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Abstract

Competition between electronic limit order books improves the overall liquidity of

equity markets in most studies. However, my model shows that liquidity offered on

the limit order books combined may strongly overestimate the actual liquidity avail-

able to investors. The excess is caused by high-frequency traders operating as market

makers, who may duplicate their limit order schedules on several venues to increase

their execution probabilities. Then, after a trade on one venue they will quickly cancel

outstanding limit orders on others. The magnitude of the cancellations depends on

the fraction of investors that may access several venues simultaneously, i.e., who use

Smart Order Routing Technology (SORT). The reason is that market makers incur

higher adverse selection costs when the investor trades at a competing venue first.

Consequently, a higher fraction of SORT investors reduces the incentives of market

makers to place duplicate limit orders. The empirical results confirm the main pre-

diction of the model, as trades on the most active venues are followed by cancellations

of limit orders on competing venues of more than 53% of the trade size.
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1 Introduction

Two important trends have drastically changed equity markets in recent years. First, tech-

nological innovations have lead to high-frequency trading, a trading strategy whereby a

computer algorithm analyzes market data and trades at extremely high speed. Second,

competition between trading venues has caused a dispersion of trading volumes and liq-

uidity across venues, i.e., the market has become fragmented. These two changes in the

structure of equity markets might strongly affect the optimal behavior of investors. Indeed,

as high-frequency traders operate on several trading venues simultaneously, the order flow

and liquidity of these venues become strongly interrelated.1 This paper argues that the in-

terrelation of liquidity across trading venues causes substantial overestimation of liquidity

aggregated over these trading venues.

I underpin this hypothesis in a model of competition between two centralized limit order

books. The model predicts that high-frequency traders, who supply liquidity by acting as

traditional market makers, have an incentive to duplicate their limit orders on both venues.

They will do so because this strategy increases their execution probabilities and therefore

expected profits. Then, after execution on one venue, they will quickly cancel their limit

orders on competing venues. Effectively, the depth aggregated over all venues overstates

true liquidity, as a single trade reduces liquidity on many venues simultaneously. The

empirical results strongly support this hypothesis: a trade reduces liquidity at competing

venues by 53% of the trade size within a second.

My first contribution to the literature is a theoretical model. The model is based on the

framework of a pure limit order market with adverse selection of Sandås (2001), extended

to a two-venue setting. High-frequency market makers supply liquidity with limit orders,

whereas potentially informed traders demand liquidity with market orders. In this setting,

only a fraction of the traders has the technological infrastructure to submit market orders

to both venues simultaneously, i.e., smart order routing technology (SORT). Effectively,

I introduce market segmentation because non-SORT traders cannot access the liquidity

of both venues. In equilibrium, a limit order faces higher adverse selection costs when

executed against a SORT trader. The reason is that conditional upon execution, there is

a probability that she traded on the competing venue already and therefore the combined

1The high level of interaction between markets became apparent during the flash crash, i.e., between
the E-mini S&P 500 futures and the individual stocks (SEC-CFTC “Findings regarding the market events
of May 6 2010”, 2010).

2



trades are larger and more informed on average. Consequently, a lower fraction of SORT

traders reduces adverse selection costs and increases equilibrium liquidity supply. However,

the additional liquidity follows from market segmentation only, and will be cancelled after

a trade on the competing venue; hence the term duplicate liquidity.

The model offers the following predictions. First, due to the information content of

a trade on one venue, limit orders on the same side of the order books of competing

venues will be cancelled. Cancellations would not occur in a single venue setting, which

implies that I must test whether the observed cancellations are significantly greater than

zero. Second, after a trade new limit orders will be placed on the opposite side of the

limit order books of all venues, consistent with asymmetric information models. Third,

duplicate limit orders will only be placed on venues where non-SORT investors operate

(mostly the traditional market), because market makers face lower adverse selection costs

when trading with non-SORT investors. When all investors use SORT, competition between

market makers only improves liquidity, as documented by Glosten (1998) and Foucault and

Menkveld (2008). Fourth, the model explains why entrant venues are typically very liquid

but execute relatively little volume. Although market makers offer substantial liquidity

there, only a small fraction of investors use SORT to tap this liquidity.2 Fifth, the decision

of one investor to adopt smart order routing technology increases her accessible liquidity,

but also imposes a negative externality on all other investors (the SORT and non-SORT

traders as well as market makers).

My second contribution to the literature is an empirical investigation. The dataset

contains the entire limit order books of all relevant trading venues with publicly displayed

data, for a sample of FTSE 100 stocks in November 2009. These stocks are traded in a

fairly fragmented environment, as the traditional market (the London Stock Exchange)

executes 66% of lit trading volume, leaving 34% to four competing venues (Chi-X, Bats

Europe, Turquoise and Nasdaq OMX). I test the models main predictions by investigating

the short-term correlations between the supply and demand of liquidity across trading

venues. Specifically, I regress changes in liquidity supply at the bid or ask side of one

venue on contemporeneous and lagged liquidity demand of all five venues, i.e., buy and sell

trading volumes. Lagged trading volumes of up to ten seconds away measure investors’

responses to trades over time. I sample one observation per 100 milliseconds in order to

analyze high-frequency trading strategies. To the best of my knowledge, this paper is the

2In the model, transaction costs and trading speeds are assumed equal across trading venues, and
therefore do not explain differences in market shares.
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first to analyze the impact of high-frequency trading strategies on the liquidity supply

across trading venues.

The empirical results strongly support the models’main prediction that trades are

followed by limit order cancellations on competing venues. That is, within 100 milliseconds,

transactions on the three most active trading venues are followed by cancellations on the

same side of competing limit order books of 38 to 85% of the transaction size. As a result,

liquidity aggregated over all venues overstates liquidity available to investors, since e.g. a

100 share trade reduces liquidity by more than 138 shares. Further, these cancellations

increase to 53 to 149% of the transaction size after one second (depending on the trading

venue). This finding is particularly relevant to algorithms designed to split up large trades

over time, as the liquidity impact of each individual small trade is indeed larger than

previously thought. The fact that liquidity shocks immediately spill over to other venues

is not captured by static liquidity measures, such as the quoted depth.

The analysis also confirms several other predictions of the model. First, the magnitude

of cancellations is stronger on the primary market after trades on entrant venues (46 to

52%), than vice versa (14 to 30%). Second, trades reveal information on the true asset

value, as a trade on the ask side is followed by new limit orders on the bid side of 30 to

70% of the tradesize.

The main policy implication of the model is that fair markets require investors to be able

to split up trades simultaneously across several venues. When a trader leaves a millisecond

delay between the split, the market effectively becomes segmented. That is, after high-

frequency traders observe the first part of the trade, they will quickly cancel their duplicate

limit orders on competing venue before the second part arrives. This high-frequency trading

strategy is known as latency arbitrage, and relates to the trend of increasingly faster trading

mechanisms.3

Most related to this work is literature on competition between electronic limit order

books. Pagano (1989) predicts that all trading activity should divert to the trading system

with the lowest transaction costs, and only unstable equilibria may exist when two venues

have identical cost structures. In contrast, Glosten (1998) shows that two electronic limit

order markets can coexist when tick sizes are discrete and time priority rules apply. Since

time priority is absent across venues, competition between liquidity suppliers increases,

which in turn raises aggregate liquidity. This point is further developed in Foucault and

3See for example “Trading at the speed of light”, Sept 12, 2011 on www.ft.com.
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Menkveld (2008), who coin this channel the “queue-jumping”effect. Competition between

exchanges also arises through differences in the tick size, where the venue with the smallest

tick size becomes most liquid (Biais, Bisière, and Spatt (2010) and Buti, Rindi, Wen, and

Werner (2011)). My model confirms all these findings, and adds the presence of duplicate

limit orders when some investors cannot access all trading venues.

Empirical research on competition between exchanges typically focusses on its impact

on aggregate liquidity and welfare. O’Hara and Ye (2011) find that competition between

exchanges reduces the effective cost of trading. Jovanovic and Menkveld (2011) find that

competition between an entrant (Chi-X) and incumbant market (Euronext) has an ambigu-

ous effect on total welfare. Degryse, de Jong, and van Kervel (2011) show that aggregate

liquidity increases by competition between venues with publicly displayed limit order books,

but worsens by competition of opaque markets. Instead, the current paper studies the effect

of competing exchanges on the liquidity supply of each of the individual exchanges.

Rather than assuming a fraction of non-SORT traders, market segmentation may also

arise when investors have different trading speeds. Biais, Foucault, and Moinas (2011) show

that high-frequency trading facilitates the search for trading opportunities, but increases

adverse selection costs for slow traders. As a result, the equilibrium level of investment in

high-frequency technology exceeds the welfare maximizing level. Hoffmann (2011) shows

that high-frequency traders have lower adverse selection costs on average, which in turn

causes slow traders to post less aggressive limit orders. The result is an ambiguous effect

on welfare, which depends on the stocks fundamental volatility. High-frequency traders

might extract rents from liquidity motivated traders when they operate as intermediaries

(Cartea and Penalva, 2011). McInish and Upson (2011) provide empirical evidence that

high-frequency traders pick off slower traders in the US, due to regulation that effectively

causes slow investors to trade against stale quotes. Hasbrouck and Saar (2011) argue that

trading speeds affect the competition between liquidity suppliers in a single trading venue.

This paper shows that different trading speeds might in fact cause duplicate limit orders

in fragmented markets.

Finally, this paper relates to recent research on high-frequency traders who act as

market makers (e.g., Jovanovic and Menkveld (2011), Menkveld (2011) and Guilbaud and

Pham (2011)). Such market makers gain the bid-ask spread by offering liquidity at both

sides of the limit order book, while simultaneously managing advere selection costs (e.g.,

Glosten and Milgrom (1985), Glosten and Harris (1988)) and inventory risk (e.g., Ho and
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Stoll (1981)). This paper extends these works by analyzing market making when trading

is fragmented across electronic limit order books.

The remainder of the paper is structured as follows. Section 2 describes the duplicate

limit order hypothesis and the model. Section 3 presents the empirical work, after which I

conclude.

2 The model

In this section I first describe the duplicate limit order hypothesis. Then, I place it into a

model that quantifies this duplicate limit order effect. In essence, the model is a combina-

tion of Glosten (1998), Sandås (2001) and Foucault and Menkveld (2008). I contribute to

Foucault and Menkveld (2008) by allowing for adverse selection. Rather than analyzing the

single exchange setting in Sandås (2001), I focus on two competing centralized limit order

books. Compared to Glosten (1998), I introduce market segmentation by constraining some

traders to have access to one trading venue only, and show how this causes overestimation

of consolidated liquidity. Glosten (1998) and Sandås (2001) are special cases of my model.

2.1 Duplicate limit order hypothesis

In a fragmented trading environment time priority is not enforced between trading venues,

whereas price priority is enforced only when the trader has access to both venues. Price

priority implies that limit orders with a better price are executed before those with a worse

price, while time priority entails that limit orders placed first are executed first.4

Because of the absence of time priority across venues, liquidity suppliers can improve

their execution probabilities by placing similar limit orders on several venues simultane-

ously. After execution on one venue, they will cancel remaining limit orders on the other

venues.5 Therefore, I predict that a trade is immediately followed by cancellations of limit

orders on the same side of competing limit order books. A tradeoff arises however, as there

is a probability that both limit orders will be executed simultaneously, causing the liquidity

supplier to trade too much.

4In the US, price priority across markets is enforced by law, Reg NMS. Time priority however, crucial
for this hypothesis, is not enforced.

5Note that this strategy does not work in a single exchange setting due to time priority.
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Who might pursue this duplicate limit order strategy? I argue that high-frequency

traders who operate as market makers can strongly benefit from the increased execution

probability. That is, placing duplicate limit orders increases their trading rate and expected

profits. At the same time, using state of the art technology allows them to monitor several

venues simultaneously and cancel limit orders quickly after observing trades and other

news. Being able to cancel quickly reduces the expected cost of simultaneous execution

and adverse selection.6 In contrast, this strategy is likely not very attractive to “regular

traders.”For some traders, the technology required for continuous monitoring might be too

expensive. Other traders might use algorithms to optimally split up large quantities over

time, in which case they will not cancel limit orders since each child order is part of a large

parent order.

2.2 Model setup

This section quantifies the cost of executing duplicate limit orders in an adverse selection

framework. I show that duplicate limit orders face higher adverse selection costs because

conditional upon executing both limit orders, the incoming trade is larger and therefore

more informed on average.

Consider two venues, A and B, and two types of investors, market makers and traders.

The risk neutral market makers supply liquidity by placing limit orders on one or both

venues. They are profit maximizing and use high-frequency trading technology to quickly

access all venues. The risk averse traders demand liquidity by placing market orders.

Traders have private information or liquidity motives, and therefore want to trade quickly.7

The asset has a fundamental value Xt, which incorporates all information available up

until period t. The next periods fundamental value is given by

Xt+1 = Xt + µ+ εt+1, (1)

where µ is a trend and εt+1 a random innovation. Traders have some private information

on εt+1.

6In this context, trades on two venues occur simultaneously when the liquidity supplier is not fast
enough to adjust his outstanding limit orders after the first trade. Effectively, his quotes are stale when
the second trade comes in.

7Since traders are risk averse and may have liquidity motives, the market does not break down like in
a Kyle (1985) framework.
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Trading occurs sequentially over periods indexed by t. Each period t consists of three

stages. First, the market makers arrive consecutively and place limit orders on one or both

venues. They do so until no market maker finds it optimal to place additional limit orders.

Then the trader arrives, placing market orders with total size x that consume liquidity on

one or both venues. Finally, the market makers update their expected fundamental value of

the asset conditional on the incoming market order using some price impact function. Now,

the game starts over and is repeated for every trade. Because of high-frequency trading

technology, the last two stages might last only a few milliseconds.

Market makers place their limit orders on a discrete pricing grid, {p1, p2, ...pk} for the
ask side. The current expected value (midpoint) is p0, the best ask price p1 and the tick

size ∆ = pi − pi−1 > 0. I focus on the ask side only, prices larger than p0, as the bid side

is analogous. Denote the number of shares offered on venue j ∈ {A,B} at each price level
by {Qj1, Qj2, . . . , Qjk}. Price and time priority exists within each venue, but not between
venues.

2.3 The trader

The trader is randomly drawn from a population of traders, which consists of three types.

The first type only goes to venue A (fraction α), the second type only to venue B (fraction

β), and the third type uses smart order routing technology (SORT) to access both venues

simultaneously (fraction γ = 1− α− β). Simultaneous is defined here as sending trades to

both venues so fast that the market makers are unable to update their limit order schedules

inbetween the trades. When both venues offer the same best price, the SORT investors

are indifferent as to where to send their trades to. In this case, they simply use a tie-

breaking rule, which posits that with probability π they first buy shares on venue A, and

with probability (1− π) they first buy shares on venue B. The parameters α, β and π are

constant, as I focus on a high-frequency environment.

Four reasons motivate why some investors are not able to trade on both venues si-

multaneously. First, human traders with access to both venues might trade too slowly,

creating a delay of several milliseconds when they split up a trade across two venues. In

this case, high-frequency market makers have suffi cient time to update their limit order

schedules inbetween trades. As a result, human traders effectively have access to one ex-
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change only.8 This argument seems realistic, as McInish and Upson (2011) show that slow

traders are adversely selected because they often trade against stale quotes. Second, smart

order routing technology might be too expensive for some traders, as it requires fixed costs

for technological infrastructure, software, programmers and access to data feeds etc. Third,

fixed costs of sending your trade to two venues could make it more economical to trade

through one price but save on the transaction costs (such that fixed clearing and settlement

costs are paid only once). Fourth, investors may deliberately decide to split up large trades

over time, for example to benefit from the resiliency of liquidity. In this case, they might

not need the liquidity offered on additional venues.

The trader is a buyer or seller with equal probability, and has a reservation price pm > p1

at which she is not willing to buy.9 The expected order size is similar for all types, with

mean φ and exponential density function

f(x) =
1

φ
exp(−x

φ
) if x > 0 (market buy). (2)

The cumulative distribution function is F (·). Assuming an exogenous order size simpli-
fies the analysis, although in reality the size depends on several factors, such as the current

state of the limit order book, the trader’s expected fundamental value and her current

holdings. However, I mainly focus on the behavior of the market makers, described next.

2.4 The market makers

Since traders are informed about the innovations in the assets true value, market makers

update their expectation of the fundamental value based on the size of the incoming trade

x. The market makers observe trades on both exchanges. They use a price impact function

h(x) which is non-decreasing, since buy trades typically contain positive information with

respect to the true value (similarly, sells contain negative information). Then, larger orders

8In fact, when market makers can update inbetween the two trades, the slow trader will never prefer
to split up his trade across two venues. The reason is that the market makers update their limit order
schedules symmetrically across two venues. Therefore, if it is optimal to submit the first part of the trade
to venue A, then it is also optimal to submit the second part there.

9This small assumption prevents the trade from walking up the limit order book too much in case of
a thin order book, but does not affect the outcome of the model.
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cause more adverse selection costs and greater price impacts.

E(Xt+1|x) = E(Xt) + µ+ h(x). (3)

As in Sandås (2001), the price impact function is linear with coeffi cient λ,

h(x) = λx. (4)

For simplicity, I assume market makers face a fixed limit order execution cost c, while the

submission cost is zero.10 Given this setup, we can calculate the expected profit of a limit

order placed on any location q in the queue of limit orders on each venue. The profit

depends on the expected value of the asset conditional upon execution of the limit order.

For a limit order on venue A, this value is E(X|x > q) when the trader immediately goes

to A (denoted Eq(X) for brevity), and E(X|x > q + QB1) when the trader first buys all

shares QB1 on venue B and then goes to A. Denote the probability that the incoming order

x is larger than q as F q = 1−F (q), then the profit of a limit order on price level 1 of venue

A is

ΠA,q = (α + γπ)F q(p1 − c− Eq(X)) + γ(1− π)F q+QB1(p1 − c− Eq+QB1(X)). (5)

In the first term, the limit order executes against traders going to venue A only (α) and

against SORT investors who choose to trade on venue A first (γπ). Then, the expected profit

is simply the price minus the fixed cost c and the expected value of the asset conditional on

x > q. The second term represents SORT traders who first buy all the shares offered at price

p1 on venue B, and then buys shares on venue A (γ(1 − π)). Indeed, market makers only

realize profits when their limit orders are executed. Therefore, conditional upon execution,

the second term of the expected profit is lower since the incoming trade is larger and more

informed, i.e., E(Xt+1|x > q +QB1) > E(Xt+1|x > q).

Not surprisingly, we observe that the expected profit of limit orders on venue A de-

pends on the number of shares offered on venue B. Therefore, to obtain the equilibrium

liquidity supply we need to solve for the profit equations of limit orders on both venues

10Placing limit orders is costless on the venues we analyze empirically.
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simultaneously. The profitabilty of limit orders on price level 1 of venue B is

ΠB,q = (β + γ(1− π))F q(p1 − c− Eq(X)) + γπFQA1+q(p1 − c− EQA1+q(X)). (6)

2.5 Equilibrium

The model is in equilibrium when no market maker can profitably place an additional limit

order on any price level (as in Glosten (1994), Proposition 2). Therefore, the expected profit

of the marginal limit order, the single share offered at the end of the queue of limit orders,

must equal zero for all price levels on each venue. Following Sandås (2001), I substitute

q = QA1 (the marginal limit order) and integrate the profit equation over the distribution

of the incoming order x, using equations (2), (3) and (4)

ΠA1 =

∞∫
QA1

(α + γπ)(p1 − c−Xt − λx)
1

φ
exp(−x

φ
)dx+

∞∫
QA1+QB1

γ(1− π)(p1 − c−Xt − λx)
1

φ
exp(−x

φ
)dx = 0.

The first integral goes to infinity, because the marginal limit order is executed for any trade

larger or equal to QA1. For demonstrational purposes previous equations contain γ, which

I next substitute with (1− α− β) to calculate the solutions. Solving the integral gives

ΠA1 = (α + π(1− α− β))(p1 − c−Xt − λ(φ+QA1)) exp(−QA1

φ
)+

(1− π)(1− α− β)(p1 − c−Xt − λ(φ+QA1 +QB1)) exp(−QA1 +QB1

φ
) = 0.

The zero expected profit condition implies that the first line of the equation is positive while

the second line is negative. In equilibrium, the market makers expect to lose to traders

that go to venue B first, and profit from traders that go to venue A first. Similarly, for
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venue B we have

ΠB1 =

∞∫
QB1

(β + γ(1− π))(p1 − c−Xt − λx)
1

φ
exp(−x

φ
)dx+

∞∫
QA1+QB1

γπ(p1 − c−Xt − λx)
1

φ
exp(−x

φ
)dx = 0,

which I solve to obtain

ΠB1 = π(β + (1− π)(1− α− β))(p1 − c−Xt − λ(φ+QB1)) exp(−QB1

φ
)+

π(1− α− β)(p1 − c−Xt − λ(φ+QA1 +QB1)) exp(−QA1 +QB1

φ
) = 0.

The two equations with two unknowns can be solved implicitly11

QA1 =
p1 − c−Xt − λφ

λ
− γ(1− π)QB1

γ(1− π) + (α + γπ) exp(QB1
φ

)
, (7)

QB1 =
p1 − c−Xt − λφ

λ
− γπQA1

γπ + (1− (α + γπ)) exp(QA1
φ

)
.

The zero expected profit condition holds for prices deeper in the order book too. Now,

the expected profit consists of three terms, as a limit order on price level 2 on venue A

might get executed by traders of type α (who first buy QA1 and then QA2), by type γπ

(who first buy QA1, QB1 and then QA2), or by type γ(1− π) (who first buy QB1, QA1, QB2

and then QA2). For brevity, denote Z(x) = α(p2 − c−Xt − λx) 1
φ

exp(−x
φ
), then

ΠA2 =

∞∫
QA1+QB1

Z(x)dx+

∞∫
QA1+QB1+QA2

Z(x)dx+

∞∫
QB1+QA1+QB2+QA2

Z(x)dx. (8)

I solve the system for prices deeper in the order book in similar fashion to equation (7),

which gives an implicit solution of the form QA2 = f(QA1, QB1, QB2; parameters), and

similarly for other price levels.

11This solution is unique. In Equation (7), ∂QA1/∂QB1 < 0 and ∂QB1/∂QA1 < 0, since the first term
does not depend on QA1 or QB1, while we subtract a second term which consists of non-negative parameters
only.
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2.6 Testable implications

In this section I discuss two static predictions of the model, which hold at each point in

time, and two dynamic predictions, which hold before and after a trade.

The static predictions follow from the solutions for QA1 and QB1 in equation (7). The

first terms are identical, and equal the optimal quantity offered in a single venue setting

(the solution obtained by Sandås (2001)). However, we subtract a non-negative second

term, implying that the offered quantities on the individual venues are weakly lower in

a fragmented market. The second term reflects the adverse selection costs incurred by

the market makers when a SORT trader buys at the competing venue first. Based on

the solution, I derive the following static predictions (the proofs are in section A.1 of the

Appendix).

Proposition 1 When the liquidity at both venues has reached equilibrium:

1. An increasing fraction of SORT traders γ strictly reduces consolidated depth.

2. For γ > 0 and SORT traders do not always go to venue A first or always to venue

B first, i.e., 0 < π < 1, the consolidated liquidity is strictly higher than the liquidity

offered in a single exchange setting.

A larger fraction of SORT traders implies less segmented markets, as many traders have

access to the liquidity of both venues simultaneously. Effectively, market makers face higher

adverse selection costs when trading with a SORT trader, because there is a probability

that she traded on the competing venue already. Therefore, a higher fraction of SORT

traders increases expected adverse selection costs and reduces equilbrium liquidity supply.

The second part of the proposition relates to the benefit of competition between exchanges

as documented by Glosten (1998) and Foucault and Menkveld (2008), which stems from

market makers’ability to jump the queue of limit orders on one venue by placing limit

orders on the other. Such “queue jumping”erodes the profitability of existing limit orders

on the first venue and effectively increases competition between liquidity suppliers.

To demonstrate how the equilibrium liquidity depends on the individual parameters, I

take the first derivative from the solution of QA1 with respect to α, β, γ and π. The results

can be summarized as follows, and hold symmetrically for QB1 (see the Appendix).
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Proposition 2 Other things equal, the number of shares offered at price level 1 of venue

A, QA1:

1. Increases by π, the probability that SORT traders go to venue A first; by α, the

fraction of investors that only have access to venue A; and by β, those with access

only to venue B when holding α constant.

2. Decreases by QB1; by γ, the fraction of SORT investors; and by β when holding γ

constant.

As expected, the liquidity offered on venue A strictly increases in α, and decreases in γ.

These effects are solely driven by adverse selection costs, which reduce when more investor

go to venue A first (α and π) and increase when more investors go to venue B first and

then to venue A (γ(1 − π)).12 Since γ = 1 − α − β, liquidity on A increases with β when
holding α constant (such that the fraction of smart order routers decreases), and decreases

with β when holding γ constant (such that the fraction of α decreases). An increase in QB1

implies larger adverse selection costs when a SORT trader purchases QB1 first and then

QA1.

Notice the following extreme case. When the fraction of SORT investors γ = 0, the

second term of equation (7) becomes zero and the quantity offered on each venue is identical

to that of a single exchange setting. However, while consolidated liquidity is twice that

of the single exchange setting, investors are not better off since they can trade on one

venue only. Effectively, duplicates of limit orders are placed on both venues, such that

consolidated liquidity overstates liquidity available to investors by a factor of two.

The market segmentation that arises when γ < 1 leads to important dynamic changes

in market makers’liquidity supply, i.e., before and after a trade. This is the main prediction

of the model.

Proposition 3 Define the “consolidated liquidity impact” of a trade as the difference in

equilibrium consolidated liquidity before and after a one unit trade.

1. When γ = 1 or in the single exchange setting, the consolidated liquidity impact equals

one.
12The signs of the derivatives with respect to π and QB1 hold on the relevant domain of QA1, i.e., for

QA1 smaller or equal to the equilibrium solution.
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2. The consolidated liquidity impact decreases by γ. For γ < 1, the consolidated liquidity

impact is strictly larger than one, such that the impact of a trade on liquidity is larger

than the trade size.

In the first case, a one unit trade reduces consolidated liquidity with one unit because

the price impact of the trade equals the slope of the limit order book. However, a decrease

in γ reduces the market makers expected adverse selection costs, who in turn increase

their liquidity supply. But given that the information content of a trade is held fixed, it

must be that the increased liquidity is cancelled after the trade.13 Effectively, the private

information of a trade is incorporated on the competing venue via cancellations of limit

orders. The numerical example of the next subsection explains this in more detail.

Market segmentation does not arise when γ = 1 or in the single exchange setting, so

market makers have no incentive to place duplicate limit orders. The channel of duplicate

limit orders occurs in addition to the effect that for γ > 0, consolidated liquidity increases

because of competition between liquidity suppliers (the second part of Proposition (1)). In

what follows, I define duplicate liquidity as the liquidity impact minus one, i.e., the impact

of a trade on consolidated liquidity due to additional cancellations of limit orders.

Next we analyze the impact of a trade on the liquidity supply at the other venue.

Proposition 4 Define the “cross-venue liquidity impact” as the difference in equilibrium

liquidity at the competing exchange before and after a one unit trade. The cross-venue

liquidity impact as always negative, and increases in magnitude by the liquidity of the com-

peting exchange. Further, a similar effect takes place on the bid side after a trade on the

ask side, and vice versa.

The cancellations are simply a consequence of the private information revealed by the

trade. The price impact changes the market makers’ expected fundamental value, and

accordingly they cancel and resubmit their entire limit order schedules around this value.

If market makers offer more liquidity on a venue, the cancellations following trades on the

competing venue will be larger too. Proposition (2) describes the impact of the models’

parameters on QA1, which directly translate into the cross-venue liquidity impact. Also,

since a trade on the ask side increases the expected fundamental value, the liquidity supply

13The proposition that γ reduces consolidated liquidity is proved in the Appendix, which makes this
proof redundant.
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on the bid side of both venues will increase accordingly. This holds symmetrically for trades

on the bid side.

To summarize this section, a reduction in the fraction of SORT investors lowers liquidity

via less competition between liquidity suppliers, but this negative effect is more than offset

by the increase in duplicate limit orders. However, the duplicate limit orders will be

cancelled after a trade, as shown in the numerical example of the next section.

2.7 Numerical example

In this section I substitute the models parameters with realistic values and analyze the

equilibrium. In particular, we are interested in the impact of the fraction of traders that

might go to one venue only (α and β) on outstanding liquidity of both venues.

I choose the following parameter values. The average trade size is 1 unit (φ = 1), the

best ask price is £ 10.00 and the tick size is 0.5 cent, which is the relevant case for the sample

stocks with a price of £ 10.00. The fixed order execution cost c is 0.1 cent (one fifth of the

tick size). The price impact of a one unit trade λ = 20 basis points, and the tie-breaking

rule π = 0.5. The models’results come out clearest when I set the fundamental value Xt

just above £ 9.99, such that the depth in the order book is constant at each price level for

the case that all investors use SORT (γ = 1).14

The numerical outcomes for the four best price levels are shown in Table (1), where α

and β vary. The first row shows the single exchange setting, α = 1, which is the Sandås

(2001) solution. This is the benchmark case, and shows that 1.53 units are offered on the

best price level, and 2.5 units on all subsequent price levels. In this case, the quantities

offered beyond the best price are constant because of the tradeoff between improved prices

and higher adverse selection costs, which equals the tick size divided by the price impact.

The second column shows the situation where all investors use smart order routing

technology (γ = 1, α = β = 0). Compared to the benchmark case, consolidated liquidity

is 63% higher on price p1 (2.5 versus 1.53), and identical on all subsequent levels. This

corresponds to part 2 of Proposition (1), and shows that liquidity summed over the first

price level and beyond indeed dominates the benchmark case. Consistent with competition

14Specifically, I set the fundamental value Xt = 9.993943. Small changes in Xt relative to the fixed
pricing grid cause changes in offered liquidity at the best price, which interact with liquidity on the
competing exchange and in turn with liquidity deeper in the order book.
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between market makers, the SORT traders reduce the expected profits to market makers

with 33% (from 2.24 to 1.50 basis points per trade, in the bottom part of the Table).

From columns three to six the fraction of SORT traders gradually decreases, which

increases consolidated liquidity (part 1 of Proposition (1)). When we move towards the

full duplicate limit orders case (γ = 0, column (6)), consolidated liquidity is twice that of

the single exchange setting. In each case, the Table reports the market shares and the per

trade expected profits to markets makers of both venues.

The main prediction of the model is that a higher fraction of SORT traders reduces

the amount of duplicate limit orders (Proposition (3)). To illustrate this point, we analyze

the impact of a 2.5 share trade on the liquidity of both limit order books. The price

impact is 2.5λ = 1 tick, meaning that all prices shift up exactly one level after market

makers have revised their limit orders. When all investors use SORT (column (2)), the

trade consumes the 1.25 units of QA1 and 1.25 of QB1, and then the limit order books are

immediately in equilibrium (market makers will not need to revise limit orders on the ask

side). In effect, there are no duplicate limit orders and the consolidated liquidity impact

of a trade is exactly one. In contrast, when no investors use SORT (column (6)), the trade

will consume half of the offered liquidity on both venues (1.25 of QA1 and QB1), but then

the remaining shares will be cancelled because of the price impact of these trades. In effect,

after the market makers revision, the 2.5 share trades reduce liquidity on both venues with

5 shares, meaning that 100% of the order size is cancelled.

The second prediction of the model is that the cross-venue liquidity impact of a trade

depends on the liquidity of the competing exchange (Proposition (4)). We confirm this in

column (7), where 50% of the investors have access to venue A only and 50% use SORT.

Thus, venue A is very liquid compared to B. As above, when we trade 1.25 on venue A

and B simultaneously, the entire liquidity schedules shift up one price level. Therefore,

cancellations on QA1 are 0.17 (from 1.42-1.25 to 0), and QA2 are 1.12 (from 2.37 to 1.42),

whereas QB1 are 0 and QB2 is -0.10, a replenishment (from 1.15 to 1.25). In general, the

replenishment implies that after a trade on one exchange, limit orders may get cancelled

on the competing venue and replaced on the current venue to restore equilibrium.

Indeed, column (7) shows the realistic setting in Europe, where a large fraction of

investors is able to trade only on the traditional venue A (50%), and the remaining investors

use SORT to access a new entrant venue B. The model correctly describes the following

stylized facts. Despite that only SORT investors trade on venue B, liquidity is still fairly
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high here: 88% relative to venue A at p1, which reduces to 29% when we sum liquidity

on levels p1 to p4. This is consistent with the stocks analyzed empirically. In addition,

the liquidity at p1 of venue A is about 93% of that in the single venue setting in column

(1), which closely matches the finding of Degryse et al. (2011) that competition between

exchanges reduces liquidity of the traditional market with about 10%. Lastly, while the

entrant offers a substantial fraction of total liquidity, it has a relatively low market share

of trading volume (22%, highly consistent with the empirical results).

3 Empirical results

This section first presents a brief overview of the sample stocks trading environment, fol-

lowed by a data description and an explanation of the liquidity measures, the DepthAsk(X)

and DepthBid(X). Then I test the duplicate limit order hypothesis and discuss the results.

3.1 Market structure FTSE100 stocks

The FTSE100 stocks are primarily listed on the London Stock Exchange (LSE), which is

the fourth largest stock exchange in the world. In the sample period, November 2009,

the LSE executes approximately 61% of trading volume (excluding dark pool and OTC

volumes).15 These stocks are traded on the trading system SETS, an electronic limit order

market organised by the LSE which integrates market makers liquidity provision. Note that

the market makers in the model are regular investors, who use high-frequency technology

to operate like traditional market makers. Continuous trading occurs between 08:00 and

16:30, local time.

Once stocks are listed on the LSE, alternative trading venues may decide to organize

trading in them as well.16 Four important entrants have emerged which also employ publicly

displayed limit order books: Chi-X, Bats, Turquoise and Nasdaq OMX Europe. These

venues are regulated as Multi-lateral Trading Facilities (MTFs), the European equivalent

to ECNs. While these entrants in effect have the same market model as the LSE, they

differ with respect to trading technology (speed in particular), fixed and variable trading

fees, and some of the types of orders that may be placed (e.g., pegging a limit order price

15As reported by Fidessa, see http://fragmentation.fidessa.com.
16This feature makes the current study inherently different from literature on cross-listings, where firms

may choose to list on several exchanges to improve access to global capital.
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to the midpoint, such that it always equals the midpoint +n ticks). Investors can demand

(“take”) liquidity by issuing a market order or supply (“make”) liquidity by issuing limit

orders at any moment in time. All markets allow for visible, partially hidden (iceberg)

and fully hidden limit orders. The hidden portion of iceberg orders becomes visible after

(partial) execution of the visible part. Accordingly, limit orders have a price, transparency,

time priority within a trading venue, but not between trading venues.

Chi-X started trading in April 2007 and is the most succesful entrant in terms of market

share with 24% of trading volume in November 2009. Turquoise and Nasdaq OMX started

trading FTSE 100 firms as of September 2008, and Bats two months later. Their market

shares are substantially lower, with 5.5%, 1.8% and 7.6%, respectively. In May 2010 Nasdaq

OMX closed down, as they did not meet their targeted market shares.17 As of July 2009,

the five trading venues use identical tick sizes, which depend on the stock price. All the new

competitors employ a maker - taker pricing schedule, where executed limit orders receive

a rebate of 0.18 to 0.20 basis points, while market orders are charged 0.28 to 0.30 basis

points of traded value. These make-take fees are relatively small compared to a ticksize of

5 basis points (0.5 pennies) for a £ 10.00 stock.

The trading venues with publicly displayed limit order books execute approximately

60% of total volume, while the remaining 40% is executed on dark pools, Broker-Dealer

Crossing Networks, internalized and Over-The-Counter.

3.2 Data

The current analysis is based on a subsample of ten FTSE100 stocks, each randomly selected

from one market cap decile of the 100 constituents (i.e., a size stratified sample).18 The

sample period consists of 10 trading days (November 2 - 13, 2009), and high-frequency

data are taken from the Thomson Reuters Tick History database. For each stock, the data

contain separate limit order books for the five trading venues.

For each transaction, I observe the price, traded quantity and execution time to the

millisecond,19 while for each limit order placement, modification or cancellation, the dataset

17See “Nasdaq OMX to close pan-European equity MTF”, www.thetradenews.com.
18I choose ten stocks during ten trading days as computational limitations prevents me from using the

full sample of stocks or more trading days.
19If a single market order is executed against several outstanding limit orders, separate messages are

generated for each limit order.
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reports the timestamp and the ten best prevailing bid and offer prices and their associated

quantities.20

While the time stamp is per millisecond, I take snapshots of the limit order books

at the end of every 100th millisecond, resulting in approximately 30 million observations.

Higher frequencies are not useful when comparing multiple trading venues, as it may lead

to inaccuracies because of latency issues, i.e. millisecond reporting delays. Per snapshot, I

observe the available liquidity and that periods trading volumes on the buy and sell sides

of every venue. The advantage of taking snapshots is that the data become evenly spaced,

such that every observation receives the same weight in the regressions. Accordingly, lagged

variables in the regressions become easily interpretable.

I do not directly observe hidden and iceberg limit orders. However, from trades I can

construct the executed hidden quantity, based on the state of the order book directly before

and after the trade and the traded quantity. As such, I do observe hidden liquidity that

gets ‘hit’by a market order. These data are identical to those offered by several information

vendors, meaning I use the information set available to the market.

Panel A of Table 2 presents summary statistics for the sample stocks. As I select

stocks from within each size decile, there is a large variation in market cap: the mean is

£ 21 billion with a £ 37 billion standard deviation. Accordingly, also trading volume (in

shares and pounds) and realized volatility vary substantially. A large part of this variation

stems from Itv PLC, the smallest stock in the sample. In contrast, the market shares of

the five trading venues are fairly stable between firms, and highly representative for the

entire FTSE100 index.

Panel B of Table 2 presents summary statistics on the average number of limit orders

and transactions per minute. While the LSE’s market share is largest by far, the number of

transactions lie much closer together (i.e., Chi-X trades are smaller on average). On top of

that, the number of limit orders on Chi-X greatly exceeds the LSEs, on average 218 versus

160 per minute.

Worth mentioning is the ratio of limit orders to trades, which is 31:1 for the LSE, 51:1

for Chi-X and increases as a venues market share goes down to 123:1 for Nasdaq. This

is mostly due to high-frequency traders placing many limit orders, and shows that new

entrants are highly active despite a small overall market share. Chi-X and Bats are the

20This feature of the data makes it diffi cult to follow a limit order over time, because its location in the
order book can changes and may even fall outside the observable range of ten price levels.
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most succesfull new competing venues in terms of market share, number of transactions

and limit order book activity.

Finally, in Table 3 reports summary statistics on trading volume per minute, denomi-

nated in GBPs. For each venue I show the total buy and sell volume (left panel), and the

volume executed against hidden limit orders (right panel). Overall, the buy and sell sides

are fairly symmetric.

3.3 The DepthAsk(X) and DepthBid(X) liquidity measures

This subsection explains the DepthAsk(X) and DepthBid(X) measures, also used in Degryse

et al. (2011).

The DepthAsk(X) aggregates all shares offered at prices between the midpoint and the

midpoint plus X basis points. Similarly, the DepthBid(X) sums the shares offered within

the midpoint minus X basis points and the midpoint. The midpoint is the average of the

best bid and ask price available in the market, and I choose X = 10 basis points relative

to the midpoint. The price constraint X garantuees that I sum liquidity at prices close to

the midpoint, i.e. only at good price levels. This is important, as liquidity offered deeper

in the order book is less likely to be executed, and therefore less relevant to investors. The

number of shares in the interval are then converted to the value in GBPs.

Formally, define price level j = 1, 2, ..., J on the pricing grid and the midpoint M , the

average of the best ask and bid price available in the market, then for venue v,

DepthAsk(X)v =

J∑
j=1

PAsk
j,v QAsk

j,v 1
(
PAsk
j,v < M(1 +X)

)
, (9a)

DepthBid(X)v =
J∑
j=1

PBid
j,v Q

Bid
j,v 1

(
PBid
j,v > M(1−X)

)
. (9b)

The measures are calculated at the end of every 100 millisecond interval and represent

liquidity offered at the bid and ask side, per trading venue. When taking higher values

for X, liquidity deeper in the order book is also incorporated. Then, comparing different

price levels X reveals the shape of the order book. For example, if the depth measure

increases rapidly in X, the order book is deep while if it increases only slowly, the order

book is relatively thin. The order book is asymetric when the absolute difference between
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DepthAsk(X) and DepthBid(X) is high.

The measure has several features that make it highly suitable for the empirical ap-

proach. First, the measure is calculated per venue, for the bid and ask side, which allows

us to analyze correlations between the provision and consumption of liquidity across venues,

sides and over time. Second, the measure can directly be related to trading volumes, as

both are denoted in pounds. Third, the Depth measure incorporates limit orders beyond

the best price levels, making it robust to small, price improving limit orders. Such orders

are often placed by high-frequency traders, who mostly drive the dynamics in the model.

Fourth, by choosing a fixed interval the measure is independent of the tick size, which varies

across stocks. For a detailed discussion and comparison of this measure with related liquid-

ity measures such as the Cost of Roundtrip (CRT (D)) and Exchange Liquidity Measure

(XLM(V )), I refer the interested reader to Degryse et al. (2011).

Table 4 contains summary statistics on the Depth(10) and Depth(50) measures for

the bid and ask side, reported in GBPs and calculated per exchange. The statistics are

based on single observations per tenth of a second per stock, equal weighted over all stocks.

Depending on the tick sizes, the Depth(10) aggregates liquidity of two to five price levels

on the bid and ask side. First and most strikingly, we observe that the liquidity offered on

Chi-X is 86% of the LSE, while they execute only a third of the LSE volume. As predicted

by the model, this implies that indeed a substantial fraction of investors only have access to

the LSE. The liquidity available at Bats is roughly 40% of the liquidity at the LSE, while

Turquoise and Bats have approximately 20% each. The ask side contains on average 3%

more liquidity than the bid side, meaning that the order books are very symmetrical.

The regression analysis works with changes in DepthAsk(X) and DepthBid(X), i.e.,

the value of the current minus the previous observation. As Eq. (9) shows, these changes

depend on the activity in the limit order book and on the level of the midpoint. The

model relates changes in the depth measures due to limit order book activity only, i.e.,

the placement, cancellation, modification and execution of limit orders. Therefore, I de-

fine Chg_DepthAsk(X) as the difference in DepthAsk between each period, holding the

midpoint constant

Chg_DepthAsk(X)i,t = DepthAsk(X,Mt−1)i,t −DepthAsk(X,Mt−1)i,t−1. (10)

The measure simply shows how much liquidity in GBPs is added or removed from one

period to the next.
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3.4 Methodology

The model predicts that high-frequency traders operating as market makers place duplicate

limit orders on several exchanges. Therefore, we expect that a trade is followed by cancel-

lations of limit orders on the same side of the limit order books of competing venues. This

prediction holds equally for buy and sell trades. The second prediction of the model is that

the cancellations should occur to a greater extent on venues with a high share of non-SORT

traders, i.e., the traditional exchange. The reason is that the market makers place more

duplicate limit orders on the LSE than on Chi-X, which in turn will be cancelled after a

Chi-X trade. The third prediction, consistent with theories of asymmetric information, is

that new limit orders will be placed on the bid side after a buy trade (and on the ask side

after a sell), including some duplicate limit orders.

Cancellations of limit orders occur when the Chg_DepthAsk(10) is negative (after

controlling for trading volume). Thus, I regress the Chg_DepthAsk(10) of venue v on

contemporeneous and lagged buy and sell volumes of all venues. I add lags of ten seconds,

which are 100 periods as the data are sampled at a 100 millisecond frequency, because the

model’s predictions apply to a high-frequency trading environment and should be incor-

porated very quickly. Instead of estimating 100 individual lagged coeffi cients, I add five

variables that average trading volume of 1, 2-4, 5-10, 11-20 and 21-100 periods away, per

venue for buy and sell volumes. Section A.2 in the appendix explains in more detail how I

obtain the cumulative impact of a transaction over time.

A trade is classified as Buy or Sell, and define trading venue v = 1, ..., 5, for the current

and five lagged groups l, stock i and time t. I test the model’s predictions with the following

regressions:

Chg_DepthAsk(10)Vit = ci +
5∑
v=1

5∑
l=0

(
βBuyl,v ×Buyvit−l + βSelll,v × Sellvit−l

)
+

5∑
v=1

(
βBuyv ×BuyHidvit + βSellv × SellHidvit

)
+ εit. (11)

The term after the firm fixed effects represents the buy and sell volumes (in GBPs) for

the five venues covering the six lagged groups. The term on the second line controls for

contemporeneous hidden buy and sell liquidity (observed when executed), which is added

for the following reason. The effect of a buy trade on Chg_DepthAsk(10) of that venue
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should mechanically be −1 : a one pound trade reduces the depth with exactly one pound.

However, since a trade executed against a hidden limit order does not reduce DepthAsk(10),

I control for executed hidden liquidity.

This regression is executed ten times: for the bid and ask sides of five trading venues.

It shows how many pounds close to the midpoint are submitted or cancelled after a one

pound buy or sell trade on some venue. Note that the effects do not die out over time,

as for example a buy trade might contain positive price information, such that some limit

orders will permanently be cancelled on the ask side.

3.5 Results

The regression results are reported in Table (5), with the change in DepthAsk and Depth-

Bid of all venues as dependent variables. Each column represents one regression, showing

separate coeffi cients for buy and sell volumes, per trading venue. The dependent and inde-

pendent variables are all measured in GBPs. Within each venue, the displayed coeffi cients

represent the cumulative effect over time (the running sum). I only show the effect within

one tenth of a second, after 1 second and after 10 seconds. Intermediate lagged values

are estimated to improve the model fit, but for brevity not reported. Next I discuss the

findings for the DepthAsk only, as the results for the DepthBid are symmetric.

In line with the Proposition (4), the first column shows that a one pound buy trade at

Chi-X is immediately followed by cancellations on the LSE of -0.21 pounds (-21%). After ten

seconds, the effect is -0.61, meaning that more than half of the Chi-X trade size is cancelled

on the LSE. The coeffi cients for Bats are similar, -0.27 immediately and -0.54 after ten

seconds (all significant at the 1% level). This effect is economically very large, and implies

that trades on entrant venues are immediately followed by cancellations on the traditional

market. Note that the effect cannot be explained by investors who simultaneously place

trades on several venues, since the regression controls for trades on other venues. Also,

the regression controls for the execution of hidden limit orders. The effect of Nasdaq and

Turquoise trades on LSE liquidity are negative, but surprisingly small.21

The immediate effect of a one pound LSE buy trade on LSE DepthAsk is -0.83 pounds.

This implies that while the trade removed 1 pound, either 17 cents is immediately replen-

21I need to investigate the possibility that Nasdaq and Turquoise mainly attract trades when only they
offer the best price in the market. In this case, we would not expect cancellations.
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ished, or, first a new limit order is placed which immediately provokes the trade. The latter

explanation is consistent with the findings of Hasbrouck and Saar (2009). A Chi-X buy

trade reduces Chi-X DepthAsk with -1.31 (column (2)), implying that beyond the reduction

of 1 pound, an additional and significant 31 cents is cancelled. Coeffi cients of the other

venues lie between -0.70 and -1.26.

Consistent with the second part of Proposition (4), the LSE indeed responds more

strongly to Chi-X and Bats trades than vice versa. In column (2) and (3), LSE trades

reduce liquidity on Chi-X and Bats with -0.18 and -0.05 after ten seconds (compared to

-0.61 and -0.54 above).

The cancellation effect also holds particularly strong between Bats and Chi-X, in both

directions. Bats and Chi-X have immediate cross-coeffi cients of -0.58 and -0.18 (column

(2-3)), and are the most succesfull entrants in terms of market share. These findings

suggest that a fraction of high-frequency market makers operate on the LSE, Chi-X and

Bats simultaneously, generating the strong correlations of liquidity between these venues.

In contrast, Turquoise and Nasdaq seem more independent, as their liquidity does not

respond much to trades on the LSE, Chi-X and Bats and vice versa.22

The immediate effect of any venues sell trades on LSE DepthAsk(10) is economically

large and positive, with coeffi ents ranging from 0.10 to 0.30 (column (1), bottom panel).

This result is consistent with an information effect: the sell trade conveys negative informa-

tion about the stock, such that market makers improve prices (and quantities) of their ask

limit orders. In addition, the finding is consistent with selling investors who use algorithms

that optimally place market orders on the bid sides and new limit orders on the ask sides

(as predicted by theory of e.g., Parlour (1998)).

Concluding, the results confirm that consolidated liquidity is overstated in a fragmented

market, because a single transaction is followed by substantial cancellations of limit orders

on the other venues. In the model, these cancellations would not occur in a single venue

setting or when all traders use smart order routing technology.

22A possible explanation is that at times, Nasdaq and Turquoise offer zero DepthAsk(10). Obviously,
in such periods their liquidity does not respond to competitors trades, pushing the estimated coeffi cients
toward zero.

25



3.6 Drivers of the cancellation effect

In this section I analyze the driving forces behind the cancellation effect. In particular, I

am interested in the variation in cancellation rates of the venues across stocks and over

time, and how they are influenced by observable market characteristics.

I estimate the previous model for hour t of stock i, but use as dependent variable the

change in ask (or bid) liquidity summed over all venues, i.e., the change in consolidated

Depth(10). These regressions represent the impact of a trade at venue v on market wide

depth, consistent with Proposition (3). In a new dataset I store the estimated coeffi cients

Coefv,it accumulated over one second after the trade, for buy trades on the ask side liquidity

and sell trades on the bid side liquidity. The sample size is extended from 10 to all 21 trading

days in November 2009 for the same 10 stocks used in the previous analysis, which results in

1890 observations. Next, I filter the data by dropping observations where the trading venue

v of Coefv,it has executed less than £ 10.000 or 50 transactions. Without this restriction,

the estimated coeffi cients on the cancellation rates have too high standard errors and are

not economically meaningful. As a consequence, we disregard the regressions of Turquoise

and Nasdaq OMX altogether because these venues are insuffi ciently active.23 In addition,

I winsorize Coefv,it at the 1% and 99% level to reduce the impact of outliers.

Based on the new dataset, I run the following two regressions for firm i, venue V =

{LSE,Chi-X,Bats}, and hour h

CoefV,ih = ci + δh + Fragih + LS_LSEih + εih, (12)

CoefV,ih = ci + δ(h) + Fragih + LS_LSEih + Ln(entrant trades)ih +Order Imbih +

V olatih + Ln(turnover)ih + Ln(Depth(10) cons)ih + εih. (13)

Using estimated coeffi cients as dependent variable in a second step regression does not

bias the coeffi cients of the second step.24 Frag is the degree of fragmentation of stock-

hour ih, defined as (1-HHI). HHI is the sum of squared market shares of the five venues

based on trading volume (also used in Degryse et al. (2011)). LS_LSE is the liquid-

ity share of the LSE, defined as the ratio of LSE Depth(10) over consolidated Depth(10).

Ln(entranttrades) is the logarithm of the number of transactions at entrant venues. Order

23We do incorporate these venues when calculating consolidated liquidity, although the results are
qualitatively unaffected when leaving them out.

24The measurement error from the first step only increases the standard errors of the coeffi cients in the
second step.
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imbalance (Order Imb) is the difference between the logarithm of buy volume and sell vol-

ume. V olat is the realized volatility based on 5-minute underlying stock returns, calculated

as the sum of 12 squared 5-minute returns, hour by hour. Ln(turnover) and Ln(Depth(10)

cons) are the logarithms of trading volume (in GBP) and consolidated Depth(10). We add

firm fixed effects and daily dummy variables δ(h) to absorb fixed stock and day character-

istics.

Summary statistics of the regression variables are presented in Table (6). The top panel

shows that the degree of fragmentation is fairly constant across stocks and over time, with

a mean of 0.59 and standard deviation of 0.09. This also holds for the LSE liquidity share,

with a standard deviation of 0.11. In contrast, the number of trades on the entrants vary

substantially, with a mean of 435 and a standard deviation of 485. The order imbalance

is highly volatile too, since a one standard deviation increase implies that buy volume is

43% larger than sell volume. The bottom panel shows the cancellation rates of trades at

the individual venues on consolidated liquidity. The impact on consolidated liquidity is

approximately equal to the sum of the impact on the individual venues, as reported in

Table (5). The standard deviations of Turquoise and Nasdaq are very large, which justifies

excluding them from further analysis.

The regression results for the three trading venues are presented in Table (7). Frag

should be a good proxy for the number of traders with SORT technology, which corresponds

to Proposition (3). In the model, market makers face higher adverse selection costs when

trading with SORT traders, because there is a risk that the SORT trader already bought

shares on the competing venue, which in turn implies a larger and more informed trade on

average. Thus, we expect that Frag correlates negatively with the amount of cancellations.

The coeffi cient on Frag is indeed negative for Chi-X and Bats (columns (2-3)), but not

for the LSE (column (1)). While this result seems contrasting, a likely explanation is that

Frag also proxies for the activity of market makers who operate on several venues. Then,

a higher level of fragmentation implies more cross-market activity and more cancellations.

This explanation mainly holds for trades on the LSE, which is always active, whereas Chi-

X and Bats are only active when the market is fragmented.25 When I control for other

variables that proxy for the activity of cross-market market makers (columns (4-6)), Frag

becomes strongly negative (and significant). Then, a one standard deviation increase in

25An alternative explanation is that some liquidity providers on the LSE do not operate on the entrant
venues, i.e., do not cancel their limit orders after they trade on the LSE.
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Frag (0.09) reduces cancellations of LSE trades by 5% and Chi-X and Bats trades by 30%

and 43%.

The liquidity share of the LSE is negatively correlated with the amount of duplicate

limit orders, and significant in all regressions. A large LSE liquidity share means that

market makers are less active on the entrants which results in fewer cross-market activity

and cancellations. These coeffi cients are economically large, as a one standard deviation

change reduces the cancellation rates with 20-40% (depending on the trading venue).

The remaining control variables in columns (4-6) have the expected signs. An increasing

number of entrant trades increases the cancellation rates, which is consistent with market

makers operating more actively on entrant venues. Similarly, more overall liquidity (con-

solidated depth) is consistent with a higher amount of duplicate limit orders. Turnover has

a negative sign, which means that in periods of high trading activity the market makers

place less duplicate limit orders.

The bottom panel of Table (7) shows the results using the cancellation effects of sell

trades on bid liquidity as dependent variable, and are highly symmetric.

4 Conclusion

Equity markets have evolved rapidly in recent years due to the increasing number of trading

venues and heavy investments in high-frequency trading technology. I show that a specific

type of high-frequency traders, those who operate like modern day market makers, might

in fact cause a strong overestimation of liquidity aggregated across trading venues. The

reason is that these market makers place duplicate limit orders on several venues, and after

execution of one limit order they quickly cancel their outstanding limit orders on competing

venues. As a result, a single trade on one venue is followed by reductions in liquidity on all

other venues.

The empirical analysis confirms that trades are followed by substantial cancellations

on competitors. That is, within 100 milliseconds after trades on some venues 39 − 85%

of the order size is cancelled on competitors. After one second this number increases to

98 − 125%, which shows that the impact of a trade on liquidity is in fact twice the trade

size. Note that the reduction in liquidity is due to cancellations of limit orders, since the

analysis controls for transactions on all individual trading venues.
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The analysis is executed on a sample of FTSE100 stocks, which are fairly fragmented in

the sample period. The main advantage of using these stocks is the rich data: I observe the

entire limit order books of the five trading venues that compete for these stocks. The data

represent all publicly displayed liquidity, which is the same information set available to the

general public. By sampling the data at one observation per tenth of a second, I study

high-frequency trading behavior. The paper contributes to the literature by analyzing the

impact of high-frequency trading strategies on the demand and supply of liquidity across

exchanges.

The results relate to the benefits and drawbacks of equity market fragmentation. While

previous research typically shows a beneficial effect of fragmentation on liquidity, the analy-

sis argues that the benefits, while still positive, are mitigated because of duplicate limit

orders. Note that duplicate limit orders will not arise when all investors use smart order

routing technology (SORT).

An additional result of the model is that liquidity shocks are highly correlated across

trading venues. Therefore, static measures of consolidated liquidity (and quoted depth)

overstate the liquidity available to investors, since a single trade reduces liquidity on all

venues. However, liquidity measures such as the quoted spread and effective spread are un-

affected by the duplicate limit orders. My results are particularly important to algorithms

designed to minimize execution costs by splitting up trades over time. Indeed, the strong

cancellations mitigate the benefits of order splitting– a result that cannot be observed by

static liquidity measures.

My model focusses on two exchanges only, but can already predict a substantial fraction

of duplicate limit orders. Therefore, the relevance of the model is only strenghtened by the

fact that most European stocks trade on more than four exchanges (with publicly displayed

limit order books) and some US stocks on so much as twelve exchanges. A larger number

of trading venues encourages market makers to duplicate their limit orders.

The predictions of the model are very relevant to US markets too. Indeed, it seems

that all US traders use SORT because the regulator prohibits the execution of trades at

prices inferior to the best available price. However, duplicate limit orders will still arise

when some traders are unable to split up trades simultaneously across venues. When a

trader leaves a millisecond delay between the split, high-frequency traders can observe the

first part of the trade and quickly cancel duplicate limit orders on other venues before the

second part of the trade arrives. Therefore, the results of the model also hold when the
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trading speeds varies across investors.

The main policy implication of the model is that fair markets require traders to have

simultaneous access to all trading venues. In any other case non-SORT or slow traders

pay a higher price for liquidity, which is transfered to the SORT traders. This result is

consistent with McInish and Upson (2011), who find that high-frequency traders are able to

exploit slower traders in other ways too (see also Biais et al. (2011) and Hoffmann (2011)).

A second implication is that the decision of a trader to acquire SORT increases the liquidity

she has access to, but also imposes a negative externality on other traders. The overall

welfare effects depend on the cost of acquiring smart routing technology, and are therefore

ambiguous.

A Appendix

A.1 Theory

This section summarizes the proofs of the propositions in the model.

• The consolidated liquidity in a fragmented market is strictly larger than liquidity in
a single exchange setting (Proposition (1)).

Proof. Denote the liquidity in a single exchange setting as Q1, which is the solution from

Sandås (2001). I repeat equation (7), and rewrite as

QA1 =
p1 − c−Xt − λφ

λ
− γ(1− π)QB1

γ(1− π) + (α + γπ) exp(QB1
φ

)
≡ Q1 − cB1QB1 A1(a)

QB1 =
p1 − c−Xt − λφ

λ
− γπQA1

γπ + (1− (α + γπ)) exp(QA1
φ

)
≡ Q1 − cA1QA1. A1(b)

I need to show that QA1 +QB1 > Q1, which is equivalent to cB1QB1 + cA1QA1 < Q1.

cB1QB1 + cA1QA1 = cB1QB1 + cA1Q1 − cA1cB1QB1

= cA1Q1 + (1− cA1)cB1QB1

< cA1Q1 + (1− cA1)Q1 = Q1.
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In the first equality I simply replace QA1 with the first line of equation A1(a); which I then

rewrite in the second line. The inequality holds because cB1QB1 < Q1, since cB1 < 1 and

QB1 ≤ Q1.

• Both venues co-exist when α < 1 and β < 1. Co-existence means that both venues

attract a positive amount of liquidity and market share.

Proof. It is suffi cient to show that liquidity on both venues is strictly positive, because

SORT traders will always use liquidity of both venues when the incoming order size is

suffi ciently large (i.e., when the size goes to infinity). This is proved in the last equality

above, that QA1 = Q1 − cB1QB1 > 0, and symmetrically for venue B.

• The first derivates of the solution of QA1 with respect to π, γ, α, β and QB1 are

straightforward and not reported, but available upon request (Proposition (2)).

• The market makers’profit of limit orders on price level 1 is given by

QA1∫
0

(α + γπ)
∞∫
q

Πi(x)dx+ γ(1− π)
∞∫

q+QB1

Πi(x)dxdq. (14)

Calculating the profit of market makers involves integrating over the profitability of

all marginal shares at each price level. I calculate the profit of each marginal share by

integrating over the incoming trade x, which are traders who either go immediately to

venue A, (α+ γπ), or traders that go to venue B first and then to A, γ(1−π). For brevity,

denote Πi(x) = (pi−Xt− c−λx)f(x), then the market makers profit of all limit orders on

price level 1 of venue A is

A.2 Empirical

This section shows that the methodology in section 3.4 measures cumulative effects over

time. That is, in regression (11) I add contemporeneous terms and lagged values of trading

volumes 100 periods ago (i.e., ten seconds). Instead of estimating 100 coeffi cients, I create

six variables representing the averaged lagged volumes of the current, 1, 2-4, 5-10, 11-20

and 21-100 periods away, per venue for buy and sell volumes. Define t as the current period,
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i as the start and j as the end of the intervals (e.g., i = 2 and j = 4). Then

V oli−j =
1

j − i+ 1

j∑
n=i

V olt−n.

The periods of lagged values are chosen such that they maximize the model fit. An

example of how the data looks like is shown in the table below, where a £ 1.00 trade occurs

on some venue at time t = 1. The first four columns show the values of the contemporeneous

and three lagged groups. The fifth column shows the cumulative effect of the regression

coeffi cients over time, calculated as a running sum of the individually estimated coeffi cients.

By constructing the variables as averages, the long-term effect of a trade is simply the sum

of the estimated coeffi cients. The standard errors are also calculated based on this sum.

Data example of a trade at time t = 1.
Each βt represents the estimated coeffi cient of lagged average volumes t periods away, as
described in regression (11).

Time Vol0 Vol1 Vol2−4 Vol5−10 Cumulative effect

0 0 0 0 0 0
1 1.00 0 0 0 β0
2 0 1.00 0 0 β0 + β1
3 0 0 0.33 0 β0 + β1 + 0.33β2−4
4 0 0 0.33 0 β0 + β1 + 0.66β2−4
5 0 0 0.33 0 β0 + β1 + β2−4
6 0 0 0 0.20 β0 + β1 + β2−4 + 0.2β5−10
7 0 0 0 0.20 β0 + β1 + β2−4 + 0.4β5−10
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Table (1) Numerical Example
We solve the model for the quantities offered on the four best ask price levels of venue
A (upper panel) and B (second panel). We vary the parameter values of the fraction of
investors with access to venue A only (α) and venue B only (β). The fraction of investors
with smart order routing technology (γ) varies accordingly, defined as 1−α−β. The lower
panels show the market shares and the per trade total expected profits to market makers
of each venue. The expected profits are expressed in basis points relative to the midpoint.
The remaining model parameters are held fixed. The average trade size is 1, with a per unit
price impact of 20 basis points. The best ask price is £ 10.00, the tick size is 0.5 pennies
and the fixed trading cost is one tenth of a cent. I specifically set the fundamental value
to £ 9.993943, such that offered liquidity is constant at each price level when all investors
use SORT (column 2). When both venues offer the best price, SORT traders are equally
likely to go to venue A or B first (π = 0.5).

(1) (2) (3) (4) (5) (6) (7)

α 1 0 0.1 0.1 0.4 0.5 0.5
β 0 0 0 0.1 0.4 0.5 0
γ 0 1 0.9 0.8 0.2 0 0.5
Venue A
QA1 1.53 1.25 1.29 1.30 1.46 1.53 1.42
QA2 2.50 1.25 1.78 1.87 2.47 2.50 2.37
QA3 2.50 1.25 2.49 2.86 2.58 2.50 2.55
QA4 2.50 1.25 2.64 2.94 2.52 2.50 2.50
Venue B
QB1 0 1.25 1.25 1.30 1.46 1.53 1.25
QB2 0 1.25 1.23 1.87 2.47 2.50 1.15
QB3 0 1.25 0.78 2.86 2.58 2.50 0.15
QB4 0 1.25 0.03 2.94 2.52 2.50 0.00
Market shares
A 1.00 0.50 0.58 0.50 0.50 0.50 0.78
B 0.00 0.50 0.42 0.50 0.50 0.50 0.22
Market maker profits in basis points
A 2.24 0.75 0.93 0.84 1.06 1.12 1.55
B 0.00 0.75 0.66 0.84 1.06 1.12 0.35
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Table (2) Summary statistics of sample firms.
Summary statistics are presented for the 10 FTSE100 sample stocks, calculated using data of
November 2009. Panel A shows market cap (in millions), price, average daily traded volume
(millions of shares), turnover (millions of pounds), realized volatility and the market shares of
the five trading venues. The trading venues are the London Stock Exchange (LSE), Chi-X, Bats
Trading, Turquoise and Nasdaq OMX Europe. Panel B shows limit order book data, where
statistics are equally weighted based on one observation per tenth of a second, per stock. For
each venue, statistics on the average number of transactions and limit order updates per minute
are shown, per venue. The stocks in our sample are Aviva, Hsbc Holdings Plc, Itv Plc, Kingfisher,
Lonmin, National Grid, Pearson, Sage group, Vedanta Resources and Xstrata.

Mean Stdev Max
Panel A: Stock characteristics

Market Cap 21,062 37,827 125,930
Price 8.06 7.13 23.3
Cumvolume 527 554 1,883
Turnover 3,104 4,188 13,650
Volatility 3.92 1.38 6.10
Share LSE 66.2 5.24 73.8
Share Chi-X 20.5 3.52 25.8
Share Bats 6.44 1.68 9.49
Share Turq. 5.17 1.07 6.29
Share Nasdaq 1.77 0.65 2.73

Panel B: Limit order book

Trades LSE 5.16 9.70 347
Trades Chi-X 4.32 7.46 283
Trades Bats 1.80 3.59 84
Trades Turq. 1.19 2.41 51
Trades Nasdaq 0.61 1.54 56
Limits LSE 159.84 216.31 6,999
Limits Chi-X 218.46 373.08 11,934
Limits Bats 123.92 231.60 7,308
Limits Turq. 98.25 146.95 3,296
Limits Nasdaq 75.63 154.66 7,081
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Table (3) Summary statistics of trading volume per minute.
Buy and sell volumes in GBPs are reported, showing averages of volume per minute, equal
weighted over 10 stocks and 10 trading days. The left panel shows all volume and the right
panel volume executed against hidden limit orders.

Volume Hidden

Mean Stdev Max Mean Stdev Max

Sell LSE 39,960 131,673 12,910,331 2,692 35,785 4,001,096
Sell Chi-X 17,492 43,216 990,636 578 3,501 155,871
Sell Bats 5,909 18,996 1,149,016 798 4,344 150,729
Sell Turq 4,082 12,535 349,188 425 2,719 86,744
Sell Nasdaq 1,429 6,667 482,222 8 358 30,040

Buy LSE 41,989 149,532 12,280,297 3,122 37,028 1,644,776
Buy Chi-X 17,674 44,352 1,186,893 625 3,944 318,701
Buy Bats 5,404 18,715 1,536,919 760 4,217 209,244
Buy Turq 4,088 13,377 396,196 532 3,317 126,089
Buy Nasdaq 1,553 7,034 342,203 26 845 65,950
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Table (4) Summary statistics Depth(X) measure.
Summary statistics are presented using limit order book data, containing one observation per tenth
of second per stock, for 10 trading days in November 2009. The statistics are equally weighted
over observations. The mean, standard deviation and maximum of Depth(10) and Depth(50) on
the ask and bid side are shown. The Depth(10) on the ask side reflects the available liquidity,
in pounds, offered with prices in the interval of Midpoint and Midpoint + 10bps. Similarly, the
Depth(10) on the bid side reflects the liquidity offered with prices between Midpoint - 10bps and
Midpoint. Depth(50) sums liquidity within 50 basis points from the midpoint. The trading venues
are LSE, Chi-X, Bats Trading, Turquoise and Nasdaq OMX Europe.

Ask side Mean Stdev Max

Depth(10) LSE 66,620 117,961 8,940,000
Depth(10) Chi-X 57,693 78,948 1,100,000
Depth(10) Bats 26,311 39,358 527,947
Depth(10) Turq. 14,915 18,817 411,974
Depth(10) Nasdaq 12,824 21,345 213,733
Depth(50) LSE 446,687 371,316 9,040,000
Depth(50) Chi-X 268,467 210,066 1,650,000
Depth(50) Bats 88,363 94,112 800,103
Depth(50) Turq. 71,495 47,170 570,524
Depth(50) Nasdaq 58,096 44,992 332,529

Bid side

Depth(10) LSE 63,244 90,327 4,420,000
Depth(10) Chi-X 55,907 77,345 1,020,000
Depth(10) Bats 25,404 38,187 553,743
Depth(10) Turq. 14,273 19,277 525,517
Depth(10) Nasdaq 13,241 22,891 538,609
Depth(50) LSE 431,658 339,853 5,100,000
Depth(50) Chi-X 270,657 213,624 1,790,000
Depth(50) Bats 85,748 92,792 1,170,000
Depth(50) Turq. 74,360 51,850 638,623
Depth(50) Nasdaq 61,156 51,443 664,181
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Table (5) The cumulative impact of turnover on Depth(10).
Each column represents one regression, showing the cumulative effect over time of buy and sell turnover on

changes in DepthAsk(10) and DepthBid(10) of one venue. Changes in the DepthAsk(10) reflect changes

in liquidity offered with prices in the interval of Midpoint and Midpoint + 10bps. These changes stem

from limit order book activity (placement, cancellations and execution of limit orders). The data consist

of one observation per tenth of a second, for each stock. The independent variables are contemporeneous

and lagged buy and sell trading volumes for each of the five venues, in GBP. We show the cumulative

effect over time (i.e., the running sum) of current trades, and trades one and ten seconds ago. Accordingly,

each panel shows the immediate, short and long-term effects of one venues transactions on another venues

liquidity. The regressions also contain executed hidden volume as control variables (not reported for

brevity). Standard errors are clustered per firm - halfhour, a single asterix indicates significance at the 1%

level.

Ask Side Bid Side

£ Buys Sec LSE Chi-X Bats Turq. Nasdaq LSE Chi-X Bats Turq. Nasdaq

LSE 0 -0.83* -0.25* -0.09* -0.02* -0.02* 0.28* 0.24* 0.09* 0.02* 0.01*
LSE 1 -0.80* -0.30* -0.14* -0.04* -0.05* 0.35* 0.31* 0.15* 0.05* 0.05*
LSE 10 -0.67* -0.18* -0.05* -0.03* -0.04* 0.33* 0.23* 0.09* 0.04* 0.04*
Chi-X 0 -0.21* -1.31* -0.18* -0.02* -0.03* 0.26* 0.68* 0.18* 0.03* 0.03*
Chi-X 1 -0.52* -1.47* -0.46* -0.09* -0.13* 0.50* 1.00* 0.45* 0.13* 0.12*
Chi-X 10 -0.61* -1.29* -0.37* -0.09* -0.13* 0.67* 1.11* 0.46* 0.15* 0.14*
Bats 0 -0.27* -0.58* -1.26* -0.04* -0.10* 0.37* 0.60* 0.51* 0.05* 0.08*
Bats 1 -0.46* -0.79* -1.21* -0.07* -0.17* 0.52* 0.88* 0.69* 0.09* 0.16*
Bats 10 -0.54* -0.83* -1.01* -0.08* -0.15* 0.87* 1.16* 0.81* 0.14* 0.16*
Turq 0 -0.04 -0.04* -0.05* -0.70* -0.03* 0.13* 0.11* 0.08* 0.14* 0.04*
Turq 1 -0.11* -0.08* -0.02 -0.69* -0.04* 0.22* 0.15* 0.06* 0.19* 0.08*
Turq 10 -0.13 -0.06 0.04 -0.68* -0.02 0.17 0.13 0.01 0.18* 0.07*
Nasdaq 0 -0.03 0.03 -0.01 0.01 -0.75* -0.05 -0.08 0.04 0.07* 0.14*
Nasdaq 1 -0.08 0.08 0.04 0.04 -0.63* 0.00 -0.18 -0.08 0.02 0.12*
Nasdaq 10 -0.24 0.02 0.07 0.06 -0.62* 0.43 -0.19 -0.11 0.06 0.19*

£ Sells
LSE 0 0.30* 0.27* 0.10* 0.02* 0.02* -0.78* -0.29* -0.10* -0.02* -0.02*
LSE 1 0.38* 0.35* 0.17* 0.06* 0.06* -0.75* -0.35* -0.16* -0.05* -0.06*
LSE 10 0.39* 0.29* 0.12* 0.05* 0.05* -0.65* -0.23* -0.06* -0.04* -0.04*
Chi-X 0 0.27* 0.70* 0.19* 0.02* 0.02* -0.24* -1.28* -0.20* -0.02* -0.03*
Chi-X 1 0.46* 0.99* 0.43* 0.12* 0.11* -0.51* -1.40* -0.43* -0.08* -0.13*
Chi-X 10 0.57* 1.08* 0.44* 0.13* 0.12* -0.53* -1.15* -0.31* -0.08* -0.13*
Bats 0 0.29* 0.56* 0.43* 0.04* 0.08* -0.21* -0.58* -1.15* -0.05* -0.10*
Bats 1 0.37* 0.81* 0.62* 0.07* 0.15* -0.38* -0.77* -1.11* -0.09* -0.16*
Bats 10 0.53* 1.00* 0.70* 0.09* 0.16* -0.41* -0.69* -0.88* -0.08* -0.15*
Turq 0 0.10* 0.08* 0.08* 0.13* 0.04* -0.06* -0.03 -0.07* -0.63* -0.05*
Turq 1 0.17* 0.12* 0.06* 0.18* 0.08* -0.08 -0.03 -0.06* -0.63* -0.03*
Turq 10 0.33* 0.11 -0.02 0.20* 0.09* -0.17 -0.02 0.00 -0.59* -0.04
Nasdaq 0 0.21* 0.04 0.12* 0.11* 0.16* -0.24* -0.04 -0.05 -0.03 -0.82*
Nasdaq 1 0.22 -0.01 0.07 0.11* 0.20* -0.43* -0.04 0.00 -0.03 -0.76*
Nasdaq 10 0.35 -0.14 -0.05 0.09* 0.23* -0.84* -0.18 -0.00 -0.03 -0.68*

R2 .123 .115 .069 .025 .026 .104 .113 .071 .022 .027
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Table (6) Descriptive statistics.
Descriptive statistics of the independent variables of regression (11) are shown. The variables are con-

structed per stock-hour. The top panel shows Frag, defined as 1 - HHI based on trading volume, and the

LSE liquidity share (the LSE Depth(10) divided by the consolidated Depth(10)). Next is the logarithm

of the number of trades on entrants, and the Order Imbalance, defined as the logarithm of buy volume

minus the logarithm of sell volume. Ln(Turnover) the logarithm of turnover summed over all venues, and

Ln(Depth(10) Cons) is the logarithm of the consolidated Depth(10). Last is the realized volatility, defined

as the sum of squared 5 minute returns measured hour-by-hour. The bottom panel shows the cancellation

effect of a buy (sell) trade of one venue on the consolidated ask (bid) liquidity. The cancellation effect is

the impact (summed over one second) of a 1 share buy-trade at one venue on market wide liquidity offered

on the ask sides. These variables are the coeffi cients of regression (11), estimed per stock-hour using as de-

pendent variable the consolidated Depth(10) on the ask or bid side. We only use estimates when the venue

in question executes >50 trades and >£ 100.000, and winsorize at the 99% level. The reported variables

are winsorized at the 1% level, and .

Mean Stdev Max

Frag 0.59 0.09 0.78
Liq Share LSE 0.40 0.11 0.95
Ln(entrant trades) 5.63 0.98 8.38
Order Imbalance -0.01 0.43 4.28
Ln(Turnover) 14.99 1.38 19.04
Ln(Depth(10) Cons) 12.43 1.01 16.09
Realized Vol 0.02 0.12 0.96

Cancellation effect

Buy-Ask LSE 1.44 0.71 3.70
Buy-Ask Chi-X 2.07 1.11 5.73
Buy-Ask Bats 1.96 1.74 7.19
Buy-Ask Turq 1.14 1.65 7.57
Buy-Ask Nasdaq 1.44 3.31 14.69
Sell-Bid LSE 1.53 0.77 4.18
Sell-Bid Chi-X 1.99 1.06 5.48
Sell-Bid Bats 1.91 1.68 7.20
Sell-Bid Turq 0.95 1.50 5.41
Sell-Bid Nasdaq 1.51 2.99 14.62

Observations 1890
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Table (7) Drivers of the cancellation effect.
We show the variables that determine the cancellation effect of trades on consolidated liquidity, per trading

venue. The cancellation effect is the impact (summed over one second) of a venues buy-trades on market

wide liquidity offered on the ask side (top panel). The bottom panel shows the impact of sell-trades on

liquidity on the bid side. This effect is estimated per stock-hour in regression (11), using as dependent

variable the consolidated Depth(10) on the ask (bid) side. These coeffi cients are the dependent variables

in the regressions below. We add the following independent variables. Frag is defined as 1 - HHI based

on trading volume, and Liq Share LSE is the LSE liquidity share (the LSE Depth(10) divided by the

consolidated Depth(10)). Ln(entrant trades) is the logarithm of the number of trades on entrant venues

and Ln(Turnover) the logarithm of market wide turnover. Ln(Depth(10) Cons) is the logarithm of the

consolidated Depth(10), and Realized Vol is the realized volatility defined as the sum of squared 5 minute

returns measured per hour-by-hour. We add firm and day fixed effects. We apply robust Newey-West

standard errors (HAC) with 9 lags, t-statistics are shown in parantheses.

LSE Chi-X Bats LSE Chi-X Bats
Buy trades on consolidated Ask liquidity

(1) (2) (3) (4) (5) (6)

Frag 1.147*** -1.087** -0.788 -0.520* -3.358*** -4.742***
(4.09) (-2.39) (-0.71) (-1.74) (-4.31) (-3.59)

Liq Share LSE -2.261*** -3.659*** -3.130*** -1.775*** -3.110*** -2.275**
(-9.05) (-8.84) (-3.36) (-7.79) (-7.21) (-2.49)

Ln(entrant trades) 0.585*** 0.927*** 1.750***
(7.10) (4.71) (4.97)

Order Imbalance -0.291*** -0.0314 -0.341*
(-7.00) (-0.43) (-1.85)

Ln(Turnover) -0.640*** -0.774*** -1.535***
(-9.10) (-4.21) (-5.05)

Ln(Depth(10) cons) 0.423*** 0.506*** 0.408**
(10.93) (6.62) (2.20)

Realized Vol -0.288** 0.0833 -1.107
(-2.33) (0.42) (-1.10)

Observations 1,718 1,689 1,058 1,718 1,689 1,058
R2 0.143 0.078 0.018 0.261 0.143 0.047

Sell trades on consolidated Bid liquidity
(7) (8) (9) (10) (11) (12)

Frag 1.175*** -1.296*** -0.981 -0.891** -3.028*** -4.790***
(3.55) (-2.86) (-0.81) (-2.37) (-4.42) (-3.03)

Liq Share LSE -1.413*** -3.911*** -3.001*** -0.602* -3.437*** -2.336**
(-3.98) (-10.33) (-3.32) (-1.77) (-8.93) (-2.46)

Ln(entrant trades) 0.572*** 0.625*** 1.654***
(6.02) (3.78) (4.47)

Order Imbalance 0.256*** 0.0803 -0.170
(4.04) (1.01) (-0.91)

Ln(Turnover) -0.651*** -0.597*** -1.461***
(-7.73) (-3.98) (-4.72)

Ln(Depth(10) cons) 0.607*** 0.467*** 0.277
(11.12) (6.89) (1.54)

Realized Vol -0.185 -0.374** 0.287
(-0.92) (-2.12) (0.17)

Observations 1,718 1,689 1,057 1,718 1,689 1,057
R2 0.067 0.090 0.017 0.211 0.139 0.043

41


	Introduction
	The model
	Duplicate limit order hypothesis
	Model setup
	The trader
	The market makers
	Equilibrium
	Testable implications
	Numerical example

	Empirical results
	Market structure FTSE100 stocks
	Data
	The DepthAsk(X) and DepthBid(X) liquidity measures
	Methodology
	Results
	Drivers of the cancellation effect

	Conclusion
	Appendix
	Theory
	Empirical

	References

