µD ≤ 1 and 0 < µF ≤ 1. That

is, we allow for limited attention by dealers in either security. In this case, the pricewatchers

(dealers who monitor the price of the other security) have an informational advantage over

inattentive dealers (dealers who do not monitor this price). This advantage is a source of adverse

selection for inattentive dealers. This effect yields two new results: (a) liquidity spillovers can

be negative and (b) an increase in the fraction of pricewatchers in one security can reduce

the liquidity of this security when the fraction of pricewatchers is small. We now explain the

intuition for these two results in more details. We proceed as follows. We first generalize

Proposition 1 when attention is limited (Section 3.3.1). We then show that liquidity spillovers

can be negative with limited attention and we provide a sufficient condition on the parameters

for liquidity spillovers to be always positive (Section 3.3.2). Finally, we study the effect of a

change in the fraction of pricewatchers in a security on the liquidity of this security (Section

3.3.3).

3.3.1 Equilibria with limited attention

As with full attention, a linear rational expectations equilibrium is a set of prices {p∗j}j∈{D,F}
such that

p∗j = Rjδj +Bjuj + Ajδ−j + Cju−j, (21)

and p∗j clears the market of asset j for each realizations of {uj, δj, u−j, δ−j} when dealers antic-

ipate that clearing prices satisfy equation (21) and choose their trading strategies to maximize

their expected utility. The next proposition generalizes Proposition 1 when 0 < µD ≤ 1 and

0 < µF ≤ 1.

Proposition 2. Suppose σ2
η > 0. With limited attention (i.e., 0 < µD ≤ 1 and 0 < µF ≤ 1),

there always exists a non fully revealing linear rational expectations equilibrium. At any non-

fully revealing equilibrium, Bj > 0, Rj = 1 and the coefficients Aj and Cj can be expressed as

functions of Bj and B−j. Moreover

Bj = Bj0(1− ρ2
j)×

γ2
jµjρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)

γ2
jµ

2
jρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)(1− ρ2
j(1− µj))

, (22)

where ρ2
D ≡ d2/((σ2

η + d2)(1 +B2
Fσ

2
uF

)) and ρ2
F ≡ 1/(1 +B2

Dσ
2
uD

).

Proposition 2 generalizes Proposition 1 when attention is limited. As in the full attention

case, it can be shown that (i) pricewatchers in security j extract a signal ω−j = δ−j + B−ju−j

from the price of security −j and that (ii) variable ρ2
j is the informativeness of this signal. As
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the pricewatchers’ trading strategy depends on the information they obtain from watching the

price of security −j (i.e., ω−j), the price of security j partially reveals pricewatchers’ private

information.20 Equation (21) implies that observing the price of security j and risk factor δj

is informationally equivalent to observing ω̂j ≡ Ajδ−j + Bjuj + Cju−j. Thus, in equilibrium,

the information set of inattentive dealers, {δj, pj}, is informationally equivalent to {δj, ω̂j}. In

what follows, we refer to ω̂j as inattentive dealers’ price signal. Using the expressions for Aj

and Cj (given in the proof of Proposition 2), we obtain that ω̂j = Ajω−j +Bjuj. Hence, when

Bj > 0, inattentive dealers’ price signal is less precise than pricewatchers’ price signal, which

means that inattentive dealers in security j are at an informational disadvantage compared to

pricewatchers.

This disadvantage creates an adverse selection problem for the inattentive dealers. Indeed,

relative to inattentive dealers, pricewatchers will bid aggressively when the price of security −j
indicates that the realization of the risk factor δ−j is high and conservatively when the price

of security −j indicates that the realization of the risk factor δ−j is low. As a consequence,

inattentive dealers in one security will tend to have relatively large holdings of the security when

its value is low and relatively small holdings of the security when its value is large. This bias

in inattentive dealers’ portfolio holdings is a source of adverse selection, which is absent when

all dealers are pricewatchers. This new effect is key to understanding why liquidity spillovers

may be negative in the limited attention case (see below).

Substituting ρ2
D and ρ2

F by their expressions in equation (22), we can express Bj as a function

of B−j. Formally, we obtain:

BD = f(BF ;µD, γD, σ
2
η, d, σ

2
uF

), (23)

BF = g(BD;µF , γF , σ
2
uD

), (24)

where the expressions for the functions f(·) and g(·) are given in the Appendix (see equations

(A.26) and (A.28)). The linear rational expectations equilibria are completely characterized

by the solution(s) of this system of equations. As in the full attention case and for the same

reason, there might be multiple equilibria and we cannot in general provide an analytical

characterization of these equilibria. Of course, when µD = µF = 1, the solutions to the

previous system of equations are those obtained in the full attention case since this case is

nested in the limited attention case.

3.3.2 When are liquidity spillovers positive?

As mentioned previously, liquidity spillovers from one security to the other can be negative

when the fraction of pricewatchers in the latter security is relatively small. The intuition for

negative spillovers is more easily seen when learning is one sided (d = 0) or when no dealers

20Pricewatchers’ trading strategy (demand function) can be written as

xWj (pj , ω−j) = aWj (E[vj | δj , p−j ]− pj) = aWj (δj − pj) + bWj ω−j ,

where expressions for coefficients aWj and bWj are provided in the proof of Proposition 2.
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in security D are pricewatchers (µD = 0). Indeed, in these cases, the price of security F

conveys no information to dealers in security D. Thus, the level of illiquidity in security D

is as in the benchmark case (BD = BD0) and the level of illiquidity in security F is readily

obtained by substituting this expression for BD in equation (22). Hence, there is a unique

rational expectations equilibrium and we can characterize the equilibrium in closed form, which

considerably simplifies the analysis. Remember that RF is a measure of dealers’ risk bearing

capacity in security F (see equation (5)). We obtain the following result.

Corollary 6. With one-sided learning (d = 0) or no pricewacthers in security D (µD =

0), there is a unique linear rational expectations equilibrium where the levels of illiquidity of

securities D and F are

BD = BD0, (25)

BF =
B2
Dσ

2
uD

(B2
Dσ

2
uF
σ2
uD

+ µFγ
2
F )

γF (µ2
Fγ

2
F (1 +B2

Dσ
2
uD

) +B2
Dσ

2
uD
σ2
uF

(µF +B2
Dσ

2
uD

))
. (26)

In this equilibrium, liquidity spillovers from security D to security F are positive for all values

of µF if RF ≤ 1. In contrast, if RF > 1, liquidity spillovers from security D to security F are

negative when µF < µ̂F and positive when µF ≥ µ̂F , where µ̂F is strictly smaller than one and

defined in the proof of the corollary.

When µD = µF = 1, the corollary describes the equilibrium obtained with full attention and

one sided learning. In this case, as explained previously, liquidity spillovers from security D to

security F are always positive. In contrast, when µF is small enough and RF > 1, liquidity

spillovers from security D to security F can be negative.

To see why, consider a decrease in the risk tolerance of the dealers operating in security D

(γD decreases). This decrease makes security D less liquid and therefore less informative for

pricewatchers in security F . Thus, uncertainty about the payoff of security F increases. As

with full attention, this “uncertainty effect” increases the illiquidity of security F . However,

with limited attention, there is a countervailing effect that we call the “adverse selection effect.”

Indeed, as pricewatchers’ private information is less precise, their informational advantage is

smaller. As a consequence, inattentive dealers are less exposed to adverse selection. This effect

reduces the illiquidity of security F . Intuitively the reduction in uncertainty has a small effect

on illiquidity when (i) few dealers receive price information (µF < µ̂F ) and (ii) when dealers’

risk bearing capacity is high (i.e., RF > 1) since in this case uncertainty is not a big driver

of illiquidity. When these conditions are met, the adverse selection effect prevails over the

uncertainty effect. As a result the increase in the illiquidity of security D reduces the illiquidity

of security F . Otherwise, the uncertainty effect dominates and liquidity spillovers from security

D to F are positive.

We now consider the more general case in which learning is two-sided (d > 0). The next

corollary shows that liquidity spillovers in this case are positive if the fraction of pricewatchers

in securities D and F is high enough.
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Corollary 7. Let

µj = max

{
0,
Rj − 1

Rj

}
, for j ∈ {D,F}. (27)

If µD ∈ [µD, 1] and µF ∈ [µF , 1] then liquidity spillovers from security D to security F and vice

versa are positive for all values of d.

Thus, the model will feature positive liquidity spillovers if the level of attention is higher

than µj for j ∈ {D,F}. This threshold is always less than one and can be as low as zero if

dealers’ risk bearing capacity is small enough in both markets, i.e., if Rj ≤ 1 for j ∈ {D,F}.
In contrast, when the fraction of pricewatchers in security j is less than µj, liquidity spillovers

from security −j to security j can be negative for the reasons explained previously.

As an example, suppose that the parameter values are as follows: σuF = 0.1, σuD = 1,

γF = 1, d = 1, µD = µF = 0.1, and ση = 1. In this case, µD = 0 while µF = 0.9. Thus,

liquidity spillovers from security F to security D are positive while liquidity spillovers from

security D to security F can be negative since µF < µF (Corollary 7). For instance Figure 4

considers the effect of an increase in the risk tolerance of dealers in security D. This increase

reduces the illiquidity of security D but it increases the illiquidity of security F because liquidity

spillovers from security D to security F are negative in this case.

[Insert Figure 4 about here]

Our model predicts the existence of positive or negative liquidity spillovers between secu-

rities. Empirically, these spillovers should translate into positive or negative co-movement in

liquidity. We illustrate this point with the following experiment. For a given value of µF , we

compute the illiquidity of securities F and D assuming that γD is uniformly distributed in

[0.5, 1] and setting σuF = σuD = 1/2, ση = 2, γF = 1/2. For these values of the parameters

µj = 0 and liquidity spillovers are therefore positive. We then compute the covariance between

the resulting equilibrium values for BD and BF . Figure 5, Panel (a) and Panel (b) show this co-

variance as a function of µF when d = 0 and d = 0.9, respectively (for µD = 0.1 and µD = 0.9).

In both cases, the covariance between the illiquidity of securities D and F is positive because

illiquidity spillovers are positive. In panel (c) we set σuF = 0.1, d = 0.9 and µD = 0.9 while

other parameters are unchanged. In this case liquidity spillovers from security D to security F

can be negative when µF is smalle enough. As a result the covariance between the illiquidity of

security D and the illiquidity of security F is negative for relative low values of µF and positive

otherwise.

[Insert Figure 5 about here]

3.3.3 Is attention good for market liquidity?

We now study the relationship between the illiquidity of a security and the fraction of price-

watchers in this security. We already know that the illiquidity of security j is always smaller

with full attention than with no attention (see Corollary 2). However, as shown below, for small
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values of the fraction of pricewatchers, the illiquidity of a security may be strictly higher than

with no attention. Hence, the relationship between illiquidity and attention is non monotonic.

Again it is easier to establish this result when learning is one sided (d = 0) or when µD = 0

since in these cases the equilibrium is unique and we can characterize it in closed-form. We

obtain the following result.

Corollary 8. Consider the cases in which learning is one sided (d = 0) or in which there are

no pricewacthers in security D (µD = 0).

1. If RF ≤ 1, an increase in attention by dealers in security F reduces the illiquidity of this

security.

2. If RF > 1, an increase in attention by dealers in security F reduces the illiquidity of this

security if µF ≥ µF
F and increases its illiquidity if µF < µF

F where 0 < µF
F < 1 (see the

appendix for the analytical expression of µF
F ).

The impact of a change in the fraction of pricewatchers in security F on the liquidity of this

market is determined by both the adverse selection effect and the uncertainty effect, which play

in opposite directions. On the one hand, an increase in the fraction of pricewatchers in security

F raises the exposure to adverse selection for inattentive dealers in security F . On the other

hand, more dealers have relatively low inventory holding costs because more dealers are better

informed about the payoff of security j. The first effect raises illiquidity while the second effect

decreases illiquidity. As shown in Corollary 8, the second effect always prevails when the risk

bearing capacity of dealers in security F is less than one. When this condition is not satisfied,

the adverse selection effect dominates when the fraction of pricewatchers is small (µF < µF
F ).

Hence, the relationship between the liquidity of security F and the fraction of pricewatchers is

non monotonic: it increases in the fraction of pricewatchers when this fraction is less than µF
F ,

reaches a maximum when this fraction is equal to µF
F and then decreases.

When learning is two-sided, i.e., d > 0, the analysis of the impact of a change in attention in

one market is more complex because liquidity spillovers operate in both directions. Hence, as

explained in Section 3.2.3, the total impact of a change in the fraction of pricewatchers in one

security on the illiquidity of this security is determined both by the direct impact of this change

on illiquidity (measured by (∂f/∂µD) or (∂g/∂µF )) and the indirect impact which accounts for

the spillover effects described in the previous section. This indirect impact can be positive or

negative depending on the direction of liquidity spillovers between the two markets. Signing

the total impact of an increase in attention in one market on the level of illiquidity in both

markets is therefore challenging. However, the next corollary shows that if Rj ≤ 1 then more

attention leads to a more liquid market for both securities in at least one of the possible rational

expectations equilibria of the model. When the equilibrium is unique, it must therefore have

this property if Rj ≤ 1.

Corollary 9. If Rj ≤ 1 for j ∈ {D,F} then, other things equal, an increase in attention by

dealers in security j reduces the illiquidity of this security ((∂f/∂µD) < 0 and (∂g/∂µF ) < 0).
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Furthermore, there is always an equilibrium in which an increase in attention by dealers in

security j reduces the illiquidity of both securities in equilibrium.

To save space, we provide the proof of this result in the Internet Appendix. We illustrate

this corollary with a numerical example. We set ση = 0.77, σuj = 1, γj = 1 and d = 1, so that

learning is two-sided. In Figure 6, we plot the relationship between the illiquidity of security D

and the fraction of pricewatchers in this security for µD ∈ {0.001, 0.002, . . . , 1} when µF = 0.5

(panel (a)) and µF = 0.9 (panel (b)) when BF is fixed at its equilibrium value for µD = 0.001

(bold curve) and when BF adjusts to its equilibrium value for each value of µD (dotted curve).

Thus, the bold curve represents the direct effect of a change in the fraction of pricewatchers

in security D (i.e., the effect holding constant the liquidity of security F ) while the dotted

curve represents the evolution of the equilibrium value of the illiquidity of security D, after

accounting for spillover effects. The difference between the two curves shows the amount by

which spillover effects magnify the direct effect of a change in attention on illiquidity.

[Insert Figure 6 about here]

Table 3 provides a summary of our main results when the level of attention in each market

is exogenous.

Panel A – One-sided learning d = 0

Attention Risk bearing capacity Spillovers from from D to F ↑ µF on BD ↑ µF on BF

No No spillovers No effect No effect

Limited
RF ≤ 1 + No Effect −
RF > 1 + iff µF ≥ µ̂F No Effect − iff µF ≥ µF

F

Full + N.A. N.A.

Panel B – Two-sided learning d > 0

Attention Risk bearing capacity Spillovers from from j to −j ↑ µj on Bj ↑ µj on B−j

No No spillovers No effect No effect

Limited
Rj ≤ 1 + − −
Rj > 1 Ambiguous/can be negative Ambiguous Ambiguous

Full + N.A. N.A.

Table 3: Summary of the main findings with exogenous attention.

4 Endogenous attention

We now endogenize the level of dealers’ attention to the prices of other securities, i.e., µj. To

this end we introduce a cost of attention, C (see the introduction of the paper for interpretations
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of this cost).21 We assume that dealers simultaneously make their decision to be a pricewatcher

at date 0, before trades take place at date 1. Dealers who become pricewatchers pay the cost

C. Other dealers do not pay this cost and cannot make their strategy contingent on the price

in the other market. Once these decisions have been made, trades take place as described in

the previous section.

Dealers’ decisions to be a pricewatcher hinges on a comparison between the cost of attention

and the value of attention, i.e., the informational value of the price of the other security. Let

φj be the value of the information contained in the price of security −j for dealers in security

j when a fraction µj of dealers in security j are informed about the price of security −j. This

value is the maximum fee that a dealer in security j is willing to pay in order to observe the

price of security −j, p−j. This fee solves:

E
[
U
(
(vj − pj)xWj − φj

)]
= E

[
U
(
(vj − pj)xIj

)]
. (28)

In general, the solution to this equation depends on the level of illiquidity in security −j since

this level determines the informational content of the price of security −j. We stress this feature

by explicitly writing φj as a function of the illiquidity of security −j: φj = φj(µj, B−j). In

making their monitoring decisions, dealers take the fraction of pricewatchers as given. Hence,

for a given fraction of pricewatchers in each market, a dealer in security j chooses to monitor the

price of security −j if φj(µj, B−j) > C and abstains from monitoring this price if φj(µj, B−j) <

C. When φj(µj, B−j) = C, the dealer is indifferent between monitoring the price of security

−j or not.

The fraction of pricewatchers in each market results from this cost-benefit analysis and

is ultimately determined by the cost of attention. In the rest of this section, we study the

effect of varying the cost of attention on the equilibrium fraction of pricewatchers and market

illiquidity. This analysis yields two new insights. First, a decrease in the cost of attention can

impair market liquidity. Second, when learning is two-sided, the value of attention for dealers

in one security can increase both in the level of attention by dealers in the same security and

dealers in the other security. As a consequence, dealers’ attention decisions reinforce each other

and multiple equilibria with differing levels of attention can arise for the same level of the cost

of attention.

4.1 Attention decisions with one-sided learning

When d = 0, learning is one-sided: dealers in security D learn no information from the price of

security F . In this case, monitoring the price of security F for dealers in security D is worthless

(φD(µD, BF ) = 0) and as a result all dealers in security D optimally abstain from paying the

cost of attention, i.e., µD = 0. Thus, the level of illiquidity in security D is as given in the

21In our analysis we take the cost of attention as being exogenous. In reality, part of this cost is determined
by pricing decisions of data vendors (Bloomberg, Reuters, exchanges, etc. . . ). An interesting extension of our
paper would be to endogenize this cost by studying the optimal pricing policy of sellers of price information
in our set-up. Cespa and Foucault (2009) study the optimal pricing policy for a monopolist seller of price
information. But they restrict their attention to the case with a single security.
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benchmark case, i.e., BD = σ2
η/γD for all possible values of µF . Hence, in this section we write

φF (µF , BD) as φF (µF ) to simplify notation.

Using the specification of dealers’ utility functions and the fact that all variables have a

normal distribution, we obtain that22

φF (µF ) =
γF
2

ln

(
Var[vF |δF , ω̂F ]

Var[vF |δF , ωD]

)
> 0. (29)

As explained in Section 3.3, pricewatchers in security F obtain a signal ωD about factor δD from

monitoring the price of security D. The price information privately observed by pricewatchers

leaks partially through the price of security F as pricewatchers trade on this information, which

conveys a signal ω̂F to inattentive dealers. However, this signal is less informative than the

signal obtained by pricewatchers since price movements in security F are also affected by the

demand shock in this security. For this reason, pricewatchers can form a more precise forecast

of the payoff of security F than inattentive dealers, that is Var[vF |δF , ω̂F ] > Var[vF |δF , ωD] and

the value of being a pricewatcher is always strictly positive. Intuitively, the value of monitoring

the price of security D for dealers in security F decreases in the fraction of pricewatchers in

security F because the leakage effect is stronger when the fraction of pricewatchers in security

F is higher. We establish this result in the next corollary.

Proposition 3. If d = 0,

φF (µF ) =
γF
2

ln

(
1 +

σ2
uF
σ2
uD
B2
D

γ2
Fµ

2
F (1 +B2

Dσ
2
uD

) + σ2
uF
σ4
uD
B4
D

)
. (30)

with BD = σ2
η/γD. Thus, the value of monitoring the price of security D for dealers in security

F decreases in the fraction of pricewatchers in security F .

Hence, with one sided learning, the value of acquiring price information declines with the

fraction of dealers buying this information, as usual in models of information acquisition (e.g.,

Grossman and Stiglitz (1980) or Admati and Pfleiderer (1986)). Let µ∗F (C) be the fraction of

dealers in security F who decide to pay the cost of attention. As φF (µF ) decreases in µF , there

are three possible cases:

1. If φF (1) > C, then the value of monitoring the price of security D for dealers in security

F exceeds the cost of monitoring even when all dealers pay the cost of monitoring. Thus,

µ∗F (C) = 1.

2. If φF (0) < C, then the value of monitoring the price of security D for dealers in security

F is always lower than the cost of monitoring. Thus, µ∗F (C) = 0.

3. Otherwise, the equilibrium fraction of pricewatchers is such that dealers in security F are

just indifferent between monitoring the price of security D or not. That is, µ∗F (C) is the

unique solution of φF (µF ) = C.

22Our expression for the value of information is standard in models of information acquisition with normally
distributed variables and CARA utility functions (see for instance Admati and Pfleiderer (1986)). Thus, for
brevity we omit the derivation of this result, which can be obtained upon request.
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We obtain the following result.

Proposition 4. With one sided learning (d = 0), the fraction µ∗F (C) of dealers in security

F who monitor the price of security D in equilibrium decreases in the cost of attention. This

fraction is:

1. µ∗F (C) = 0, if C > C.

2. µ∗F (C) =

√
σ2
uF
σ2
uD

B2
D(1−B2

Dσ
2
uD

(e2C/γF−1))

γ2
F (1+B2

Dσ
2
uD

)(e2C/γF−1)
, if C ≤ C ≤ C.

3. µ∗F (C) = 1, if C < C,

where closed-form solutions for the thresholds C and C are given in the proof of the propo-

sition and BD = σ2
η/γD.

The illiquidity of security F is in part determined by the fraction of pricewatchers in this

security (see Section 3.3). As this fraction is itself determined by the cost of attention, the

illiquidity of security F is ultimately determined by the cost of attention. The next corollary

describes the effect of a change in the cost of attention on the illiquidity of security F .

Corollary 10. With one sided learning (d = 0):

1. If RF ≤ 1 then the illiquidity of security F increases in the cost of attention for dealers

active in this security.

2. If RF > 1 , there exists a value of C∗ ∈ (C,C) such that the illiquidity of security F

increases in the cost of attention for dealers active in this security when C ≤ C∗ and

decreases in the cost of attention otherwise (the closed-form solution for C∗ is given in

the proof of the corollary).

A decrease in the cost of attention leads to an increase in the fraction of pricewatchers

in security F when learning is one-sided. As explained in Section 3.3, this evolution has an

ambiguous effect on the illiquidity of security F . On the one hand, more attention reduces the

uncertainty on the payoff of security F . On the other hand, inattentive dealers are more exposed

to adverse selection if the attention of their competitors increases. As shown in Corollary 6,

the uncertainty effect always dominates when RF ≤ 1. Thus, in this case, a reduction in

the cost of monitoring for dealers in security F always improves the liquidity of this security.

When RF > 1, the adverse selection effect dominates as long as the fraction of pricewatchers

remains small, i.e., when C is greater than C∗. Indeed, for this range of values for the cost of

attention, only a few dealers choose to be pricewatchers. As a result, a small decline in the cost

of attention reinforces the adverse selection risk for inattentive dealers and market liquidity

deteriorates. Figure 7 illustrates the impact that a change in the cost of attention has on the

fraction of pricewatchers, illiquidity, and the value of information with one-sided learning.

[Insert Figure 7 about here]
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4.2 Attention decisions with two sided learning

We now consider the case in which d > 0, so that dealers in each security can learn information

from the price of the other security. In this case, our main finding is that the value of price

information for dealers in a given market can be increasing in the fraction of pricewatchers in

both markets. This finding is counterintuitive since usually the value of financial information

declines with the fraction of investors acquiring this information (see Grossman and Stiglitz

(1980) or Admati and Pfleiderer (1986)). The value of price information has this property when

learning is one-sided, as we have just shown in Proposition 4. In contrast, when learning is

two-sided, price information is special : its value can increase in the number of investors who

buy this information. As we shall see the main reason for this counter-intuitive result is that the

value of price information tends to be higher for securities that are more liquid and securities

tend to be more liquid when the fraction of pricewatchers is large enough.

Using again the dealers’ utility functions specification and the fact that all variables are

normally distributed, we obtain that the value of monitoring the price of security −j for dealers

in security j is

φj(µj, B−j(µj, µ−j)) =
γj
2

ln

(
Var[vj|δj, ω̂j]

Var[vj|δj, ω−j]

)
, (31)

where we stress the fact that the illiquidity of each market in equilibrium is a function of the

fraction of pricewatchers in either market. To save space we provide the explicit expression for

φj(µj, B−j(µj, µ−j)) in the Internet Appendix. For a fixed fraction of pricewatchers in market

−j, we have
dφj
dµj

= Lj︸︷︷︸
Leakage effect

+ Λj︸︷︷︸
Feedback effect

. (32)

with Lj ≡ (∂φj/∂µj) and Λj ≡ (∂φj/∂B−j)(∂B−j/∂µj). Thus, the total effect of an increase in

the fraction of pricewatchers in security j on the value of being a pricewatcher is the sum of two

effects: the leakage effect (that we described in the previous section) and the feedback effect,

which is new as it arises only when learning is two-sided. To understand this feedback effect,

consider an increase in the fraction of pricewatchers in security D (the reasoning is symmetric

for an increase in µF ). When d > 0, this increase affects the liquidity of security D and thereby

the liquidity of security F . In turn, the change in the liquidity of security F feeds back on the

value of monitoring this security since, as explained before, it affects the informativeness of the

price of security F for dealers in security D if d > 0. The change in the value of information

due to this feedback effect is measured by ΛD. It is zero when learning is one-sided because

in this case dealers in security D learn no information from the price of security F (hence

∂φD/∂BF = 0).23

The total effect of an increase in the fraction of pricewatchers in security j on the value of

information in this market is positive if and only if the feedback effect outweighs the leakage

effect

Λj > −Lj > 0. (33)

23Moreover, ∂BD/∂µF = 0 when d = 0 since the illiquidity of security D is independent of µF in this case
(BD = (σ2

η/γD)). Thus, ΛF = 0 as well when learning is one-sided.
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If the feedback effect dominates (i.e., condition (33) holds true), the value of being a price-

watcher in security j increases in the fraction of pricewatchers in this security. Obviously, a

necessary condition for this to happen is that the feedback effect is positive, which is a possibil-

ity when Rj ≤ 1. To see this, consider again the value of monitoring security F for dealers in

security D. When RD ≤ 1, as shown in Corollary 9, an increase in the fraction of pricewatchers

in security D reduces the illiquidity of security F (∂BF/∂µD < 0). As a consequence, the price

of security F becomes more informative for dealers in security D and the value of monitoring

this price is higher (∂φD/∂BF < 0), at least for some parameter values. In this case, the

feedback effect for security D is positive: ΛD > 0.

We have not been able to delineate the set of parameters under which the feedback effect

dominates the leakage effect. However, numerical simulations show that this set is not empty.

To see this, consider Figure 8. Panel (a) on this figure plots the value of monitoring security F

for pricewatchers in security D (i.e., φD(µD, BF )) for two values of µF . In both cases the value

of observing the price of security F increases with the fraction of pricewatchers in security D,

which means that the feedback effect dominates the leakage effect.

[Insert Figure 8 about here]

Now consider the effect of a change in the fraction of pricewatchers located in market −j on

the value of monitoring this market for dealers in asset j. This cross-market monitoring effect

is measured by
dφj
dµ−j

=

(
∂φj
∂B−j

∂B−j
∂µ−j

)
. (34)

As shown in Corollary 9, an increase in the fraction of pricewatchers in, say, security D reduces

the illiquidity of this security ((∂BD/∂µD) < 0) if RD ≤ 1. In turn this effect makes the price

of security D more informative for dealers in security F and increases the value of monitoring

this price for dealers in security F ((∂φF/∂BD) < 0). In this case, (dφF/dµD) > 0. That is, an

increase in the fraction of pricewatchers in security D makes the value of monitoring the price

of security D higher for dealers in security F .

Figure 8 illustrates the cross-market monitoring effect as well. First, consider panel (a)

again. It shows that the value of monitoring the price of security F for dealers in security D

is higher, all else being equal when µF = 0.9 than when µF = 0.1. Moreover, panel (b) shows

that an increase in the fraction of pricewatchers in security D makes the value of monitoring

security D higher for dealers in security F .

Thus, price information is special because the decision of each dealer to buy this information

can reinforce each other both in the same market and across different markets.24 The model

shows that this happens in two distinct ways: (i) the value of being informed about the price of

another security can increase in the fraction of dealers who follow this security (“within market

24The leakage effect implies that dealers’ decisions to buy price information are “strategic substitutes”: the
acquisition of price information by one dealer reduces the value of being a pricewatcher for other dealers. In
contrast, when positive, the feedback effect works to make dealers’ decisions to buy price information “strategic
complements”: the acquisition of price information by one dealer strengthens the value of being a pricewatcher
for other dealers operating in the same market.
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complementarity”) and (ii) the value of being informed about the price of another security

can increase in the fraction of pricewatchers in this security (“cross market complementarity”).

Both types of complementarity in dealers’ monitoring decisions are absent when d = 0 and they

do not necessarily both operate when d > 0 (in particular the leakage effect may prevail over

the feedback effect even though the cross-market complementarity operates).

Now consider whether a dealer in market j should become a pricewatcher. In making

this decision, the dealer takes the fraction of pricewatchers in both markets as given. If

φj(µj, B−j(µD, µF )) > C, it is optimal for the dealer to be a pricewatcher since the value

of monitoring the price in the other market is higher than the cost. If φj(µj, B−j(µD, µF )) <

C, it is optimal for the dealer not to monitor the price in the other market and finally, if

φj(µj, B−j(µD, µF )) = C, the dealer is just indifferent. Given these observations, the equilib-

rium fractions of pricewatchers in each market, (µ∗D, µ
∗
F ), are displayed in Table 4.

µ∗j , µ
∗
−j When

µ∗j = µ∗−j = 1 φj(1, B−j(1, 1)) > C for j ∈ {D,F}
µ∗j = 1, µ∗−j ∈ (0, 1) φj(1, B−j(1, µ

∗
−j)) > C and φ−j(µ

∗
−j, B−j(1, µ

∗
−j)) = C

µ∗j , µ
∗
−j ∈ (0, 1) φj(µ

∗
j , B−j(µ

∗
j , µ

∗
−j)) = C for j ∈ {D,F}

µ∗j = 0, µ∗−j ∈ (0, 1) φj(0, B−j(0, µ
∗
−j)) < C and φ−j(µ

∗
−j, B−j(1, µ

∗
−j)) = C

µ∗j , µ
∗
−j = 0 φj(0, B−j(0, 0)) < C for j ∈ {D,F}.

Table 4: The equilibrium fraction of pricewatchers in markets j and −j.

Complementarities in attention decisions among dealers located in different markets lead

to multiple equilibria for the levels of attention. Indeed, these complementarities imply that

the value of cross-market monitoring will be relatively high when the fraction of pricewatchers

in both markets is high and relatively low when the fraction of pricewatchers in both markets

is low. Thus, for intermediate values of the cost of monitoring, there is room for multiple

equilibria with various levels of market integration for the same values of the parameters (in

particular the correlation of the payoffs of the two securities being fixed).

It is worth stressing that the multiplicity of possible attention levels in equilibrium is a

phenomenon distinct from the multiplicity of rational expectations equilibria. Indeed, one may

have a single linear rational expectations equilibrium for each possible level of attention in each

security and yet multiple equilibrium levels of attention. As an example, consider the parameter

values of Figure 8 again and suppose C = 0.06. For the parameter values in Figure 8, there

is a unique non-fully rational expectations equilibrium for each value of µD and µF . However,

there are three possible pairs of equilibrium values for the levels of attention in each market: (i)

µ∗D = µ∗F = 1, (ii) µ∗D = 0, µ∗F = 1 and (iii) µ∗D ' 0.3, µ∗F = 1. In all these equilibria, all dealers

in security F pay attention to the price of security D. In contrast, for the same parameter

values, we can have an equilibrium in which dealers in security D do not follow security F
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(µ∗D = 0), an equilibrium in which all dealers in security D follow security F (µ∗D = 1) or an

equilibrium in which only a fraction of dealers in security D buy price information on security

F (µ∗D ' 0.3). Thus, for the same fundamentals, dealers in security D can appear to neglect

the information contained in the price of security F or to be very sensitive to this information.

We may also have situations in which, for the same parameter values, the markets for the two

securities appear fully segmented because dealers in either market pay no attention to the other

market (µ∗D = µ∗F = 0) or fully integrated because all dealers are pricewatchers (µ∗D = µ∗F = 1).

To see this, consider the case in which the two markets are perfectly symmetric: γF = γD = γ,

d = 1, ση = 0 and σuF = σuD = σu. In this case, we obtain (see the Internet Appendix for a

derivation):

φj(µj, B−j) =
γ

2
ln

(
1 +

B2
−jσ

4
u

γ2µ2
j(1 +B2

−jσ
2
u) +B4

−jσ
6
u

)
. (35)

In this symmetric case, there are two non-fully revealing rational expectations equilibria if

µD = µF = 1 (see Section 3.2). For the discussion, we focus on the high illiquidity equilibrium

in which the level of illiquidity in markets D and F is BH∗ (given in equation (10)). In the

symmetric case, parameters are identical in the two markets. Hence, by symmetry, we have

φF (1, BH∗) = φD(1, BH∗) and φF (0, BF0) = φD(0, BD0). That is, the value of price information

is identical in each market in the full attention case and in the no attention case, respectively.

Let φ0 be the value of price information in the no attention case and let φ1 be the value of price

information in the full attention case. Using equation (35), we obtain the following result.

Proposition 5. In the symmetric case (i.e., γF = γD = γ, d = 1, ση = 0 and σuF = σuD = σu):

1. The value of monitoring prices in market −j for dealers in market j is strictly higher

when µD = µF = 1 than when µD = µF = 0, that is, φ1 > φ0 for j ∈ {H,L}.

2. Moreover if the cost of attention is such that φ0 < C < φ1, then the cases in which all

dealers are pricewatchers (µ∗D = µ∗F = 1) and no dealers are pricewatchers (µ∗D = µ∗F = 0)

are possible equilibria.

The first part of the proposition shows that in the symmetric case the value of monitoring

is always higher when all dealers are pricewatchers than when no dealers are pricewatchers.

For this reason, for the same parameters value, the markets for securities F and D can be

either fully integrated (all dealers in each market account for the price information available in

the other market) or fully segmented, as claimed in the second part of the proposition. As an

illustration, suppose that σδ = σu = 1, γ = 1/2. In this case, we have

φ0 =
γ

2
ln

(
1 +

γ2

σ2
u

)
≈ 0.055, φ1 =

γ

2
ln

(
1 +

(BH∗)2σ4
u

γ2(1 + (BH∗)2σ2
u) + (BH∗)4σ6

u

)
≈ 0.127.

Thus, for any value of C ∈ [0.055, 0.127], the markets for securities F and D can be either fully

segmented or fully integrated, depending on whether dealers in both markets coordinate on the

high or the low attention equilibrium. The liquidity of both markets and the informativeness

of prices are higher if dealers coordinate on the high attention equilibrium. Interestingly, in
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this case, the markets can remain segmented even if the cost of attention decreases, unless it

falls below C = 0.055.

In summary, when learning is two sided, the value of price information can increase in the

fraction of pricewatchers. This property means that dealers’ decisions to monitor the price of

another security are complements both within and across markets. That is, they reinforce each

other. As a consequence, multiple equilibria with differing levels of attention are sustainable

and two securities may appear segmented even though the correlation of their payoffs is high

and the cost of monitoring is relatively low.

This result has interesting implications. First, it implies that fads, traditions, or other coor-

dination devices may determine the degree of integration between two securities, independently

of the correlation in the payoffs of these securities. Second, a decrease in the cost of attention

(due for instance to better information linkages between markets) does not necessarily entail

greater market integration, unless the cost is very low. Third, dealers operating in related

but opaque segments may undervalue the benefit of greater market integration. Indeed, in the

low attention equilibrium, the value of getting price information is low. Thus, data vendors

will perceive a weak demand and will therefore lack incentives to collect and disseminate price

information. In this case, regulatory intervention is needed. A case in point is the U.S. corpo-

rate bond market where real time dissemination of bond prices took off only under regulatory

pressure (see Bessembinder et al. (2006)).

5 Testable implications

One way to test whether cross-security learning is a source of liquidity spillovers is to consider

changes in trading technologies that affect dealers’ ability to learn from the prices of other

securities. According to our model, these changes should affect the extent of liquidity spillovers

across securities and the levels of liquidity for these securities. In contrast, theories of liquidity

co-movements based on market wide changes in dealers’ risk bearing capacity (e.g., Brunner-

meier and Pedersen (2009)) make no predictions on such changes in trading technologies. In

the rest of the paper, we illustrate this approach with two thought experiments.

5.1 From opaque to transparent markets

Suppose that the markets for securities D and F are opaque so that the cost of obtaining

information on the prices of securities D and F is high. In this case, the fraction of pricewatchers

in both securities is low. Let us denote the fraction of pricewatchers in this environment by

µbj for j ∈ {D,F}. Now suppose that the market for security D becomes transparent while

the market for security F remains opaque. After this switch, the fraction of pricewatchers in

security D remains unchanged whereas the fraction of pricewatchers in security F is higher

since transparency reduces the cost of acquiring information on the price of security D. That

is µbD = µaD but µaF > µbF where µaj is the fraction of pricewatchers in security j after the

switch to a new trading system for security F . To simplify the discussion, let us assume that
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µbD = µaD = 0. In this case the model has a unique rational expectations equilibrium for all

values of µF and we can use Corollaries 6 and 8 to develop predictions about the effects of this

change in market design.

In this case, if dealers’ risk bearing capacity in security F is relatively low (RF ≤ 1), the

liquidity of security F should increase after the market for security D becomes transparent (see

Corollary 8), even though the market structure for security F is identical before and after the

change affecting the other security. Moreover, co-variation in liquidity between securities D

and F should be positive and greater than before the change in market design as explained in

Section 3.3 (Corollary 6).

If instead, dealers’ risk bearing capacity in security F is relatively large (RF > 1) and the

fraction of pricewatchers in security F remains small (µaF < µF
F ) then the liquidity of security F

should decrease after the market for security D becomes transparent (Corollary 8). The reason

is that the transparency of security D exposes inattentive dealers active in security F to adverse

selection by giving an informational advantage to pricewatchers (see Section 3.3.3). Moreover,

in this case, liquidity spillovers from security D to security F will be negative (Corollary 6).

The implementation of the TRACE system in the U.S. corporate bond market is a field

experiment close to the thought experiment we just described. Until 2002, the U.S. corporate

bond market was very opaque: the price of each transaction was known only to the parties

involved in the transaction. This situation changed when the SEC required dissemination

of transaction prices for a subset of bonds through a reporting system called TRACE. This

requirement initially applied to 498 bonds and was implemented in July 2002. Bessembinder et

al. (2006) study the effects of this reform of the bond market on the liquidity of TRACE eligible

bonds (security D in our thought experiment) and non-TRACE-eligible bonds (security F ).25

Interestingly, Bessembinder et al. (2006) find a significant increase in liquidity for non-TRACE

eligible bonds, as predicted by our model (see Table 3, page 272 in Bessembinder et al.(2006)).

The model makes the additional prediction, which to our knowledge has yet to be tested, that

the liquidity of non-TRACE bonds should become more sensitive to changes in the liquidity of

TRACE bonds after the implementation of TRACE. This prediction can be tested by analyzing

the lead-lag relationships between measures of liquidity for TRACE-eligible bonds and non-

TRACE bonds. The model implies that a shock to the liquidity of TRACE bonds should have

a greater effect in absolute value on the liquidity of non-TRACE bonds after the implementation

of TRACE and that the direction of this effect might be negative if few dealers in non-TRACE

bonds watch the prices of TRACE bonds.

Bessembinder et al.(2010) also finds that the liquidity of the TRACE eligible bonds increases.

This finding is consistent with the model as well. To see this suppose now that both the markets

for securities D and F become transparent. If Rj ≤ 1 for both securities or µj is high enough

then the liquidity of both securities is higher in the transparent system, for all values of the

fraction of pricewatchers (see Corollary 9).

25Edward et al. (2005) and Goldstein et al. (2007) also consider the effects of greater transparency in the
U.S. bond markets. However, they do not analyze the effects of greater transparency on non-eligible bonds.
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5.2 Co-location fees

The recent years have witnessed a growth of so called “high frequency market-makers” (e.g.,

GETCO, Optiver, etc. . . ), who use highly automated strategies. These market-makers often

use price information available about one security to take positions in other securities. For

instance, they monitor quote updates in stock index futures and use this information to set

their quotes in other securities.

The case in which d = 0 can be used to analyze this type of trading strategy. Indeed, in this

case we can interpret security D as providing information on a market wide risk factor (δD)

and security F as a security that loads on this factor and another factor (δF ). We interpret

pricewatchers in security F as high frequency market-makers: they watch in real-time the price

of security D and use this information to determine their position in security F .

As explained in the introduction, high frequency market-makers obtain price information

faster than other market participants by co-locating their computers close to trading platforms’

matching engines, at a cost equal to the co-location fee charged by the platform.26 Thus, the

co-location fee is one component of the cost of price information.

Now suppose that the co-location fee declines. In this case, Proposition 4 implies that the

number of high frequency market-makers should increase since the cost of price information

declines. If the risk bearing capacity of high-frequency market-makers is low (RF ≤ 1), entry

of new pricewatchers should improve the liquidity of security F . Moreover, liquidity spillovers

from security D to security F should be positive and stronger after the reduction in the co-

location fee (see Corollary 10 and Figure 5).

If instead the risk bearing capacity of high-frequency market-makers is high (RF > 1), the

scenario is more complex. If C > C∗, entry of new high frequency market-makers increases the

exposure to adverse selection for other dealers in security F . Thus, the liquidity of security F

should drop after the reduction in the co-location fee (see Corollary 10). Moreover, liquidity

spillovers from security D to security F can be negative in this case. Indeed, an improvement in

liquidity for security D allows pricewatchers in security F to obtain more precise information.

Thus, if the fraction of pricewatchers remains small, the risk of adverse selection for inattentive

dealers increases and the liquidity of security F drops following an increase in liquidity for

security D.

Jovanovic and Menkveld (2010) study entry of a high frequency market-maker in Dutch

stocks traded on Chi-X (a European trading platform). They show empirically that following

this entry, quotes in Chi-X become relatively more informative on price innovations in the Dutch

index futures.27 Moreover, the liquidity of the stocks in which the high frequency market-maker

is active improves. This is consistent with the model when RF ≤ 1. In this case the model

makes the additional prediction that the liquidity of Dutch shares should become more sensitive

26This fee can be significant. For instance, the monthly fee for this service for stocks listed on NYSE Amex
is as high as $61,000 per month in 2011. See NYSE Amex equities price list 2011 at http://www.nyse.com/
pdfs/amex-equities-prices.pdf.

27Hendershott and Riordan (2010) also find empirically that high frequency traders make the market more
informationally efficient.
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to changes in the liquidity of the Dutch index futures after entry of the high-frequency market-

maker.

6 Conclusions

In this paper we analyze a new mechanism that explains the transmission of liquidity shocks

in one market to another market (“liquidity spillovers”). Central to this mechanism is the fact

that dealers in one security often use the price of other securities as a source of information

to set their quotes. The price of a security conveys a noisier signal about fundamentals when

the market for this security is less liquid. As a result, a drop in the liquidity of one security

propagates to other securities because it increases the level of uncertainty for dealers in all

other securities. This propagation of the initial liquidity shock makes all prices less informative,

which amplifies the initial drop in liquidity. For this reason, even small initial shocks on market

liquidity in one asset class can ultimately result in large market wide changes in liquidity.28

The model provides several additional insights:

1. Liquidity spillovers are not necessarily positive. The direction of these spillovers depends

on the fraction of dealers with price information on other securities. When this fraction

is large, liquidity spillovers are positive. In contrast, liquidity spillovers can be negative

when price information is only available to a relatively small number of dealers and dealers’

risk bearing capacity is large.

2. A decrease in the cost of price information can increase market illiquidity if it triggers

too small an increase in the fraction of dealers who acquire information on the price of

other securities.

3. The value of price information can increase, for some parameter values, with the fraction of

dealers buying this information. For this reason, for the same parameter values, multiple

levels of segmentation (high, medium or low) between securities can be sustained in

equilibrium.

Future work should study the implications of our model for asset pricing. The model implies

that the extent of liquidity co-movements between assets is in part determined by the cost of

acquiring price information. Hence, liquidity risk and therefore risk premia should be sensitive

to changes in trading technologies that affect this cost, as explained in the last part of our

paper. Moreover the model implies that the liquidity of some securities could covary negatively

28In line with this transmission mechanism, the CFTC-SEC report on the Flash crash emphasizes the role that
uncertainty on the cause (transient price pressures or changes in fundamentals) of the large price movements in
the E-mini futures on the S&P500 played in the evaporation of liquidity during the Flash crash. The authors of
this report write (on page 39): “market makers that track the prices of securities that are underlying components
of an ETF are more likely to pause their trading if there are price-driven or data-driven integrity questions about
those prices. Moreover extreme volatility in component stocks makes it very difficult to accurately value an ETF
in real-time. When this happens, market participants who would otherwise provide liquidity for such ETFs may
widen their quotes or stop providing liquidity [...].” This is consistent with our model in which the liquidity of
a security drops when prices of other securities become less reliable as a source of information.
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with the liquidity of other securities. These securities should therefore provide a good hedge

against market wide variations in liquidity and offer negative risk premia for this risk. Do such

securities exist in reality? Do they have the characteristics that our model predicts (relatively

few well informed dealers with high risk bearing capacity)? We leave these questions for future

research.
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A Appendix

Proof of Lemma 1

If µD = 0 then all dealers in security D only observe factor δD when they choose their demand

function. As dealers have a CARA utility function, it is immediate that their demand function

in this case is

xID(δD) = γD
E[vD|δD]− pD

Var[vD|δD]
= γD

δD − pD
σ2
η + d2

. (A.1)

Using the clearing condition, we deduce that the clearing price is such that:

pD = δD +

(
σ2
η + d2

γD

)
uD = δD +BD0uD.

A similar reasoning yields the expression of the clearing price for security F . 2

Proof of Proposition 1

This proposition is a special case of Proposition 2, which considers the more general case in

which µj can take any value. This proposition is proved below. 2

Proof of Lemma 2

In the symmetric case, we can proceed as in the proof of Proposition 2 to show that a non-fully

revealing linear rational expectations equilibrium exists if and only if the system of equations

(8) and (9) has at least one strictly positive solution. Solving this sytem shows that this is

the case if and only if σ2
u ≥ 4γ2 and that in this case the system of equations (8) and (9) has

two solutions: B∗D = B∗F = BH∗ and B∗D = B∗F = BL∗. Otherwise, the unique solution of

this system is B∗D1 = 0 and BF1 = 0. Hence, there is no non-fully revealing linear rational

expectations equilibria when σ2
u < 4γ2. 2

Proof of Lemma 3

See Step 1 in the proof of Proposition 2. 2

Proof of Corollary 1

From Step 3 in the proof of Proposition 2, we deduce that when µD = µF = 1, there is a unique

non-fully revealing equilibrium if and only if Ψ′1(BD1) < 0, ∀BD1. Using the expression for

Ψ1(·) (equation (A.32)), we obtain

Ψ′1(BD1) = −γDγ2
F (1 +B2

D1σ
2
uD

)2+

4BD1σ
2
uD

(σ2
η − γDBD1)

(
γ2
F (1 +B2

D1σ
2
uD

) +B2
D1σ

2
uD
σ2
uF

)
+B3

D1σ
4
uD
σ2
uF
γD(4γ−1

D d2 −BD1).

Remember that when µD = µF = 1, BD1 > σ2
η/γD (see Step 3 in the proof of Proposition 2).

Hence, if 4d2/γD ≤ σ2
η/γD then Ψ′1(BD1) < 0.

2

Proof of Corollary 2

The result follows immediately from equation (17) 2
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Proof of Corollary 3

The result follows immediately from equations (15) and (16). 2

Proof of Corollary 4

The result follows immediately from the definition of functions f1(·) and g1(·) in Proposition 1.

2

Proof of Proposition 2

Step 1. We show below (Step 2) that if p∗j = Rjδj + Bjuj + Ajδ−j + Cju−j is a rational

expectations equilibrium then Rj = 1 and Cj = AjB−j. Hence, in a rational expectations

equilibrium, the price in market j can be written p∗j = ωj + Ajω−j, where ωj = δj + Bjuj.

Thus, {δj, ω−j} is a sufficient statistic for {δj, p−j, pj}. Clearly, the equilibrium is non-fully

revealing if and only if Bj > 0. Moreover, {δj, ω̂j} is a sufficient statistic for {δj, pj}, where

ω̂j = Bjuj + Ajω−j and since ω−j = p∗−j − A−jωj, we can also write the equilibrium price in

market j as

p∗j = ωj + Aj(p
∗
−j − A−jωj) = (1− AjA−j)ωj + Ajp

∗
−j.

These observations prove Lemma 3.

Step 2. Equilibrium in market j.

Pricewatchers’ demand function. A pricewatcher’s demand function in market j, xWj (δj, pj, p−j),

maximizes

E
[
− exp

{
−
(
(vj − pj)xWj

)
/γj
}
|δj, pj, p−j

]
.

We deduce that

xWj (δj, pj, p−j) = γj

(
E[vj|δj, p−j, pj]− pj

Var[vj|δj, p−j]

)
= aWj (E[vj|δj, p−j, pj]− pj), (A.2)

with aWj = γjVar[vj|δj, p−j]−1.

As {δD, ωF} is a sufficient statistic for {δD, pF , pD}, we deduce (using well-known properties

of normal random variables) that

E[vD|δD, pF , pD] = E[vD|δD, ωF ]

= δD +
d

(1 +B2
Fσ

2
uF

)
ωF , (A.3)

and

aWD =
γD

Var[vD | δD, ωF ]
(A.4)

= γD

(
1 +B2

Fσ
2
uF

d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

)

)
(A.5)

=
γD

Var[vD|δD](1− ρ2
D)
, (A.6)
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where ρ2
D ≡ d2/((σ2

η + d2)(1 +B2
Fσ

2
uF

)). Thus,

xWD (δD, ωF ) = aWD (δD − pD) + bWD ωF ,

where

bWD =
γD

Var[vD|δD, ωF ]

Cov[vD, ωF ]

Var[ωF ]

= daWD

(
1

1 +B2
Fσ

2
uF

)
. (A.7)

Similarly, for pricewatchers in security F we obtain

xWF (δF , ωD) = aWF (δF − pF ) + bWF ωD, (A.8)

where ωD = δD +BDuD, and

aWF = γF

(
1 +B2

Dσ
2
uD

B2
Dσ

2
uD

)
=

γF
Var[vF |δF ](1− ρ2

F )
, bWF = aWF

1

1 +B2
Dσ

2
uD

, (A.9)

where ρ2
F ≡ (1 +B2

Dσ
2
uD

)−1.

Inattentive Dealers. An inattentive dealers’ demand function in market j, xIj (δj, pj), maxi-

mizes:

E
[
− exp

{
−
(
(vj − pj)xIj

)
/γj
}
|δj, pj

]
.

We deduce that

xIj (δj, pj) = γj

(
E[vj|δj, pj]− pj
Var[vj|δj, p−j]

)
= aIj (E[vj|δj, pj]− pj), (A.10)

with aIj = γjVar[vj|δj, p−j]−1.

As {δD, ω̂D} is a sufficient statistic for {δD, pD}, we deduce (using well-known properties of

normal random variables) that

E[vD|δD, pD] = E[vD|δD, ω̂D]

= δD +
dAD

A2
D(1 +B2

Fσ
2
uF

) +B2
Dσ

2
uD

ω̂D, (A.11)

and

aID =
γD

Var[vD | δD, ω̂D]
(A.12)

=γD
A2
D(1 +B2

Fσ
2
uF

) +B2
Dσ

2
uD

d2(A2
DB

2
Fσ

2
uF

+B2
Dσ

2
uD

) + σ2
η(A

2
D(1 +B2

Fσ
2
uF

) +B2
Dσ

2
uD

)
. (A.13)

Thus,

xID(δD, ω̂D) = aID(δD − pD) + bIDω̂D,
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where

bID =
γD

Var[vD|δD, ω̂D]

Cov[vD, ω̂D]

Var[ω̂D]

= aID
dAD

A2
D(1 +B2

Fσ
2
uF

) +B2
Dσ

2
uD

. (A.14)

Similarly, for market F we obtain:

xIF (δF , ω̂F ) = aIF (δF − pF ) + bIF ω̂F , (A.15)

where

aIF = γF
A2
F (1 +B2

Dσ
2
uD

) +B2
Fσ

2
uF

A2
FB

2
Dσ

2
uD

+B2
Fσ

2
uF

, bIF = aIF
AF

A2
F (1 +B2

Dσ
2
uD

) +B2
Fσ

2
uF

. (A.16)

Clearing price in market j. The clearing condition in market j ∈ {D,F} imposes

µjx
W
j (δj, pj, p−j) + (1− µj)xIj (δj, pj) + uj = 0.

Let aj = µja
W
j + (1− µj)aIj . Using equations (A.2) and (A.10), we solve for the clearing price

and we obtain

p∗j = δj +

(
µbWj + (1− µj)bIjAj

aj

)
ω−j +

(
(1− µj)bIjBj + 1

aj

)
uj, (A.17)

Remember that we are searching for an equilibrium such that p∗j = Rjδj+Bjuj+Ajδ−j+Cju−j.

We deduce from equation (A.17) that in equilibrium, we must have Rj = 1,

Bj =

(
(1− µj)bIjBj + 1

aj

)
, Aj =

(
µbWj + (1− µj)bIjAj

aj

)
, and Cj = AjB−j.

Thus

Bj =
1

aj − (1− µj)bIj
, for j ∈ {D,F}, (A.18)

Aj = µjBjb
W
j , for j ∈ {D,F}. (A.19)

Coefficients Aj and Cj ultimately depend on the coefficients {Bj, B−j}. Hence, the equilibrium

is fully characterized once coefficients Bj and B−j are known as claimed in the proposition.

Substituting (A.6) in (A.7) and rearranging we obtain

bWD = dγD
1

d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

)
. (A.20)

Using (A.19) (for j = D) and (A.20), we can rewrite (A.14) as

bID = aID
d2µDγD(d2B2

Fσ
2
uF

+ σ2
η(1 +B2

Fσ
2
uF

))

BD(µ2
Dd

2γ2
D(1 +B2

Fσ
2
uF

) + σ2
uD

(d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

))2)
. (A.21)
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Similarly, using (A.19) (for j = D) and (A.20), we can rewrite (A.13) as

aID =
γD
(
µ2
Dd

2γ2
D(1 +B2

Fσ
2
uF

) + σ2
uD

(d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

))2
)

(d2B2
Fσ

2
uF

+ σ2
η(1 +B2

Fσ
2
uF

))(µ2
Dd

2γ2
D + σ2

uD
(σ2

η + d2)(σ2
η(1 +B2

Fσ
2
uF

) + d2B2
Fσ

2
uF

))

(A.22)

=
γD
(
µ2
Dγ

2
Dρ

2
D + σ2

uD
(d2 + σ2

η)(1− ρ2
D)2
)

(d2 + σ2
η)(1− ρ2

D)(µ2
Dγ

2
Dρ

2
D + σ2

uD
(d2 + σ2

η)(1− ρ2
D))

. (A.23)

Inserting (A.23) in (A.21) yields after some algebra

bID = γ2
D

d2µD
BD(µ2

Dd
2γ2

D + σ2
uD

(σ2
η + d2)(σ2

η(1 +B2
Fσ

2
uF

) + d2B2
Fσ

2
uF

))
. (A.24)

We can now replace (A.6), (A.23) and (A.24) in (A.18) and, after some tedious algebra, we

obtain

BD = f(BF ;µD, γD, σ
2
η, d, σ

2
uF

), (A.25)

where

f(BF ;µD, γD, σ
2
η, d, σ

2
uF

) =
BD0(1− ρ2

D)
(
µDγ

2
Dρ

2
D + (σ2

η + d2)σ2
uD

(1− ρ2
D)
)

ρ2
Dµ

2
Dγ

2
D + σ2

uD
(σ2

η + d2)(1− ρ2
D)(1− ρ2

D(1− µD))
, (A.26)

with ρ2
D = d2/((σ2

η + d2)(1 +B2
Fσ

2
uF

)) and BD0 = (σ2
η + d2)/γD. In a similar way we obtain

BF = g(BD;µF , γF , σ
2
uD

), (A.27)

where

g(BD1;µF , γF , σ
2
uD

) =
BF0(1− ρ2

F )
(
µFγ

2
Fρ

2
F + σ2

uF
(1− ρ2

F )
)

ρ2
Fµ

2
Fγ

2
F + σ2

uF
(1− ρ2

F )(1− ρ2
F (1− µF ))

, (A.28)

with ρ2
F = (1 + B2

Dσ
2
uD

)−1 and BF0 = γ−1
F . Last, as Var[vD|δD] = σ2

η + d2 and Var[vF |δF ] = 1,

we obtain that

Bj = Bj0(1− ρ2
j)×

γ2
jµjρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)

γ2
jµ

2
jρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)(1− ρ2
j(1− µj))

, (A.29)

as claimed in the proposition.

Step 3. Existence of a non-fully revealing equilibrium with full attention (µj = 1).

Let f1(BF1; γD, σ
2
η, d, σ

2
uF

) ≡ f(BF ; 1, γD, σ
2
η, d, σ

2
uF

) and g1(BD1; γF , σ
2
uD

) ≡ g(BD1; 1, γF , σ
2
uD

).

When µD = µF = 1, we deduce from equations (A.25) and (A.27) that a non-fully rational

expectations equilibrium exists if and only if the following system of equations has a strictly

positive solution

BD1 = f1(BF1; γD, σ
2
η, d, σ

2
uF

) =
σ2
η

γD
+

d2B2
F1σ

2
uF

γD(1 +B2
F1σ

2
uF

)
, (A.30)

BF1 = g1(BD1; γF , σ
2
uD

) =
B2
D1σ

2
uD

γF (1 +B2
D1σ

2
uD

)
. (A.31)

Note that BF1 > 0 if and only if BD1 > 0. Let

Ψ1(BD1) ≡ f1(g1(BD1; γF , σ
2
uD

); γD, σ
2
η, d, σ

2
uF

)−BD1.
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Substituting the expression for BF1 in equation (A.30), we deduce that the equilibrium levels

for the illiquidity of security BD1 solve Ψ1(BD1) = 0. Thus, a non-fully revealing equilibrium

exists if and only if Ψ1(BD1) = 0 has at least one strictly positive root. Using the expression

for g1(BD1; γF , σ
2
uD

), we obtain

Ψ1(BD1) =
(
σ2
η − γDBD1

) (
γ2
F (1 +B2

D1σ
2
uD

)2 +B4
D1σ

4
uD
σ2
uF

)
+ d2B4

D1σ
4
uD
σ2
uF
, (A.32)

which is a polynomial of degree 5 in BD1. Observe that Ψ1(·) is continuous and

Ψ1

(
σ2
η

γD

)
≥ 0, Ψ1

(
σ2
η + d2

γD

)
< 0.

Thus, (A.32) has at least one solution B∗D1 in the interval [σ2
η/γD, (σ

2
η + d2)/γD]. As σ2

η > 0,

this proves existence of a non-fully revealing equilibrium when µD = µF = 1.

Step 4. Existence of a non fully revealing equilibrium with limited attention (µj <

1).

With limited attention, we deduce from equations (A.25) and (A.27) that a non-fully revealing

equilibrium exists if and only if the following equation has one strictly positive solution

Ψ(BD) ≡ f(g(BD;µF , γF , σ
2
uD

);µD, γD, σ
2
η, d, σ

2
uF

)−BD = 0.

Calculations show that Ψ(·) is an odd-degree polynomial in BD with negative leading coefficient.

Hence,

lim
BD→∞

Ψ(BD) = −∞,

while, for σ2
η > 0,

Ψ(0) = γ12
F µ

8
Fσ

2
η(d

2γ2
DµD + σ2

ησ
2
uD

(d2 + σ2
η)) > 0.

Thus, there always exists a strictly positive value B∗D, such that Ψ(B∗D) = 0 when σ2
η > 0. 2

Proof of Corollary 5

Step 1: The total effect of a change in γD on the illiquidity of security D is given by

dBD1

dγD
=

∂f1

∂γD
+

∂f1

∂BF

dBF

dγD
.

As
dBF1

dγD
=

∂g1

∂BD

dBD1

dγD
,

and (∂g1/∂BD1)(∂f1/∂BF1) > 0 (since d > 0), we deduce that:

dBD1

dγD
= κ

∂f1

∂γD
,

dBF1

dγD
= κ

(
∂g1

∂BD1

∂f1

∂γD

)
,

with κ = 1− ((∂g1/∂BD1)(∂f1/∂BF1)).
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Step 2: Now we prove that there alwauys exists at least one non fully revealing rational

expectations equilibrium for which κ > 1. Let

h1(BD1) ≡ f1(g1(BD1; γF , σ
2
uD

); γD, σ
2
η, d, σ

2
uF

).

Note that
∂h1

∂BD1

=
∂f1

∂BF1

∂g1

∂BD1

.

Hence, if h′1(BD1) < 1 at an equilibrium value for BD1 then there exists at least one equilibrium

in which κ > 1. Remember that the equilibrium values for BD1 solve (see Step 3 in the proof

of Proposition 2)

Ψ1(BD1) ≡ h1(BD1)−BD1 = 0.

Hence, the roots of the polynomial Ψ1(BD1) are the possible equilibrium values for the illiquidity

of security D. Using equation (A.32), we obtain

Ψ1(BD1) = −B5
D1γDσ

4
uD

(γ2
F + σ2

uF
) +B4

D1σ
4
uD

(γ2
Fσ

2
η + (d2 + σ2

η)σ
2
uF

)

− 2B3
D1γDγ

2
Fσ

2
uD

+ 2BD1γ
2
Fσ

2
ησ

2
uD
−BD1γDγ

2
F + γ2

Fσ
2
η.

Using Descartes’ rule of signs, we obtain that Ψ1(·) has five, three or one positive root. These

roots correspond to the intersections of the function h1(BD1) with the 45-degree line. As

h1(0) = σ2
η/γD > 0 and,

h′1(BD1) =
4B3

Dd
2γ2

Fσ
4
uD
σ2
uF

(1 +B2
Dσ

2
uD

)

γD(γ2
F (1 +B2

Dσ
2
uD

)2 +B4
Dσ

4
uD
σ2
uF

)2
> 0,

the function h1(BD1) cuts for the first time the 45-degree line from above. Hence, at this

intersection point, we must have h′1(BD1) < 1. Let BL∗
D1 be this intersection point. When

the equilibrium is unique, the equilibrium level of illiquidity must be BL∗
D1 as otherwise h1(·)

would never cut the 45-degree line and therefore an equilibrium would not exist. When there

are multiple equilibria, BL∗
D1 is the lowest level of illiquidity for security D among all non-fully

revealing equilibria since this is the lowest positive root of Ψ1(BD1). Thus, there always exists

an equilibrium in which h′1(BD1) < 1 at the equilibrium value for BD1.

2

Proof of Corollary 6

Step 1: For the expressions for the illiquidity levels in securities D and F , see the paragraph

that precedes the corollary.

Step 2: For the second part, we differentiate BF with respect to BD and we obtain that

∂BF

∂BD

=
2BDµF σ

2
uD

(γ4
Fµ

2
F +B2

Dγ
2
Fσ

2
uD
σ2
uF

(2µF −B2
D(1− µF )σ2

uD
) +B4

Dσ
4
uD
σ4
uF
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γF ((γFµF )2(1 +B2
Dσ

2
uD

) +B2
Dσ

2
uD
σ2
uF

(µF +B2
Dσ

2
uD

))2
. (A.33)

The numerator of this expression contains a quadratic polynomial in µF with two real roots.

Let P(µF ) be this polynomial. One root of P(µF ) is always negative. The other root is
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µ̂F =
B2
Dσ

2
uD
σuF

(
−(2 +B2

Dσ
2
uD

)σuF +
√

4γ2
F +B2

Dσ
2
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(4 +B2
Dσ

2
uD

)
)

2γ2
F

.

As the leading coefficient on P(µF ) (i.e., the coefficient on µ4
F ) is positive, we deduce that

(∂BF/∂BD) is positive if and only if µF > µ̂F . Direct calculations show that µ̂F ≤ 0, if

RF ≤ 1. Thus, in this case, (∂BF/∂BD) is positive for all values of µF . Otherwise µ̂F > 0

and (∂BF/∂BD) < 0 if and only if µF < µ̂F . This implies that µ̂F < 1, as otherwise liquidity

spillovers would be negative even when µF = 1 (which we know is impossible from Corollary

4). 2

Proof of Corollary 7

First observe that a change in B−j only affects the illiquidity of security j through its effect on

ρ2
j . As ρ2

j decline in B−j, we deduce that liquidity spillovers from security j to security −j are

positive if and only if (∂Bj/∂ρ
2
j) < 0. Now we show that µj ≥ µj is a sufficient condition for

this to be the case. Observe that Bj = Bj0(1− ρ2
j)G(µj, ρ

2
j) with

G(µj, ρ
2
j) ≡

γ2
jµjρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)

γ2
jµ

2
jρ

2
j + σ2

uj
Var[vj|δj](1− ρ2

j)(1− ρ2
j(1− µj))

. (A.34)

Therefore, we have:
∂Bj

∂ρ2
j

= −B0jG(µj, ρ
2
j) +B0j(1− ρ2

j)
∂G

∂ρ2
j

, (A.35)

Now observe that:
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> 0.

Inserting this expression and the expression for G(µD, ρ
2
D) in equation (A.35), we obtain after

some algebra

∂BD

∂ρ2
D

= − Var[vD|δD]µD
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2
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D)(Var[vD|δD](1− ρ2

D
)σ2

uD
− γ2
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D(1 + µD)))).

As ρ2
D < 1, we deduce that the sign of (∂BD/∂ρ

2
D

) is the opposite of the sign of

µD −
(
RD − 1

RD

)(
1− ρ2

D

1 + ρ2
D

)
,

which is positive if µD ≥ µD. We deduce that (∂f/∂BF ) > 0 if µD > µD. A similar reasoning

shows that (∂g/∂BD) > 0 if µF > µF . 2
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Proof of Corollary 8

Using the expression for BF in the one sided case (see equation (25)), we obtain

∂BF

∂µF
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(A.36)

The sign of this derivative is the same as the sign of its numerator, which is a quadratic

polynomial in µF with a positive leading coefficient. Hence, its sign is positive for all values

of µF that are larger, in absolute value, than the two real roots of this polynomial. Upon

inspection, the first of these roots is always negative, whereas the other root is

µF
F =

−B2
Dσ

2
uD
σuF

(
σuF (1 +B2
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2
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)− ((1 +B2
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)(γ2
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))1/2
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γ2
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Dσ
2
uD

)
.

We observe that µF
F ≤ 0 if and only if RF ≤ 1. Thus, in this case, (∂BF/∂µF ) < 0, as claimed

in Part 1 of the corollary. When RF > 1, we have µF
F > 0 and (∂BF/∂µF ) > 0 if and only

if µF < µF
F , as claimed in the second part of the corollary. Last we observe that µF

F < 1

as otherwise the illiquidity of security F would be smaller with full attention than with no

attention, which is never true (see Corollary 4). 2

Proof of Proposition 3

Using the notations introduced in the proof of Proposition 2, we have

Var[vF |δF , ω̂F ] = γF (aIF )−1,

Var[vF |δF , ωF ] = γF (aWF )−1,

where
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We deduce that

φF (µF , BD) =
γF
2

ln

(
aWF
aIF

)
,

and the expression for φF (µF , BD) given in the corollary follows. It is then immediate that

∂φF (µF )/∂µF < 0. 2

Proof of Proposition 4

As explained in the text, the fraction of pricewatchers in equilibrium is zero iff φF (0) < C.

Using equation (30), we deduce that this condition is satisfied iff C > C where

C =
γF
2

ln

(
1 +

1

σ2
uD
B2
D

)
.

Similarly, the fraction of pricewatchers in equilibrium is one iff φF (1) > C. Using equation

(30), we deduce that this condition is satisfied iff C < C where:
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.
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Otherwise the fraction of pricewatchers in equilibrium solves φF (µF , BD) = C and we obtain

the expression for µ∗F (C) by inverting φF (µF ) given in equation (30). 2

Proof of Corollary 10

For a given value of C, the level of illiquidity of security F is given by BF (µ∗F (C)) where BF (·)
is given in equation (26) when d = 0. Thus:

∂BF

∂C
=
∂BF

∂µF

∣∣∣∣
µF=µ∗F (C)

(
∂µ∗F (C)

∂C

)
.

We know that (∂µ∗F (C)/∂C) ≤ 0 (Proposition 4). Moreover, using equation (26), we deduce

that when d = 0, (∂BF/∂µF ) < 0 if and only if µF > µ̂F where

µ̂F =
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2
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Thus, when γ2
F ≤ σ2

uF
Var[vF |δF ], µ̂F = 0 and (∂BF/∂µF )|µF=µ∗F (C) < 0. It follows that

(∂BF/∂C) > 0. When γ2
F > σ2

uF
Var[vF |δF ] then µ̂F > 0. As µ∗F (C) decreases with C from

one to zero over [C, C], there exists a value C∗ ∈ (C, C) such µ∗F (C) = µ̂F and µ∗F (C) < µ̂F

iff C > C∗. Thus, in this case, (∂BF/∂µF ) < 0 iff C < C∗. The second part of the corollary

follows. 2

Proof of Proposition 5

We have
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and
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We deduce that φj(1, B
H∗) > φj(0, B

∗(0)) if and only if

− γ2σ6
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Using the expression for BH∗ given in equation (10), we obtain that
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Thus, we can rewrite condition (A.39) as
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Straighforward calculations show that this is the case when σ2
u > 4γ2, which is required for the

existence of a symmetric equilibrium.

Part 2: Suppose that µ∗D = µ∗F = 1. Then in this case, the value of monitoring market j for a

dealer in security −j, given the actions of other dealers, is φ1. As this value is higher than C,

monitoring is optimal. Hence µ∗D = µ∗F = 1 is an equilibrium. Now suppose that µ∗D = µ∗F = 0.

Then in this case, the value of monitoring market j for a market-maker in market −j, given

the actions of other dealers, is φ0. As this value is lower than C, not monitoring is optimal.

Hence µ∗D = µ∗F = 0 is an equilibrium. 2
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Figure 1: Cross-asset learning and liquidity spillovers.
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Figure 2: Equilibrium determination with full attention: multiplicity (panel (a)) and uniqueness
(panel (b) and (c)). Parameters’ values are as follows: γj = d = 1, σuj = 2, and ση = .2 (panel
(a)), while in panel (b) we set ση = 1 and in panel (c) we set d = 0.9.
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Figure 3: Illiquidity multiplier. In panel (a) we plot κ as a function of ση. Panels (b) and (c)
show the direct effect (dotted line) and total effect (plain line) of a change in the risk tolerance
of the dealers in security D on the illiquidity of securities D and F , respectively as a function
of ση. Other parameter values are σuF = .1, σuD = 1.6, γD = 1.8, and γF = 1/24.
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Figure 4: Negative liquidity spillovers. Parameters’ values are as follows: σuF = .1, σuD = 1,
γF = 1, d = 1, µF = µD = .1, ση = 1, and γD ∈ {.01, .02, . . . , 1}.
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Figure 5: Comovement in illiquidity. The figure displays the covariance between the illiquidity
of security F and the illiquidity of security D as a function of µF when d = 0 (panel (a)) and
d = 0.9 (panels (b) and (c)). In panel (b) the covariance between the illiquidity of the two
securities is higher when µD = 0.9 (light curve) than when µD = 0.1 (bold curve), for all values
of µF > 0. Other parameter values are σuF = σuD = 1/2, ση = 2, γF = 1/2, and µD ∈ {0.1, 0.9}
for panels (a) and (b), while in panel (c) we set σuF = 0.1, d = µD = 0.9 and keep the other
parameters’ values fixed.
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Figure 6: The figure displays the illiquidity of security D as a function of µD when µF = 0.5
(in panel (a)) and when µF = 0.9 (panel (b)) when BF is fixed at its equilibrium value for
µD = 0.001 (bold curve) and when instead it adjusts to its equilibrium value for each value of
µD (dotted curve). The difference between the two curves shows the amount by which spillover
effects magnify the direct effect of a change in attention on illiquidity. Parameters’ values are
as follows: σuD = σuF = 1, ση = 0.77 and d = γD = γF = 1.

53



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1

µ∗F (C)

C 0.2 0.25 0.3 C 0.4 0.45 0.5

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

µ∗F (C)

C 0.1 0.15 0.2 0.25 0.3 C 0.4 0.45 0.5

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1

BF (µ∗F (C))

C 0.2 0.25 0.3 C 0.4 0.45 0.5

(c)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 C 0.1 0.15 0.2 0.25 0.3 C

BF (µ∗F (C))

0.4 0.45 0.5

(d)

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 C 0.2 0.25 0.3 C 0.4 0.45 0.5

φF (µ∗F (C))

(e)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 C 0.1 0.15 0.2 0.25 0.3 C 0.4 0.45 0.5

φF (µ∗F (C))

(f)

Figure 7: Impact of a change in the cost of attention on the fraction of pricewatchers, illiquidity,
and the value of information with one-sided learning. Case with RF ≤ 1 (panels (a), (c), and
(e)), and case with RF > 1 (panels (b), (d), and (f)). Parameters’ values are as follows:
σuD = 1, γF = γD = 1, d = 0, and ση = 1, with σuF = 1 in panels (a), (c), and (e) whereas
σuF = 0.5 in panels (b), (d), and (f).
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Figure 8: Positive feedback effect and cross-market monitoring effect. In panel (a) we plot
φD as a function of µD, for µF ∈ {0.1, 0.9}. In panel (b) we plot φF as a function of µD, for
µF ∈ {0.1, 0.9}. Other parameter values are as follows: ση = 1, σuF = σuD = 1, γF = γD = 1,
and d = 1.
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The equity trading landscape has changed dramatically over the last decade. World-

wide, most public markets moved away from human interactions and are now organized

as electronic limit order books, where traders either post passive limit orders that offer

to trade a specific quantity at a specific price or submit active market(able) orders that

“hit” posted limit orders. Posters of passive limit orders provide, or “make”, liquidity,

submitters of active market orders “take” liquidity. In contrast to traditional intermedi-

ated markets, limit order books rely on the voluntary provision of liquidity and must offer

enough of it to attract trading. As a result, it is now the industry standard to subsidize

passive trading volume.

This practice, known as make/take fees, is controversial. It has been argued that the

subsidies caused excessive intermediation by attracting algorithmic traders that solely

focus on capturing fee rebates.1 Moreover, while some market-making firms are in favour

of liquidity subsidies, other market participants have voiced concerns that make/take

fees could result in excessive costs for liquidity takers.2 To the best of our knowledge,

there is no empirical study that conclusively addresses advantages and disadvantages of

make/take fees. The present study aims to fill this gap.

Our analysis is based on trading fee changes on the Toronto Stock Exchange (TSX)

and uses a proprietary database.3 The TSX phased in the liquidity fee rebates on two

distinct dates, introducing them on October 01, 2005 for all securities that were interlisted

with NASDAQ or AMEX and on July 01, 2006 for the remainder of the securities. We

study the 2005 change,4 after which an active marketable order incurred a per share fee

of $.004 and a passive limit order that is “hit” received a per share fee rebate of $.00275.

1See “Rise of the machines: Algorithmic trading causes concern among investors and regulators”, The
Economist July 30th 2009.

2See, for instance, the comments for the make/take fee structure in the options markets sent to the SEC
by GETCO at http: //www.getcollc.com/images/uploads/getco comment 090208.pdf, or the petition by
Citadel in favor of a fee cap at http: //www.sec.gov/rules/petitions/2008/petn4-562.pdf. Responding to
these concerns, the SEC even imposed a 30-cent ceiling on stock exchanges for 100-share equity trades.

3TSX Inc. holds copyright to the data, all rights reserved. It is not to be reproduced or redistributed.
TSX Inc. disclaims all representations and warranties with respect to this information, and shall not be
liable to any person for any use of this information.

4The 2006 event also involved a change in the fees for the NASDAQ and AMEX interlisted securities,
making it difficult to isolate the effect of liquidity rebates.
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Active orders for stocks that did not move to this rebate structure incurred a cost of 1/55

of 1% (1.8 basis points) of the dollar value of the transaction and passive orders were free.

To put the make/take fees into perspective, the median end July 2005 closing price in our

sample of 73 companies that were interlisted with NASDAQ and AMEX is $6.08. The

per share taker fee of $0.004 translates into a fee of 6.58 basis points at the median, the

passive side’s per share rebate of $.00275 translates into 4.52 basis points at the median.

Our empirical strategy is an event study on the introduction of the fee rebates. Since

the change affected the incentives for liquidity provision for only a subset of companies, we

are able to control for market wide conditions by matching securities that were affected

with securities that were not. We then perform tests using a difference-in-differences

approach to capture the marginal impact of the fee structure change on market quality,

trader welfare, volume, and competition for liquidity provision.

We assess market quality by standard bid-ask spread, depth and market efficiency

measures. We find that, compared to the control group, securities that were interlisted

on NASDAQ or AMEX experienced a decrease in their time weighted quoted spreads

of 12.1 basis points and an increase in their quoted depth.5 Studying autocorrelations

of midquote returns, and the 5/30 minute and 15/30 minute variance ratios to detect

changes in market efficiency, we find no effect. We thus conclude that the fee rebates

improve liquidity offered throughout the day and that there is no evidence that they

affect market efficiency.

A liquidity taker’s welfare is commonly measured by the transaction costs, which are

proxied by the effective spread. For a buyer initiated transaction, the effective spread is

twice the difference between the average per share price and the prevailing midpoint of

the quoted bid and offer prices. We observe a marked decline in effective spreads, which

indicates that liquidity makers passed on some of their fee rebate to takers. After adjusting

the effective spread to account for the exchange fees, however, we find no evidence that

5Bid-ask spreads on the TSX are, on average, larger than those on U.S. exchanges, even though the
TSX is one of the world’s largest exchanges by market capitalization and trading volume. Since 2005,
however, spreads have fallen substantially.
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transaction costs have declined — instead we identify a (statistically weak) increase.

A liquidity maker’s per share revenue is commonly proxied by the magnitude of the

price reversal after a transaction, and it is measured by the realized spread. For a buyer

initiated transaction, the realized spread is twice the difference between the average per

share price and the midpoint of the quoted bid and offer prices several minutes after the

transaction. Here, too, we observe a decline in the spread.

The decrease in the spreads suggests that liquidity providers pass on some of their

rebate to liquidity takers. One question is whether competition is so fierce that the entire

rebate gets “competed away”. To fully capture the revenue benefit to liquidity providers,

we adjust the realized spread to include the fee rebate. We find that the total revenues

to liquidity makers actually increased and that this effect is particularly pronounced for

stocks with low competition for liquidity provision.

A key objective of subsidizing liquidity provision is for the exchange to attract more

volume. We indeed find an increase in volume, which is somewhat surprising considering

that transaction costs actually went up. A potential criticism of fee rebates is that an

increase in volume may be caused merely by increased intermediation. The argument is

that to capture liquidity rebates, an intermediary such as an algorithm “injects” itself

between two (cost insensitive) traders who would have otherwise transacted on their own.

As our data allows us to identify orders that originate from clients, we can study interme-

diation by analyzing the fraction of client to non-client trades. If there are relatively more

client to non-client trades, then the higher volume is at least partly due to an increase

in intermediation. Yet we do not find any change in the fraction of client to non-client

trades and are left with the puzzle that both volume and transaction costs have increased.

Finally, with the introduction of fee rebates, ceteris paribus, it becomes cheaper to post

limit orders. It is then imaginable that institutions see the introduction of rebates as an

opportunity to enter the market for liquidity provision. To asses the extent of competition,

we count the number of improvements in the best bid and offer prices and depth, the

number of liquidity providing market participants that are involved in transactions, and
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we compute the Herdindahl Index of market concentration. The latter, also known as

the Herfindahl-Hirschman Index,6 is widely used as a proxy for the competitiveness of

a given industry — for instance, the U.S. Department of Justice and the Federal Trade

Commission use it to assess the effects of a merger on competition — and it is computed

as the sum of the squared market shares. The higher the index, the lower the level of

competition. When it comes to trading, the good provided is liquidity. In traditional

dealer markets, market share in liquidity is synonymous with market share in volume

and the Herfindahl index for the concentration of market making is computed based on

dealers’ shares of volume (see Ellis, Michaely, and O’Hara (2002) and Schultz (2003)). In

an electronic limit order book such as the TSX, liquidity is supplied by passive orders.

We thus measure a trader’s market share as the fraction of limit order volume that this

trader provides.

We find a significant increase in the number of improvements in the bid ask spread

and depth, which we show to be driven by improvements in depth. The number of spread

improvements, on the other hand, declines. Since the average depth also increases, we

conclude that after the fee change, traders compete more aggressively on depth. We

further show that the increase in the number of quote improvements is driven by two

factors. First, traders compete more aggressively for liquidity provision, as is implied by

a decrease in the Herfindahl Index. Second, we find (weak) evidence that the fee rebates

attract new entry in the market for liquidity provision.

To summarize our results, we find that competition, particularly on depth, intensifies.

Although liquidity providers lower spreads in response to the fee change, their per share

revenues increase, taking rebates into account. This hints at the possibility that compe-

tition in prices is less relevant than competition for market share in liquidity provision.

Colliard and Foucault (2011) provide theoretical guidance for the effects of a fee

change. They show that trader welfare is affected only by the total fee, i.e. the sum

of maker and taker fees, and that the make/take fee composition has no impact, provided

6See, e.g. Tirole (1988); see also Hirschman (1964) for a discussion of the origin of the index.
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the tick size is zero, because quotes adjust to neutralize any fee redistribution. In our

study, the total fee increases for stocks with low prices and declines for stocks with high

prices. Since the fees change for all stocks, we cannot address changes in the composition.

However, we do find support for Colliard and Foucault’s theoretical prediction that an

increase in the total fee decreases taker welfare. Furthermore, our findings support their

prediction that the bid-ask spread decreases in the take fee and increases in the make fee.

Foucault, Kadan, and Kandel (2009) find theoretically that the optimal make/take fee

composition depends on the relative levels of competition among the liquidity providers

and liquidity demanders, and on the relative monitoring costs for these two groups. They

argue that the lower fee (or a rebate) on the liquidity makers will increase the trad-

ing rate and aggregate welfare only under some conditions (for instance, when liquidity

providers have higher monitoring costs than liquidity demanders, or when the level of

competition among liquidity providers is low compared to that among liquidity deman-

ders). When these conditions are not satisfied, the optimal make/take fee structure would

impose higher fees on makers rather than on takers. Finally, our work also relates to De-

gryse, Van Achter, and Wuyts (2011) who theoretically study the impact of clearing and

settlement fees on liquidity and welfare.

The next section reviews trading on the TSX and the details of the fee changes. Sec-

tion 2 describes the data, the sample selection, and the regression methodology. Section 3

discusses results on market quality and efficiency. Section 4 describes trader welfare, Sec-

tion 5 presents results on volume and intermediation, Section 6 discusses competition.

Section 7 concludes. Tables and figures are appended.

1 The Toronto Stock Exchange and its Trading Fees

1.1 Trading on the TSX

The Toronto Stock Exchange (TSX) has been an electronic-only trading venue since it

closed its physical floor in 1997. In 2005, the TSX was the seventh largest exchange
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world-wide in terms of market capitalization of traded securities and twelfth largest in

dollar trading volume.7

Trading on the TSX is organized in an upstairs-downstairs structure. Orders can be

filled by upstairs brokers (usually these are very large orders), who have price improvement

obligations, or they can be cleared via the consolidated (electronic) limit order book. The

TSX limit order book generally follows the so-called price-time priority.8 It is constructed

by sorting incoming limit orders lexicographically, first by their price (“price priority”)

and then, in case of equality, by the time of the order arrival (with the earlier orders

enjoying the “time priority”). Transactions in the limit order book occur when active

orders — market orders (orders to buy or sell at the best available price) or marketable

limit orders (e.g. a buy limit order with a price higher than the current best ask) — are

entered into the system. Unpriced market orders occur very infrequently on the TSX, and

in what follows we will use the term “active order” to for the marketable portion of an

order, and we use “passive order” for a standing limit order that is hit by an active order.

Active orders “walk the book”, i.e., if the order size exceeds the number of shares available

at the best bid or offer price, then the order continues to clear at the next best price.

All orders must be sent to the TSX by registered brokers (the Participating Orga-

nizations (P.O.)). Trading is organized by a trading software (the trading engine), and

our data is the audit trail of the processing of the trading engine. We describe the data

in more detail in Section 2. Orders of sizes below round lot size (for the companies in

our sample this size is 100 shares) are cleared by the equity specialist, referred to as the

Registered Trader (RT). Similarly, portions of orders that are not multiples of the round

lot size (e.g. 99 shares of a 699 share order) will be cleared by the RT, after the round

lot portion of the order has cleared (e.g. the 99 shares of a 699 share order will clear

after, and only if, the 600 shares have cleared). Furthermore, the RT has the obligation

to provide minimum fills when there are no standing limit orders, but the RT’s powers

7Source: World Federation of Security Exchanges.
8One exception to this rule is a so-called unintentional cross, where time priority is overruled if active

and passive orders are submitted by the same broker.
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are small compared to those of the NYSE designated market maker (formerly referred to

as the specialist),9 and the RT is involved in only about 1.3-1.4% of the dollar volume in

our sample (see Table 3).

The TSX with its public, electronic limit order book thus largely relies on its users

to voluntarily supply liquidity by posting limit orders. This system contrasts traditional

systems where dealers are institutionally obliged to make a market.

1.2 Details of the Change in Trading Fees

The TSX was a monopolist for equity trading in Canada during our sample period, and

the lack of market fragmentation allows us to isolate the impact of liquidity rebates. When

fee rebates were introduced in Europe or the U.S., on the other hand, these markets were

already beginning to fragment.

The TSX phased in the liquidity rebates on two discrete dates, introducing them on

October 01, 2005 for the TSX companies that were interlisted on NASDAQ or AMEX;

on July 01, 2006 all remaining companies switched; we focus on the 2005 change of fees.10

Prior to October 01, 2005, all TSX securities were subject to the so-called value-based

trading fee system, under which the active side of each transaction incurred a fee based

on the dollar amount of the transaction (1/50 of 1% a the dollar-amount in the months

immediately preceding October 01) and the passive side incurred no fee or rebate. On

October 01, TSX-listed securities that were also interlisted with NASDAQ and AMEX

switched to a volume-based trading regime, under which for each traded share the active

side had to pay a fee of $.004 and the passive side obtained a rebate on its exchange fees

of $.00275. All other securities remained at the prevailing value-based regime, although,

the fees were slightly reduced — after October 01, 2005, active orders incurred a fee of

9Subject to tight rules, the RT has the right to participate in orders to unload a pre-existing inven-
tory position that she or he built up in the process of providing liquidity to markets. The RT has no
informational advantage over other traders.

10We restrict attention to the 2005 change for two reasons: first, in 2006 there was a change in the level
of fees simultaneously with the switch to a make/take fee structure. Second, a difference-in-differences
analysis in 2006 has less statistical power because the treatment group, non-interlisted securities, is much
larger than the control group, interlisted stocks.
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1/55 of 1% of the dollar-amount of the transaction and passive orders remained free. The

value based taker fee per trade is capped at $50, the volume based taker fee and maker

rebate are capped at $100 and $50, respectively.

Compared to the old value based fee structure, the new volume based billing yields

the TSX higher per share fee revenue for securities that trade below $6.875. Liquidity

takers pay less for securities that trade above $22.11 To put these fees into perspective,

the median closing price at the end of July 2005 in our sample of the companies that were

interlisted with NASDAQ and AMEX is $6.08. Under the “old” value-based system, the

per share taker fee is 1.8 basis points (which is $0.00111 at the median), there was no

maker fee or rebate, and thus the TSX’s per share revenue is 1.8 basis points. Under the

“new” volume based billing, the taker fee is $0.004 (or 6.58 basis points at the median),

the passive side’s rebate is $.00275 per share (or approximately 4.52 basis points at the

median), and thus the TSX’s revenue at the median price is about 2 basis points.

2 Data, Sample Selection, and Methodology

2.1 Data Sources

Our analysis is based on a proprietary dataset, provided to us by the Toronto Stock Ex-

change (TSX). Data on market capitalization, monthly volume, splits, and (inter-) listing

status is obtained from the monthly TSX e-Reviews publications. Data on the CBOE’s

volatility index VIX is from Bloomberg. We analyze the effect of the fee structure change

by looking at a 4 month window (2 months before and 2 months after the introduction of

the liquidity rebates), from August 01, 2005 to November 30, 2005. The TSX participat-

ing organizations are billed at the end of each month, and the event window was chosen

to include the month immediately following the change as well as one month after the

first bill that was based on the new fee structure. We exclude trading days that have no

11Total fees coincide for the price p that solves p× 1/55× 1% = ($.004− $.00275), active fees coincide
for the price p that solves p× 1/55× 1% = $.004.
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or limited U.S. trading (an example is the U.S. Thanksgiving and the Friday following

it); information on scheduled U.S. market closures is obtained from the NYSE Calendar.

We further exclude October 11, 2005 and November 21, 2005 as the TSX data included

several recording errors for these days.

The TSX data that is provided to us is the input-output of the central trading engine,

and it includes all messages that are sent to and from the brokers. The data contains

public and private information for all orders, cancellations and modifications sent to the

limit order book, public and private information on all trade reports, and details on

dealer (upstairs) crosses. Further, the data contains all the system messages and user

notifications, for instance, announcements about changes in the stock status, such as

trading halts and freezes, announcements about estimated opening prices, indications

that there is too little liquidity in the book (the spread is too wide), and so on.

Each message consists of up to 500 subentries, such as the date, ticker symbol, time

stamp, price, volume, and further information that depends on the nature of the message.

For instance, order submission, notification and cancellation messages contain information

about the order’s price, total and displayed volume, the orders’s time priority, broker ID,

trader ID, order number (new and old for modifications), information about the nature

of the account (e.g. client, inventory or equity specialist), information about whether an

order is submitted anonymously or whether the broker number is to be displayed in the

TSX pay-for data feed,12 information about whether an order is a short sale, and some

further details that we do not exploit in this project.

For each order that is part of the trade, the data additionally contains the volume of

the transaction as well as the public (as sent to the data feeds) and private (the actual)

remaining volumes, information on whether an order was filled by a registered trader and

where it was executed (e.g. in the public limit order book, with a specialist outside the

limit order book (for oddlots), in the market for special terms orders, or crossed by a

12In accordance with Canadian regulations, the choice of whether to attribute the order to a particular
dealer remains with the dealer. Submitting a non-anonymous order may be advantageous for time priority
reasons. Traders can also specify that they do not want to clear against an anonymous order.
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broker). The liquidity supplier rebates only affect trades that clear via the limit order

book. Consequently, we exclude opening trades, oddlot trades, dealer crosses, trades in

the special terms market, and trades that occur outside normal trading hours.

Importantly for the construction of the liquidity and competition measures, the trans-

action data specifies the active (liquidity demanding) and passive (liquidity supplying)

party, thus identifying each trade as buyer-or seller-initiated. Finally, one useful system

message is the “prevailing quote”. It identifies the best bid and ask quotes as well as the

depth at the best quotes, and it is sent each time there is a change in the best quotes

or the depth at these quotes. This message allows us to precisely identify the prevailing

quote at each point in time.

2.2 Sample Selection

We construct our sample as follows. Out of 3,000+ symbols that trade on the TSX,

we include only common stock and exclude debentures, preferred shares, notes, rights,

warrants, capital pool companies, stocks that trade in US funds, companies that are

traded on the TSX Venture and on the NEX market, exchange traded funds, and trust

units. We require that the companies had positive volume in July 2005, according to the

TSX e-Review, and were continuously listed between July 2005 and November 2005. We

further exclude securities that had stock splits, that were under review for suspension,

that had substitutional listings, and that had an average daily midquote below $1.

Differently to commonly applied filters, we retain companies with dual class shares.

This is due to a peculiarity of the Canadian market, where, as of August 2005, an es-

timated 20-25% of companies listed on the TSX made use of some form of dual class

structure or special voting rights, whereas in the United States, only about 2% of com-

panies issue restricted voting shares (see Gry (2005)). We exclude Nortel (symbol: NT)

because it was involved in a high profile accounting scandal at the time of our sample

period (along with Worldcom and Enron). Finally, we omit companies that have insuf-
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ficient trading for the computation of major liquidity measures; specifically, we require

that there is enough data to compute the realized spread for 95% of the 80 trading days

that comprise our sample.

We determine a company’s interlisted status from the TSX e-Reviews. We then clas-

sify companies as “interlisted with NASDAQ or AMEX” in our 2005 sample if they were

interlisted with NASDAQ or AMEX from August to November 2005 and non-interlisted

with NASDAQ and AMEX if they were not interlisted from August to November. Com-

panies that changed their (inter-)listing status during the sample period or for which the

status was unclear were omitted from the sample.

We are then left with 73 NASDAQ and AMEX interlisted companies and 374 TSX

only and NYSE interlisted companies. In what follows, we will refer to companies that

are interlisted with NASDAQ and AMEX as “interlisted”, and we will refer to companies

that are listed only on the TSX or that are interlisted with NYSE as “non-interlisted”.

2.3 Matched Sample

We construct the matched sample as follows. Using one-to-one matching without replace-

ment, we determine a unique non-interlisted match for each of the interlisted securities

based on closing price, market capitalization, and a level of competition for liquidity

provision, as measured by the Herfindahl Index (formally defined in the next subsection).

One-to-one matching without replacement based on closing price and market capi-

talization has been shown to be the most appropriate method to test for difference in

trade execution costs; see Davies and Kim (2009). We additionally include a measure

of competition as a matching criterium, for three reasons. First, our treatment group,

the interlisted securities, is not a random sample, and liquidity provision in the average

interlisted stock is systematically more competitive than in the average TSX only stock,

even controlling for market capitalization. Second, the focus of this study is not only

trade execution costs but also other variables that are affected by competition, such as
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traders’ behavior, welfare and the levels of intermediation.13 Finally, we aim to identify

the impact of the introduction of the liquidity rebates, and according to Foucault, Kadan,

and Kandel (2009), who study the make/take fees theoretically, this impact depends on

the level of competition among traders.

We randomize the order of matching by sorting the stocks in the treatment group (i.e.

the interlisted securities) alphabetically by symbol. The match for each treatment group

security i is then defined to be a control group security j that minimizes the following

matching error:

matcherrorij :=

∣

∣

∣

∣

pi − pj

pi + pj

∣

∣

∣

∣

+

∣

∣

∣

∣

MCi −MCj

MCi +MCj

∣

∣

∣

∣

+

∣

∣

∣

∣

HHIi − HHIj

HHIi + HHIj

∣

∣

∣

∣

, (1)

where pi,MCi, and HHIi denote security i’s July 2005 closing price, market capitalization

as of the end of July 2005, and the average July 2005 value of the Herfindahl Index at

the broker level, respectively. Tables 14 and 15 contain the list of interlisted companies

and their matches.

2.4 Measuring Competition: The Herfindahl Index

We quantify competition among traders by the Herfindahl Index. The index is widely

used to assess market concentration and it computed as the sum of the squared market

shares. We study the market for liquidity provision. In an electronic limit order book,

liquidity is provided by passive orders and a trader’s market share is the fraction of passive

limit order volume that this trader provides.14 The Herfindahl Index for different levels

of liquidity providing entities (e.g., broker, trader) per day t per security i is

HHIit =

nt
∑

k=1

(

passive volumekit
∑nt

k=1
passive volumekit

)2

, (2)

13When matching only on price and market capitalization, the results for most liquidity measures,
including spreads (the variable of interest in Davies and Kim (2009)), are similar.

14Weston (2000), Ellis, Michaely, and O’Hara (2002) and Schultz (2003) use the Herfindahl Index of
market concentration to assess competition for market making in dealer markets; their indices are based
on NASDAQ dealers’ shares of volume.
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where nt is the number liquidity providing entities on day t in security i and passive volumekit

is the k−th entity’s total passive volume for that day and security. Higher values of the

index correspond to higher levels of market concentration and thus to lower levels of

competition (value 1 corresponds to monopolistic liquidity provision).

We consider two levels of liquidity providing entities, namely, the broker and the trader

level. At the broker level, the passive volume per security per day is the total intraday

passive volume of that broker, excluding dealer crosses. The “broker level HHI” does not

differentiate between trades that brokers post by client request and that they post on

their own accounts to make a market. To better understand the behavior of institutions

that provide liquidity on an ongoing basis, we compute the index for traders that trade

in and out of their inventories; in our data such trades stem from either an inventory or

a equity specialist account. We refer to the latter index as the “trader level HHI.”

We also compute the number of liquidity providing brokers and liquidity providing

inventory traders to shed some light on possible changes in competition indices.

2.5 Panel Regression Methodology

For each security in our sample and for each of their matches, we compute a number of

liquidity and market activity measures for the 4 month window around the event date

(2 months before and after October 01, 2005). Our panel regression analysis employs

a difference in differences approach and thus controls for market-wide fluctuations. To

additionally control for U.S. events that may affect interlisted securities differentially, we

include the CBOE volatility index VIX in our regressions. For each measure, we run the

following regression15

dependent variableit = β0 + β1fee changet + β2VIXt +

8
∑

j=1

β2+jcontrol variableij + ǫit,

15This regression methodology is similar to that in Hendershott and Moulton (2011). We discuss an
alternative methodology in the appendix.
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where dependent variableit is the time t realization of the measure for treatment group

security i less the realization of the measure for the ith control group match; fee changet

is an indicator variable that is 1 after the event date and 0 before; VIXt is the closing

value of CBOE’s volatility index for day t, and control variableij are security level control

variables for the company and its match: the log of the market capitalization, the log of

the closing price, and the share turnover and the daily midquote return volatility in the

month before the event window, July 2005.16 Summary statistics for our treatment and

control group are in Table 2.

We conduct inference in all regressions in this paper using double-clustered Cameron,

Gelbach, and Miller (2011) standard errors, which are robust to both cross-sectional

correlation and idiosyncratic time-series persistence.17 For brevity we display only the

estimates for the coefficient β1 on the fee change dummy, and we omit the estimates for

the constant as well as estimates for the coefficients on VIX and on the controls. The

number of observations roughly equals the number of companies in the treatment group

multiplied with the number of trading days in our sample periods (correcting for a small

number of missing observations when a company or its match did not trade for a day),

at most 5,840 observations.

Regressions for Subsamples. In addition to analyzing the impact of the fee struc-

ture change on the entire sample, we estimate the effects separately for the groups of

treatment companies above and below the median with respect to pre-sample (July 31,

2005) market capitalization, total July 2005 trading volume (in shares), and the average

July 2005 Herfindahl index of market concentration at the broker level. Medians of mar-

ket capitalization, volume, and the Herfindahl Index are, respectively, $475 million, 1.795

16In unreported regressions we further controlled for company fixed effects. We also used dynamic
instead of the July 2005 static controls for prices. In both cases, the results are similar.

17Cameron, Gelbach, and Miller (2011) and Thompson (2010) developed the double-clustering approach
simultaneously. We follow the former and employ their programming technique. See also Petersen (2009)
for a detailed discussion of (double-) clustering techniques.
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million shares, and 0.2296 (Table 2). We estimated the following equations

dependent variableit = β0 + β1fee changet × above mediani (3)

+β2fee changet × below mediani + β3above mediani

+β4VIXt +
∑8

j=1
β4+jcontrol variableij + ǫit,

where above mediani is an indicator variable that equals 1 if security i has market capi-

talization (or trading volume, TSX share of volume, Herfindahl index) above the median;

similarly for the variable below mediani.

Furthermore, as we explain in Section 1.2, under the new volume-based make/take fee

structure liquidity takers pay lower fees for stocks that trade at high prices (above $22).

We thus estimated the effects separately for stocks with July 31 closing prices above

and below $22, where the regression equation is the same as (3), except above mediani

equals 1 if security i’s July 31 closing price is above $22; likewise for below mediani. We

will henceforth refer to a closing price of $22 as the “break-even price.” Similarly, in

Section 1.2 we also explain that the total fees, i.e. taker fee minus maker rebate, increase

for securities that trade at prices below $6.875 and otherwise decrease. We thus study

subsamples of securities with July 31 closing prices above and below $6.875.

We report only the estimates of interest, i.e. the estimated coefficients on the inter-

action terms fee changet × above dummyi and fee changet × below dummyi. Results from

tests for differences in the coefficients are indicated in the respective tables.

3 Market Quality

3.1 Quoted Liquidity

We measure quoted liquidity using time and trade weighted quoted spreads and depth.

The quoted spread is the difference between the best price at which someone is willing

to buy, or the offer price, and the best price at which someone is willing to sell, or
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the bid price. We express the spread measures in basis points as a proportion of a

prevailing quote midpoint. Share depth is defined as average of the number of shares

that can be traded on the bid and offer side; the dollar depth is the dollar amount that

can be traded at the bid and the offer. We use logarithms of the depth measures to

ensure a more symmetric distribution since several Canadian companies, particularly,

non-interlisted ones, historically have very large depth. High liquidity refers to large

depth and small spreads.

The trade weighted spread and depth are the prevailing spread and depth averaged

over transactions, and they capture the impact of the fee change on executions. The time

weighted measures additionally reflect the availability of liquidity throughout the day.

Results. Figure 1 shows a marked decline in the quoted spread after the event date

and an increase in the dollar depth. The summary statistics in Table 3 paint a similar

picture, and our panel regressions further confirm these observations. The panel regression

results for the change in the quoted spread are in the first two columns of Table 4. The

first column depicts the time weighted quoted spreads, the second column displays the

trade weighted quoted spreads.

The average price for interlisted companies on September 30, 2005, was $12.07, the

median price was $5.66. The size of the rebate in 2005 was ¢.275 per share, which

translates into 4.56 and 9.72 basis points at the average and median prices, respectively,

for a round-trip transaction (i.e., a simultaneous passive buy and sell). We observe that

the estimate on the time weighted quoted spread declines by 12.09 basis points, the trade

weighted quoted spread declines by 9.34 basis points. The latter is roughly the amount

of the rebate at the median price and around double the rebate at the mean price. These

results are significant at the 1% level.

When considering subsamples, we find that significant effects arise for stocks that trade

below the break-even price for market orders, $22, for all levels of competition, market

capitalization, and total fees, and for stocks that have high volume. Further, the coefficient

estimates differ significantly for subsamples with respect to the break-even price.
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Table 5 displays the results of our panel regressions on depth. We find that time and

trade weighted share and dollar depth all increase significantly. Further, these increases

are significant in the subsamples of securities with prices below the break-even price for

market orders, with prices above the break-even price for total fees, with high competition,

with high market capitalization, and with low trading volume.

In summary, quoted liquidity improves in that spreads become tighter and more

shares/dollar volume can be traded at the best bid and offer prices.

3.2 Effective Liquidity

Quoted liquidity only measures posted conditions, whereas effective liquidity captures the

conditions that traders decided to act upon. The costs of a transaction to the liquidity

demander are measured by the effective spread, which is is the difference between the

transaction price and the midpoint of the bid and ask quotes at the time of the transaction.

For the t-th trade in stock i, the proportional effective spread is defined as

espreadti = 2qti(pti −mti)/mti, (4)

where pti is the transaction price, mti is the midpoint of the quote prevailing at the time

of the trade, and qti is an indicator variable, which equals 1 if the trade is buyer-initiated

and −1 if the trade is seller-initiated. Our data includes identifiers for the active and

passive side for each transaction, thus precisely signing the trades. Further, our data is

message by message, as processed by the trading engine, and it includes quote changes.

The prevailing quote is thus precisely identified as the last quote before the transaction.

The change in liquidity provider profits is measured by decomposing the effective

spread into its permanent and transitory components, namely the price impact and the

realized spread,

espreadti = priceimpactti + rspreadti. (5)
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The price impact reflects the portion of the transaction costs that is due to the presence of

informed liquidity demanders, and a decline in the price impact would indicate a decline

in adverse selection. The realized spread reflects the portion of the transaction costs

that is attributed to liquidity provider revenues. In our analysis we use the five-minute

realized spread, which assumes that liquidity providers are able to close their positions

at the quote midpoint five minutes after the trade. The proportional five-minute realized

spread is defined as

rspreadti = 2qti(pti −mt+5 min,i)/mti, (6)

where pti is the transaction price, mti is the midpoint of the quote prevailing at the time

of the t-th trade, mt+5 min,i is the midpoint of the quote 5 minutes after the t-th trade,

and qti is an indicator variable, which equals 1 if the trade is buyer-initiated and −1 if

the trade is seller-initiated.

Results. Figure 2 plots the 5-day moving averages of the effective spread and the

price impact for each of our the treatment group of interlisted and their control group

matches. The figure suggests that the change in the fee structure led to a decrease in

the effective spread, and it also indicates a decline in the price impact. The summary

statistics in Table 3 point to significant improvement of liquidity, and the panel regressions

confirm this observation.

The third column of Table 4 shows that after the fee change effective spreads fell

significantly, by about 10 basis points. We further find significant effects in subsamples

with prices below the break-even price of $22, for low market capitalization, high trading

volume, and all levels of competition. Coefficients for the subsample estimates differ

significantly for below vs. above the break-even price.

The fourth column of Table 4 displays our regression results for realized spreads.

We find that 5-minute realized spreads decline by 5.23 basis points. In subsamples we

find significant effects for prices blow the break-even price, high competition, and high

volume. The price impact, listed in the fifth column of Table 4 declines by 5 basis
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points. In subsamples we find significant effects for prices blow the break-even price, low

competition, low market capitalization, and high volume.

The decline in transaction costs, as measured by the effective spread, can be due to

liquidity makers foregoing some of their revenue, or it can be attributed to a change in

trade informativeness. We conclude that the liquidity providers share some portion of

the rebate by lowering their revenue and also that adverse selection declines. The decline

in adverse selection is consistent with the idea that narrower spreads attract new, price-

sensitive uninformed traders and informed traders with weaker information. Our findings

on an increase in volume that we discuss in Section 5 further support this idea.

With perfect competition for liquidity provision, liquidity makers would pass on their

credits to liquidity takers across the board. We find, however, that the effective spread

declines only for the subsample of securities that have higher per share fees for liquidity

takers under the new volume based make/take fee system compared to the old value-

based billing. Since the realized spread also declines significantly for this subsample, we

conclude that liquidity providers only pass on their rebates for the subset of securities

that experienced an increase in liquidity takers fees.

Colliard and Foucault (2011) provide some theoretical guidance for the effects of a

fee change. Their model predicts that the bid-ask spread decreases in the take fee and

increases in the make fee. In our study, the make fee declines (from 0 to −$.00275 per

share), and we find that spreads decline, as predicted (see Table 4). The take fee, on the

other hand, increases for stocks with low prices and declines for stocks with high prices.

Consistent with the theoretical predictions, we find that spreads decline for low price

stocks, and that the coefficient for high price stocks is insignificantly different from 0.

3.3 Market Efficiency

We measure market efficiency with two standard proxies, the return autocorrelation and

the variance ratio. Specifically, we analyzed the impact of the liquidity rebate structure on
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the first order autocorrelations of 5-, 15-, and 30-minute midquote returns, and the 5/30

minute and 15/30 minute variance ratios, as described in Campbell, Lo, and MacKinley

(1997), calculated for each security each day. Prices that follow a random walk, should

have a return autocorrelation of zero. Autocorrelations are negative on average, thus an

increase in autocorrelation or a decrease in its absolute value would signify improved mar-

ket efficiency. The 5-minute/30-minute variance ratio is six times the 5-minute variance

of midquote returns divided by the 30-minute variance of midquote returns; similarly for

the 15-/30 minute variance ratios. The variance ratio evaluates whether short-term price

changes are reversed on average. Such reversals, if they exist, would indicate that over

short horizons, trades cause prices to deviate from the (efficient) equilibrium price. As

there is usually some excess volatility, the variance ratio is commonly greater than one,

and thus a decline in the variance ratio would indicate improved market efficiency.

Table 6 displays the results of our panel regressions the impact of the fee change on

autocorrelations and variance ratios.18 We do not find significant effects for any of the

measures.

4 Trader Welfare

The effective spread is often considered to be the best measure for transaction costs. The

spread does not, however, include exchange fees. To determine a liquidity demander’s

welfare, it is important to explicitly account for these fees. We thus compute

fee adjusted espreadti = (2qti(pti −mti) + 2× exchange feeti)/mti, (7)

where exchange feeti is the per share fee to remove liquidity. Before the change of fees

it is 1/50 × 1% × pti for all securities, and after the change it is 1/55 × 1% × pti for

non-interlisted stocks and $0.004 for interlisted stocks.

Similarly, the realized spread is considered to measure the benefit to the liquidity

18The table displays the results using signed autocorrelations; results for absolute values are similar.
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provider. To explicitly account for liquidity rebates, we compute

rebate adjusted rspreadti = (2qti(pti −mt+5 min,i) + 2× fee rebateti)/mti, (8)

where fee rebateti is the per share maker fee rebate. It is 0 for all securities before the fee

change. After the change it is 0 for non-interlisted stocks and $.00275 for interlisted stocks.

Results. Focussing only on effective and realized spreads and omitting exchange

fees may give the misleading impression that liquidity demanders unambiguously benefit

while liquidity takers obtain reduced revenue. Figure 3 shows instead that after the fee

change, the passive side benefited, and it indicates that the costs for the active side did

not decrease.

Table 7 shows the regression results for fee and rebate adjusted spreads. We find that

the fee adjusted effective spreads increase, although the significance is only at the 10%

level. The table also shows that total liquidity provider revenues increase, and thus the

liquidity rebates more than compensate the liquidity providers for the revenue that is

passed on to liquidity demanders. Furthermore, there are stark differences in revenues

between low and high competition and low and high price stocks.19

Colliard and Foucault (2011) predict that the fee adjusted effective spread (the “cum

fee” spread in their paper) increases in the total fee. In our case, total fees decline for

stocks priced below $6.875 (see Section 1.2). Consistent with the theoretical predictions,

we find that for the subsample with prices below $6.875, exchange fee adjusted effective

spreads increase. For prices above $6.875, the coefficient is negative, but statistically in-

significant. Further, the difference in the subsample coefficients is statistically significant.

19The increase for low price stocks is probably in part caused by the fact that the fixed amount rebate
has a stronger relative impact when the price is low.
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5 Volume

One key question is whether changes in fees have any effect on trading behavior. If traders

engage in the same transactions irrespective of the exchange fees, then the change in fees

is merely redistributive and has no impact on aggregate welfare.

To detect changes in behavior, we study the impact of the fee change on the number

of shares traded, the dollar amount of all trades, and the number of transactions. We

further decompose these numbers into volume that stems from clients and non-clients to

understand if there are changes in intermediation.

Aggregate Volume. Table 8 displays our results on volume and the number of

transactions, measured in logarithms. Our results suggest that the fee change increases

volume, dollar volume, and the numbers of transactions.

Intermediated Volume. One possible explanation for the increase in volume is an

increase in intermediation. When traders are not overly sensitive to transaction costs, an

intermediary, such as an algorithm programmed to take advantage of fee rebates, may be

able to inject itself between two traders who would have otherwise transacted on their

own. We proxy for the extent of intermediation by the fraction of volume that occurs

between a client and an intermediary.20 Table 10 shows our findings on intermediated

trades and indicates no change in the extent of intermediation.

Market Participation. The increase in volume could also stem from the entry

of new traders. We study changes in market participation by analyzing client volume.

Table 9 displays our findings and shows that client volume increases significantly. This

finding is consistent with the result on the decreased price impact if one believes that

the reduced spreads attract price sensitive or less well informed traders. New entry is,

however, somewhat surprising because transaction costs did not decline (Section 4).

20Our data identifies client trades as well as equity specialist, broker inventory, and option market
maker trades. We classify all parties other than clients as intermediaries.
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6 Competition in Liquidity Provision

With the introduction of fee rebates, ceteris paribus, it becomes cheaper to post limit

orders. It is then imaginable that institutions see the introduction of rebates as an oppor-

tunity to enter the market for liquidity provision. To asses the extent of competition, we

count the number improvements of the best bid and offer prices and depth, the number of

liquidity providing market participants that are involved in transactions, and we compute

the Herdindahl Index of market concentration (introduced in Section 2.4).

6.1 Improvements in the Quoted Bid-Ask Spread and Depth.

The first column in Table 12 summarizes our findings on the total number of spread and

depth improvements. We find a significant increase in the number of improvements, which

indicates increased competition. The second and third columns show that this increase

is driven by improvements in depth, while the number of spread improvements declines.

Since the average depth also increased, we conclude that after the fee change, traders

compete more aggressively on depth.

The decline in the number of spread improvements is consistent with our finding that

average depth increases. As depth increases, fewer trades walk the book and there may

be fewer opportunities to improve the spread after the book was depleted. Furthermore,

since quoted spreads decline, there is less room for improving the spread.

Our findings on the increase in the number of quote improvements are consistent

with Foucault, Kadan, and Kandel (2009) who predict, in particular, that the liquidity

providers’ monitoring activity increases as their fee decreases.

6.2 Market Participation and Concentration.

The increase in the number of quote improvements could be driven by two factors: first,

existing traders may compete more aggressively, and second, the liquidity rebates may

have attracted new traders. The Herfindahl Index at the trader level, which we focus on
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here, is based the shares of passive volume that traders provide from their inventory, and

it captures the first factor.

The first column of Table 11 displays our results on the trader level HHI. The decline

in the index signifies reduced market concentration and increased competition. Looking

at the subsample of stocks that trade below $22, we find that competition increases

significantly. This finding is consistent with the significant increase in depth that we

observe there.

To assess market participation, we count the number of liquidity providing brokerages

and the number of liquidity providing inventory traders. The number of brokers per

security per day is the number of unique broker IDs that were on the passive side of

transactions. The number of inventory traders is the number of unique trader IDs that

traded on an inventory or equity specialist accounts and that were on the passive side

of transactions. Table 2 shows for interlisted stocks that the median numbers of brokers

and inventory traders were 12 and 4, respectively. Columns two and three in Table 11

reveal that the number of brokers and traders both increased after the change, although

the coefficient on the number of traders is significant only at the 10% level.

We thus conclude that competition in the market for liquidity provision increased and

that this increase is at least in part driven by market entry.

7 Conclusion

The introduction of fee rebates for passive volume on the Toronto Stock Exchange led to a

substantial decline in bid-ask spreads, an increase in depth and an increase in volume. The

changes in spreads are consistent with theoretical predictions, but the increase in volume

is puzzling since transaction costs, accounting for both the spread and the exchange fees,

did not go down. That being said, the increase in volume is consistent with a theoretical

prediction of Colliard and Foucault (2011) who find a positive relation of trading fees and

volume for some parameter values.
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We also find that after the introduction of the fee rebates, liquidity providers compete

more aggressively for market share in the “make” market. Furthermore, even though

liquidity providers lower their spreads in response to the fee change, when taking rebates

into account, liquidity providers’ per share revenues increase. These two findings together

suggest that competition in depth is at least as important as competition in spreads.

Appendix: Alternative Methodology

Alternative Specification. Our main regression equation uses as dependent variables

the time realization of various measures for treatment group security less the realization

of the measure for the control group match. An alternative differences in differences

approach is to regress the levels directly on the event and the interlisting status as the

main effects and on the interaction of these two. The coefficient on the latter is then the

variable of interest. Specifically, the alternative regression equation is

dependent variableit = β0 + β1fee changet + β2interlistedi + β3fee changet × interlistedi

+β4Volatilityt +
∑4

j=1
β3+jcontrol variableij + ǫit, (9)

where dependent variableit is the time t realization of the measure security i; fee changet is

an indicator variable that is 1 after the event date and 0 before; interlistedi is an indicator

variable that is 1 if the security is interlisted and 0 otherwise; Volatilityt is the closing value

of a volatility index for day t, and control variableij are security level control variables

for the company: a variable that relates to the price of security i, the log of the market

capitalization on July 31, 2005, and the share turnover and the daily midquote return

volatility in the month before the event window, July 2005. The variable of interest for

our study is β3.

We ran regression (9) for several variations of the security price based control: the log

of the closing price on July 31, 2005 (as in the main text), the midquote for stock i on
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day t as well as its logarithm, the return of stock i from day t − 1 to t, the return for

stock i from day t− 2 to t− 1. We further used two volatility indices: the CBOE’s VIX

and the TMX’s MVX. The MVX is based on the implied volatility of index options on

the TSX60 stock index and it is highly correlated (> 70%) with the VIX.

The regression results using this alternative specification are similar.
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Table 1

Summary Statistics on Trading Activity for Interlisted Companies and their Non-Interlisted Matches

The table lists aggregate trading volume numbers for the August-November 2005 sample period for NASDAQ/AMEX-interlisted companies and their
respective matches. Percentage numbers are for the share that the respective number has of total volume.

NASDAQ/AMEX interlisted Non-interlisted

Total volume (excluding special terms market) Share volume 1,847,794,191 2,140,879,197
Dollar volume $ 20,517,866,297 $ 26,768,731,058
Transactions 1,966,642 1,451,526

Intraday 1,313,804,000 71.1% 1,349,823,200 63.0%
$ 14,726,937,292 71.8% $ 15,962,222,831 59.6%
1,808,270 91.9% 1,247,051 85.9%

Open 28,873,204 1.6% 46,924,654 2.2%
$ 356,600,562 1.7% $ 584,311,868 2.2%
32,269 1.6% 48,900 3.4%

Afterhours 87,457,828 4.7% 107,148,290 5.0%
$ 2,180,634,369 10.6% $ 2,215,202,425 8.3%
21,516 1.1% 17,704 1.2%

Dealer crosses 413,080,078 22.4% 631,005,919 29.5%
$ 3,056,619,162 14.9% $ 7,753,556,056 29.0%
5,248 0.3% 7,595 0.5%

Oddlots 4,579,081 0.2% 5,977,134 0.3%
$ 197,074,912 1.0% $ 253,437,878 0.9%
99,339 5.1% 130,276 9.0%

Equity specialist 66,763,881 3.6% 92,300,034 4.3%
(all trades, including oddlots) $ 276,512,711 1.3% $ 362,617,083 1.4%

269,071 13.7% 325,678 22.4%

Number of market orders 1,240,327 779,492

Non-client market order volume 493,981,000 27% 393,193,700 18%
Non-client market order transactions 585,996 30% 293,166 20%

Client market order volume 819,823,000 73% 956,629,500 82%
Client market order transactions 1,222,274 70% 953,885 80%



Table 2

Pre-sample Summary Statistics of Interlisted Companies and their Matches

The table lists selected summary statistics for the NASDAQ/AMEX-interlisted companies and their
matches for the pre-sample month of July. Unless otherwise specified, the numbers are average per day
per company. The letter M signifies millions. intraday volume refers to transactions that occur in the
open market during regular trading hours (9:30-16:00), excluding oddlot trades, special terms orders and
dealer crosses.

NASDAQ/AMEX interlisted Non-interlisted

Total July intraday volume in shares Mean 2,837,000 3,784,000

StE (4,426,000) (9,333,000)

Median 1,308,000 1,857,000

Total July intraday dollar volume $37.1M $39.7M

($95M) ($125M)

$8.617M $12.4M

Total July transactions 4,407 3,320

(6413) (5209)

2,354 1,870

Closing price end July 2005 $ 11.95 $ 12.13

(17.30) (17.09)

$ 6.08 $ 6.12

Market capitalization end July 2005 $1,330M $1,500M

($4,540M) ($6,020M)

$475M $392M

Time weighted quoted spread (in bps) 73.76 93.83

(52.87) (60.03)

60.77 90.18

Time weighted quoted spread (in cents) ¢4.781 ¢6.271

(¢4.644) (¢5.210)

¢3.525 ¢4.578

Time weighted dollar depth $15,196 $20,759

(13,173) (16,632)

$11,786 $16,825

Herfindahl Index, broker level 0.235 0.249

(0.075) (0.081)

0.23 0.247

Herfindahl Index, trader level 0.476 0.592

(0.171) (0.209)

0.471 0.607

Number of brokers 12.73 12.16

(5.384) (5.504)

11.9 11.45

Number of market making traders 5.88 4.576

(5.176) (5.536)

4.15 3.1



Table 3

Summary Statistics of Interlisted Companies and their Matches: Before and After the Change of Fees

The table lists selected summary statistics for the NASDAQ/AMEX-interlisted companies and their matches for the sample period August-November
2005, per day per company. All measures for spreads and transaction costs are in basis points of the prevailing midquote. The standard errors presented
for the difference-in-differences are adjusted by factor

√
73; * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.

Treatment group of
NASDAQ/AMEX
interlisted stocks

Control group
of non-inter-
listed stocks

Before After Before After Diff-in-Diff

Intraday dollar volume (in logs) Mean 13.08 13.1 13.36 13.22 0.169**
StE (1.594) (1.643) (1.412) (1.503) (0.081)
Median 12.97 13.04 13.25 13.2

Time weighted quoted spread 70.59 71.63 88.96 103.2 -13.25***
(50.510) (52.070) (55.090) (65.890) (3.430)
53.86 66.71 84.47 87.17

Effective spread 60.58 62.18 79.28 91.93 -11.05***
(42.310) (43.570) (49.520) (60.660) (3.112)
45.18 60.35 77.23 81.42

Time weighted dollar depth (in logs) 9.364 9.38 9.722 9.637 0.101***
(0.667) (0.714) (0.576) (0.618) (0.038)
9.336 9.279 9.725 9.591

Exchange fee adjusted effective spread 64.58 81.72 83.28 95.56 4.862
(42.300) (56.170) (49.520) (60.660) (3.445)
49.18 72.6 81.22 85.05

Rebate adjusted realized spread 18.19 30.8 39.16 43.05 8.726***
(20.940) (32.510) (31.300) (38.090) (2.717)
12.75 21.11 34.87 35.4

Client to non-client trades as a fraction of total volume 45.7% 46.0% 41.3% 40.7% 0.78%
(0.081) (0.092) (0.092) (0.103) (0.009)
46.3% 46.3% 40.8% 40.8%

Herfindahl Index, trader level 0.449 0.428 0.596 0.607 -0.0317**
(0.174) (0.170) (0.213) (0.214) (0.014)
0.464 0.424 0.608 0.606



Table 4

Panel Regressions Results for Marginal Changes in Bid-Ask Spreads

Dependent variables are treatment group value minus control group value for time weighted and trade
weighted quoted spread, effective spread, and 5-minute realized spread and price impact. All spreads and
the price impact are measured in basis points of the prevailing midquote.
Specifications that apply to this and all subsequent tables. The treatment group in 2005 are the
NASDAQ and AMEX interlisted securities. Each dependent variable is regressed on a dummy variable
set equal to one for dates after October 01, 2005 and zero before, daily market volatility as measured
by the CBOE VIX index, and the following control variables for the security and its match: log(market
capitalization) and log(price) at July 31, 2005, and dollar turnover and return volatility in July 2005.
Coefficients for volatility, control variables, and the constant are not reported for brevity. The full sample
for 2005 is 73 securities. Standard errors are in parentheses; * indicates significance at the 10% level,
** at the 5% level, **+ at the 2%, and *** at the 1% level. Standard errors are robust to time series
and cross-sectional correlation. Results other than the full sample are split by the median for the control
group for July 2005 market capitalization ($475M), total volume (1.795M shares), and the Herfindahl
Index (.2296). The break-even price for market orders is $22, for higher prices, market orders are cheaper
under the new regime. The break-even price for maker plus taker fees is $6.875; for higher prices, the
total fee is lower under the new regime. We report only the coefficient estimates for the interaction terms;
see Section 2.5 for the full specification for the estimated equation. We test for equality of coefficients,
where “Yes” indicates that we reject the hypothesis.

time weighted
quoted spread

trade weighted
quoted spread

effective
spread

5 min real-
ized spread

5 min price
impact

full sample -12.0928∗∗∗ -9.3401∗∗∗ -10.0538∗∗∗ -5.2311∗∗ -5.0015∗∗+

(3.4968) (2.8437) (3.0374) (2.3381) (2.0678)

— Break-even Price for Market Orders —

above $22 -1.6723 -1.2625 -1.0578 -1.7872 0.7251
(5.1254) (3.7694) (4.0810) (2.5619) (3.2556)

below $22 -13.7469∗∗∗ -10.6247∗∗∗ -11.4844∗∗∗ -5.7810∗∗ -5.9144∗∗+

(3.8598) (3.1530) (3.3793) (2.6466) (2.3920)

Different Coefficient? Yes∗∗ Yes∗∗ Yes∗∗ − −

— Herfindahl Index —

low competition -13.1704∗∗ -10.4836∗∗ -11.4119∗∗ -3.9198 -7.8241∗∗

(5.9463) (4.7917) (4.9770) (3.9657) (3.7789)

high competition -11.0444∗∗∗ -8.2329∗∗∗ -8.7383∗∗+ -6.4991∗∗+ -2.2761
(3.5352) (3.0805) (3.5879) (2.7042) (2.6600)

Different Coefficient? − − − − −
— Market Capitalization —

above median -7.3514∗∗∗ -4.5349∗∗ -4.8206∗ -2.5039∗ -2.3538
(2.7585) (2.2464) (2.7051) (1.3444) (2.3949)

below median -16.7061∗∗∗ -14.0315∗∗∗ -15.1628∗∗∗ -7.9036∗ -7.5986∗∗

(6.0966) (4.9732) (5.2298) (4.3566) (3.7889)

Different Coefficient? − Yes* Yes* − −

—Break-even Price for Total Fees —

above $6.875 -10.2158** -6.7037** -6.7714** -5.4727**+ -1.3784
(4.5753) (3.0908) (3.3447) (2.1683) (1.9157)

below $6.875 -13.6414*** -11.5233*** -12.7719*** -5.0470 -7.9979**
(4.9228) (4.3463) (4.6598) (3.9422) (3.7080)

Different Coefficient? − − − − −

— Share Trading Volume —

above median -15.5000∗∗∗ -12.5071∗∗∗ -14.3684∗∗∗ -6.8560∗∗+ -7.5999∗∗∗

(4.8567) (3.7086) (4.0492) (2.9331) (2.6160)

below median -8.7777∗ -6.2767 -5.8707 -3.6713 -2.4701
(4.7358) (4.1754) (4.4619) (3.6929) (3.4007)

Different Coefficient? − − − − −



Table 5

Panel Regressions for Depth at the Best Bid and Offer Prices

Dependent variables are treatment group value minus control group value for the trade weighted and
time weighted depth. Depth is measured in the log of the number of shares and the log of the dollar
amount. Specifications for the panel regression and significance levels are as in Table 4.

share depth
throughout
the day

share depth
at transaction

$ depth
throughout
the day

$ depth at
transaction

full sample 0.0898**+ 0.0837**+ 0.1133*** 0.1070***
(0.0369) (0.0360) (0.0394) (0.0384)

— Break-even Price for Market Orders —
above $22 0.0992 0.0688 0.0414 0.0111

(0.0777) (0.0633) (0.0985) (0.0838)
below $22 0.0884** 0.0861** 0.1247*** 0.1223***

(0.0402) (0.0398) (0.0419) (0.0414)
Different Coefficient? − − − −

— Herfindahl Index —
low competition 0.0562 0.0397 0.0865 0.0695

(0.0498) (0.0501) (0.0533) (0.0526)
high competition 0.1226**+ 0.1263*** 0.1393*** 0.1434***

(0.0489) (0.0458) (0.0522) (0.0496)
Different Coefficient? − − − −

— Market Capitalization —
above median 0.1294*** 0.1229*** 0.1304**+ 0.1241***

(0.0482) (0.0450) (0.0511) (0.0476)
below median 0.0513 0.0454 0.0967* 0.0903

(0.0512) (0.0514) (0.0551) (0.0549)
Different Coefficient? − − − −

—Break-even Price for Total Fees —
above $6.875 0.1445*** 0.1339*** 0.1587*** 0.1483***

(0.0481) (0.0439) (0.0505) (0.0464)
below $6.875 0.0448 0.0422 0.0759 0.073

(0.0495) (0.0505) (0.0536) (0.0539)
Different Coefficient? − − − −

— Share Trading Volume —
above median 0.0559 0.0563 0.0982* 0.0985*

(0.0507) (0.0493) (0.0523) (0.0511)
below median 0.1228**+ 0.1103** 0.1280**+ 0.1153**

(0.0484) (0.0479) (0.0534) (0.0520)
Different Coefficient? − − − −



Table 6

Panel Regressions for Market Efficiency Measures

Dependent variables are treatment group value minus control group value for the x-minute autocorrelation and x-/y-minute variance ratios. Details on
these measures are in Section 3. Specifications for the panel regression and significance levels are as in Table 4.

5-minute
autocorrelation

15-minute
autocorrelation

30-minute
autocorrelation

5/30-minute
variance ratio

15/30-minute
variance ratio

full sample 0.0026 0.0061 0.0018 -0.0062 0.0083
(0.0068) (0.0082) (0.0098) (0.0081) (0.0082)

— Break-even Price for Market Orders —
above $22 -0.0214 -0.0145 -0.0014 -0.0118 -0.0157

(0.0155) (0.0187) (0.0200) (0.0166) (0.0243)
below $22 0.0064 0.0095 0.0023 -0.0053 0.0122

(0.0072) (0.0085) (0.0109) (0.0093) (0.0089)
Different Coefficient? − − − − −

— Herfindahl Index —
low competition 0.0017 0.0162 0.0038 -0.0082 -0.0032

(0.0101) (0.0102) (0.0145) (0.0146) (0.0117)
high competition 0.0035 -0.0032 -0.0000 -0.0042 0.0190*

(0.0088) (0.0123) (0.0132) (0.0104) (0.0098)
Different Coefficient? − − − − −

— Market Capitalization —
above median 0.0048 -0.0136 0.0006 0.0007 0.0104

(0.0090) (0.0115) (0.0132) (0.0137) (0.0108)
below median 0.0004 0.0262*** 0.0031 -0.0132 0.0061

(0.0106) (0.0093) (0.0149) (0.0112) (0.0122)
Different Coefficient? − − Yes*** − −

—Break-even Price for Total Fees —
above $6.875 0.0091 -0.0101 0.0035 0.0088 0.0159

(0.0094) (0.0115) (0.0150) (0.0130) (0.0113)
below $6.875 -0.0029 0.0201** 0.0004 -0.0190* 0.0018

(0.0089) (0.0103) (0.0124) (0.0107) (0.0116)
Different Coefficient? − − − − −

— Share Trading Volume —
above median 0.0026 0.0016 0.0032 -0.0105 0.0070

(0.0077) (0.0123) (0.0162) (0.0108) (0.0092)
below median 0.0027 0.0107 0.0005 -0.0019 0.0096

(0.0106) (0.0107) (0.0113) (0.0135) (0.0126)
Different Coefficient? − − − − −



Table 7

Panel Regressions for Transaction Costs and Rebate Benefits

Dependent variables are treatment group value minus control group value for proportional effective
spreads, adjusted for active order exchange fees, and realized 5 minute spreads, adjusted for exchange
fee rebates as described in (7) and (8). Costs and benefits are measured in basis points of the prevailing
midquote. Specifications for the panel regression and significance levels are as in Table 4.

exchange fee adjusted
effective spreads

rebate adjusted realized
5 minute spreads

full sample 5.6538* 8.0544***
(3.3209) (2.5238)

— Break-even Price for Market Orders —

above $22 -2.4563 -0.2473
(4.1147) (2.6138)

below $22 6.9440* 9.3770***
(3.7366) (2.8674)

Different Coefficient? Yes* Yes**+

— Herfindahl Index —

low competition 9.8563* 13.1860***
(5.4822) (4.3179)

high competition 1.5773 3.0968
(3.8412) (2.7434)

Different Coefficient? − Yes**

— Market Capitalization —

above median 2.2950 4.8913***
(3.1257) (1.5057)

below median 8.9320 11.1541**+
(5.7850) (4.7828)

Different Coefficient? − −

—Break-even Price for Total Fees —

above $6.875 -4.411 -1.345
(3.2416) (1.9756)

below $6.875 13.9760*** 15.8351***
(5.0483) (4.0637)

Different Coefficient? Yes*** Yes***

— Share Trading Volume —

above median 1.7195 6.6988**
(4.1914) (2.9735)

below median 9.4669* 9.3517**
(5.1549) (4.1513)

Different Coefficient? − −



Table 8

Panel Regressions for Volume and Transactions

Dependent variables are treatment group value minus control group value for the logarithms of share
volume, dollar volume and the number of transactions. Note that an incoming active order can trigger
multiple transactions. Specifications for the panel regression and significance levels are as in Table 4.

volume
in shares

dollar
volume

trans-
actions

full sample 0.1709** 0.1945**+ 0.20***
(0.0752) (0.0821) (0.06)

— Break-even Price for Market Orders —

above $22 -0.0136 -0.0719 0.06
(0.1854) (0.1925) (0.12)

below $22 0.2003**+ 0.2369*** 0.22***
(0.0806) (0.0879) (0.07)

Different Coefficient? − − −

— Herfindahl Index —

low competition 0.0929 0.1228 0.12
(0.1052) (0.1135) (0.08)

high competition 0.2466**+ 0.2640**+ 0.27***
(0.0988) (0.1088) (0.09)

Different Coefficient? − − −

— Market Capitalization —

above median 0.1285** 0.1297* 0.17***
(0.0629) (0.0685) (0.05)

below median 0.2124 0.2577* 0.22**
(0.1296) (0.1402) (0.11)

Different Coefficient? − − −

—Break-even Price for Total Fees —

above $6.875 0.1871* 0.2013* 0.20**
(0.1134) (0.1168) (0.1000)

below $6.875 0.1576 0.1890* 0.20**+
(0.0979) (0.1106) (0.0800)

Different Coefficient? − − −

— Share Trading Volume —

above median 0.0830 0.1255 0.16**
(0.0825) (0.0930) (0.08)

below median 0.2574** 0.2626** 0.23**+
(0.1184) (0.1274) (0.09)

Different Coefficient? − − −



Table 9

Panel Regressions for Total Volume by Trader Type

Dependent variables are treatment group value minus control group value for the logarithms of share
volume, dollar volume and transactions, split by client and non-client orders. Both the active and passive
sides of a trade are counted, and thus the sum of client and non-client volume is twice the daily volume.
Specifications for the panel regression and significance levels are as in Table 4.

share volume dollar volume transactions

non-client client non-client client non-client client

full sample 0.2007*** 0.1511* 0.2245*** 0.1745** 0.2160*** 0.1716**+
(0.0769) (0.0781) (0.0827) (0.0850) (0.0624) (0.0693)

— Break-even Price for Market Orders —

above $22 0.0210 -0.0358 -0.0341 -0.0939 0.1164 0.0089
(0.1434) (0.2084) (0.1436) (0.2151) (0.1176) (0.1473)

below $22 0.2286*** 0.1808** 0.2648*** 0.2172**+ 0.2317*** 0.1974***
(0.0855) (0.0825) (0.0919) (0.0899) (0.0693) (0.0745)

Different Coefficient? Yes*** − Yes* − Yes** −

— Herfindahl Index —

low competition 0.1050 0.0809 0.1369 0.1106 0.1738** 0.0710
(0.1027) (0.1109) (0.1107) (0.1191) (0.0823) (0.0910)

high competition 0.2929*** 0.2191** 0.3088*** 0.2365** 0.2566*** 0.2690***
(0.1064) (0.1003) (0.1141) (0.1105) (0.0876) (0.0918)

Different Coefficient? − − − − − −

— Market Capitalization —

above median 0.1327** 0.1137 0.1336** 0.1150 0.1505*** 0.1623***
(0.0608) (0.0716) (0.0638) (0.0776) (0.0518) (0.0629)

below median 0.2678** 0.1876 0.3141** 0.2326 0.2805*** 0.1806
(0.1341) (0.1316) (0.1437) (0.1422) (0.1061) (0.1143)

Different Coefficient? − − − − − −

—Break-even Price for Total Fees —

above $6.875 0.2100* 0.1644 0.2252** 0.1783 0.2135** 0.1682
(0.1135) (0.1170) (0.1122) (0.1217) (0.0942) (0.1034)

below $6.875 0.1930* 0.1401 0.2239** 0.1715 0.2181*** 0.1742**
(0.1004) (0.1019) (0.1142) (0.1137) (0.0791) (0.0876)

Different Coefficient? − − − − − −

— Share Trading Volume —

above median 0.0632 0.0911 0.1049 0.1336 0.1215* 0.1736*
(0.0805) (0.0901) (0.0894) (0.1005) (0.0704) (0.0886)

below median 0.3364*** 0.2105* 0.3429*** 0.2156* 0.3093*** 0.1704*
(0.1222) (0.1203) (0.1306) (0.1291) (0.0966) (0.0978)

Different Coefficient? Yes* − − − − −



Table 10

Panel Regressions on the Fraction of Intermediated Trades

Dependent variables are treatment group value minus control group value for the client to non-client
fraction of total volume. Specifications for the panel regression and significance levels are as in Table 4.

share volume dollar volume transactions

full sample 1.070 1.070 0.690
(0.980) (0.980) (0.850)

— Break-even Price for Market Orders —

above $22 0.910 0.910 0.930
(1.930) (1.920) (2.150)

below $22 1.100 1.100 0.650
(1.070) (1.070) (0.880)

Different Coefficient? − − −

— Herfindahl Index —

low competition 0.970 0.970 1.780
(1.440) (1.440) (1.200)

high competition 1.170 1.180 -0.370
(1.190) (1.190) (1.020)

Different Coefficient? − − −

— Market Capitalization —

0.000 0.000 -0.730
above median (1.050) (1.050) (1.060)

2.120 2.120 2.080*
below median (1.580) (1.590) (1.180)

Different Coefficient? − − Yes*

—Break-even Price for Total Fees —

above $6.875 0.0126 0.0127 0.0042
(0.0112) (0.0112) (0.0119)

below $6.875 0.0091 0.0091 0.0091
(0.0148) (0.0148) (0.0109)

Different Coefficient? − − −

— Share Trading Volume —

above median -0.230 -0.230 -0.550
(1.290) (1.290) (0.950)

below median 2.340* 2.330* 1.890
(1.300) (1.300) (1.230)

Different Coefficient? − − Yes*



Table 11

Panel Regressions on Competition Indicators

Dependent variables are treatment group value minus control group value for the trader level Herfindahl
Index, the number of liquidity providing brokers and the number of liquidity providing traders that trade
on inventory accounts. The Herfindahl Index is defined in (2), the number of brokers is the number of
broker IDs that are on the passive side of trades, the number of inventory traders is the number of trader
IDs that are on the passive side of trades while using their inventory account. All measures are per stock
per day. A decrease in the Herfindahl Index indicates a decrease in market concentration and thus an
increase in competition for liquidity provision. Specifications for the panel regression and significance
levels are as in Table 4.

trader level
Herfindahl Index

number of
brokers

number of
inventory traders

full sample -0.0350**+ 0.6903** 0.5007*
(0.0144) (0.3410) (0.2617)

— Break-even Price for Market Orders —

above $22 0.0325 -0.6283 0.1746
(0.0362) (0.5968) (0.6439)

below $22 -0.0459*** 0.8996**+ 0.5525*
(0.0144) (0.3717) (0.2886)

Different Coefficient? Yes** Yes** −

— Herfindahl Index —

low competition -0.0305* 0.6522 0.2476
(0.0180) (0.4214) (0.2154)

high competition -0.0392* 0.7274 0.7470*
(0.0209) (0.5009) (0.4404)

Different Coefficient? − − −

— Market Capitalization —

above median -0.0114 0.0573 0.4874
(0.0163) (0.3202) (0.4215)

below median -0.0588*** 1.3062**+ 0.5137*
(0.0212) (0.5500) (0.2657)

Different Coefficient? Yes** Yes** −

—Break-even Price for Total Fees —

above $6.875 -0.0146 0.2103 0.1426
(0.0217) (0.5037) (0.3695)

below $6.875 -0.0521*** 1.0863**+ 0.7962**
(0.0168) (0.4351) (0.3523)

Different Coefficient? − − −

— Share Trading Volume —

above median -0.0334* 0.3055 0.4937
(0.0187) (0.4320) (0.4318)

below median -0.0367* 1.0647** 0.5075*
(0.0204) (0.4944) (0.2698)

Different Coefficient? − − −



Table 12

Panel Regressions for Improvements in the Best Bid and Offer

Dependent variables are treatment group value minus control group value for the total number of im-
provements at the best bid and offer (BBO) as well as its decomposition into the number of improvements
with regards to prices and depth. Specifically, the number of improvements in the BBO is computed, for
each stock and day, by counting the number of times that there is an increase in the number of shares
available at the bid or offer for a fixed or an improved prices and the number of times that the bid is
increased or the offer decreased. Specifications for the panel regression and significance levels are as in
Table 4.

Number of BBO
improvements

spread
improvements

depth
improvements

Number of BBO
changes

full sample 102.2**+ -54.3*** 156.5*** 236.3***
(41.2) (9.8) (47.3) (58.0)

— Break-even Price for Market Orders —

above $22 76.5 -179.9** 256.4 127.0
(230.1) (78.6) (220.0) (285.7)

below $22 106.3*** -34.4*** 140.7*** 253.6***
(41.2) (9.1) (39.5) (82.8)

Different Coefficient? – Yes* – –

— Herfindahl Index —

low competition -4.2 -48.9*** 44.7**+ 31.1
(28.4) (17.1) (18.9) (50.7)

high competition 205.8*** -59.5*** 265.3*** 435.9***
(72.0) (15.2) (82.9) (99.4)

Different Coefficient? Yes*** – Yes*** Yes***

— Market Capitalization —

above median 189.2*** -71.6*** 260.8*** 406.2***
(73.1) (16.3) (83.8) (97.5)

below median 17.6 -37.5** 55.1** 71.0
(37.3) (17.0) (27.5) (72.4)

Different Coefficient? Yes** – Yes**+ Yes***

—Break-even Price for Total Fees —

above $6.875 170.1* -90.8*** 260.9*** 393.1***
(89.5) (24.3) (89.2) (133.1)

below $6.875 46.2** -24.2*** 70.4*** 106.9**
(21.6) (4.0) (26.2) (52.7)

Different Coefficient? − Yes**+ Yes** −

— Share Trading Volume —

above median 208.3*** -38.2** 246.5*** 383.2***
(73.2) (16.6) (78.8) (100.4)

below median -1 -70.0*** 69.0* 93.4
(53.4) (23.8) (37.5) (94.7)

Different Coefficient? Yes**+ – Yes** Yes**



Table 13

Panel Regressions on the Equity Specialist’s Trading Activity

Dependent variables are treatment group value minus control group value for measures of trading activity
of the equity specialist (registered trader): the total active and passive share volume, dollar volume,
and the number of transactions. Volume is in logarithms. Specifications for the panel regression and
significance levels are as in Table 4.

share volume dollar volume transactions
passive active passive active passive active

full sample 0.1997**+ 0.0791 0.1884*** 0.0450 5.68**+ 2.51**
(0.0835) (0.0938) (0.0606) (0.0751) (2.42) (1.27)

— Break-even Price for Market Orders —

above $22 0.0294 0.0610 0.0967 -0.0388 7.08 5.74
(0.2002) (0.1481) (0.0858) (0.0904) (10.46) (5.71)

below $22 0.2255*** 0.0976 0.2020*** 0.0726 5.45** 2.00
(0.0869) (0.1108) (0.0674) (0.0902) (2.36) (1.30)

Different Coefficient? − − − − − −

— Herfindahl Index —

low competition 0.0641 -0.0436 0.1044 -0.0815 0.36 -0.02
(0.0852) (0.1201) (0.0726) (0.1133) (2.71) (0.94)

high competition 0.3121**+ 0.1675 0.2588*** 0.1315 10.83*** 4.98**
(0.1230) (0.1213) (0.0847) (0.0895) (3.73) (2.37)

Different Coefficient? Yes* − − − Yes** Yes*

— Market Capitalization —

above median 0.1253 -0.0028 0.1469**+ -0.0317 6.96** 3.44
(0.0917) (0.0754) (0.0601) (0.0552) (3.50) (2.25)

below median 0.2763** 0.1907 0.2296** 0.1533 4.42 1.62
(0.1297) (0.1863) (0.0999) (0.1539) (3.24) (1.38)

Different Coefficient? − − − − − −

— Share Trading Volume —

above median 0.1036 0.0229 0.1042 -0.0180 7.74* 4.91**
(0.1028) (0.1134) (0.0792) (0.0838) (4.13) (2.26)

below median 0.3019**+ 0.1739 0.2766*** 0.1407 3.69* 0.17
(0.1179) (0.1408) (0.0819) (0.1217) (2.19) (1.20)

Different Coefficient? − − − − − Yes*



Figure 1

Quoted Liquidity: Spreads and Depth

The top left panel plots the time-weighted quoted spreads for the group of NASDAQ/AMEX interlisted securities and their matches (labelled as “TSX”).
The bottom left panel plots depth at the best bid and offer prices. The top and bottom right panels plot the differences of, respectively, quoted spreads
and depth for interlisted securities vs. their non-interlisted matches. All plots are 5-day moving averages. Spreads are measured in basis points of the
midpoint, depth is measured in the logarithm of the average dollar amount available for trading at the best bid and offer prices.
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Figure 2

Effective Liquidity: Price Impacts and Effective Spreads

The left panel plots the trade-weighted effective spread for the group of NASDAQ/AMEX interlisted securities and their matches (labelled as “TSX”).
The bottom left panel plots the trade-weighted 5-minute price impact. The top and bottom right panels plot the differences of, respectively, effective
spreads and price impact for interlisted securities vs. their non-interlisted matches. All plots are 5-day moving averages. Spreads and price impact are
measured in basis points of the midpoint.
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Figure 3

Plots of Trade Execution Costs for Active Orders and Benefits for Passive Orders

The left panel plots the trade-weighted exchange fee adjusted effective spread for the group of NASDAQ/AMEX interlisted securities and their matches
(labelled as “TSX”). The bottom left panel plots the trade-weighted 5-minute rebate adjusted realized spread. The top and bottom right panels plot the
differences of, respectively, adjusted effective and realized spreads for interlisted securities vs. their non-interlisted matches. All plots are 5-day moving
averages. Spreads are measured in basis points of the midpoint.
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Figure 4

Plots of Dollar Volume

The left panel plots the average daily intra-day dollar volume (all trades against standing orders in the limit order book) for the group of NASDAQ/AMEX
interlisted securities and their matches (labelled as “TSX”). The right panel plots the differences of the average dollar volume for interlisted securities
vs. their non-interlisted matches. All plots are 5-day moving averages. Dollar volume is in logarithm.
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Figure 5

Plots of the Herfindahl Index

The left panel plots the average of the per day per stock trader level Herfindahl Index (see Section 2.4) for the group of NASDAQ/AMEX interlisted
securities and their matches (labelled as “TSX”). The right panel plots the differences of the trader level HHIs for interlisted securities vs. their non-
interlisted matches. All plots are 5-day moving averages.
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Figure 6

Plots of Intermediated Dollar Volume

The top left panel plots the daily dollar volume of trades between clients and non-clients for the group of NASDAQ/AMEX interlisted securities and their
matches (labelled as “TSX”). The bottom left panel plots the fraction of such intermediated trades of the total dollar volume. The top and bottom right
panels plot the differences of, respectively, levels and fractions of intermediated dollar volume for interlisted securities vs. their non-interlisted matches.
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Table 14

List of all interlisted companies and their non-interlisted matches, Part I

Treatment Group: Interlisted with AMEX or NASDAQ Control group match: non-interlisted

ABZ ABER DIAMOND CORPORATION SBY SOBEYS INC.
AEZ AETERNA ZENTARIS INC. ITX ITERATION ENERGY LTD. J
ANP ANGIOTECH PHARMACEUTICALS INC. AGF.NV AGF MANAGEMENT LTD. CL ’B’ NV
ARZ AURIZON MINES LTD. J ENE ENDEV ENERGY INC.
ATY ATI TECHNOLOGIES INCORPORATED TA TRANSALTA CORPORATION
AXP AXCAN PHARMA INC. IMN INMET MINING CORPORATION
BEV BENNETT ENVIRONMENTAL INC. STY STYLUS ENERGY INC.
BGO BEMA GOLD CORPORATION J UTS UTS ENERGY CORPORATION
BLD BALLARD POWER SYSTEMS INC. IUC INTERNATIONAL URANIUM CORPORATION J
BRA BIOMIRA INC. CEK CASPIAN ENERGY INC. J
CBJ CAMBIOR INC. NS NORSKE SKOG CANADA LIMITED
CEF.NV.A CENTRAL FUND OF CANADA LTD. CL ’A’ NV SWP SASKATCHEWAN WHEAT POOL INC.
CLG CUMBERLAND RESOURCES LTD. J ANO ANATOLIA MINERALS DEVELOPMENT LIMITED J
COM CARDIOME PHARMA CORP. KEC KICK ENERGY CORPORATION J
CRY CRYPTOLOGIC INC. AAH AASTRA TECHNOLOGIES LIMITED
CSN COGNOS INC. CTR.NV CANADIAN TIRE CORP. LTD. CL ’A’ NV
DAX DRAXIS HEALTH INC. IXL INNOVA EXPLORATION LTD. J
DII.SV DOREL INDUSTRIES INC. CL ’B’ SV AGA ALGOMA STEEL INC.
DSG DESCARTES SYSTEMS GROUP INC. (THE) GWE GREY WOLF EXPLORATION INC.
DSM DESERT SUN MINING CORP. J ARG AMERIGO RESOURCES LTD. J
ECG ENVOY COMMUNICATIONS GROUP INC. EDV ENDEAVOUR MINING CAPITAL CORP. ORDINARY J
ELD ELDORADO GOLD CORPORATION BBD.MV.A BOMBARDIER INC. CL ’A’ MV
EXF.SV EXFO ELECTRO-OPTICAL ENGINEERING INC. SV QUA QUADRA MINING LTD.
FMI FORBES MEDI-TECH INC. WF WHITE FIRE ENERGY LTD.
FNX FNX MINING COMPANY INC. ATA ATS AUTOMATION TOOLING SYSTEMS INC.
FRG FRONTEER DEVELOPMENT GROUP INC. J CSY CSI WIRELESS INC.
FSV.SV FIRSTSERVICE CORPORATION SV CCL.NV.B CCL INDUSTRIES INC. CL ’B’ NV
GAC GEAC COMPUTER CORPORATION LTD. HBC HUDSON’S BAY COMPANY
GAM GAMMON LAKE RESOURCES INC. J FAP ABERDEEN ASIA-PACIFIC INCM INVESTMENT CO LTD.
GSC GOLDEN STAR RESOURCES LTD. OIL OILEXCO INCORPORATED J
HUM HUMMINGBIRD LTD. MRG MERGE CEDARA EXCHANGECO LIMITED EXCHANGEABLE
HYG HYDROGENICS CORPORATION SGF SHORE GOLD INC. J
IDB ID BIOMEDICAL CORPORATION KFS KINGSWAY FINANCIAL SERVICES INC.
IE IVANHOE ENERGY INC. UEX UEX CORPORATION J
IMG IAMGOLD CORPORATION LIM LIONORE MINING INTERNATIONAL LTD.
IMO IMPERIAL OIL LTD. RY ROYAL BANK OF CANADA



Table 15

List of all interlisted companies and their non-interlisted matches, Part II

Treatment Group: Interlisted with AMEX or NASDAQ Control group match: non-interlisted

IMX IMAX CORPORATION GND GENNUM CORPORATION
IOL INTEROIL CORPORATION J CCA.SV COGECO CABLE INC. SV
KRY CRYSTALLEX INTERNATIONAL CORPORATION J TBC TEMBEC INC.
MAE MIRAMAR MINING CORPORATION IVW IVERNIA INC. J
MEC.SV.A MAGNA ENTERTAINMENT CORP. CL ’A’ SV ITP INTERTAPE POLYMER GROUP INC.
MFL MINEFINDERS CORPORATION LTD. J CYT CRYOCATH TECHNOLOGIES INC.
MPV MOUNTAIN PROVINCE DIAMONDS INC. J COB.SV.A COOLBRANDS INTERNATIONAL INC. CL ’A’ SV
MR METALLICA RESOURCES INC. J ACA ASHTON MINING OF CANADA INC.
MX METHANEX CORPORATION MNG MERIDIAN GOLD INC.
NG NOVAGOLD RESOURCES INC. J PTI PATHEON INC.
NGX NORTHGATE MINERALS CORPORATION DY DYNATEC CORPORATION
NNO NORTHERN ORION RESOURCES INC. J TRE SINO-FOREST CORPORATION
NRM NEUROCHEM INC. SWG SOUTHWESTERN RESOURCES CORP. J
NSU NEVSUN RESOURCES LTD. J CDV COM DEV INTERNATIONAL LTD.
ONC ONCOLYTICS BIOTECH INC. CNH CINCH ENERGY CORP. J
OTC OPEN TEXT CORPORATION RUS RUSSEL METALS INC.
OZN OREZONE RESOURCES INC. J ZL ZARLINK SEMICONDUCTOR INC.
PAA PAN AMERICAN SILVER CORP. CRW CINRAM INTERNATIONAL INC.
PCR PERU COPPER INC. J SMF SEMAFO INC. J
PDL NORTH AMERICAN PALLADIUM LTD. IFP.SV.A INTERNATIONAL FOREST PRODUCTS LTD. CL ’A’ SV
QLT QLT INC. BVI BLACKROCK VENTURES INC.
RIM RESEARCH IN MOTION LIMITED WN WESTON LTD. GEORGE
RNG RIO NARCEA GOLD MINES LTD. MAL MAGELLAN AEROSPACE CORPORATION
SNG CANADIAN SUPERIOR ENERGY INC. J BGC BOLIVAR GOLD CORP. J
SOY SUNOPTA, INC. SGB STRATOS GLOBAL CORPORATION
SSO SILVER STANDARD RESOURCES INC. RRZ RIDER RESOURCES LTD.
SVN 724 SOLUTIONS INC. RVE ROCKYVIEW ENERGY INC.
SW SIERRA WIRELESS, INC. FE FIND ENERGY LTD.
TEO TESCO CORPORATION KCO KERECO ENERGY LTD.
TGL TRANSGLOBE ENERGY CORPORATION J WLE WESTERN LAKOTA ENERGY SERVICES INC.
TLC TLC VISION CORPORATION CGS.SV CANWEST GLOBAL COMMUNICATIONS CORP. SV
TNX TAN RANGE EXPLORATION CORPORATION J WPT WESTPORT INNOVATIONS INC.
VAS VASOGEN INC. VIA VIRGINIA GOLD MINES INC. J
WED WESTAIM CORPORATION (THE) WTN WESTERN CANADIAN COAL CORP. J
YM YM BIOSCIENCES INC. J DDS LABOPHARM INC.
YRI YAMANA GOLD INC. J AGI ALAMOS GOLD INC. J
ZIC ZI CORPORATION TOS TSO3 INC. J
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Abstract: We address the connection between market stress and asset pricing by 
analyzing a large and systematic discrepancy arising among off-the-run Treasuries.  
We first show that bonds traded for much less than notes with matching maturity and 
coupon, over five percent less in December 2008.  We then ask how the small 
differences between these securities, in particular their liquidity, could project to so 
large a gap.  We gauge the potential for long/short arbitrage with repo and fails data 
indicating the frictions arbitrageurs encountered, and then with daily transactions 
data we relate the demand for the expensive but liquid note to the cross section of 
insurers’ liquidity needs. 
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The market for U.S. Treasury debt is the largest, most liquid, and safest securities market 

in the world.  The total amount of publicly-held, Treasury-issued debt currently stands at $9 

trillion, and daily trading volume typically exceeds $500 million.1  Not surprisingly, pricing 

anomalies in the Treasury market are infrequent, short-lived, and well-studied when they do 

occur.  For instance, typically there is a pricing difference between off-the-run and on-the-run 

securities; the most recently issued coupon security of a particular maturity tends to be slightly 

more expensive than previously-issued securities of the same original maturity.  However, 

Krishnamurthy (2002) shows that the trading profits from entering into a convergence trade that 

is short the on-the-run security and long the off-the-run security are largely offset by the cost of 

borrowing the on-the-run.  He concludes that there are no consistent arbitrage profits to be made 

from these pricing differences.   

 In this paper, we document the occurrence of a large pricing anomaly in the Treasury 

market that created arbitrage profits that would not have been offset by borrowing costs.  

Specifically, we show that a large yield spread developed between securities originally issued as 

thirty-year bonds and securities originally issued as ten-year notes, even though the securities 

share the same maturity date.  For a several month period toward the end of 2008, original issue 

bonds became substantially cheaper than original issue notes, even after adjusting for differences 

in coupons.  We show that the pricing anomaly was large, reaching a level as high as 5 percent, 

and it remains even after correcting for the difference in funding costs as measured by 

repurchase agreement (repo) rates.    

                                                            
1 The source for Treasury securities outstanding and trading volume is the Securities Industry and Financial Markets 
association, available at www.sifma.org.  
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 The pricing anomaly happens during a period of significant market turmoil, when 

liquidity was in particularly high demand.  The spread that we document is highly correlated 

with other measures of market liquidity, including spreads between on-the-run and off-the-run 

Treasury securities and average bid-ask spreads on all Treasury securities.  We conjecture that 

the pricing anomaly we document is related to small differences in liquidity that became 

magnified during the financial crisis.  We show that bonds generally have lower trading volume 

and wider bid-ask spreads, which widened further during the crisis, suggesting that old thirty-

year bonds are less liquid than ten-year notes.  There are three reasons for this difference in 

liquidity.  First, smaller amounts of these bonds were originally issued.  Second, the majority of 

bonds typically are stripped and held in stripped form for the remainder of their lives, whereas 

stripping of notes is much more limited (Jordan, Jorgensen and Kuipers (2000)).   This further 

reduces the amount of the bond that is immediately available to trade.  Third, we conjecture that 

the bond may be disproportionately held by longer-term investors.   

We interpret the apparent mispricing of Treasury securities from the perspective of the 

“limits to arbitrage” literature.  Although repo rates and bid-ask spreads did reduce the profits 

available from trading against the mispricing, we show that the magnitude of the discrepancy 

provided a clear arbitrage opportunity from the perspective of a hold-to-maturity investor.  The 

“limits to arbitrage” literature presents an explanation for why an arbitrageur may still shy away 

from such a trade.   The essence of the story - described in detail in papers such as Shleifer and 

Vishny (1998), Gromb and Vayanos (2002) and Vayanos and Vila (2009) - is that arbitrageurs 

are risk-averse, have a short-horizon, or are capital constrained.  All of these frictions can 

prevent an arbitrageur from taking the perspective of a hold-to-maturity investor, making the 

mispricing less attractive.  In particular, as noise traders move prices for reasons unrelated to an 
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assets fundamentals, arbitrageurs are tempted to trade the security to take advantage of the 

mispricing.  However, arbitrageurs have to assume the risk that the noise traders could make the 

mispricing worse in the short-run might, which subjects the arbitrageur to interim losses.  

Because the arbitrageur is risk-averse in the short-run or has limited capital, this risk can deter 

the arbitrageur from acting.  This is true even if the mispricing would make the arbitrageur a sure 

profit, if he/she could hold out indefinitely. 

In addition to the on-the-run/off-the-run spread that is studied extensively in 

Krishnamurthy (2002), other anomalies in the Treasury market have also been documented.  

Amihud and Mendelson (1991) and Kamara (1994) compare bills and notes with less than six 

months remaining to an identical maturity date, so that both are effectively zero-coupon 

securities.  During their sample, the notes were consistently cheaper (traded at higher yields) than 

the bills.  Amihud and Mendelson argue that the price differential represents a premium for the 

greater liquidity of bills, but Kamara (1994) suggests that the difference owes in part to the 

differential tax treatment that existed at the time.  In the paper most closely related to ours, 

Strebulaev (2003) compares the yields of coupon securities (Treasury notes and bills) with 

different original-issue tenors but with identical maturity dates.  Although Strebulaev confirms 

that bills tend to be more expensive than similar notes, he finds that standard liquidity proxies are 

not correlated with bill-note pricing differences.  Moreover, he finds no evidence of systematic 

pricing differences within Treasury notes, leading him to conclude that liquidity differences are 

not the source of the note-bill anomaly.   
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Many pricing anomalies have been interpreted in the context of this type of argument, 

and it has potential to apply to the Treasury market as well.  In fact, the Treasury market is an 

ideal setting to cleanly establish the existence of an arbitrage and test some empirical 

implications.  Treasury securities all share identical credit risk and do not differ in priority, but 

some securities are more easily traded than others.  Bonds are cheaper than notes, perhaps 

because some investors have a preference for the greater liquidity of notes, but arbitrage capital 

is normally available to keep the prices of notes and bonds aligned.  The crisis was a time in 

which arbitrage capital was withdrawn, and this led the spread between note and bond yields to 

skyrocket.  Treasury market anomalies (not confined to the bond-note spread) during the crisis 

are discussed in these terms by Hu, Pan and Wang (2010).  By identifying specifically which 

Treasury securities are relatively cheap and which are relatively expensive, we can then 

investigate the types of participants that are either exploiting the arbitrage or acting as noise 

traders based on their trading activity in these particular Treasury securities at the time that the 

pricing divergence widened. 

The plan for the remainder of this paper is as follows.  In section 2, we describe the note-

bond pricing anomaly that is the focus of this paper.  Section 3 relates pricing anomalies in the 

crisis to characteristics of individual coupon securities, arguing that the cross-section of yields 

can be accounted for in terms of liquidity differences.  Section 4 evaluates the characteristics of 

investors that were exploiting the arbitrage opportunity, and those that were making it worse.  

Section 5 concludes. 

I.  The Arbitrage 

We begin by illustrating an example of the pricing anomaly that explore, shown in Figure 

1.  The figure shows the spread between the yields to maturity on two Treasury securities, both 
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maturing on February 15, 2015.  We take the difference between an original-issue 30 year bond 

and an original issue 10 year note.  The bond was originally issued in 1985 with a coupon of 

11.25 percent, and the note was originally issued in 2005 with a coupon of 4 percent.  

Throughout 2005, 2006, and much of 2007, the bond has a slightly higher yield-to-maturity than 

the note, by about few basis points, on average.  In late 2007 and early 2008, however, the bond 

yield climbed substantially relative to the note yield.  The difference spiked in the fall of 2008, 

when the spread of the bond yield over note yield climbed to 80 basis points, representing a price 

difference of about five dollars per 100 dollars face value.  It is worth noting that both securities 

were well off-the-run during the time when the yield spread widened most notably.   

 This yield spread documented in Figure 1 does not necessarily represent an arbitrage 

opportunity, since the note has a lower coupon than the bond and thus a longer duration.  But 

with an upward sloping yield curve, as was the case during 2008, the difference in coupons 

should result in a relatively higher yield to maturity for the note relative to the bond; Figure 1 

shows that the note has a lower yield to maturity.   

To conduct a more precise comparison between the pricing of the note and the bond, we 

create a synthetic portfolio of the bond and a Treasury STRIP to exactly match the cash flows of 

the note.  Specifically, for a note with coupon rate nC  and a bond with coupon rate bC  (both 

maturing on the same day), we form a portfolio that puts weight /n bC C  on the bond and weight 

1 /n bC C  in a STRIP maturing on the maturity date of the bond.  This portfolio will have 

identical cash flows to the note, which lets us compare the prices of two assets that generate 

identical cash flows.  In our empirical analysis below, we show that the price of the note 

compared with the price of the bond and STRIP portfolio is usually close to zero but grew 

significantly during the period of the financial crisis before returning back close to zero in 2009.  
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A trading strategy that bet on convergence of the prices of two portfolios would have made 

positive profits.  Moreover, these profits would be riskless, as long as the positions could be held 

until maturity, and as long as funding costs or other frictions in implementing the trade would 

not exceed the difference in returns on the portfolio.  In particular, the cost of shorting the more 

expensive note could wipe out any profits created by convergence in the prices, although we 

show below that this is not the case.  In the absence of such significant frictions, the strategy of 

betting on convergence could be scaled to produce enormous profits.     

In this paper we consider nine bond-note pairs similar to the example displayed in Figure 

1.  In all cases, the original-issue note becomes expensive relative to the portfolio comprised of 

the original-issue bond and STRIP with identical maturity date, although the size of the pricing 

gap varies across the pairs.  We explicitly incorporate the cost of forming the short position in 

the note using repo rates that account for any specialness in shorting a particular security.  We 

interpret any remaining difference as potential arbitrage profits that would be available to a hold-

to-maturity investment position.  

II.  Apparent Pricing Anomalies 

 Our analysis begins by recognizing that the period between August 2007 and May 2009 

represented a period of significant market turmoil.  For example, Hu, Pan, and Wang (2010) 

document that deviations in Treasury yields from a smooth yield curve hit a record high in the 

weeks following the Chapter 11 filing of Lehman Brothers in September 2008.  Hu, Pan, and 

Wang construct a measure of illiquidity based on the average deviation of Treasury prices from 

those based on a smooth yield curve and show that this measure provides a useful proxy for 

illiquidity and is a priced risk factor.  We adopt their measure of illiquidity and show that 
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deviations from the smooth curve were systematic: original-issue 30-year bonds became cheap 

relative to original-issue 10 year notes.  The systematic nature of the pricing deviations leads us 

to create the bond-note pairs that we explore further in the next section.   

  

II.1  Cheap and Expensive Securities 

This subsection addresses the question of which securities became relatively cheap 

during the crisis and which were relatively expensive.  To address this question, we compare 

actual Treasury prices with those implied from a parametric zero-coupon yield curve fitted to the 

set of all coupon securities.  We use the parameter estimates provided by the Federal Reserve 

Board, who every day fit the six-parameter model of instantaneous forward rates of Svensson 

(1994) to observed prices on coupon treasury securities.2  With the parameter estimates, we can 

compute the fitted price of each security on every calendar day and compute the difference 

between observed prices and the fitted price.  We denote the difference as the pricing error, 

which by construction has mean close to zero across all securities.3  We use the CRSP daily 

Treasury database for our treasury security prices.  

Figure 2 shows the average pricing error for all securities which were originally issued as 

thirty-year bonds, ten-year notes and five-year notes.  Prior to the summer of 2007, average 

pricing errors were close to zero, and there is very little difference between thirty-year bonds and 

ten-year notes.  Beginning in the fall of 2007 and extending through early summer of 2009, a 

notable pattern emerges.  The thirty-year bonds became cheap relative to the smooth curve, and 

the ten-year notes became expensive.  Notably, the pricing errors on the five-year notes do not 

                                                            
2 See Gurkaynak, Sack, and Wright (2006) for a discussion of the methodology.  See the following website for the 
data:  http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html 
 
3 The mean is not exactly zero because prices are a non-linear function of forward rates. 
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show systematic time series deviations.  As we will show next, part of the pattern can be 

explained by the amount of the bonds outstanding, but there will still remain a significant pattern 

that thirty-year bonds became cheap relative to ten-year notes.  

To further explore the determinants of the pricing error, we estimate a panel regression of 

the pricing errors on individual securities onto a variety of security characteristics.  The 

regression is of the form 

݁௜௧ ൌ ߙ ൅ ᇱߚ ௜ܺ ൅  ,௜௧ߝ

where ݁௜௧ denotes the pricing error for the i th security on day t, and ௜ܺ is a vector of bond-

specific characteristics.  We use two sets of independent variables.  First, as two proxies for 

liquidity, we include the size of the issue and the quoted bid-ask spread.  We measure size as the 

log of the original amount of the bond issued, and use the log of the dollar value of the bid-ask 

spread.4  Second, we include dummy variables indicating whether the security was originally 

issued as a thirty-year bond, a ten-year note, or a five-year note, with the excluded category 

including seven-year, three-year, and two-year notes.  The regression includes observations 

during 2005 through 2010 and includes all coupon securities with remaining time to maturity of 

at least one year and no more than ten years; the smooth yield curve fits best within this range.  

We also run the regression on a sub-sample of observations during the crisis period, which we 

define as lasting from the fourth quarter of 2007 through the second quarter of 2009.  Since the 

same security appears many times in the sample, standard errors account for potential serial 

correlation in residuals.   

                                                            
4 We will eventually account for buybacks and re-openings by allowing the amount outstanding to vary by day. 
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 The results are shown in Table 1.  The coefficient on the amount issued is positive, 

suggesting that larger issues tend to be relatively expensive.  Similarly, securities with larger bid-

ask spreads tend to trade at higher prices, although the effect is fairly small and only significantly 

different from zero during the crisis period.  We view these results as suggesting that differences 

in liquidity, as proxied by issue size and bid-ask spreads, lead to systematic differences pricing, 

with more liquid issues trading cheaper than less liquid issues.  Interestingly, the effect of issue 

size and bid-ask spreads is much stronger during the crisis, suggesting that liquidity differences 

were exacerbated during the crisis.  Even after controlling for these liquidity proxies, the dummy 

variables for the original-issue term of the security confirm that ten-year notes became expensive 

relative to thirty-year bonds.  The difference in estimated coefficients on the thirty-year bonds 

and the ten-year notes is large and statistically significantly different from zero in both samples.  

During the crisis, the difference in coefficients exceeds 1, meaning that, on average over the 

seven quarters, bonds were more than 1 percent cheaper than notes.   

 We do not have a compelling reason why the notes became rich relative to the bonds, but 

we conjecture that unobserved differences in liquidity are the underlying source, which was 

exacerbated during the crisis.  Although an interesting area for future research, the underlying 

reason is unimportant for our subsequent analysis.  At maturity of the proposed trading strategy, 

both securities are equally liquid, so from the perspective of a hold-to-maturity investor, any 

liquidity differences do not matter.  What matters for us is that bonds systematically cheapened 

relative to notes, which creates the potential arbitrage that we explore. 

 

 



10 
 

III.  The Arbitrage Strategy 

In this section, we describe how we construct two portfolios with identical cash flows and 

show that, in normal times, the two portfolios have very similar prices.  We then document the 

pricing anomaly that emerges and show that funding costs did not reach levels that would 

overwhelm the arbitrage profits.    

 

III.1  The Bond-Note  Pairs 

We construct nine pairs of securities with the same maturity dates that were originally 

issued as ten- and thirty-year Treasuries.  We consider only nominal, non-callable Treasury 

securities, of which the February 2015 securities (described above) are an example.  Prior to 

1985, the U.S. Treasury Department exclusively issued callable thirty-year securities, so we use 

only bonds issued after 1984.  We also restrict our sample to notes that were issued prior to the 

summer of 2008, so that all of the bond/note pairs exist during the peak of the financial crisis.  

With these restrictions, we are left with nine bond/note Treasury pairs with identical maturity 

dates ranging from February 2015 to May 2018. 

For each pair, we construct a portfolio that is short the note, long a fraction of the bond to 

match the coupons of the note, and long a Treasury STRIP to match the principal payment at 

maturity (as discussed above).  This portfolio is constructed to have zero cash flows after 

origination, so it should not have any cost or benefit at origination.  We view any money 

received at origination as an arbitrage opportunity.   
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III.2 Accounting for the Cost of Funding 

In the classic “convergence trade” that we describe above, an arbitrageur would take a 

long position in the cheap security (the bond) and a short position in the expensive one (the 

note).  In reality, it is often expensive to short some securities, a friction discussed by Duffie 

(1996) and Krishnamurthy (2002), among others.  The only way to take a short position in a 

Treasury issue is to enter into a repo contract where one lends out cash and takes the security as 

collateral.  The lender can then sell the collateral immediately, betting that the price will fall, 

intending to buy it back at the close of the repo contract, hopefully at a cheaper price.  An 

investor wishing to bet on an anomaly in the Treasury market must short the expensive security 

in this way.  At the same time, the investor can buy the cheap security, typically using the 

security as collateral to borrow money to finance the purchase.  In most repo transactions, any 

Treasury security is considered to be acceptable collateral, and the corresponding interest rate on 

the loan is known as the general collateral (GC) interest rate.   

In some cases, repo cash borrowers may deliver any Treasury security as collateral, 

leading particularly expensive issues to not be delivered in GC agreements.  However, some repo 

agreements specify the precise issue that must be used as collateral and must be returned at the 

end of the repo contract.  When one security is unusually expensive, demand from investors 

wishing to short it can drive down the repo rate on that security to a level below the GC rate, and 

the security is referred to as “special.”  Securities that are expensive in the cash market are 

typically “special” in the repo market, meaning that the cost of shorting them is particularly high.  

When Treasury securities become special, the repo rate on the particular security is known as the 

security’s special repo rate, which will be lower than the GC repo rate.  When this happens, an 
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investor betting on an anomaly in the Treasury market will receive a lower interest rate on 

his/her loan of cash (collateralized by the expensive security) than he/she must pay to borrow to 

buy the cheap security, which will be at the GC repo rate.  The spread between GC repo and 

specials rate could in principle wipe out the profitability of the convergence trade. 

Indeed, Krishnamurthy (2002) shows that the profits on the convergence trade between 

on-the-run and off-the-run bonds are roughly wiped out by the gap between the corresponding 

repo rates.  Although the spread between these two bonds systematically converges over time, 

the average profits of this trade are close to zero due to the cost of shorting the newly issued 

bond.  Krishnamurthy argues therefore that there is no genuine arbitrage opportunity.   

It is particularly important for us to account for funding costs, since anecdotal evidence 

suggests that funding became quite difficult during the crisis.  Strains in the repo market likely 

made it hard to short comparatively expensive Treasury securities.  Additionally, an institutional 

feature of the Treasury repo market made investors relatively reluctant to lend out their securities 

when GC rates because very low, as they did following Lehman’s bankruptcy.  Specifically, the 

lack of a penalty for failing to deliver on a repo transaction created a bound of zero on the 

specials rate, which could have prevented the market from clearing without excess demand or 

supply. 5   

                                                            
5 A market participant will lend funds against a security that is priced “special” only to meet an obligation to deliver 
that security.  Until May 2009, the penalty for a failure to deliver a security into a transaction was that the security 
was to be delivered the next day at the same price.  This is equivalent to giving the buyer of the security an interest 
free loan.  This would be preferable to borrowing at a negative specials rate.  So specials rates cannot normally go 
below zero.  Due to massive fails in the repo market, and the resulting drop in securities lend via repos, the Treasury 
Market Practices Group (TMPG), a self-governing industry group, proposed a penalty fails rate, which was backed 
by the Federal Reserve.  The explicit penalty in failing to deliver a security was introduced in May 2009 as Max(3-
FFT,0), where FFT is the base of the Federal Reserve’s target rate.  In a zero policy rate environment, this rule levies 
a 3 percent penalty rate on a fail. 
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Using data on repo transactions from a large interdealer broker, we show that the profits 

available from the bond-note convergence trade we propose would have been much larger than 

the costs of funding the trade.  Figure 3 plots the monthly return on the convergence trade 

(ignoring funding costs) along with the level of the special-GC spread (the funding cost) for the 

bond-note pair maturing on February 15, 2015.  Although funding costs do rise during the crisis, 

the picture shows that the pricing differences were substantially larger than the funding costs.  

Even at the peak divergence in prices of the underlying securities, the repo funding costs remain 

below 15 basis points per month.  Monthly returns, however, are much larger, in some cases 

exceeding 2 percent at the peak.  Per $1000 principal, funding costs reach a maximum of $1 per 

month.  Raw returns peak at $14.1 per $1000 principal in December 2008, following Lehman’s 

bankruptcy filing in September 2008. 

 

III.3 Time Series Pattern of Arbitrage 

We next explore the time periods when the arbitrage grew to its widest levels, focusing 

on aggregate liquidity and limits to arbitrage.  We conjecture that the risk aversion of potential 

arbitrageurs increased and arbitrage capital was withdrawn from the market.  If so, the pricing 

error should be correlated with other systemic liquidity indicators.   

 To investigate this further, we run a daily time-series regression of the average pricing 

error across our nine bond-note pairs on several measures of aggregate liquidity.  We use the 

LIBOR-OIS spread, the repo bid-ask spread, and the GC repo rate.  The results are shown in 

Table 2.  To account for the significant serial correlation in the pricing errors, we use Newey-

West standard errors with a lag-length of 30.   
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The results suggest that the pricing error is significantly correlated with the measures of 

aggregate liquidity.  The coefficient on the LIBOR-OIS spread is large and positive, indicating 

that broader funding strains were correlated with the anomaly in the Treasury market.  The 

coefficient on the repo bid-ask spread is also positive, suggesting that the strains in the repo 

market also happened coincidentally with the pricing anomalies.  Finally, the GC rate is 

significantly negative, which corroborates the notion that a lower GC spread makes lending 

expensive securities in the repo market less attractive, which in turn prevents arbitrageurs from 

bringing prices back into line. 

 

IV.  Investor Response? 

The pricing of Treasury securities in the crisis represented an arbitrage opportunity.  

Based on the “limits to arbitrage” paradigm, we suggest that this reflects a lack of arbitrage 

capital willing to take short-run risk to wait for the long-run gain.  In this section, we explore the 

trading behavior of insurance companies, who are potential long-term investors that could profit 

from the arbitrage.   

IV.1  Trading and Holdings Data 

 We have a dataset consisting of transactions-level data showing all buys and sells of 

Treasury securities for all U.S. registered insurance companies, who report such transactions in 

Schedule D within their statutory regulatory filings.  For each trade in the dataset, we know the 

insurance company conducting the trade, along with the date, size, and direction of the 

transaction.  We also have several characteristics of the insurers, including several measures of 

their capital, including their financial strength ratings and their size.  We also construct three 
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additional variables based on the trading history of each insurer.  In sum, we consider six cross-

sectional characteristics of each insurer:  

(i) Buy-and-hold indicator.  A dummy that is one if that insurer is a “buy and hold” 
insurer, i.e. never conducts a sell transaction of Treasury securities. 

(ii) Horizon.  This is the average number of days that an insurer holds a given Treasury 
security. 

(iii) Churn.  This is the ratio of transactions volume relative to holdings over all Treasury 
securities for each investor.  A lower value corresponds to a less active trader. 

(iv) Size.  This is the amount of assets held by the insurer. 
(v) Investment Grade.  A dummy that is one if the insurer’s best rating is classified as 

investment grade. 
(vi) Premium-to-Asset ratio.  This is a leverage measure for each insurer. 

 

For each insurer i in month t, we construct the net purchases of notes less the net 

purchases of bonds, which we denote as ,i tNP .  This is a measure of the propensity to engage in 

the arbitrage trade, and we relate the measure to the size of the pricing error and the cross-

sectional characteristics of each insurer.  In particular, we conduct a regression of the form: 

 , ,i t i i t i tNP PE      (1) 

We further assume that the intercept and slope coefficients in this regression are linear functions 

of the characteristics of the insurer, collected in a vector iX : 

 ' , 'i i i ia b X c d X      (2) 

Substituting (2) into (1) gives: 

 , ,' 'i t i t i t i tNP a b X cPE d X PE       (3) 
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which we then estimate as a pooled regression.  The main object of interest is the interaction 

coefficient, d .  This tells us whether a particular characteristic of an insurer makes the insurer 

more or less likely to buy the note when it becomes particularly expensive. 

  Table 3 reports the results from estimating equation (3) with each of the six different 

insurer characteristics separately.  As can be seen, longer-horizon investors are on net sellers of 

the expensive note, which suggests that they are behaving as arbitrageurs.  This is consistent with 

the finding of Coval and Stafford (2007) in equity markets.  Non-investment grade and more 

leveraged insurers are also sellers of the expensive note, which means that these are the insurers 

who were in effect exploiting the arbitrage opportunity.  Perhaps they had to sell Treasuries 

quickly in order to raise cash, and chose to do so by selling the relatively expensive and liquid 

notes.  

 

V.  Conclusions 

In normal times, the pricing of different Treasury securities is internally consistent.  Two 

different Treasury coupon securities with different coupon rates but the same maturity date will 

have almost identical yields.  Indeed, one can form a portfolio combining either one of these 

coupon securities with a set of STRIPS such that the portfolio has exactly the same payoffs as 

the other security.  The portfolio and the security should—and normally do—have almost exactly 

the same price; otherwise one could create riskless profits that should not exist in a well-

functioning market.  However, starting with the onset of the financial crisis in August 2007, and 

then accelerating after the collapse of Lehman in the fall of 2008, these arbitrage relationships 

broke down dramatically.  Bonds that were originally issued as thirty‐year bonds that had 6‐9 
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years to maturity became much cheaper than bonds originally issued with a ten‐year maturity, 

even though both had nearly the same maturity date. 

In the canonical theoretical model of persistent arbitrage opportunities, Shleifer and 

Vishny (1997) show that risk-aversion and bounded capital can explain why arbitrageurs are 

limited in their ability to prevent the emergence of pricing anomalies.  In their model, “noise 

traders” have a liquidity-based motivation for trading that may cause prices to deviate from their 

fundamental value.  Arbitrageurs trade against the noise traders to offset the deviations, but risk-

aversion and limited capital can prevent the arbitrageurs from completely offsetting the 

divergence.  The model explains why pricing discrepancies, and apparent arbitrage opportunities, 

can persist for some time.  This paper aims to give some empirical content to the Shleifer and 

Vishny (1997) model by characterizing the nature of the noise traders and arbitrageurs and 

offering clues as to their motivation.    

Studying the unusual pricing of Treasury securities at times of market stress gives us 

useful insights into the behavior of fixed income markets at times when there are distressed asset 

sellers.  The Treasury market environment allows for particularly clean analytical results and 

interpretation of these issues, but the lessons learned should have applicability to other fixed 

income securities and perhaps even to different asset classes.   
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Figure 1 – The Arbitrage 

This figure presents the time series of the difference between the yields to maturity on two 
Treasury securities: an original-issue 30 year bond and an original-issue 10 year note.  Both 
securities mature on February 15, 2015.  The bond was, originally issued in 1985 with a coupon 
of 11.25 percent; the note was originally issued in 2005 with a coupon of 4 percent.   



Figure 2 – Pricing Errors by Original-Issue Maturity 

This figure presents the one-month rolling averages of the pricing errors across three original-issue maturity buckets: thirty-year 
bonds, ten- year notes, and five-year notes.  The pricing error is defined as the difference between the actual price of the security and 
the fitted price based on a smooth forward rate yield curve.  The vertical axis is measured in percentage points.   
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Figure 3 – Arbitrage Profits vs Funding Costs 

This figure presents the monthly return on the convergence trade (ignoring the special-GC spread) and the level of the special-GC 
spread for the bond-note pair maturing on February 15, 2015.   



Table 1 – Cross-Sectional Characteristics of Pricing Errors   

This table presents a regression of pricing errors on several bond characteristics: ln(outstanding) is the log of the dollar amount of the 
bond outstanding, ln(bid-ask) is the log of the dollar difference in quoted bid and ask prices, and the other three variables are dummy 
variables indicating the original issue maturity of the bond.  The pricing error is defined as the difference between the actual price of 
the security and the fitted price based on a smooth forward rate yield curve.  The sample period is January 1, 2005 through December 
31, 2010.  The crisis period is from September 1, 2007 to June 30, 2009.  Standard errors (in parentheses) account for clustering within 
bond cusip and arbitrary heteroskedasticity; ** (*) denotes estimates that are statistically significantly different from zero at the 1(5)-
percent level. 

Dependent Variable: Pricing Error  
Full Sample Crisis Period 

Intercept -2.232** -4.505** 
  (0.747)   (1.792) 

ln(outstanding) 0.136** 0.281** 
  (0.044)     (0.107) 

ln(bid-ask)    0.034 0.092**  
   (0.022)     (0.036) 
Original issue 30-year   -0.144 -0.378**  

          (0.075)    (0.121) 
Original issue 10-year 0.342** 0.671** 

  (0.041)  (0.079) 
Original issue 5-year 0.070** 0.147** 

  (0.023)  (0.054) 
    
R-Square   .231   .407  
Observations 149,228 46,192  

    

 



 

 

Table 2 – Time Series Characteristics of Pricing Errors   

This table presents a daily time regression of average portfolio pricing errors for nine bond-note pairs on several macro measures of 
liquidity: the average bid-ask spread on repo transactions (Repo B/A Spread), the repo rate for general collateral Treasuries (GC Repo 
Rate), and the spread between Libor and the overnight indexed swap rate (Libor-OIS Spread).  For each bond-note pair, the pricing 
error is the price difference between the note and a bond plus a STRIP that gives the identical cash flows to the note.  The sample 
period is January 1, 2005 through December 31, 2010.  The crisis period is from September 1, 2007 to June 30, 2009.  Newey-West 
Standard errors (with 30 lags) are in parentheses; ** (*) denotes estimates that are statistically significantly different from zero at the 
1(5)-percent level. 

Dependent Variable: Portfolio Pricing Error 
Repo B/A Spread  15.80**   -2.58 

  (7.67)    (2.61) 

GC Repo Rate  -4.45**  -3.89** 

   (1.06)    (1.01) 

Libor-OIS Spread   14.03** 9.19** 

     (2.90)  (2.11) 

     

R-Square   .231   .406   

Observations 149,231 46,194   
    



Table 3 – Who Engages in the Arbitrage  

This table presents a pooled regression of net purchases of notes less bonds on the pricing error 
interacted with various characteristics of the insurance companies.  Standard errors (in 
parentheses) account for clustering within insurer and arbitrary heteroskedasticity; ** (*) denotes 
estimates that are statistically significantly different from zero at the 1(5)-percent level. 

 

 
Dependent Variable: 

Net Purchases 
Buy and hold      -12.8** 

      3.51 
Horizon       7.2** 

       1.80 
Churn       -3.9** 
                1.07 
Assets                -3.5** 

   1.22 
I-grade       -19.2** 

        5.00 
Premium/Assets         9.2** 

        2.12 
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Abstract

We study a model where a capital provider learns from the price of a firm’s security

in deciding how much capital to provide for new investment. This feedback effect

from the financial market to the investment decision gives rise to trading frenzies,

where speculators all wish to trade like others, generating large pressure on prices.

Coordination among speculators is sometimes desirable for price informativeness and

investment efficiency, but speculators’ incentives push in the opposite direction, so that

they coordinate exactly when it is undesirable. We analyze the effect of various market

parameters on the likelihood of trading frenzies to arise.
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Trading frenzies in financial markets occur when many speculators rush to trade in the

same direction leading to large pressure on prices. Financial economists have long been

searching for the sources of trading frenzies, asking what causes strategic complementarities

in speculators’ behavior. This phenomenon is particularly puzzling given that the price

mechanism in financial markets naturally leads to strategic substitutes, whereby the expected

change in price caused by speculators’ trades makes others want to trade in the opposite

direction.

We argue in this paper that the potential effect that financial-market trading has on

the real economy, i.e., on firms’ cash flows, may provide the mechanism for trading frenzies

to arise. Intuitively, suppose that speculators in the financial market short sell a stock,

leading to a decrease in its price. Since the stock price provides information about the

firm’s profitability, it affects decisions by various agents, such as capital providers. Seeing

the decrease in price, capital providers update downwards their expectation of the firm’s

profitability. This weakens the firm’s access to capital and thus hurts its performance.1 As a

result, the firm’s value decreases, and short sellers are able to make a profit. This creates a

source for complementarities, whereby the expected change in value caused by speculators’

trades makes others want to trade in the same direction, and generates a trading frenzy.

We develop a model to study and analyze this phenomenon. In particular, we study an

environment where a capital provider decides how much capital to provide to a firm for the

purpose of making new real investment. The decision of the capital provider depends on

his assessment of the productivity of the proposed investment. In his decision, the capital

provider uses two sources of information: his private information and the information aggre-

gated by the price of the firm’s security which is traded in the financial market. The reliance

of capital provision on financial-market prices establishes the effect that the financial market

has on the real economy. We refer to this effect as the ‘feedback effect’.2

The financial market in our model contains many small speculators trading a security,

whose payoff is correlated with the cash flow obtained from the firm’s investment. Speculators

trade on the basis of information they have about the productivity of the investment. They

have access to two signals: the first signal is independent across speculators (conditional on

the realization of the productivity), while the second one is correlated among them.3 The

1Other agents that may be affected by the information in the price are managers, employees, customers,

etc.
2In our model the financial market is a secondary market, and hence the only feedback from it to the

firm’s cash flow is informational; there is no transfer of cash from the market to the firm.
3In our model, the correlation is perfect, but this is not essential.
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correlated signals introduce common noise in information into the model, which can be due

to a rumor, for example. A trading frenzy occurs when speculators put large weight on the

correlated signal relative to the idiosyncratic signal, and so they tend to trade similarly to

each other.

To close the model, we introduce noisy price-elastic supply in the financial market. The

market is cleared at a price for which the demand from speculators equals the exogenous

supply. The endogenous price, in turn, reflects information about the productivity of the

investment, as aggregated from speculators’ trades. But, given the structure of information

and trading, the information in the price contains noise from two sources – the noisy supply

and the common noise in speculators’ information. The information in the price is then used

by the capital provider, together with his private information, when making the decision

about capital provision and investment.

Analyzing the weight speculators put on the correlated signal relative to the idiosyncratic

signal, we shed light on the determinants of trading frenzies. In a world with no strategic

effects, this weight is naturally given by the ratio of precisions between the correlated and

the idiosyncratic signals. But, in the equilibrium of our model, there are two strategic effects

that shift the weight away from this ratio of precisions. The first effect is the usual outcome

of a price mechanism. When speculators put weight on the correlated information, this

information gets more strongly reflected in the price, and then the incentive of each individual

speculator to put weight on the correlated information decreases. This generates strategic

substitutes and pushes the weight that speculators put on the correlated information below

the ratio of precisions.4 The second effect arises due to the feedback effect from the price to

the capital provision decision. When speculators put weight on the correlated information,

this information gets to have a stronger effect on the capital provision to the firm and

hence on the real value of its traded security. Then, the incentive of each speculator to put

weight on this information increases. This leads to strategic complementarities that make

speculators put a larger weight on the correlated signal.

This second effect is what causes a trading frenzy, leading speculators to put large weight

on their correlated information, and to trade in a coordinated fashion. When this effect

dominates, our model generates a pattern that looks like a ‘run’ on a stock by many specu-

lators, who are driven by common noise in their correlated signals (e.g. rumor), leading to a

price decline, lack of provision of new capital, and collapse of real value. This echoes some

highly publicized events such as the bear raid on Overstock.com in 2005 or the bear raids

4Strategic substitutes due to the price mechanism appear in various forms in the literature on financial

markets. See, for example, Grossman and Stiglitz (1980).
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on Bear Stearns and Lehman Brothers in 2008.

We investigate what circumstances increase the tendency for a trading frenzy in our

model. First, we show that speculators are more likely to trade in a coordinated fashion

when the supply in the financial market is more elastic with respect to the price. This

can be interpreted as a more liquid market. In such a market, the strategic substitutes

due to the price mechanism are weak, as informed demand is easily absorbed by the elastic

supply without having much of a price impact. Hence, speculators tend to put more weight

on correlated information and trade more similarly to each other. Second, we find that

when there is small variance in the supply function, i.e., when there is small variance in

noise/liquidity trading in the financial market, speculators tend to put large weights on

their correlated signals and thus to act in a coordinated fashion. This is because in these

situations, the capital provider relies more on the information in the price since the price is

less noisy, and so the feedback effect from the market to the firm’s cash flows strengthens,

increasing the scope of strategic complementarities. Third, the precision of various sources

of information also plays an important role in shaping the incentive to rely on correlated

vs. uncorrelated information. Intuitively, there will be more coordination when speculators’

correlated signals are sharper and when their uncorrelated signals are noisier. Interestingly,

there will be more coordination when the capital provider has less precise information of his

own, as then the feedback from the market to his decision is stronger.

Another question we ask is whether trading frenzies are good or bad for the efficiency of

the capital provision decision. We find that they are sometimes good and sometimes bad,

and that there is a conflict between the level of coordination in equilibrium and the one

that maximizes the efficiency of the capital provision decision. The efficiency of the capital

provision decision is maximized when the informativeness of the price is highest. It turns

out that when there is high variance of noise/liquidity trading in the market, higher degree

of coordination among speculators increases price informativeness. This is because, in noisy

markets, coordination among speculators is beneficial in suppressing the noise in liquidity

trading that reduces the informativeness of the price. In such markets, trading frenzies

among speculators are actually desirable because they enable decision makers to detect

some trace of informed trading in a market subject to large volume of liquidity trading and

noise. On the other hand, when the market is less noisy, the importance of coordination

among speculators declines, and the additional noise that coordination adds via the excess

weight that speculators put on their correlated information (which translates into weight on

common noise) makes coordination undesirable. Hence, the conflict arises because high levels

of coordination are desirable in noisy markets, but in equilibrium, speculators coordinate
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more in less noisy markets.

Finally, our model assumes that speculators submit market orders, as in Kyle (1985), i.e.,

they do not condition on the price when they trade. This is consistent with many real-world

situations where traders are prepared to take on price risk to achieve greater immediacy in

trading. In the penultimate section of the paper, we extend the model to allow speculators

to condition on the price. Strategic interactions disappear if speculators observe exactly the

same message from the market that is observed by the capital provider. But, this assumption

is not very realistic, as capital providers are exposed to various sources of market information

–e.g., future prices (if the capital provider acts with a lag), prices from other markets, or

even rumours – that are not all perfectly observable to speculators when they trade. Hence,

we develop a version of the model where the speculators condition their trades on the price,

but the capital provider is exposed to another piece of information correlated with the price.

We show how strategic interactions reemerge and discuss when they lead to frenzies like in

our main model.

Our paper builds on a small, but growing, branch of models in financial economics that

consider the feedback effect from trading in financial markets to corporate decisions. The

basic motivation for this literature goes back to Hayek (1945), who posited that market

prices provide an important source of information for various decision makers. Empirical

evidence for this link is provided by Luo (2005) and Chen, Goldstein, and Jiang (2007).

On the theoretical side, earlier contributions to this literature include Fishman and Hagerty

(1992), Leland (1992), Khanna, Slezak, and Bradley (1994), Boot and Thakor (1997), Dow

and Gorton (1997), Subrahmanyam and Titman (1999), and Fulghieri and Lukin (2001).

Several recent papers in this literature are more closely related to the mechanism in our

paper. Ozdenoren and Yuan (2008) show that the feedback effect from asset prices to the real

value of a firm generates strategic complementarities. In their paper, however, the feedback

effect is modeled exogenously and is not based on learning. As a result, their paper does not

deliver the implications that our paper delivers on the effect of liquidity and various informa-

tion variables on coordination and efficiency. Khanna and Sonti (2004) also model feedback

exogenously and show how a single trader can increase the value of his existing inventory in

the stock by trading to affect the value of the firm. Goldstein and Guembel (2008) do analyze

learning by a decision maker, and show that this might lead to manipulation of the price by

a single potentially informed trader. Hence, the manipulation equilibrium in their paper is

not a result of strategic complementarities among heterogeneously informed traders. Dow,

Goldstein, and Guembel (2007) show that the feedback effect generates complementarities

in the decision to produce information, but not in the trading decision.
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More generally, our paper is related to the literature on informational externalities in fi-

nancial markets. In particular, Vives (1993), Amador and Weil (2011) and others show how

the reliance of agents on public information imposes negative externalities on others, as it

reduces the efficiency of learning. Our paper shows how the weight on common information

increases due to strategic complementarities that emerge as a result of the informational

feedback from the market to real investment. Other papers explore other sources of com-

plementarities in financial markets. For example see, Froot, Scharfstein, and Stein (1992),

Hirshleifer, Subrahmanyam, and Titman (1994), Bru and Vives (2002), Veldkamp (2006a

and 2006b), Ganguli and Yang (2009), Amador and Weil (2011), and Garcia and Strobl

(2011).

Our paper is most closely related to Goldstein, Ozdenoren, and Yuan (2011) and Angele-

tos, Lorenzoni, and Pavan (2010). Both of these papers derive endogenous complementarities

as a result of learning from the aggregate action of agents. To analyze trading frenzies and

their impact on real investments, we embed this mechanism in a model of financial markets

where a capital provider learns from the price to make an investment decision. Modeling

the financial market explicitly enriches the problem in various ways. For example, having a

price mechanism introduces strategic substitutes that coexist with the strategic complemen-

tarities in the model. Also, the ability of speculators to learn from the aggregate action in

the rational-expectations-equilibrium extension gives rise to other effects mentioned above.5

Hence, our model is substantially different from the above mentioned models. In terms of

results, our model generates new insights in the context of our study, such as the effect of

supply elasticity and noise trading on coordination in financial markets. We also derive new

results on the difference between the equilibrium level of coordination and the efficient level

of coordination.

The remainder of this paper is organized as follows. In Section 1, we present the model

setup and characterize the equilibrium of the model. In Section 2, we solve the model.

Section 3 analyzes the determinants of coordination among speculators in our model. In

Section 4, we discuss the implications for the efficiency of investments and the volatility of

prices and investments. In Section 5, we extend the model to allow speculators to condition

their trades on the price. Section 6 concludes. All proofs are provided in the appendix.

5Another technical detail that we highlight in the description of the model is the use of log-normal

distributions, which is necessary in a setting of feedback from financial-market prices to investment decisions.
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1 Model

The model has one firm and a traded asset. There is a capital provider who has to decide

how much capital to provide to the firm for the purpose of making an investment. There

are three dates, t = 0, 1, 2. At date 0, speculators trade in the asset market based on their

information about the fundamentals of the firm. At date 1, after observing the asset price

and receiving private information, the capital provider of the firm decides how much capital

the firm can have and the firm undertakes investment accordingly. Finally, at date 2, the

cash flow is realized and agents get paid.

1.1 Investment

The firm in this economy has access to a production technology, which at time t = 2

generates cash flow F̃ I. Here, I is the amount of investment financed by the capital provider,

and F̃ ≥ 0 is the level of productivity. Let f̃ denote the natural log of productivity, f̃ = ln F̃ .

We assume that f̃ is unobservable and drawn from a normal distribution with mean f̄ and

variance σ2
f . We use τf to denote 1/σ2

f . As will become clear later, assuming a log-normal

distribution for the productivity shock F̃ enables us to get a tractable closed-form solution.

At time t = 1 the capital provider chooses the level of capital I. Providing capital is

costly and the capital provider must incur a private cost of: C(I) = 1
2
cI2, where c > 0.

This cost can be thought of as the cost of raising the capital, which is increasing in the

amount of capital provided, or as effort incurred in monitoring the investment (which is

also increasing in the size of the investment). The capital provider’s benefit increases in the

cash flow generated by the investment. To ease the exposition, we say that he captures the

full amount F̃ I.6 The capital provider chooses I to maximize the value of the cash flow

from investing in the firm’s production technology minus his cost of raising capital C(I),

conditional on his information set, Fl, at t = 1:

I = arg max
I

E[F̃ I − C(I)|Fl]. (1)

The solution to this maximization problem is:

I =
E[F̃ |Fl]

c
. (2)

The capital provider’s information set, denoted by Fl, consists of a private signal s̃l

and the asset price P observed at date 0 (we will elaborate on the formation of P next).

6As we discuss below, the model will generate similar results if we assume that the capital provider gets

a portion of the cash flow: βF̃ I. But, then we would need to carry another parameter, β.
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That is, Fl = {s̃l, P}. The private signal s̃l is a noisy signal about f̃ with precision τl:

s̃l = f̃ + σl ǫ̃l, where ǫ̃l is distributed normally with mean zero and standard deviation one

and τl = 1/σ2
l . Later, we will conduct comparative statics with respect to the precision

of the capital provider’s private signal. It is important to emphasize that even though our

capital provider learns from the information in the price, he still may have good sources of

private information. In fact, his signal can be more precise than other signals in the economy.

Despite this, he still attempts to learn from the market, as agents in the market have other

signals that are aggregated by the price.

1.2 Speculative Trading

The traded asset is a claim on the payoff from the firm’s investment F̃ I, which is realized

at the final date t = 2. The price of this risky asset at t = 0 is denoted by P . One way to

think about the traded asset is as a derivative, whose payoff is tied to the return from the

investment. It can also be viewed as equity, to the extent that the value of the firm is F̃ I

(and so the cost of the investment C(I) is privately incurred by the capital provider).7 It

should be noted that, no matter what the nature of the asset is, our market is a secondary

market with no cash transfers to the firm. The only effect of the market on the firm will be

via the information revealed in the trading process.

In the market, there is a measure-one continuum of heterogeneously informed risk-neutral

speculators indexed by i ∈ [0, 1]. Each speculator is endowed with two signals about f̃ at

time 0. The first signal, s̃i = f̃+σsǫ̃i, is privately observed where ǫ̃i is independently normally

distributed across speculators with mean zero and unit variance. The precision of this signal

is denoted as τs = 1/σ2
s . The second signal is s̃c = f̃ + σcǫ̃c. This signal is observed by

all speculators and ǫ̃c is independently and normally distributed with mean zero and unit

variance and τc = 1/σ2
c .

8

7In this case, we could analyze our model assuming that this value is shared between the capital provider

and shareholders, such that the former receives βF̃ I and the latter receive (1 − β) F̃ I. This would not change

our results, but will add complexity due to the additional parameter β. Hence, we omit β in the paper.
8The assumption that the second signal is a common signal greatly simplifies the analysis. However, it

is not necessary. The necessary element is that the noise in the information observed by speculators has

a common component that cannot be fully teased out by the capital provider. In Goldstein, Ozdenoren,

and Yuan (2010), we analyzed an alternative setup, where the second signal is specified as a heterogenous

private signal with a common noise component ǫ̃c and an agent-specific noise component ǫ̃2i. That is,

s̃ci = f̃ + σcǫ̃c + σǫ2ǫ̃2i, where ǫ̃c and ǫ̃2i are independently normally distributed variables with mean zero

and variance one. That paper, however, was simpler on other dimensions, as there was no price formation

for the traded asset.
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Each speculator can buy or sell up to a unit of the risky asset. The size of speculator i’s

position is denoted by x (i) ∈ [−1, 1]. This position limit can be justified by limited capital

and/or borrowing constraints faced by speculators.9 Due to risk neutrality, speculators

choose their positions to maximize expected profits. A speculator’s profit from shorting one

unit of the asset is given by P − F̃ I, where F̃ I is the asset payoff and P is the price of the

asset. Similarly, a speculator’s profit from buying one unit of the asset is given by F̃ I − P .

Formally, speculator i chooses x(i) to solve:

max
x(i)∈[−1,1]

x (i) E
[
F̃ I − P |Fi

]
, (3)

where Fi denotes the information set of speculator i and consists of s̃i and s̃c. Since each

speculator has measure zero and is risk neutral, an informed speculator optimally chooses to

either short up to the position limit, or buy up to the position limit. We denote the aggregate

demand by speculators as X =
∫ 1

0
x (i) di, which is given by the fraction of speculators who

buy the asset minus the fraction of those who short the asset. For now, we assume that

speculators do not observe the price when they trade, and hence they submit market orders,

as in Kyle (1985). We discuss the role of this assumption in the extension in Section 5.

1.3 Market Clearing

At date 0, conditional on his information, each speculator submits a market order to

buy or sell a unit of the asset to a Walrasian auctioneer. The Walrasian auctioneer then

obtains the aggregate demand by speculators X and also a noisy supply curve from unin-

formed traders, and sets a price to clear the market. The noisy supply of the risky asset is

exogenously given by Q(ξ̃, P ), a continuous function of an exogenous demand shock ξ̃ and

the price P . The supply curve Q(ξ̃, P ) is strictly decreasing in ξ̃, and increasing in P , that

is, it is upward sloping in price. The demand shock ξ̃ ∈ R is independent of other shocks

in the economy, and ξ̃ ∼ N(0, σ2
ξ ). As always, we denote τξ = 1/σ2

ξ . The usual interpre-

tation of noisy supply/demand is that there are agents who trade for exogenous reasons,

such as liquidity or hedging needs. They are usually referred to as “noise traders”. Several

papers in the finance literature have explicitly endogenized the actions of these traders in

simpler settings, but doing so here will significantly complicate the model. Our paper derives

interesting comparative statics with respect to the amount of noise trading in the market

(captured by σ2
ξ ).

9The specific size of this position limit on asset holdings is not crucial for our results. What is crucial is

that informed speculators cannot take unlimited positions; if they do, strategic interaction among informed

speculators will become immaterial.
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To solve the model in closed form, we assume that Q(ξ̃, P ) takes the following functional

form:

Q(ξ, P ) = 1 − 2Φ
(
ξ̃ − α ln P

)
, (4)

where Φ (·) denotes the cumulative standard normal distribution function. The parameter

α captures the elasticity of the supply curve with respect to the price. It can be interpreted

as the liquidity of the market: when α is high, the supply is very elastic with respect to the

price, and so large informed demand is easily absorbed in the price without having much

of a price impact. This notion of liquidity is similar to that in Kyle (1985), where liquidity

is considered high when the informed trader has a low price impact. The basic features

assumed in (4), i.e., that the supply is increasing in price and also has a noisy component,

are standard in the literature. It is also common in the literature to assume particular

functional forms to obtain tractability. The specific functional form assumed here is close to

that in Dasgupta (2007) and Hellwig, Mukherji, and Tsyvinski (2006) .

1.4 Equilibrium

We now turn to the definition of equilibrium.

Definition 1: [Equilibrium with Market Orders ] An equilibrium consists of a price func-

tion, P (f̃ , ǫ̃c, ξ̃) : R
3 → R, an investment policy for the capital provider I(s̃l, P ) : R

2 → R,

strategies for speculators, x(s̃i, s̃c) : R
2 → [−1, 1], and the corresponding aggregate demand

X(f̃ , ǫ̃c), such that:

• For speculator i, x(s̃i, s̃c) ∈ arg maxx(i)∈[−1,1] x(i)E
[
F̃ I − P |s̃i, s̃c

]
;

• The capital provider’s investment is I(s̃l, P ) = E
[
F̃ |s̃l, P

]
/c.

• The market clearing condition for the risky asset is satisfied:

Q(ξ̃, P ) = X(f̃ , ǫ̃c) ≡
∫

x(f̃ + σsǫ̃i, f̃ + σcǫ̃c)dΦ (ǫ̃i) . (5)

Definition 2: A linear monotone equilibrium is an equilibrium where x(s̃i, s̃c) = 1 if

s̃i + ks̃c ≥ g for constants k and g, and x(s̃i, s̃c) = −1 otherwise.

In words: in a monotone linear equilibrium, a speculator buys the asset if and only if a

linear combination of his signals is above a cutoff g, and sells it otherwise. In the rest of the

paper we focus on linear monotone equilibria.
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2 Solving the Model

In this section, we explain the main steps that are required to solve our model. Restricting

attention to a linear monotone equilibrium, we first use the market clearing condition to

determine the asset price. We then characterize the information content of the asset price to

derive the capital provider’s belief on f̃ based on {P, s̃l} and solve for the optimal investment

problem. Finally, given the capital provider’s investment rule and the asset pricing rule, we

solve for individual speculators’ optimal trading decision.

In a linear monotone equilibrium, speculators short the asset whenever s̃i + ks̃c ≤ g or,

equivalently, σsǫ̃i ≤ g− (1 + k) f̃ −kσcǫ̃c. Hence, their aggregate selling can be characterized

by: Φ
((

g − (1 + k) f̃ − kσcǫ̃c

)
/σs

)
. Conversely, they purchase the asset whenever s̃i +

ks̃c ≥ g or, equivalently, σsǫ̃i ≥ g − (1 + k) f̃ − kσcǫ̃c. Hence, their aggregate purchase can

be characterized by 1 − Φ
((

g − (1 + k) f̃ − kσcǫ̃c

)
/σs

)
. The net holding from speculators

is then:

X
(
f̃ , ǫ̃c

)
= 1 − 2Φ

(
g − (1 + k) f̃ − kσcǫ̃c

σs

)
. (6)

The market clearing condition together with equation (4) indicate that

1 − 2Φ

(
g − (1 + k)f̃ − kσcǫ̃c

σs

)
= 1 − 2Φ

(
ξ̃ − α ln P

)
. (7)

Therefore the equilibrium price is given by

P = exp

(
(1 + k)f̃ + kσcǫ̃c − g + σsξ̃

ασs

)
= exp

(
f̃ + ks̃c − g + σsξ̃

ασs

)
, (8)

which is informationally equivalent to

z(P ) ≡ g + ασs ln P

1 + k
= f̃ +

k

1 + k
σcǫ̃c +

1

1 + k
σsξ̃ =

(
1

1 + k

)
f̃ +

k

1 + k
s̃c +

1

1 + k
σsξ̃. (9)

From the above equation, we can see that z(P ), which is a sufficient statistic for the

information in P , provides some information about the realization of the productivity shock

f̃ . Yet, the signal z(P ) is not fully revealing of f̃ , as it is also affected by the noise in the

common signal ǫ̃c and by the noisy demand ξ̃. Since the capital provider observes z(P ), he

will use it to update his belief about the productivity. Note that z (P ) is distributed normally

with a mean of f̄ . The variance of z(P ) given f̃ is σ2
p = (k/(1 + k))2σ2

c + (1/(1 + k))2σ2
sσ

2
ξ .

Hence, we denote the precision of z(P ) as a signal for f̃ as:

τp = 1/σ2
p =

(1 + k)2τcτξτs

k2τξτs + τc

. (10)
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After characterizing the information content of the price, we can derive the capital

provider’s belief on f̃ . That is, conditional on observing s̃l and z (P ), the capital provider

believes that f̃ is distributed normally with mean
(
τf f̄ + τls̃l + τpz (P )

)
/ (τf + τl + τp) and

variance 1/ (τf + τl + τp). Then, using the capital provider’s investment rule in equation (1)

and taking expectations, we can express the level of investment as:

I =
1

c
E[F̃ |s̃l = sl, P ] =

1

c
E[exp

(
f̃
)
|s̃l = sl, P ] (11)

=
1

c
exp

(
τf f̄ + τlsl + τpz (P )

τf + τl + τp

+
1

2(τf + τl + τp)

)
.

Given the capital provider’s investment policy in (11) and the price in (8), we can now

write speculator i’s expected profit from buying the asset given the information that is

available to him (shorting the asset would give the negative of this):

E
[
F̃ I − P |s̃i, s̃c

]
=

1

c
E

[
exp

(
τf f̄ + τlsl + τpz (P )

τf + τl + τp

+
1

2(τf + τl + τp)
+ f̃

)
|s̃i, s̃c

]

−E

[
exp

(
f̃ + ks̃c − g + σsξ̃

ασs

)
|s̃i, s̃c

]
. (12)

Note that we made use here of the fact that F̃ = exp
(
f̃
)
. This is where using the natural log

of the productivity parameter plays a key role. Using the properties of the exponential func-

tion, we can express the value of the firm F̃ I as 1
c
exp

((
τf f̄ + τlsl + τpz (P ) + 1/2

)
/ (τf + τl + τp) + f̃

)
,

where the expression in parentheses is linear in f̃ . This enables us to get a linear closed-form

solution, which would otherwise be impossible in a model of feedback.

Conditional on observing s̃i and s̃c, speculator i believes that f̃ is distributed normally

with mean
(
τf f̄ + τss̃i + τcs̃c

)
/ (τf + τs + τc) and variance 1/ (τf + τs + τc). Hence, substi-

tuting for z (P ) (from (9)) and taking expectations, equation (12) can be rewritten as:

E
[
F̃ I − P |s̃i, s̃c

]
=

1

c
exp (a0 + a1s̃i + a2s̃c) − exp (b0 + b1s̃i + b2s̃c) , (13)

where the coefficients a0, a1, a2, b0, b1, and b2 are functions of k and of the model’s parameters.

Explicit expressions for these coefficients are provided in the proof of Proposition 1 in the

appendix.

A speculator will choose to buy the asset if and only if (13) is positive. Rearranging and

taking logs leads to the following condition:

s̃i + B (k) s̃c ≥ C (k) (14)

where B (k) = (a2 − b2) / (a1 − b1) and C (k) = (b0 − a0 + ln c) / (a1 − b1).
10 Function B(k)

can be thought of as the best response of a speculator to other speculators’ weight on the

10Here, we assume that a1 − b1 > 0. This is verified later in the proof of Proposition 1.
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correlated signal. That is, if all speculators in the economy put a relative weight k on the

correlated signal when deciding whether to attack or not, the best response for a speculator

is to put the weight B(k) on his correlated signal. The symmetric equilibrium is solved when

B (k) = k. Recall that a1, a2, b1, and b2 are also functions of k, and hence the equilibrium

condition B (k) = k leads to a third-order polynomial. Analyzing this polynomial, we obtain

the result in the following proposition. All proofs are in the Appendix.

Proposition 1: For a high enough level of supply elasticity α, there exists a monotone

linear equilibrium characterized by weight k∗ > 0 that speculators put on the common signal.

This equilibrium is unique when the precision of the prior τf is sufficiently small.

The weight k∗ that speculators put on the common signal in equilibrium captures the

degree of coordination in their trading decisions. When k∗ is high, speculators put a large

weight on the common information when deciding whether to sell or buy the asset. This

leads to large coordination among them and gives rise to a trading frenzy. In the upcoming

sections, we develop a series of results on the determinants of coordination and its implica-

tions for the efficiency of the investment decision and for the volatility of prices. We focus

on the case of large supply elasticity (large α) and imprecise prior (small τf ), for which we

know that there exists a unique equilibrium.

3 The Determinants of Speculators’ Coordination

The weight that speculators put on the common signal in this model is affected by the

degree to which there are strategic complementarities or strategic substitutes among them.

To see the sources of the two strategic effects, recall from (3), that a speculator’s expected

profit is x (i) E
[
F̃ I − P |Fi

]
. When other speculators put more weight on the common

signal, this signal gets to have a stronger effect on the price P , as well as on the real value

of the security F̃ I (since the capital provider’s investment decision is affected by the price).

The first effect pushes the speculator to put a lower weight on the common signal, since

relying on the common signal more heavily implies paying a high price when buying and a

low price when selling. On the other hand, the second effect pushes the speculator to put

a higher weight on the common signal, since relying on the common signal more heavily

implies buying a security with high value and selling one with low value. Hence, the source

of strategic substitutes in our model is the price mechanism, which is usual in models of

financial markets, while the source of strategic complementarities is the feedback effect to

the real value of the security.
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In a world without these strategic effects, the weight that speculators put on the common

signal relative to the private signal would be equal to the ratio of precisions between the

signals: τc/τs. But, with strategic effects, the equilibrium weight on the common signal k∗

reflects the sum of the strategic effects on top of the precisions ratio; where the strategic

substitutes due to the price mechanism push k down and the strategic complementarities due

to the feedback effect push it up. In the rest of this section, we formally isolate the various

determinants of coordination to understand the impact of each factor on the equilibrium

level of coordination.

3.1 Impact of Learning by the Capital Provider

Suppose that there is no feedback effect from prices to real values, because the capital

provider does not learn from the price. In this case, the capital provider’s decision on how

much capital to provide becomes (this equation is analogous to equation (11) in the main

model):

I =
1

c
E[F̃ |s̃l = sl] =

1

c
exp

(
τf f̄ + τlsl

τf + τl

+
1

2(τf + τl)

)
. (15)

We again solve for the linear monotone equilibrium where speculators buy the asset if and

only if s̃i + kBM s̃c ≥ gBM (the subscript BM stands for ‘benchmark’), and purchase the

asset otherwise. Given the investment rule in (15), the expected profit for speculator i from

buying the asset, given the information available to him, becomes (this equation is analogous

to equation (12) in the main model):

E[F̃ I − P |s̃i, s̃c] = E

[
1

c
exp

(
τf f̄ + τlsl

τf + τl

+
1

2(τf + τl)

)
F̃ |s̃i, s̃c

]
(16)

−E

[
exp

(
1

ασs

(
f̃ + kBM s̃c − gBM + σsξ̃

))
|s̃i, s̃c

]
.

For a speculator who buys the asset, (16) must be positive. Taking expectation and rear-

ranging, we can see that a speculator buys the asset if and only if s̃i + BBM (k) s̃c ≥ CBM

where11

BBM (k) =
τc

τs

−
√

τs

α
k

τs

τf +τs+τc

(
τf +2τl

τf +τl
−

√
τs

α

) . (17)

11The expression for CBM and other details are in the proof of Proposition 2.
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Solving BBM (k) = k, as in the main model, we obtain the equilibrium weight that speculators

put on the common signal in the case of no feedback effect from price to real investment:

kBM =

((
1 −

√
τs

α

)
τf +

(
2 −

√
τs

α

)
τl

)
τc

(√
τs

α

)
(τf + τl) (τc + τf + τs) +

((
1 −

√
τs

α

)
τf +

(
2 −

√
τs

α

)
τl

)
τs

. (18)

Inspecting (18), we can see that kBM is lower than τc/τs, and that it approaches τc/τs as

α gets very large. The intuition is as follows: τc/τs represents the ratio of precisions between

the common signal and the idiosyncratic signal. This is the relative weight that speculators

would put on the common signal if there were no strategic interactions. In a world without a

feedback effect, the only strategic interaction between the speculators comes from the price

mechanism, which generates strategic substitutes that reduce kBM below τc/τs. As α gets

very large, this effect weakens, since the supply is highly elastic in the price, and so the price

is not strongly affected by speculators’ trades. Hence, speculators converge to the weight of

τc/τs.

The following proposition summarizes the properties of kBM and its relation to the equi-

librium weight k∗ in the main model.

Proposition 2: If the capital provider does not learn from the price when making lending

decisions, the weight speculators put on the common signal kBM is given by (18). For a

high enough level of supply elasticity α, kBM is strictly below the equilibrium weight k∗ that

speculators put on the common signal in the main model (with a feedback effect).

We can see that when we shut down the feedback effect from the price to real investment,

the weight that speculators put on the common signal decreases. This is in line with our

discussion above, according to which the feedback effect from prices to real investment is the

source of complementarity in speculators’ strategies, making them want to put more weight

on the common signal. Hence, the feedback effect is the cause of trading frenzies in our

model.

For illustration, we plot the best response function for our main model (as in equation

(14)) and for the benchmark case (as in equation (17)) in Figure (1). In the figure, the

intersections of B (k) and BBM (k) with the 45-degree line establish the equilibrium weights

k∗ and kBM , respectively. As we see in the figure, B(0) = BBM(0) = τc/τs. That is, in both

cases, if other speculators put no weight on the common signal, a speculator finds it optimal

to use the ratio of precisions between the common signal and the idiosyncratic signal as the

weight for the common signal. This is because when other speculators do not put weight on
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Figure 1: Best Response: B(k) and BBM(k)

the common signal, this signal is essentially like a private signal and hence it gets weighted

solely based on its precision.

Once k increases above 0, strategic substitutability from the price mechanism emerges

in the benchmark model. Indeed, the best response BBM (k) is a decreasing function of k:

when others put more weight on the common signal, this signal gets more strongly reflected

in the price, making an individual speculator reduce the weight he puts on the common

signal. By contrast, in our main model, in addition to strategic substitutability from the

price mechanism, strategic complementarity also emerges due to the feedback effect. For

α large enough, the effect from strategic complementarity dominates that from strategic

substitutability, resulting in B(k) increasing above τc/τs. As the figure shows, this results in

a higher equilibrium weight on the common signal in the main model than in the benchmark

model, which is proved formally in the proof of Proposition 2.

3.2 Impact of Supply Elasticity

The parameter α captures the elasticity of supply with respect to price in our model.

When α is high, the supply of shares is very sensitive to the price, meaning that an increase

in demand by informed traders is quickly absorbed in the market, so that informed trading
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does not have a large price impact. As mentioned above, α can then be interpreted as a

measure of liquidity, and our model can be used to tell what is the effect of liquidity on

trading frenzies. The following proposition tells us that the extent to which speculators

coordinate on the common signal increases in the level of liquidity α.

Proposition 3: The equilibrium level of coordination k∗ is increasing in the supply elas-

ticity α, and for α large enough k∗ is greater than the precisions ratio τc/τs.

In illiquid markets, order flows have a large effect on the price. Then, when speculators

put more weight on the common signal, this signal has a substantial effect on the price, and

so other speculators want to put less weight on the common signal. This effect decreases as

α goes up and liquidity improves. Hence, in liquid markets there is a greater tendency for

coordination and trading frenzies. As the proposition shows, when α is large enough, the

weight on the common signal increases beyond the ratio of precisions τc/τs.

3.3 Impact of Noise Trading

Noise trading is captured in our model by the variable ξ̃ ∼ N(0, σ2
ξ ). A high level of

σ2
ξ implies that the market is exposed to large levels of noise trading. In the literature on

financial markets, this introduces noise to the price, and in the presence of a feedback effect,

it makes it harder to base investment decisions on the price. In our model, we examine

the effect of noise trading on speculators’ coordination. As we will see later, this will have

further implications for the informativeness of the price.

Proposition 4: For a high enough level of supply elasticity α, the equilibrium weight k∗

that speculators put on the common signal is decreasing in the variance of noise trading σ2
ξ .

The intuition here goes as follows: With high variance in the noise demand, there is high

variance in the market price for reasons that are not related to speculators’ trades. As a

result, the reliance of the capital provider on the information in the price decreases. This

weakens the feedback effect and hence the strategic complementarities among speculators,

leading to a lower level of k∗.

It is worth noting that changes in the position limits of speculators will have similar

effects to changes in the variance of noise trading. For example, if speculators could choose

positions in the range [−2, 2] (instead of [−1, 1], assumed in the paper), they would have

more impact on the capital provider’s decision for a given level of σ2
ξ and thus would put a

larger weight on the common signal in equilibrium. Hence, the effect of loosening speculators’

trading constraints is similar to that of reducing the variance of noise trading.
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3.4 Impact of the Information Structure

We now establish comparative statics results on the effect of the informativeness of various

signals on the equilibrium level of coordination. The results are summarized in the next

proposition.

Proposition 5: For a high enough level of supply elasticity α, the equilibrium level of

coordination k∗ decreases in the precision of speculators’ private signals τs, increases in the

precision of their common signal τc, and decreases in the precision of the capital provider’s

signal τl.

These results are intuitive. Speculators put more weight on the common signal relative

to the private signal when the common signal is more precise (τc is higher) and the pri-

vate signal is less precise (τs is lower). Hence, trading frenzies are more likely when the

common information becomes more precise relative to speculators’ idiosyncratic sources of

information. Less obvious is the result that the tendency for coordination among speculators

decreases when the capital provider has more precise information (τl is higher). The reason

is that when the capital provider has more precise information, he relies less on the price,

and so the feedback effect from markets to real decisions weakens, and there is less scope for

strategic complementarities.

3.5 A Note on the Nature of the Traded Security

Before moving to the next section, we would like to discuss the nature of the traded

security. Our model assumes that the traded security is a claim on the cash flow from the

investment F̃ I. As we note in Section 1, this can be interpreted as a derivative, or, under

some conditions, as equity of the traded firm (in which case it is simple to change the model

so that the traded security is a claim on some portion β of the cash flow F̃ I).

The key feature of the traded security is that its cash flow depends on the investment

decision I. This introduces a feedback loop between the financial market and the real

economy, whereby the price affects the investment decision, and the investment decision is

reflected in the price. This feedback loop is the crucial element for our result on strategic

complementarities and trading frenzies. To illustrate this, note that if the traded security

was a claim on the fundamental F̃ , there would be no feedback loop and no frenzies. When

speculators trade on F̃ , the value of the security is exogenous and hence does not depend on

speculators’ behavior; this eliminates the strategic interaction that is central to our paper. It

is worth noting that a security on F̃ might also not be easy to implement, since F̃ is not an
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easily verifiable cash flow (unlike F̃ I, which is the cash flow from the investment). Indeed,

most real-world financial securities are similar to the security we describe here in that they

provide a claim on a cash flow that depends on fundamental and firm action.

Another possible security that features a feedback loop is one that provides a claim on

the net return from the investment F̃ I − C(I). Unfortunately, we are unable to solve a

model with this traded security. To see this, go back to (12). The expected value of the

security for a speculator E
[
F̃ I|s̃i, s̃c

]
is expressed there as one exponential term (given our

log-normal distributions), which is crucial for our ability to find a linear solution. If the

traded security was F̃ I − C(I), we would have two exponential terms, which would render

the steps for finding a linear solution impossible. We think that the basic message of our

model – the emergence of strategic interactions among speculators due to the informational

feedback from the security to the investment decision – will not change under this alternative

security, albeit some of the details may change. As mentioned, with the existing techniques,

such a model is unsolvable.

4 Coordination, Investment Efficiency, and Non-Fundamental

Volatility

In this section, we explore the effect that coordination has on the efficiency of investment

decisions and on market volatility. To analyze investment efficiency, we look at the ex ante

expected net benefit of investment (i.e. expected net benefit before any of the signals are

realized given the prior belief that f̃ is normally distributed with mean f̄ and precision τf )

from the perspective of the capital provider. We keep the information structure the same

as before, and in particular, in the interim stage we allow the capital provider to obtain

information only from his private signal and the price. So our efficiency criterion is given by:

E0

[
max

I
E

[
F̃ I − 1

2
cI2 |s̃l = sl, P

]]
, (19)

where a speculator purchases the asset if s̃i +ks̃c ≥ g and shorts it otherwise (for constant k

and g) and P is the market clearing price. We denote the optimal level of coordination kOP

to be the one that maximizes investment efficiency as in (19).

The following proposition characterizes kOP , and how it is linked to the accuracy of the

information inferred from the market price, τp:

Proposition 6: The level of coordination that maximizes investment efficiency is kOP =

τc/ (τsτξ), which also maximizes the precision of the price τp.
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The capital provider cares about the events in the security market only to the extent that

they affect the quality of the information he has when making the investment decision. Hence,

the level of coordination that maximizes investment efficiency is the one that maximizes the

accuracy of the information in the market price. Examining the expression for the price

signal in (9), we can see that there is a tradeoff in setting the level of coordination. The

tradeoff arises because there are two sources of noise in the price, one coming from the noise

trading ξ̃ and the other one from the noise in the common signal ǫ̃c. (The first source of noise

becomes more prominent when speculators’ private information is noisy – τs is low – because

then noise trading becomes relatively more important.) A high level of coordination reduces

the effect of the first source of noise – as coordinated speculative trading helps overcoming

the large volume of noise trading – and increases the effect of the second source of noise – as

coordinated speculative trading increases the weight on the common signal. Therefore, the

optimal level of coordination will be high when the potential damage from noise trading is

high (τξ and τs are low) or when the potential damage from noise in the common signal is

low (τc is high). Then, kOP = τc/ (τsτξ).

It is interesting to compare the optimal level of coordination characterized here with the

level of coordination that is obtained in equilibrium. From Proposition 4 we know that in

equilibrium speculators coordinate more when the variance in the noise trading is low (τξ is

high). A high τξ implies that speculators’ trades have more effect on the capital provider’s

decision, increasing the scope of strategic complementarities. Yet, this is exactly when

coordination is not desirable for the efficiency of the investment. Hence, there is a sharp

contrast between the profit incentives of speculators and the efficiency of the investment.

Speculators coordinate more exactly when it is inefficient to do so. The following proposition

summarizes the comparison between the optimal level of coordination and the equilibrium

level of coordination.

Proposition 7: For a high enough level of supply elasticity α, there exists τ̄ξ such that

the level of coordination that maximizes investment efficiency is greater than the equilibrium

level of coordination (kOP > k∗) when the precision of the noise trading distribution τξ is

below τ̄ξ. Similarly, kOP < k∗ for τξ > τ̄ξ.

The proposition says that speculators coordinate too much in markets with less noise

trading and coordinate too little in markets with more noise trading. Interestingly, this

implies that trading frenzies are only sometimes undesirable. When there is high variation

in noise trading, price informativeness would improve if speculators coordinated their trades

more to provide a signal that overcomes the effect of noise trading. Yet, it is exactly in this
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case that they find coordination less profitable in equilibrium.

We close this section by noting some of the implications of inefficient coordination levels.

Deviations from the optimal level of coordination kOP are manifested in our model by higher

levels of non-fundamental volatility. We define this as volatility that does not come from the

variability in fundamental. The following proposition establishes the link between the level

of coordination and non-fundamental volatility of price and investment.

Proposition 8: (a) Non-fundamental volatility of asset price is minimized at k = kOP

(where its value is 1/(τc + τsτξ)).

(b) Similarly, non-fundamental volatility of investment is minimized at k = kOP (where

its value is 1/(τl + τc + τsτξ)).

This proposition indicates that the strategic interactions among speculators in the finan-

cial markets often lead to non-fundamental volatility in prices as well as real activities. The

source of this non-fundamental volatility could come from either too low coordination (that

is, when the market is characterized by a high amount of noise trading) or too high coordi-

nation (that is, when the market has low noise trading and the noise in the correlated signals

among speculators is high). Note that non-fundamental volatility is difficult to measure since

it is defined as the volatility that does not come from fundamentals, while the volatility of

fundamentals is unobservable (the volatility of cash flow is observable, but includes volatility

due to noise). Hence, this notion is interesting mostly for theoretical reasons.

5 A Model where Speculators Learn from the Price

So far in the paper, we assumed that speculators in the financial market submit market

orders that are not conditioned on the price. This assumption is common in the literature

on financial markets, going back to Kyle (1985). It is also consistent with many situations

in the real world, as speculators often face price risk when they trade without knowing the

exact price (speculators may prefer this strategy over fully conditioning on the price, as this

provides them greater immediacy in trading). In this section, we explore the importance of

this assumption for our main result, which is the emergence of strategic complementarities

among speculators due to the informational feedback from the price of the security to the

investment decision.

As we explained before, the mechanism behind the strategic complementarities in our

paper goes as follows: when speculators put more weight on the common signal, this signal

gets to have a greater effect on the value of the security via the information conveyed by
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the price to the capital provider. Then, given this behavior of other speculators, each

individual speculator finds it optimal to put more weight on the common signal himself.

When speculators observe the price or fully condition on the price in this framework (as in

Grossman and Stiglitz (1980)), strategic complementarities disappear. Once they observe

the price, speculators know the message transmitted from the market to the capital provider,

and so conditional on the price, they do not care what other speculators are doing. Indeed,

one can show that if we just add the assumption that speculators fully condition on the price

to our model, the weight that speculators put on the common signal will always be fixed at

the precisions ratio: τc/τs (as it is in the case of no strategic effects).

But, the above rational-expectations framework makes a very strong assumption: that

the exact aggregate message from the market that is observed by the capital provider is also

observed by each and every speculator. This eliminates the higher-order beliefs that are im-

portant for our complementarities to arise. This assumption is also not very realistic. In the

real world, capital providers (or other decision makers) may receive a market-related signal

that is not perfectly observable to traders. For example, when the timing of traders’ trading

decision and the capital provider’s investment decision do not coincide, their information

sets may not be perfectly correlated. This happens when traders condition their trade on

the current price while the capital provider who acts with a lag has access to information

from future prices or from other correlated markets. Alternatively, the capital provider and

traders may share the same aggregate information source but their degrees of exposure to

the source are different. Introducing such elements would imply that the speculators do

not observe perfectly the aggregate message(s) used by the capital provider in making his

investment decisions. This introduces back the higher-order beliefs that are crucial for our

strategic complementarities to arise.

To analyze this formally in a tractable way, we now introduce two additions to the model.

First, speculators observe the price and learn from it when they trade, just like in the tradi-

tional rational-expectations-equilibria (REE) literature (e.g., Grossman and Stiglitz (1980)).

Second, conditional on fundamental, the capital provider’s private source of information is

correlated with the noise in the speculators’ common signal. Specifically, his private source of

information is now s̃l = f̃ +σcpǫ̃c. Therefore, he is exposed to the noise in the common signal

observed by speculators, ǫ̃c, but this is multiplied by a different coefficient σcp (as opposed to

σc in the speculators’ common signal), so he does not observe exactly the same common sig-

nal received by speculators s̃c. Note that we could add another source of idiosyncratic noise

to the capital provider’s signal, and this would not have a qualitative effect on the results.

As always, we denote the precision of the capital provider’s signal as τcp = 1/σ2
cp. Finally, to
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maintain tractability, we now assume that the fundamental f̃ is distributed uniformly over

the real line (i.e., τf approaches 0). Other than these changes, the model remains the same

as in the previous sections.

The assumption that the capital provider observes a signal that is correlated with the

speculators’ common signal is consistent with the motivation described above. That is,

the idea is that the capital provider observes an aggregate message from the market (the

combination of the price P and s̃l) which is different from what is observed by any speculator

when trading. The signal s̃l = f̃ +σcpǫ̃c can thus be thought of as a reduced form of observing

the price from another market or from later rounds of trade, as these will also be affected

by the common noise that exists in the market (recall that we could add an additional

source of noise to s̃l). Alternatively, the assumption that both s̃l and s̃c are affected by the

common noise ǫ̃c may capture other realistic scenarios. If the common signal in the market s̃c

represents rumors, then the capital provider may be observing some version of these rumors.

Or, the capital provider may report a noisy version of his signal s̃l, which is observed among

traders in the form of s̃c.

We now turn to solve and analyze the extended model. As before, we consider monotone

linear strategies where the speculators put weight on s̃i, s̃c, and now also on the price P.

That is, speculators short the asset whenever s̃i + ks̃c + m ln P ≤ g and buy it otherwise.

The parameters k, m, and g are determined endogenously. Following the steps in the main

model, the net holding from speculators is then:

X
(
f̃ , ǫ̃c

)
= 1 − 2Φ

(
g − (1 + k) f̃ − kσcǫ̃c − m ln P

σs

)
. (20)

Since the market supply is 1 − 2Φ
(
ξ̃ − α ln(P )

)
, we use the market clearing condition to

express the price:

P = exp

(
(1 + k) f̃ + kσcǫ̃c + σsξ̃ − g

σsα − m

)
= exp

(
f̃ + ks̃c + σsξ̃ − g

σsα − m

)
.

The sufficient statistic for the information in P , z (P ), is now expressed as:

z(P ) ≡ g + (σsα − m) ln (P )

1 + k
= f̃ +

k

1 + k
σcǫ̃c +

σs

1 + k
ξ̃ =

(
1

1 + k

)
f̃ +

k

1 + k
s̃c +

σs

1 + k
ξ̃.

The capital provider makes his decision based on z(P ) and s̃l, while speculators make

their decisions based on z(P ), s̃i, and s̃c. Denoting the equilibrium weight that speculators

put on the common signal k∗∗, in the proposed linear equilibrium, the equilibrium weight k∗∗

solves BP (k∗∗) = k∗∗, where BP (·) is a best-response function defined similarly to that in the
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main model. The following proposition derives conditions under which a unique equilibrium

exists.

Proposition 9: There is a unique equilibrium if τcp > τc (the capital provider’s signal

is more precise than the speculators’ common signal) and τs (the precision of speculators’

private signals) or τξ (the precision of the noise trading distribution) are small enough or if

τcp (the precision of capital provider’s signal) is large enough.

In the rest of this section we will assume that the equilibrium is unique. As in the main

model, we now compare the coordination level k∗∗ with the one that would be obtained in a

benchmark where the capital provider does not learn from the price (but speculators do). In

the benchmark, we say that speculators short the asset whenever s̃i + kN s̃c + mN ln P ≤ gN

and buy otherwise. The following proposition compares the weight on the common signal

kN in the benchmark model and the equilibrium weight k∗∗.

Proposition 10: When the capital provider does not learn from the price when making

the lending decision, the weight that speculators put on the common signal kN is strictly

below the equilibrium weight k∗∗ they put when the capital provider learns from the price,

if and only if the following condition is true:

−2τc

(√
τcp√
τc

− 1

)
+ τs (1 + τξ) < 0, (21)

i.e., if τcp > τc (the capital provider’s signal is more precise than the speculators’ common

signal) and τs (the precision of speculators’ private signals) or τξ (the precision of the noise

trading distribution) are small enough.

To understand the role of strategic complementarities, we plot the best response function

in the REE model BP (·) (as in equation (29) in the appendix) and in the benchmark REE

model BN(·) where the capital provider does not learn from the price (as in equation (32)

in the appendix) in the following figure and compare the slopes of these two functions.

In the benchmark case, there is no strategic complementarity. In fact, the slope of BN(k),

is ∂BN (k)/∂k = −τξ. That is, when others put a larger weight on the common signal, a

speculator’s best response is to reduce his weight on the common signal. This is intuitive

since when others put more weight on the common signal, the price as a signal for the

fundamental becomes more correlated with the common signal. This causes a speculator to

reduce the weight he puts on the common signal, since some of this information is already

embedded in the price.
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Figure 2: Best Response: BP (k) and BN(k)

However, when the capital provider learns from the price, a speculator’s weight on the

common signal is sometimes increasing in others’ weight on the common signal. Indeed the

slope of BP (·) in the figure is sometimes positive. The reason is that the weight that others

put on the common signal affects the reliance of the capital provider on his own signal s̃l and

hence affects the real value of the security. In particular, when k goes up, the price becomes

less precise to the capital provider and he shifts weights from the price to s̃l in his investment

decision. Then, a speculator knows that the common signal s̃c, which is correlated with the

capital provider’s signal s̃l, will be more strongly correlated with the investment decision

of the capital provider, and this increases the incentive of the speculator to rely on s̃c.

This creates the strategic complementarities when the capital provider learns from the price.

Putting this together with the opposite effect in the benchmark (when the capital provider

does not learn from the price), the above proposition develops the condition in equation

(21) under which k is higher when the capital provider learns from the price. Note that this

condition is satisfied when the precision of the capital provider’s signal (τcp) is large relative

to the precision of the common signal (τc), the precision of the noise trading (τξ), and the

precision of the speculator’s private signal (τs). The latter three precisions are related to the
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precision of the price since price aggregates speculators’ private and common signals as well

as the noise trading. Therefore, this condition is related to how heavily the capital provider

relies on s̃l versus the price in making investment decisions. When the capital provider is

prone to rely on s̃l more heavily, speculators coordinate more in equilibrium benefiting from

his reliance on s̃l.

In summary, for strategic complementarities to arise in our model due to the informational

feedback from prices to capital provision, it is important that speculators do not observe the

exact message that the capital provider receives from the market. In our main model,

developed in previous sections, this was obtained because the speculators did not observe

the price that the capital provider learns from. In the model developed in this section, we

let the speculators observe the price, but assume that the capital provider, in addition to

observing the price, observes something else which is correlated with the price and is not

observed by speculators. This restores the high-order beliefs of the basic model and allows

for strategic complementarities to arise.

6 Conclusion

We study strategic interactions among speculators in financial markets and their real

effects. Two opposite strategic effects exist. On the one hand, speculators wish to act

differently from each other as a certain action by other speculators changes the price in a

way that reduces the profit for other speculators from this action. On the other hand, due

to the feedback effect from the price to the real investment, a certain action by speculators

changes the real value of the firm in a way that increases the incentive of other speculators

to take this action. This creates a basis for trading frenzies, where speculators rush to trade

in the same direction, putting pressure on the price and on the firm’s value. We characterize

which effect dominates when and analyze the resulting level of coordination in speculators’

actions.

The interaction among speculators affects the informational content of the price. Since

prices affect real investment in our model, we can ask what level of coordination is most

efficient for real investment. In general, speculators’ incentives to coordinate go in opposite

direction to the optimal level of coordination. Speculators want to coordinate more when

there is a low amount of noise trading, but this is when coordination is less desirable from

an efficiency point of view. Hence, our model shows that there is always either too much

or too little coordination, and this reduces the efficiency of investment and creates excess

volatility in the price.
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Interestingly, our paper is also related to an old debate on whether speculators stabilize

prices. The traditional view is that by buying low and selling dear, rational speculators sta-

bilize prices. Hart and Kreps (1986) argue that when speculators can hold inventories and

there is uncertainty about preferences, speculative activity may cause excess price movement.

Our paper contributes to this literature by pointing out that when speculative activity has

an effect on real investments, speculators might coordinate on correlated sources of informa-

tion, and create excess volatility in prices. In our model, this reduces the efficiency of real

investments.
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Appendix

Proof of Proposition 1: Based on (12) and the updating done by the speculator based

on his information, the coefficients in (13) are given as follows:

a0 =
τf f̄ + 1

2

τf + τl + τp

+

(
τf + 2τl + τp

(
1 + 1

1+k

))

τf + τl + τp

(
τf f̄

τf + τs + τc

)

+

(
τf + 2τl +

(
1 + 1

1+k

)
τp

τf + τl + τp

)2
1

2(τf + τs + τc)
+

1

2

(
τl

τf + τl + τp

)2

σ2
l

+
1

2

(
τp

τf + τl + τp

)2(
1

1 + k

)2

σ2
sσ

2
ξ ,

a1 =

(
τf + 2τl + τp

(
1 + 1

1+k

))

τf + τl + τp

τs

τf + τs + τc

,

a2 =
τp

k
1+k

τf + τl + τp

+

(
τf + 2τl + τp

(
1 + 1

1+k

))

τf + τl + τp

τc

τf + τs + τc

,

b0 =
1

ασs

(
τf f̄ + 1

2
1

ασs

τf + τs + τc

− g

)
+

1

2α2
σ2

ξ ,

b1 =
1

ασs

τs

τf + τs + τc

,

b2 =
1

ασs

(
τc

τf + τs + τc

+ k

)
.

Note that

a1 − b1 =
τs

τf + τs + τc

((
τf + 2τl + τp

(
1 + 1

1+k

))

τf + τl + τp

− 1

ασs

)
.

A sufficient condition for a1−b1 > 0 is that α >
√

τs. Recall that B (k) = (a2 − b2) / (a1 − b1) .

Substituting, we obtain:

B (k) =

τp
k

1+k

τf +τl+τp
+

(τf +2τl+τp(1+ 1
1+k))

τf +τl+τp

τc

τf +τs+τc
− 1

ασs

(
τc

τf +τs+τc
+ k
)

τs

τf +τs+τc

(
(τf +2τl+τp(1+ 1

1+k))
τf +τl+τp

− 1
ασs

) .

Simplifying B (k) − k = 0 we get:

0 =



 1

τs

(k + 1) (τc + τf + τs) (τf + τl + τp)

τp + (k + 1) τl +
(
1 −

√
τs

α

)
(1 + k) (τf + τl + τp)





(
τp

τf + τl + τp

k

1 + k
+

(
τf + 2τl +

(
1 + 1

1+k

)
τp

τf + τl + τp

)(
−τsk + τc

τf + τs + τc

)
−

√
τs

α

((
−τsk + τc

τf + τs + τc

)
+ k

))
.
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The term in square brackets is strictly positive for α >
√

τs. So the equilibrium condition

can be simplified to:

0 =
τp

τf + τl + τp

k

1 + k
+

(
τf + 2τl +

(
1 + 1

1+k

)
τp

τf + τl + τp

)(
−τsk + τc

τf + τs + τc

)
−
(

−τsk + τc

τf + τs + τc

)
− k

+

(
1 − 1

ασs

)(
τf + τc

τf + τs + τc

k +
τc

τf + τs + τc

)
.

Recall that τp = ((1 + k)2τcτξτs) / (k2τξτs + τc). We denote r ≡ τξτs. Substituting for τp and

simplifying, the right-hand side becomes:12

H(k) = −k3 ((τc + τf + τs) (τc + τf + τl) + τlτs) − τck
2 (τc + τf − τl + 2τs) (22)

− τck (τs − τc) + τ 2
c − 1

r

(
τck
(
τcτf + τcτl + τfτl + τfτs + 2τlτs + τ 2

f

)
− τ 2

c τl

)

+

(
1 −

√
τs

α

)(
(τc + τf ) (τc + τf + τl) k3 + τc (3τc + 3τf + τl) k2

+τc (τf + 3τc) k + τ 2
c

)
+

(
1 −

√
τs

α

)
τc

r
((τf + τl) (τc + τf) k + τc (τf + τl)) .

For an equilibrium, we need H (k) = 0.

First, we focus on existence of an equilibrium with k > 0. H(k) has a positive root if and

only if

α >
√

τs

τf + τl + r

τf + 2τl + 2r
.

To see this, note that the coefficient for k3 is always negative, implying that the value of

H (k) becomes negative as k becomes large. So, there exists a strictly positive root for the

polynomial if its value at k = 0 is strictly positive. This condition is given by the above

inequality. If the inequality is violated, the value of the polynomial is negative at k = 0. Its

derivative at k = 0 is given by

− τc (τs − τc) −
1

r

(
τc

(
τcτf + τcτl + τfτl + τfτs + 2τlτs + τ 2

f

))

+

(
1 −

√
τs

α

)
τc (τf + 3τc) +

(
1 −

√
τs

α

)
τc

r
((τf + τl) (τc + τf)) .

At
√

τs

α
≥ τf +2τl+2r

τf +τl+r
the derivative is negative. This means that H (k) is decreasing at k = 0

for
√

τs

α
≥ τf +2τl+2r

τf +τl+r
. Moreover, the second derivative is negative when

√
τs

α
≥ τf +2τl+2r

τf +τl+r
, and

thus the expression will keep decreasing. Therefore the polynomial cannot have a positive

root.

12The simplification is achieved by dividing by r and multiplying through with (τc + τf + τs)(
τcτf + τcτl + τcr + τck

2r + τfk2r + k2τlr + 2τckr
)
.
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For uniqueness, we need to check the sign of the discriminant of H (k) for α large and τf

small. Letting α go to infinity and τf go to zero we obtain the discriminant as − τ3
c

r3 times

(
64τ 4

c τl + 128τ 3
c τ 2

l + 160τ 3
c τlτs + 64τ 2

c τ 3
l + 416τ 2

c τ 2
l τs + 144τ 2

c τlτ
2
s

+284τcτ
2
l τ 2

s + 56τcτlτ
3
s + 8τlτ

4
s

)
r3 (23)

+

(
64τ 5

c τl + 192τ 4
c τ 2

l + 160τ 4
c τlτs + 192τ 3

c τ 3
l + 608τ 3

c τ 2
l τs + 144τ 3

c τlτ
2
s + 64τ 2

c τ 4
l

+448τ 2
c τ 3

l τs + 440τ 2
c τ 2

l τ 2
s + 56τ 2

c τlτ
3
s + 416τcτ

3
l τ 2

s + 80τcτ
2
l τ 3

s + 8τcτlτ
4
s + 48τ 2

l τ 4
s

)
r2

+
(
128τcτ

4
l τ 2

s − 32τ 2
c τ 3

l τ 2
s − 16τ 2

c τ 2
l τ 3

s − 52τ 3
c τ 2

l τ 2
s − 64τcτ

3
l τ 3

s + 32τcτ
2
l τ 4

s + 96τ 3
l τ 4

s

)
r

+
(
64τ 4

l τ 4
s + 32τcτ

3
l τ 4

s

)
.

The coefficient of r2 in (23) is strictly positive so the quadratic part of (23) is minimized at:

r = − 128τcτ
4
l τ 2

s − 32τ 2
c τ 3

l τ 2
s − 16τ 2

c τ 2
l τ 3

s − 52τ 3
c τ 2

l τ 2
s − 64τcτ

3
l τ 3

s + 32τcτ
2
l τ 4

s + 96τ 3
l τ 4

s

2

(
64τ 5

c τl + 192τ 4
c τ 2

l + 160τ 4
c τlτs + 192τ 3

c τ 3
l + 608τ 3

c τ 2
l τs + 144τ 3

c τlτ
2
s + 64τ 2

c τ 4
l

+448τ 2
c τ 3

l τs + 440τ 2
c τ 2

l τ 2
s + 56τ 2

c τlτ
3
s + 416τcτ

3
l τ 2

s + 80τcτ
2
l τ 3

s + 8τcτlτ
4
s + 48τ 2

l τ 4
s

) .

Substituting this back to the quadratic above we find that the minimized value is:

1

2

τ 3
l τ 4

s(
8τ 5

c + 24τ 4
c τl + 20τ 4

c τs + 24τ 3
c τ 2

l + 76τ 3
c τlτs + 18τ 3

c τ 2
s + 8τ 2

c τ 3
l + 56τ 2

c τ 2
l τs

+55τ 2
c τlτ

2
s + 7τ 2

c τ 3
s + 52τcτ

2
l τ 2

s + 10τcτlτ
3
s + τcτ

4
s + 6τlτ

4
s

)

×




343τ 6
c + 2352τ 5

c τl + 1176τ 5
c τs + 5376τ 4

c τ 2
l + 6944τ 4

c τlτs + 1344τ 4
c τ 2

s + 4096τ 3
c τ 3

l

+13312τ 3
c τ 2

l τs + 6448τ 3
c τlτ

2
s + 512τ 3

c τ 3
s + 8192τ 2

c τ 3
l τs + 9984τ 2

c τ 2
l τ 2

s + 1984τ 2
c τlτ

3
s

+5120τcτ
3
l τ 2

s + 2048τcτ
2
l τ 3

s + 128τcτlτ
4
s + 192τ 2

l τ 4
s




which is strictly positive. Since the quadratic term is strictly positive at its minimum, it is

positive for all r. Since r3 term is positive for r > 0 as well, (23) is strictly positive for all

r > 0. That is, the discriminant is strictly negative for large enough α and small enough τf ,

and hence H (k) = 0 has a unique root. QED.

Proof of Propositions 2: First, we derive kBM . Based on (16) and taking expectations,

we see that a speculator buys the asset when:

ln

(
1

c

)
+

τf f̄ + 1
2

τf + τl

+

(
τf + 2τl

τf + τl

)(
τf f̄ + τss̃i + τcs̃c

τf + τs + τc

)
(24)

+

(
τf + 2τl

τf + τl

)2
1

2(τf + τs + τc)
+

1

2

(
τl

τf + τl

)2

σ2
l

≥ 1

ασs

(
τf f̄ + τss̃i + τcs̃c + 1

2
1

ασs

τf + τs + τc

+ kBM s̃c − gBM

)
+

1

2α2
σ2

ξ .
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Rearranging (24), a speculator buys the asset when s̃i + BBM (kBM ) s̃c ≥ CBM where

BBM (kBM) =
τc

τs

−
√

τs

α
kBM

τs

τf +τs+τc

(
τf +2τl

τf +τl
−

√
τs

α

)

and

CBM =
1(

τf +2τl

τf +τl
− 1

ασs

)(
τs

τf +τs+τc

)

(
ln c +

1

ασs

(
τf f̄ + 1

2
1

ασs

τf + τs + τc

− gBM

)
−

τf f̄ + 1
2

τf + τl

−
(

τf + 2τl

τf + τl

)(
τf f̄

τf + τs + τc

)

−
(

τf + 2τl

τf + τl

)2
1

2(τf + τs + τc)
+

1

2α2
σ2

ξ −
1

2

(
τl

τf + τl

)2

σ2
l

)
.

Setting BBM (kBM) = kBM leads to the expression for kBM in (18).

Now, we show that in the main model (with feedback effect) k∗ > τc/τs for α large

enough. To see this note that H (τc/τs) > 0 for α large enough. Since H (k) has a unique

root and crosses the axis from above, the conclusion follows. Next, note that kBM < τc/τs

and thus kBM < k∗ for α large enough. QED.

Proof of Proposition 3: We showed in the proof of Proposition 2 that k∗ > τc/τs for

α large enough. By inspecting (22), we can see that H (k) shifts up as α increases, so its

unique root k∗ increases in α. QED.

Proof of Proposition 4:

Consider the following terms involving 1/r in H (k) in (22):

− 1

r

(
τck(τcτf + τcτl + τfτl + τfτs + 2τlτs + τ 2

f ) − τ 2
c τl

)

+

(
1 −

√
τs

α

)
τc

r
((τf + τl)(τc + τf )k + τc(τf + τl)) .

For α large enough, these terms are negative iff k exceeds τc/τs. So for k > τc/τs, H (k)

shifts up as r goes up. By Proposition 3, for α large enough, k∗ which implicitly depends

on r exceeds τc/τs for all r. Since H (k) crosses the axis once from above at k∗, we see that

k∗ must be increasing in r. Since increasing σξ and r are inversely related, an increase in σξ

leads to a decrease in k∗. QED.

Proof of Proposition 5
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Let

D(k) = −3 ((τf + τc + τl)(τf + τc + τs) + τlτs) k2 − 2τc(τf + τc − τl + 2τs)k

+ τc(τc − τs) −
1

r

(
τc(τfτc + τfτl + τfτs + τcτl + 2τlτs + τ 2

f )
)

+

(
1 −

√
τs

α

)(
3(τf + τc)(τf + τc + τl)k

2 + 2τc(3τf + 3τc + τl)k + τc(τf + 3τc)
)

+
τc

r

(
1 −

√
τs

α

)
(τf + τc)(τf + τl)

Note that ∂H/∂k = D(k). When the equilibrium is unique D(k∗) < 0 since H(k) crosses

zero from above.

To see that for α large ∂k∗

∂τs
< 0,note for α large, ∂k∗

∂τs
is arbitrarily close to

1
τ2
s τξ

(
τ 2
c τf + 2τ 2

c τl + τcτ
2
s τξk

∗ + 2τcτ
2
s τξ (k∗)2 + (τcτ

2
s τξ + τfτ

2
s τξ + 2τlτ

2
s τξ) (k∗)3)

D(k∗)
< 0.

To see that for α large ∂k∗

∂τc
> 0,note for α large, ∂k∗

∂τc
is arbitrarily close to

(
τs (k∗)3 − 2(2τc + τf + τl − τs) (k∗)2 − (8τc + τf − τs)k

∗ − 4τc

−1
r
(−τs(τf + 2τl)k

∗ + 2τcτf + 4τcτl)

)

D (k∗)
.

Also,

τc

(
−τs (k∗)3 + 2 (2τc + τf + τl − τs) (k∗)2 + (8τc + τf − τs) k∗ + 4τc

+
1

r
(−τs (τf + 2τl) k∗ + 2τcτf + 4τcτl)

)
> −τs (τc + τf + 2τl) (k∗)3

+ 2τc (τf + τl − τs + τc) (k∗)2 + τc (τf − τs + 4τc) k∗ + 2τ 2
c

+
τc

r
(τcτf + 2τcτl − τs (τf + 2τl) k∗)

and the right hand side of the above inequality is arbitrarily close to H(k∗) which is equal

to zero.

Finally, to see that for α large ∂k∗

∂τl
< 0,not for α large, ∂k∗

∂τl
is arbitrarily close to

2
r
(k∗τs − τc)(r (k∗)2 + τc)

D (k∗)
< 0

since k∗ > τc/τs. QED

Proof of Proposition 6:
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We substitute I equation (2) into equation (19) and compute the expectations:

1

c
E

[
exp

(
f̃
)

exp

(
τf f̄ + τlsl + τpz (P )

τf + τl + τp

+
1

2(τf + τl + τp)

)]

−1

2

1

c
E

[
exp

(
2

(
τf f̄ + τlsl + τpz (P )

τf + τl + τp

+
1

2(τf + τl + τp)

))]

=
1

c
E



exp



2f̃ +
τf

(
f̄ − f̃

)
+ τlσlǫ̃l + τp

(
z (P ) − f̃

)

τf + τl + τp

+
1

2(τf + τl + τp)









−1

2

1

c
E


exp


2


f̃ +

τf

(
f̄ − f̃

)
+ τlσlǫ̃l + τp

(
z (P ) − f̃

)

τf + τl + τp

+
1

2(τf + τl + τp)








=
1

c

1

2
exp

(
2f̄ +

1

τf

τf + 2τl + 2τp

τf + τl + τp

)
.

Therefore the maximization problem can be viewed as maximizing the following expression

in k :

exp

(
τf + 2τl + 2τp

τf + τl + τp

)
,

and this is equivalent to maximizing τp which is maximized at τc/ (τsτξ). QED.

Proof of Proposition 7:

For α large enough H(k) evaluated at kOP = τc/r is approximately:

τ 2
c

r3
(τc + r)

(
2τcr − τcτs + 2τfr − τfτs + 2τlr − 2τlτs − rτs + 2r2

)

which is negative for r small. Moreover it may be decreasing in r for r small but eventually

increases and becomes positive. This means that there is a cutoff r̄ for r such that for r < r̄

we have k∗ < kOP and for r > r̄ we have k∗ > kOP . QED.

Proof of Proposition 8: (a) The market clearing price is

P = exp

(
(1 + k) f̃ + kσcǫ̃c − g + σsξ̃

ασs

)
,

and its non-fundamental volatility can be written as the volatility of the following:

z(P ) − f̃ =
g + ασs ln(P )

1 + k
− f̃ =

k

1 + k
σcǫ̃c +

σs

1 + k
ξ̃.

It is straightforward to show that when k = kOP = τc/ (τsτξ), its non-fundamental

volatility is the lowest and is

Non-Fundamental Volatility (Asset Price) =
1

τc + τsτξ

.
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(b) We know that:

I =
1

c
exp




τf f̄ + τlsl + τp

(
f̃ + k

1+k
σcǫ̃c + σs

1+k
ξ̃
)

τf + τl + τp

+
1

2(τf + τl + τp)


 .

Taking logs on both sides, we obtain:

ln I = ln

(
1

c

)
+




τf f̄ + τlsl + τp

(
f̃ + k

1+k
σcǫ̃c + σs

1+k
ξ̃
)

τf + τl + τp

+
1

2(τf + τl + τp)


 .

We can define the non-fundamental volatility of the real investment as the volatility of the

following:

(τf + τl + τp)
(
ln I − ln

(
1
c

))
− 1

2
− τf f̄

τl + τp

− f̃ =
τlσlǫl + τp

(
k

1+k
σcǫ̃c + σs

1+k
ξ̃
)

τl + τp

It is straightforward to show that when k = kOP = τc/ (τsτξ), τp = τc + τsτξ,and the

non-fundamental volatility of the real investment is the lowest which is

Non-Fundamental Volatility (Real Investment) =
1

τl + τc + τsτξ

.

QED.

Proof of Proposition 9: In this proof we use the notation ρ =
√

τcp/τc. Since τcp > τc,

we have ρ > 1. We start with the capital provider’s decision. The capital provider updates

his belief based on observing:

z(P ) = f̃ +
k

1 + k
σcǫ̃c +

σs

1 + k
ξ̃ and s̃l = f̃ + σcpǫ̃c.

This is equivalent to observing s̃l and:

z(P ) − k

1 + k

σc

σcp

s̃l =

(
1 − k

1 + k

σc

σcp

)
f̃ +

σs

1 + k
ξ̃.

Capital provider’s conditional belief on f̃ is distributed normally with mean:




(
1 − k

1+k
ρ
)

(
k

1+k
ρ − 1

)2
+ 1

(1+k)2
τcp

τsτξ



 z (P ) +



1 +

(
k

1+k
ρ − 1

)
(

k
1+k

ρ − 1
)2

+ 1
(1+k)2

τcp

τsτξ



 s̃l

and variance:

Ω =
1

τsτξ (k (ρ − 1) − 1)2 + τcp

.
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Using the capital provider’s investment rule and taking expectations, we can express the

level of investment as:

I =
1

c
E[F̃ |sl, P ] =

1

c
E[exp

(
f̃
)
|sl, P ] (25)

=
1

c
exp

( (
(1− k

1+k
ρ)

( k
1+k

ρ−1)
2
+ 1

(1+k)2
τcp
τsτξ

)
z (P ) +

(
1 +

( k
1+k

ρ−1)
( k

1+k
ρ−1)

2
+ 1

(1+k)2
τcp
τsτξ

)
sl + 1

2Ω

)

Given the capital provider’s investment policy in (25) and the price, we can now write

speculator i’s expected profit from buying the asset given the information that is available

to him (shorting the asset would give the negative of this):

E
[
F̃ I − P |si, sc, P

]
= (26)

1

c
E


exp




f̃ + 1
2Ω

+(
(1− k

1+k
ρ)

( k
1+k

ρ−1)
2
+ 1

(1+k)2
τcp
τsτξ

)
z (P ) +

(
1 +

( k
1+k

ρ−1)
( k

1+k
ρ−1)

2
+ 1

(1+k)2
τcp
τsτξ

)
sl




∣∣∣∣∣∣∣∣

si,

sc,

P


− P

To solve for the speculators’ conditional expectation, note that since speculators know both

P and sc, that means that they observe:

g + (σsα − m) ln (P ) − ksc = f̃ + σsξ̃. (27)

Therefore, conditional on observing si, sc and P speculator i believes that f̃ is distributed

normally with mean

τs

τs + τc + τsτξ

si +
τc

τs + τc + τsτξ

sc +
τsτξ

τs + τc + τsτξ

(g + (σsα − m) ln (P ) − ksc)

and precision τs + τc + τsτξ. Moreover,

σcpǫ̃c =
σcp

σc

(
sc − f̃

)
.

Now we take expectation in (26) and note that a speculator would purchase the asset if and

only if his expected profit is no less than zero:

1

c
exp




(
(1− k

1+k
ρ)

( k
1+k

ρ−1)
2
+ 1

(1+k)2
τcp
τsτξ

)
z (P ) +

(
1 +

( k
1+k

ρ−1)
( k

1+k
ρ−1)

2
+ 1

(1+k)2
τcp

τsτξ

)
1
ρ
sc

+
(

τs

τs+τc+τsτξ
si + τc

τs+τc+τsτξ
sc +

τsτξ

τs+τc+τsτξ
(g + (σsα − m) ln (P ) − ksc)

)
(

1 +

(
1 +

( k
1+k

ρ−1)
( k

1+k
ρ−1)

2
+ 1

(1+k)2
τcp
τsτξ

)(
1 − 1

ρ

))

+variance terms




−P ≥ 0 (28)
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Condition (28) can be rewritten as

si + BP (k) sc ≥ A lnP + B,

where BP (k) is the best response function given by

BP (k) = (29)(
1 +

( k
1+k

ρ−1)
( k

1+k
ρ−1)

2
+ 1

(1+k)2
τcp
τsτξ

)
1
ρ

+

(
τcp

ρ2 −kτsτξ

τs+
τcp

ρ2 +τsτξ

)(
1 +

(
1 +

( k
1+k

ρ−1)
( k

1+k
ρ−1)

2
+ 1

(1+k)2
τcp
τsτξ

)(
1 − 1

ρ

))

(
τs

τs+
τcp

ρ2 +τsτξ

(
1 +

(
1 +

( k
1+k

ρ−1)
( k

1+k
ρ−1)

2
+ 1

(1+k)2
τcp
τsτξ

)(
1 − 1

ρ

))) .

Setting BP (k) − k = 0 gives us the following equilibrium condition:

C (k)

τsτξρ (k (ρ − 1) − 1) (2k (ρ − 1) − 1) + τcp (2ρ − 1)
= 0 (30)

where

C (k) =
(
−2τ 2

s τξρ
2 (ρ − 1)2 (τξ + 1)

)
k3 +

(
τsτξ (ρ − 1)

(
−τcp + 2τcpρ + 4τsρ

2 + 4τsτξρ
2
))

k2

+
(
2τcpτsτξ − 2τ 2

s τξρ
2 − 2τcpτsτξρ

2 − 2τcpτsτξρ − 2τ 2
s τ 2

ξ ρ2 − 2τcpτsρ
2 + τcpτsρ

)
k

+
(
2τ 2

cp + τcpτsρ + τcpτsτξ + τcpτsτξρ
)
.

First we show that the denominator of (30) is strictly positive for τs or τξ small or τcp large

enough. This is because the denominator is minimized at k = 3/ (4 (ρ − 1)) and the value

of the denominator at that point is (2ρ − 1) τcp − (1/8) τsτξρ which is strictly positive if τs

or τξ small or τcp large enough. So the equilibrium condition becomes C (k) = 0. Finally, we

show that C (k) = 0 has a unique strictly positive root by verifying that the discriminant of

C (k) is negative if ρ > 1 and τs or τξ are small or τcp is large. QED.

Proof of Proposition 10: In this proof we use the notation ρ =
√

τcp/τc that was

introduced in the previous proof. Following steps similar to the above we see that a speculator

buys the asset if and only if

1

c
exp




√
τc

√
τcp

sc +
(
2 −

√
τc

√
τcp

)( τs

τs+τc+τsτξ
si + τc

τs+τc+τsτξ
sc

+
τsτξ

τs+τc+τsτξ
(gN + (σsα − mN) ln (P ) − kNsc)

)

+variance terms


−P ≥ 0.

(31)

Condition (31) can be rewritten as

si + BN (k) sc ≥ AN ln P + BN ,
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where BN (k) is the best response function given by:

BN (k) =

(
2 − 1

ρ

)( τcp

ρ2 −kτsτξ

τs+
τcp

ρ2 +τsτξ

)
+ 1

ρ

(
2 − 1

ρ

)(
τs

τs+
τcp

ρ2 +τsτξ

) . (32)

In the benchmark equilibrium, kN solves BN (kN) = kN . Thus,

kN =

(
1

2ρ − 1

)(
τcp

τs (1 + τξ)

2

ρ
+ 1

)
.

Recall that k∗∗ satisfies C (k∗∗) = 0 where C (·) is defined in the proof of Proposition 9. Note

that

C (kN) = − 2

τs

τξ (τcp + τsρ
2 + τsτξρ

2)
2
(2τcp − 2τcpρ + τsρ

2 + τsτξρ
2)

ρ2 (2ρ − 1)3 (τξ + 1)2 .

Since C (0) > 0 and C (·) crosses zero from above this implies that k∗ > kN if and only if

C (kN) > 0. That is if and only if

2τcp − 2τcpρ + τsρ
2 + τsτξρ

2 < 0.

Substituting
√

τcp/τc for ρ, we obtain the condition in the statement of the proposition.

QED.
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