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Abstract

Adverse selection occurs in financial markets because certain investors have ei-

ther (a) more precise information, or (b) superior speed in accessing or exploiting

information. To disentangle the effects of precision and speed on market perfor-

mance, we compare two models in which a dealer and a more precisely informed

trader continuously receive news about the value of an asset. In the first model

the trader and the dealer are equally fast, while in the second model the trader

receives the news one instant before the dealer. Compared with the first model, in

the second model: (1) the fraction of trading volume due to the informed investor

increases from near zero to a large value; (2) liquidity decreases; (3) short-term

price changes are more correlated with asset value changes; (4) informed order flow

autocorrelation decreases to zero. Our results suggest that the speed component

of adverse selection is necessary to explain certain empirical regularities from the

world of high frequency trading.
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1 Introduction

The recent advent of high frequency trading (HFT) in financial markets has raised nu-

merous questions about the role of high frequency traders and their strategies.1 Because

of the proprietary nature of HFT and its extraordinary speed, it is difficult to character-

ize HFT strategies in general.2 Nevertheless, there is increasing evidence that at least

one category of high frequency traders exploits very quick access to public information

in an attempt to analyze the news and trade before everyone else. For example, in

their online advertisement for real-time data processing tools, Dow Jones states: “Tim-

ing is everything and to make lucrative, well-timed trades, institutional and electronic

traders need accurate real-time news available, including company financials, earnings,

economic indicators, taxation and regulation shifts. Dow Jones is the leader in providing

high-frequency trading professionals with elementized news and ultra low-latency news

feeds for algorithmic trading.”3 This category of HFT can also use public market data

to infer information from related securities. We call this category high frequency news

trading (HFNT) or, in short, news trading.

Clearly, news trading generates adverse selection.4 In general, adverse selection

occurs because some investors have either (a) more precise information, or (b) superior

speed in accessing or exploiting information. Traditionally, the market microstructure

literature, e.g., Kyle (1985), has mainly focused on the first type of adverse selection.

In contrast, the speed component of adverse selection has received little attention. Our

paper focuses on this second type of adverse selection in the context of news trading.

To separate the role of precision and speed, we consider two models of trading under

1In many markets around the world, high frequency trading currently accounts for a majority of
trading volume. Hendershott, Jones, and Menkveld (2011) report that in 2009 as much as 73% of
trading volume in the United States was due to high frequency trading. A similar result is obtained
by Brogaard (2011) for NASDAQ, and Chaboud, Chiquoine, Hjalmarsson, and Vega (2009) for various
Foreign Exchange markets. High frequency trading has been questioned espectially after the U.S.
“Flash Crash” on May 6, 2010. See, e.g., Kirilenko, Kyle, Samadi, and Tuzun (2011).

2SEC (2010) attributes the following characteristics to HFT: (1) the use of extraordinarily high-
speed and sophisticated computer programs for generating, routing, and executing orders; (2) use of
co-location services and individual data feeds offered by exchanges and others to minimize network and
other types of latencies.

3See http://www.dowjones.com/info/HighFrequencyTrading.asp.
4Hendershott and Riordan (2011) find that on NASDAQ the marketable orders of high frequency

traders have a significant information advantage and are correlated with future price changes.
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asymmetric information. In both models, a risk-neutral informed trader and a compet-

itive dealer (or market maker) continuously learn about the value of an asset. In both

models, the informed trader receives a more precise stream of news than that received

by the dealer. The only difference lies in the timing of access to the stream of news. In

the first model, the benchmark model, the informed trader and the dealer are equally

fast.5 In the second model, the fast model, the informed trader receives the news one

instant before the dealer. We show that even an infinitesimal speed advantage leads to

large differences in the predictions of the two models.

We further argue that the fast model is better suited to describe the world of high

frequency trading. For example, consider the recent increase in trading volume observed

in various exchanges around that world, which in part has been attributed to the rise of

HFT. At high frequencies, traditional models such as Kyle (1985), or extensions such as

our benchmark model have difficulty in generating a large trading volume of investors

with superior information. To see, this, consider Figure 1. As it is apparent from the

plot, the fast model can account for a significant participation rate of informed trading

at higher frequencies, while the informed trader in the benchmark model is essentially

invisible at high frequencies.6 Thus, accounting for adverse selection due to speed is

important if we want to explain the large observed trading volume due to HFT.

Why would a small speed advantage for the informed trader translate into such a

large different in outcomes? For this, we need to understand the difference in optimal

strategies of the informed trader in the two models. In principle, when the asset value

changes over time, there are two components of the optimal strategy:

(1) Level Trading (or the low-frequency, drift, or deterministic component). This is

a multiple of the difference between the asset value and the price, and changes

slowly over time. Also, it is proportional to the time interval between two trades,

thus it is small relative to the other component.

5The benchmark model is similar to that of Back and Pedersen (1998), except that in our model
the dealer also receives news about the asset value.

6In our benchmark model, as in Kyle (1985), there is a single informed trader. We have checked
that the pattern shown in the figure can be obtained in models with multiple informed traders, such as
Back, Cao, and Willard (2000).
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Figure 1: Informed participation rate at various trading frequencies. The
figure plots the fraction of the trading volume due to the informed trader in a discrete
time model for various lengths of time between trading periods (second, minute, hour,
day, month) in (a) the benchmark model, marked with “∗”; and (b) the fast model,
marked with “◦”. The parameters used are σu = σv = σe = Σ0 = 1 (see Theorem 1).
The liquidation date t = 1 corresponds to 10 calendar years.
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(2) Flow Trading (or the high-frequency, volatility, or stochastic component). This

is a multiple of the new signal, i.e., the innovation in asset value, and changes

every instant. This component is relatively much larger than the level trading

component.

With no asymmetry in speed, the informed trader in the benchmark model does not have

any incentive to trade on the asset value innovation, and trades only on the level of the

asset value: the price impact of flow trading would otherwise be too high. By contrast,

in the fast model the informed trader also engages in flow trading, in anticipation of a

price move in the next instant due to the incorporation of news by the public.

These two components of the optimal strategy of the informed trader drive all the

comparisons between the benchmark model and the fast model. To begin with, trading

volume is higher in the fast model: in addition to the noise trading which is assumed the

same in the two models, there is the large flow trading component from the informed

trader (the level component is too small to matter at high frequencies). As observed in

Figure 1, the fraction of trading volume due to the informed trader is much larger at
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high frequencies, due to the large flow trading component.

Liquidity is smaller in the fast model: besides the usual adverse selection coming from

the superior precision of the informed trader, anticipatory trading generates additional

adverse selection.

The comparison of price informativeness in the two models is more subtle. In the

fast model, trades are more correlated with current innovations in asset value because

of the flow trading component. Therefore, price changes are also more correlated with

innovations in asset value. However, the variance of the pricing error is the same in

both models. The reason is that there is a substitution between level trading and flow

trading: there is flow trading in the fast model, but level trading is less intense than

in the benchmark model. Therefore, in the fast model, trades are more correlated with

current innovations in asset value, but also less correlated with past innovations. These

two effects exactly offset and leave the variance of the pricing error identical in both

models.

The effect of fast trading on price volatility is similarly complex. Price volatility

arises from both trading and quote revisions, since the dealer also learns about the

asset value and updates quotes. In the fast model, the contribution of trades to price

volatility is larger, because of the volatile flow trading component of informed trading.

The flip side is that when the market maker receives information, part of it has already

been revealed through trading. Therefore, quote revisions are of a smaller magnitude,

and price volatility unrelated to trading is lower in the fast model. These two effect

on volatility exactly offset each other so that total price volatility is the same in both

models and equal to the volatility of the asset value.

In the benchmark model, the informed order flow is autocorrelated: there is only

the level trading component, which changes direction only very slowly over time. In the

fast model, the informed order flow has zero autocorrelation: at high frequencies, flow

trading dominates level trading, and the innovations in asset value are uncorrelated.

Our results suggest that the fast model is better suited than the benchmark model to

describe the strategies of high frequency traders: Brogaard (2011) observes that their

order flow is indeed volatile, and there is little evidence of autocorrelation.
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To discuss empirical implications of our paper, we start by arguing that the informed

trader of the fast model fits certain stylized facts about high frequency traders: (i) large

trading volume: the informed investor in the fast model trades in large quantities, while

in the benchmark model informed trading volume is essentially zero at high frequencies;

(ii) low order flow autocorrelation: the fast informed investor’s trades have low serial

correlation, compared to a large autocorrelation in the benchmark model; (iii) anticipa-

tory trading: the order flow of the fast investor has a significant correlation with current

price changes, compared to a low correlation in the benchmark model.

We stress that our model applies to the specific category of high frequency traders

who engage in flow trading, but not necessarily to other types of high-frequency trad-

ing strategies such as high-frequency market making.7 Recognizing this distinction is

important for testing the predictions of our model.

We have two types of empirical predictions: (i) the effect of HFNT on various market

outcomes; and (ii) the effect of various market characteristics on HFNT activity. For (i),

we analyze the causal effect of HFNT by comparing the equilibrium outcomes when one

moves from the benchmark model to the fast model. In the fast model, the informed

trader is able to access information before the public does. This can occur, for example,

by purchasing access to various high frequency news feeds, by co-location services offered

by the exchange, by increasing automation, etc. The converse move from the fast model

to the benchmark model is also of interest: it can represent, e.g., the effect of regulation

aimed at dampening high frequency trading. From the discussion above, we see that

eliminating the speed advantage of the informed trader (a) reduces trading volume; (b)

reduces overall adverse selection, and thus increases market liquidity.

The second type of empirical prediction can be obtained in the context of the fast

model, by studying the effect of various parameters on informed trading activity. For

example, we find that an increase in the precision of public news increases the amount

of flow trading, yet improves liquidity. To understand why, recall that flow trading

arises because the informed trader is willing to trade based on his signal just before

the market maker updates the quotes based on a correlated signal. The more precise

7See Jovanovic and Menkveld (2011) for a theoretical and empirical analysis of liquidity provision
by fast traders.
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the public news, the higher the correlation between the informed trader’s signal and

the market maker’s signal. This increases the benefits of trading in anticipation of the

quotes updates. Therefore, flow trading increases.8 At the same time, more public

news also improves liquidity. The reason is simple: having more precise public news

reduces adverse selection. Interestingly, it implies that if the amount of public news

changes (over time or across securities) then flow trading and liquidity move in the

same direction. This is not because flow trading improves liquidity; indeed, we saw that

the opposite is true when the informed trader acquires a speed advantage. Instead, this

is because more public news increases both flow trading and liquidity.

Another example is the effect of price volatility. Holding constant the relative preci-

sion of public news, an increase in price volatility can be modeled as an increase in the

volatility of the innovation of the asset value. Then, an increase in price volatility causes

both an increase in flow trading activity, and a reduction in liquidity. The intuition is

straightforward. When the asset is more volatile, the anticipation effect is stronger, and

thus the flow trading increases. Because flow trading is more intense, there is more

adverse selection due to speed, and liquidity is negatively affected.

Our paper is part of a growing theoretical literature on trading and speed. Biais,

Foucault, and Moinas (2011) analyze the welfare implications of the speed advantage

of HFTs in a 3-period model: HFTs raise trading volume and gains from trade, but

increase adverse selection. In a search model with symmetric information, Pagnotta

and Philippon (2011) show that trading platforms seeking to attract order flow have an

incentive to relax price competition by differentiating along the speed dimension. Pre-

viously, the market microstructure literature has focused on the precision component of

adverse selection, e.g., Kyle (1985), Back, Cao, and Willard (2000). In all these models,

the behavior of the informed traders is similar to that of the informed trader in our

benchmark model. In fact, we can describe our benchmark model as a mixture of Back

and Pedersen (1998) and Chau and Vayanos (2008). From Back and Pedersen (1998)

our benchmark model borrows the moving asset value; and from Chau and Vayanos

8This prediction can be tested in the cross-section of securities, if one has a proxy for the amount
of public news that is released over time. It can also be tested in the time-series of a specific security,
if there is time-variation in the amount of public news.
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(2008) it borrows the periodic release of public information. In neither of these models

the informed trader has a speed advantage. Our fast model contributes to the literature

by showing that even an infinitesimal speed advantage for the informed trader results

in a large difference in outcomes, e.g., speed causes a large participation rate of the

informed trader, and an uncorrelated informed order flow.

The paper is organized as follows. Section 2 describes our two models: the benchmark

model, and the fast model. The models are set in continuous time, but in Appendix A we

present the corresponding discrete versions. Section 3 describes the resulting equilibrium

price process and trading strategies, and compares the various coefficients involved.

Section 4 discusses empirical implications of the model. Section 5 concludes.

2 Model

Trading occurs over the time interval [0, 1]. The risk-free rate is taken to be zero. During

[0, 1], a single informed trader (“he”) and uninformed noise traders submit market orders

to a competitive market maker (“she”), who sets the price at which the trading takes

place. There is a risky asset with liquidation value v1 at time 1. The informed trader

learns about v1 over time, and the expectation of v1 conditional on his information

available until time t follows a Gaussian process given by

vt = v0 +

∫ t

0

dvτ , with dvt = σv dBv
t , (1)

where v0 is normally distributed with mean 0 and variance Σ0, and Bv
t is a Brownian

motion.9 We refer to vt as the asset value or the fundamental value, and to dvt as the

innovation in asset value. Thus, the informed trader observes v0 at time 0 and, at each

9This assumption can be justified economically as follows. First, define the asset value vt as the
full information price of the asset, i.e., the price that would prevail at t if all information until t were to
become public. Then, assume that (i) vt is a martingale (true, if the market is efficient), and (ii) vt is
continuous (technically, it has continuous sample paths). Then, vt can be represented as an Itô integral
with respect to a Brownian motion, by the Martingale Representation Theorem (see, e.g., Karatzas and
Shreve (1991, Theorem 3.4.2)); our representation (1) is a simple particular case, with zero drift and
constant volatility. But, even if vt has jumps (e.g., at Poisson-distributed random times), we conjecture
that our key result of a non-zero dvt component in the optimal trading strategy of the informed trader
stays the same.
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time t + dt ∈ [0, 1] observes dvt.

The aggregate position of the informed trader at t is denoted by xt. The informed

trader is risk-neutral and chooses xt to maximize expected utility at t = 0 given by

U0 = E

[∫ 1

0

(v1 − pt+dt) dxt

]
= E

[∫ 1

0

(v1 − pt − dpt) dxt

]
, (2)

where pt+dt = pt + dpt is the price at which the order dxt is executed.10

The aggregate position of the noise traders at t is denoted by ut, which is an exoge-

nous Gaussian process given by

ut = u0 +

∫ t

0

duτ , with dut = σv dBu
t , (3)

where Bu
t is a Brownian motion independent from Bv

t .

The market maker also learns about the asset value. At t + dt, she receives a noisy

signal of the innovation in asset value:

dzt = dvt + det, with det = σe dBe
t , (4)

where Be
t is a Brownian motion independent from all the others. She does not observe

the individual orders, but only the aggregate order flow

dyt = dut + dxt. (5)

Because the market maker is competitive and risk-neutral, at any time the price equals

the conditional expectation of v1 given the information available to her until that point.

In the following, we will refer to the conditional expectation of v1 just before trading

takes place at time t+dt as the quote, and we denote it by qt. One possible interpretation

for the quote qt is that it is the bid-ask midpoint in a limit order book with zero tick

size and zero bid-ask spread.11 The conditional expectation of v1 just after trading takes

10Because the optimal trading strategy of the informed trader might have a stochastic component,
we cannot set E(dptdxt) = 0 as, e.g., in the Kyle (1985) model.

11This interpretation is correct if the price impact is increasing in the signed order flow and a zero
order flow has zero price impact. These conditions are satisfied in the linear equilibrium we consider in
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place at time t + dt is the execution price and is denoted by pt+dt.

We consider two different models: the benchmark model and the fast model, which

differ according to the timing of information arrival and trading. A simplified timing of

each model is presented in Table 1. Figure 2 shows the exact sequence of quotes and

prices in each model.

Table 1: Timing of events during [t, t + dt] in the benchmark model and in
the fast model

Benchmark Model Fast Model
1. Informed trader observes dvt 1. Informed trader observes dvt

2. Market maker observes dzt = dvt + det 2. Trading
3. Trading 3. Market maker observes dzt = dvt + det

In the benchmark model, the order of events during the time interval [t, t + dt] is

as follows. First, the informed trader observes dvt and the market maker receives the

signal dzt. The market maker sets the quote qt based on the information set It ∪ dzt,

where It ≡ {zτ}τ≤t ∪ {yτ}τ≤t. The information set includes the order flow and the

market maker’s signal until time t, as well as the new signal dzt. Then, the informed

trader submits a market order dxt and noise traders also submit their order dut. The

information set of the market maker when she sets the execution price pt+dt is It∪dzt∪dyt

as it includes the new order flow.

In the fast model, the informed trader can move faster than the market maker.

First, the informed trader observes dvt. Then, the market maker posts quotes before

she observes her own signal. Therefore, the quote qt is based on the information set

It. The informed trader submits the market order dxt along with the noise traders’

orders dut. The execution price pt+dt is conditional on the information set It ∪ dyt.

After trading has taken place, the market maker receives the signal dzt and updates

the quotes based on the information set It ∪ dzt ∪ dyt. The new quote qt+dt will be the

prevalent quote in the next trading round.

The benchmark model is similar to models of the Kyle (1985) type. Formally, the

Section 3.

10



Figure 2: Timing of events
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benchmark model is an extension of Back and Pedersen (1998) with the additional

assumption that the market maker also learns about dvt. In all these versions of the

Kyle model, the informed trader has more precise information than the market maker,

but no speed advantage. By contrast, in the fast model, the informed trader has a speed

advantage in addition to more precise information.

3 Equilibrium

The equilibrium concept is similar to that of Kyle (1985) or Back and Pedersen (1998).

We look for linear equilibria defined as follows.

In the benchmark model, we look for an equilibrium in which the quote revision is

linear in the market maker’s signal

qt = pt + µt dzt, (6)

and the price impact is linear in the order flow

pt+dt = qt + λt dyt. (7)

In the fast model, we look for an equilibrium in which the price impact is linear
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in the order flow as in equation (7), and the subsequent quote revision is linear in the

unexpected part of the market maker’s signal12

qt+dt = pt+dt + µt( dzt − ρt dyt). (8)

In both models, we look for a strategy of the informed trader of the form

dxt = βt(vt − pt) dt + γt dvt, (9)

i.e., we solve for βt and γt so that the strategy defined in equation (9) maximizes the

informed trader’s expected profit (2). In Appendix A, we use the discrete time version

of both models to show that, as long as the equilibrium has a linear pricing rule, the

optimal strategy of the informed trader has the same form as in (9).13

In what follows, we refer to the first term of trading strategy, βt(vt − pt) dt, as level

trading, as it consists in trading on the difference between the level of the asset value

and the price level. This term appears in essentially all models of trading of the Kyle

(1985) type, such as Back and Pedersen (1998), Back, Cao, and Willard (2000), etc.

The second term of the trading strategy, γt dvt, consists in trading on the innovation of

the asset value, and we call it flow trading. The next result shows that flow trading is

zero in the benchmark model, but nonzero in the fast model.

Theorem 1. In the benchmark model there is a unique linear equilibrium:

dxt = βB
t (vt − pt) dt + γB

t dvt, (10)

dpt = µB
t dzt + λB

t dyt, (11)

12In the fast model, the market maker’s signal dzt is predictable from the order flow dyt, thus the
quote update is done only using the unexpected part of dzt.

13In fact, in discrete time the optimal strategy has qt instead of pt. But because the difference
between pt and qt is infinitesimal, the difference vanishes in continuous time when multiplying by dt.
In the proof of Theorem 1, we use pt for the benchmark model, and qt for the fast model, since these
are well defined Itô processes with the same type of increment, λt dyt + µt( dzt − ρt dyt).
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with coefficients given by

βB
t =

1

1− t

σu

Σ
1/2
0

(
1 +

σ2
vσ

2
e

Σ0(σ2
v + σ2

e)

)1/2

, (12)

γB
t = 0, (13)

λB
t =

Σ
1/2
0

σu

(
1 +

σ2
vσ

2
e

Σ0(σ2
v + σ2

e)

)1/2

, (14)

µB
t =

σ2
v

σ2
v + σ2

e

. (15)

In the fast model there is a unique linear equilibrium:14

dxt = βF
t (vt − qt) dt + γF

t dvt, (16)

dqt = λF
t dyt + µF

t ( dzt − ρF
t dyt), (17)

with coefficients given by

βF
t =

1

1− t

σu

(Σ0 + σ2
v)

1/2

1(
1 + σ2

e

σ2
v
f
)1/2

1 +
(1− f)σ2

v

Σ0

1 + σ2
e

σ2
v

+ σ2
e

σ2
v
f

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
f

 , (18)

γF
t =

σu

σv

f 1/2 =
σu

(Σ0 + σ2
v)

1/2

(
1 + σ2

e

σ2
v
f
)1/2

(1 + f)

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
f

, (19)

λF
t =

(Σ0 + σ2
v)

1/2

σu

1(
1 + σ2

e

σ2
v
f
)1/2

(1 + f)
, (20)

µF
t =

1 + f

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
f

, (21)

ρF
t =

σ2
v

σu(Σ0 + σ2
v)

1/2

(1 + σ2
e

σ2
v
f)1/2

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
f

, (22)

and f is the unique root in (0, 1) of the cubic equation

f =

(
1 + σ2

e

σ2
v
f
)
(1 + f)2(

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
f
)2

σ2
v

σ2
v + Σ0

. (23)

14Note that the level trading component in (16) has qt instead of pt. This is the same formula,
since (8) implies (pt − qt) dt = 0. We use qt as a state variable, because it is a well defined Itô process.
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In both models, when σv → 0, the equilibrium converges to the unique linear equilibrium

in the continuous time version of Kyle (1985).

Proof. See Appendix B.

To give some intuition for the theorem, note that in both models the optimal strategy

of the informed trader has a non-zero level trading component. This is because in both

models the informed trader receives more precise signals than the market maker: the

informed trader knows vt exactly, while the market maker’s best forecast is pt. Therefore,

it is optimal for the informed trader to trade on the forecast error of the market maker

vt − pt. This forecast error is slowly moving, because its change is of the order of

(dvt − dpt) dt, which at high frequencies is negligible. The informed trader trades

smoothly on the forecast error, in the sense that the level trading component is of the

order dt.

The key difference between the two models is that only in the fast model the informed

trader’s optimal strategy has a flow trading component. The reason is that in the

benchmark model, when the trader submits the order dxt, all the signals { dvτ}τ≤t that

he has received are given the same weight in the optimal strategy. By contrast, in the

fast model the marker maker has not incorporated the signal dzt = dvt +det in the price

yet. Therefore, it is optimal for the informed trader to trade aggressively on dvt before

the market maker receives information dzt.

The flow trading component is volatile since it is an innovation in a random walk

process. It also generates a much larger order flow than the level trading component,

because it is of order dt1/2.

We give some comparative statics for the coefficients from Theorem 1.

Proposition 1. In the context of Theorem 1, for all values of the parameters we have

the following inequalities:

βF
0 < βB

0 (24)

λF > λB (25)

µF < µB. (26)
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In both the benchmark equilibrium and the fast equilibrium,

β0 increases in σv, σu, σe; and decreases in Σ0;

λ increases in σv, σe, Σ0; and decreases in σu;

µ increases in σv; decreases in σe; and is constant in σu;

µ is constant in Σ0 in the benchmark, but decreases in Σ0 in the fast equilibrium.

Additionally, in the fast equilibrium,

γ increases in σv, σu; and decreases in σe, Σ0;

ρ increases in σv; and decreases in σu, σe, Σ0.

Proof. See Appendix B.

The intuition for some of these comparative statics is discussed in the next section.

4 Empirical Implications

4.1 High Frequency News Trading

In this section we argue that the informed trader of the fast model shares some of the

characteristics that are attributed to the broad category of High Frequency Traders

(HFTs). Specifically, we show that the informed trader (i) is responsible for a large

fraction of the order flow; (ii) his order flow exhibits low serial correlation; and (iii)

he engages in anticipatory trading. This is not to say that our model can be applied

to study all types of HFTs. Indeed, the spectrum of strategies which can be classified

under the umbrella of high frequency trading is quite large.15 Our paper focuses on

one of these strategies, namely, high frequency news trading (HFNT). Therefore, the

empirical predictions and policy implications of our model apply to HFNT, but not

necessarily to other categories of HFT.

15For instance, SEC (2010) places high frequency trading under four categories: (a) Passive Market
Making, which generates large volumes by submitting and canceling many limit orders; (b) Arbitrage,
which is based on correlation strategies (statistical arbitrage, pairs trading, index arbitrage, etc.); (c)
Structural, which involves identifying and exploiting other market participants that are slow; and (d)
Directional, which implies taking significant, unhedged positions based on anticipation of intraday price
movements.
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First, we define the Informed Participation Rate (IPR) as the contribution of the

informed trader to total order flow

IPRt =
Var( dxt)

Var( dyt)
=

Var( dxt)

Var( dut) + Var( dxt)
. (27)

Proposition 2. The informed participation rate is zero in the benchmark while it is

positive in the fast model,

IPRB
t = 0, IPRF

t =
f

1 + f
, (28)

where f is defined in Theorem 1.

Proof. See Appendix B.

In the benchmark model, the informed trader’s optimal strategy has only a level

trading component. The level trading component consists in a drift in the asset holding

xt. This generates a trading volume that is an order of magnitude smaller than the

trading volume generated by the noise traders. Formally, informed trading volume is of

the order dt while noise trading volume is of the order dt1/2. By contrast, in the fast

model, the informed trader’s optimal strategy includes a flow trading component. The

flow trading component is volatile (i.e., stochastic), which generates a trading volume

that is of the same order of magnitude as the noise trading volume.

In the discrete time version of the model, informed trading volume is non zero but

it converges quickly to zero as the trading frequency increases. In Figure 1 in the

Introduction, we have already seen that in the benchmark model the trading volume

is already small when trading takes place at the daily frequency. In the fast model,

informed trading volume converges to a limit between zero and one when the trading

frequency becomes very large.

Next, we consider the serial correlation of the informed order flow.

Proposition 3. The autocorrelation of the informed order flow is positive in the bench-
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mark while it is zero in the fast model: for τ > 0,

Corr( dxB
t , dxB

t+τ ) =

(
1− t− τ

1− t

) 1
2
+λBβB

0

> 0, (29)

Corr( dxF
t , dxF

t+τ ) = 0. (30)

Proof. See Appendix B.

The intuition behind Proposition 3 is that the level trading component is slowly

moving, i.e., it is serially correlated. This explains why the informed order flow is posi-

tively autocorrelated in the benchmark model. By contrast, the flow trading component

is not serial correlated as it only depends on the current innovation in the asset value.

Since the flow trading component generates a much larger order flow than the level

component, the autocorrelation of the informed order flow is zero in the fast model.

Note that the fact that the autocorrelation is exactly zero may depend on the specific

assumptions of the model, e.g., the informed trader has no inventory cost. The more

robust result related to Proposition 3 is that the serial correlation of the informed order

flow is lower in the fast model than in the benchmark.

The empirical evidence about HFT order flow autocorrelation is mixed. For in-

stance, using US stock trading data aggregated across all HFTs, Brogaard (2011) and

Hendershott and Riordan (2011) find a positive autocorrelation of the aggregate HFT

order flow. By contrast, Menkveld (2011) using data on a single HFT on the European

stock market, and Kirilenko, Kyle, Samadi, and Tuzun (2011) using data on the Flash

Crash of May 2010, find clear evidence of mean reverting inventories. These opposite

results reflect the fact that HFT strategies are diverse and may come in a wide variety of

autocorrelation patterns.16 Empirical studies which consider HFTs as a whole measures

the average autocorrelation across all types of HFT strategies, and HFNT is only one

of those.

Finally, we measure Anticipatory Trading (AT) by the correlation between the in-

16In addition, the definition of HFTs can introduce a bias. For instance, in Brogaard (2011), Hen-
dershott and Riordan (2011), and Kirilenko et al. (2011), one of the criteria to classify a trader as HFT
is that it keeps its inventories close to zero.
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formed order flow and the next instant return,

AT t = Corr( dxt, qt+ dt − pt+ dt), (31)

where we recall that pt+ dt is the price at which the order flow dxt is executed, and qt+ dt

is the next quote revision that takes place when the market maker receives her next

signal.

Proposition 4. Anticipatory trading is zero in the benchmark while it is positive in the

fast model

ATB
t = 0, ATF

t =
(1− ρF γF )σv√

(1− ρF γF )2σ2
v + σ2

e + (ρF )2σ2
u

> 0. (32)

There is anticipatory trading in the fast model because the flow trading component

of the strategy anticipates the very next quote revision. This is consistent with Kirilenko

et al. (2011) and Hendershott and Riordan (2011) who find that, on average over all

categories of high frequency trading strategies, HFTs’ aggressive orders are correlated

with future price changes at a short horizon.

4.2 The Effect of High Frequency News Trading

In this section we study the effect of HFNT on several market outcomes: liquidity, price

discovery, price volatility, and price impact. To do that, we compare the equilibrium of

the market when one moves from the benchmark to the fast model. Indeed, in the fast

model, the informed trader is able to access information and trade based on it quickly,

that is, before the information is incorporated into quotes. In practice, this can occur

because the exchange increases automation, offers co-location services, or implements

any other change that lowers the execution time for market orders. Alternatively, one

can view a shift from the fast model to the benchmark model as the result of a move by

the regulator or the trading platform to dampen HFNT.

We already proved the following result in Proposition 1:

Corollary 1. Liquidity is lower in the fast model than in the benchmark: λF > λB.
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The market is less liquid in the fast model since there is more adverse selection than

in the benchmark model. Indeed, the informed trader has more precise information in

both models, and, in the fast model only, the informed is also faster. This generates a

second source of adverse selection, coming from speed.

Previous empirical work has investigated the effect of high frequency trading in

general on liquidity. Some find evidence of a positive (e.g., Hendershott, Jones, and

Menkveld (2011), Hasbrouck and Saar (2010)) while others find the opposite (e.g., Hen-

dershott and Moulton (2011)). These papers have considered high frequency traders as

a group, and have therefore measured their average impact across the entire spectrum

of HFT strategies. We predict that HFNT reduces liquidity, but it may be the case

that high frequency market making improves the liquidity, and that the overall effect

on liquidity is positive.

Another measure of the price impact of trades is the Cumulative Price Impact (CPI)

defined as the covariance between the informed order flow trade per unit of time at t

and the subsequent price change over the time interval [t, t + τ ] for τ > 0:17

CPI t(τ) = Cov

(
dxt

dt
, pt+τ − pt

)
. (33)

Because the optimal strategy of the informed trader is of the type dxt = βt(vt−pt) dt+

γt dvt, the cumulative price impact can be decomposed into two terms:

CPI t(τ) = βt Cov(vt − pt, pt+τ − pt) +
1

dt
γt Cov( dvt, pt+τ − pt), (34)

and note that the second term is well defined, because Cov( dvt, pt+τ −pt) is of the order

of dt, since the asset value, vt, is a Gaussian process.

Proposition 5. In the benchmark model, the cumulative price impact is

CPI B
t (τ) = kB

1

[
1−

(
1− τ

1− t

)λBβB
0

]
, (35)

17Using pt or qt in the definition of CPI t(τ) is equivalent because the difference between the two is
smaller than pt+τ − pt by an order of magnitude.
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while in the fast model it is

CPI F
t (τ) = kF

0 + kF
1

[
1−

(
1− τ

1− t

)(λF−µF ρF )βF
0

]
, (36)

where

kB
1 = βB

0 Σ0, (37)

kF
0 = γF ((λF − µF ρF )γF + µF )σ2

v , (38)

kF
1 = βF

0 Σ0 + γF (1− (λF − µF ρF )γF − µF )σ2
v . (39)

Proof. See Appendix B.

One can see from the formulas, or from Figure 3, that in the benchmark model the

cumulative price impact starts from near-zero values when τ is very small, while in the

fast model it starts from a positive value, kF
0 . Then, the cumulative price builds up

over time in both models, because the level trading component is correlated with all

prices changes in the future. To sum up, the intercept in Figure 3 is evidence of flow

trading, while the positive slope is evidence of level trading. Note that the cumulative

price impact is a univariate covariance. If we want to obtain a causal impact of trades,

we need to control for the future order flow. This can be done using a VAR model, as

will be shown in Section 4.4.

Next, we consider the effect of HFNT on the price discovery process. We define price

informativeness at any given point in time t as the (squared) pricing error

Σt = E
(
(vt − pt)

2
)
. (40)

More insight can be gained by decomposing this pricing error into errors about the last

change in asset value and errors about the level of the asset value. First, we note that

(40) can rewritten as follows:
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Figure 3: Cumulative Price Impact at Different Horizons. The figure plots the

cumulative price impact at t = 0, Cov
(

dx0

dt
, pτ − p0

)
against the horizon τ ∈ (0, 1] in

(a) the benchmark model, with a dotted line; and (b) the fast model, with a solid line.
The parameters used are σu = σv = σe = Σ0 = 1 (see Theorem 1). The liquidation date
t = 1 corresponds to 10 calendar years.
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Lemma 1. In both the benchmark and the fast models,

Σt = (1 + t)Σ0 + 2tσ2
v − 2

∫ t

0

Cov( dpτ , vτ+ dτ ). (41)

Proof. See Appendix B.

Intuitively, if price changes are more correlated with the asset value (Cov(dpτ , vτ+ dτ )

is larger), the price ends up being closer on average to the asset value (Σt is smaller).

Moreover, we have the following decomposition:18

Cov( dpt, vt+dt) = Cov( dpt, vt) + Cov( dpt, dvt). (42)

Proposition 6. Cov(dpt, dvt) is higher in the fast model than in the benchmark; while

Cov(dpt, vt) is higher in the benchmark than in the fast model. Σt is the same in both

the benchmark and the fast models.

Returns are more informative about the level of the asset value in the benchmark

18In this equation, dpt denotes pt+dt − pt in the benchmark model, and qt+dt − qt in the fast model.

21



model, while they are more informative about changes in the asset value in the fast

model. The reason for the latter comes from the flow trading component. In the

benchmark, the contemporaneous correlation between changes in the price and in the

asset value comes from quote revisions only:

Cov( dpB
t , dvt) = Cov(µB dzt, dvt) = µBσ2

v dt. (43)

In the fast model, flow trading adds to this covariance:

Cov(dpF
t , dvt) = Cov(λF dxF

t +µF (dzt−ρF dxt), dvt) =
(
µB+(λF−µF ρF )

)
σ2

v dt. (44)

It implies that returns are more correlated with the innovations of the asset value in the

fast model.

By contrast, the covariance of returns with the level of the asset value is higher in the

benchmark model. The reason is that the level component of informed trading is less

intense in the fast model than in the benchmark model. Indeed, there is a substitution

between flow trading and level trading. The intuition for this substitution effect is

that the informed trader competes with himself when using his information advantage.

Trading more on news now consumes the profit from trading on the level in the future.

Therefore, when flow trading increases in the fast model, level trading has to decrease.

In terms of total pricing error, these two effects—higher correlation of returns with

changes and lower correlation with levels—exactly cancel out, and the pricing error is

the same in both models. In the fast model, new information is incorporated more

quickly into the price while older information is incorporated less quickly, leaving the

total pricing error equal in both models. The more formal reason why these two effects

exactly offset each other is that, in both the benchmark and the fast models, the informed

trader finds it optimal to release information at a constant rate to minimize price impact.

Therefore, Σt decreases linearly over time in both models. Moreover, the transversality

condition for optimization requires that no money is left on the table at t = 1, i.e.,

Σ1 = 0. Since the initial value Σ0 is exogenously given, the evolution of Σt is the same

in both models.
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We now consider the effect of HFNT on price volatility. Following Hasbrouck (1991a,

1991b) we decompose price volatility into the volatility coming from trades and the

volatility coming from quotes:

Var(dpt) = Var(pt+ dt − qt) + Var(qt − pt). (45)

The first term of the decomposition if the variance of the price impact of trades (pt+dt−

qt). The second term of the decomposition is the variance of quote revisions unrelated

to trading (qt − pt).

Proposition 7. Var(pt+dt− qt) is higher in the fast model than in the benchmark; while

Var(qt − pt) is higher in the benchmark than in the fast model. V ar(dpt) is the same in

benchmark and in the fast models and it equals

Var( dpt) = σ2
v + Σ0. (46)

More information is incorporated through trading in the fast model. This is because

the informed trader acts on the news before the market marker revises the quotes.

Therefore, trading is more intense and price volatility coming from trades is higher in

the fast model. The flip side is that the quote revision is less intense, and the price

volatility coming from quotes is lower in the fast model.

In terms of total price volatility, these two effects cancel each other and price volatility

is the same in both models. The reason why the two effects exactly offset each other is

that in an efficient market price changes are not autocorrelated. Therefore, the short-

term price variance per unit of time is always equal to the long-term price variance per

unit of time, which is itself equal to the variance per unit of time of the (exoegenous)

asset value.

4.3 The Determinants of High Frequency News Trading

Because we identify HFNT with the activity of the informed trader in the fast model, in

this section we study the determinants of HFNT by doing comparative statics on various
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parameters in the fast model. We measure HFNT activity by the informed participation

rate defined in Equation (27).

Consider first the effect of the precision of public news. Holding constant the variance

of the innovation of the asset value σ2
v , more precise public news about the changes in

asset value amounts to a lower σ2
z = σ2

v + σ2
e , or, equivalently, a lower σ2

e .

Proposition 8. An increase in the precision of public news, i.e., a decrease in σe,

increases HFNT activity (increases IPRF
t ) and improves liquidity (decreases λF ).

Proof. By Propositon 2, IPRF = f
1+f

, thus the informed participation rate in the fast

model has the same dependence on σe as f . From (19), γF = σu

σv
f 1/2, thus f has the

same dependence on σe as γF . Therefore, IPRF has the same depdendence on σe as γF .

But Proposition 1 shows that γF is decreasing in σe. Finally, we use again Proposition 1

to show that λF is increasing in σe.

The fast trader needs a precise news environment in order to take advantage of antic-

ipatory trading. Otherwise, if the public signal is imprecise, i.e. σe is large, the market

maker does not adjust quotes by much (µF is small), the informed trader cannot benefit

much from his speed advantage and does not trade intensely on the news component.

This prediction can be tested in the cross-section of securities, if one has a proxy for the

amount of public news that is released over time. It can also be tested in the time-series

of a specific security, if there is time-variation in the amount of public news.

As stated in Proposition 8, more public news also improves liquidity because it

reduces adverse selection. Interestingly, it implies that if the amount of public news

changes (over time or across securities) then HFNT and liquidity move in the same

direction. This is not because HFNT improves liquidity; instead, this is because more

public news increases both HFNT and liquidity.

Next, we consider the effect of price volatility. From Equation (46), Var(dpt) =

σ2
v + Σ0, thus we model an increase in price volatility as an increase in the variance

of the innovation of the asset value, σ2
v , while holding costant the relative precision of

public news, i.e., the ratio σ2
e/σ

2
v . We can prove the following result.
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Proposition 9. An increase in price volatility (higher σv while holding σe/σv constant)

increases HFNT activity (increases IPRF
t ) and reduces liquidity (increases λF ).

Because the informed trader acts in anticipation of price changes, more volatility

increases the intensity of flow trading, and therefore the informed participation rate

(IPR), or HFNT activity. As a result, there is more adverse selection, and liquidity is

thus negatively affected.

4.4 Methodological Issues in Empirical Analysis of HFNT

Our framework can be used to shed light on some methodological issues in the empirical

analysis of HFNT. In order to make our model more comparable to econometric models,

we consider the discrete time version of our continuous time model, as in Appendix A.

It works very similarly to the continuous time model, the main difference being that

the infinitesimal time interval dt is replaced by a real number ∆t > 0. We also consider

that ∆t is small and we approximate the equilibrium variables (βt, γt, λt, µt, ρt) in

the discrete time model by their continuous time counterpart. Letting T = 1
∆t

be the

number of trading periods, time is indexed by t = 0, 1, . . . , T − 1. The informed order

flow at time t is equal to

∆xt = βt(vt − qt)∆t + γt∆vt, (47)

where qt is the quote just before the order flow arrives, and pt+1 is the execution price.

4.4.1 Timing Issues in Defining Returns

There are several issues when one measures returns empirically. For instance, when

returns are computed from trade to trade, the econometrician can either use the trans-

action price, or the mid-quote just after the trade, or the bid or the ask depending

on the direction of the order flow, or the mid-quote after the next quote revision, etc.

Lags in trade reporting and time aggregation of data can also impose constraints on

how trade-to-trade returns are defined. To emphasize the consequence of these timing

assumptions, we contrast two different definitions of returns in the context of our model.
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A first option is to compute returns using the quotes just after the order is filled (“post-

trade quotes”). With this assumption, the return contemporaneous to the order flow

∆xt + ∆ut is rt = pt+1− pt. A second possibility is to compute returns using the quotes

just before the next trade takes place (“pre-trade quotes”). In this case, the return

contemporaneous to the order flow ∆xt + ∆ut is rt = qt+1 − qt.

To illustrate the implications of these two assumptions for the empirical analysis, we

consider the following VAR model with K ≥ 1 lags in the spirit of Hasbrouck (1996):19

rt =
K∑

k=1

akrt−k +
K∑

k=0

bk dxt−k +
K∑

k=0

ck dut−k + εt, (48)

dxt =
K∑

k=1

dkrt−k +
K∑

k=1

ek dxt−k +
K∑

k=1

fk dut−k + ηt, (49)

dut =
K∑

k=1

gkrt−k +
K∑

k=1

hk dxt−k +
K∑

k=1

ik dut−k + ζt. (50)

We compute the coefficients of the VAR model under the two timing assumptions. To

allege the notations, we now omit the superscript F when we refer to the equilibrium

variables in the fast model.

Proposition 10. When post-trade quotes are used: b0 = c0 = λ, b1 = µ(1 − ργ)/γ,

c1 = −µρ, and all other coefficients are zero. When pre-trade quotes are used: b0 =

λ− µρ + µ/γ, c0 = λ− µρ, and all other coefficients are zero.

Proof. See Appendix B.

Depending on how returns are measured, the estimated b1 may be positive or equal

to zero. When returns are computed using post-trade quotes, the informed order flow

is positively related to the next period return (b1 > 0). The economic interpretation

is that the informed trader engages in anticipatory trading. By contrast, when returns

are measured using pre-trade quotes, b1 = 0 because the time t order flow is incorrectly

considered as being contemporaneous to the subsequent quote revision qt+1 − pt+1. In

this case, we fail to reject the incorrect null hypothesis of no anticipatory trading. This

19This specification is used, e.g., by Brogaard (2010).

26



suggests that using the quotes immediately after trading takes place, or the price at

which the last unit of the order flow is executed, may be necessary to detect anticipatory

trading in the data.

4.4.2 Sampling Issues

It is customary to aggregate data over time. This can be due to limited data availability,

or it may be a deliberate choice of the econometrician to make data analysis more

manageable. In this section we look at the consequence of time aggregation and we

show that the time interval at which data are aggregated affects the results of the

empirical analysis. In particular, when the sampling frequency is low relative to the

trading frequency, the empirical moments are biased in the sense that they differ from

the theoretical moments of the model.

Assume that each observation in the data spans n ≥ 1 trading rounds. In this

case, the data are a time-series of length T/n. For j = 1, . . . , T
n
, the jth observation

corresponds to trading during the n trading rounds starting at time t = (j − 1)n. The

order flow of the informed trader is ∆xj(n) ≡ ∆xt + · · ·+ ∆xt+n−1, and, assuming that

prices are defined as post-trade quotes, the return is rj(n) ≡ pt+n − pt.

First, we consider the measure of anticipatory trading defined in equation (31). Its

empirical counterpart when data are sampled every n trading rounds is

AT j(n) = Corr(∆xj(n), rj+1(n)). (51)

Proposition 11. The empirical measure of anticipatory trading ATj(n) decreases with

n and converges to zero when n → +∞.

Proof. See Appendix B.

The aggregated order flow spans n trading periods. Moreover, each trade anticipates

news that is incorporated in the quotes in the next trading round. Therefore, only the

last trade of the aggregated order flow ∆xj(n) is correlated with the next aggregated

return rj+1(n). As a result, when n increases, the correlation between ∆xj(n) and

rj+1(n) decreases. When n becomes too large, the correlation becomes almost zero.
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This result suggests that sampling data at a sufficiently high frequency is important for

detecting anticipatory trading.

We now turn to the informed participation rate (27). Its empirical counterpart when

data are sampled each n trading periods can be defined as

IPRj(n) =
Var(∆xj(n))

Var(∆xj(n)) + Var(∆uj(n))
. (52)

In order to obtain closed-form formula solutions, we consider the limit case where the

trading frequency is large, holding fixed the time interval τ = n∆t at which data are ag-

gregated. In this case, the informed participation can therefore be written as a function

of τ : IPRj(τ) = lim∆t→0 IPRj(τ/∆t).

Proposition 12. The empirical informed participation rate IPRj(τ) increases with the

sampling interval τ .

Proof. See Appendix B.

The level trading component is positively autocorrelated over time. Therefore, the

variance of the informed order flow increases faster than the time horizon τ at which

the variance is computed. Since the noise trading order flow is serially uncorrelated,

the fraction of the order flow variance due to the informed trader increases with the

sampling interval τ .

Finally, consider Corr(∆xj(n), ∆xj+1(n)), the empirical autocorrelation of the in-

formed order flow. Again, in order to obtain closed-form formulas, we hold constant the

sampling interval τ = n∆t and we let ∆t → 0. As a result, the autocorrelation of the

informed order flow is now a function of τ .

Proposition 13. The informed order flow autocorrelation Corr(∆xj(τ), ∆xj+1(τ)) in-

creases with τ .

Proof. See Appendix B.

The level trading component of the informed order flow is positively correlated over

time, while the flow trading component is not. When data are sampled at a very high
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frequency, the flow trading component represents a large fraction of the informed order

flow variance. In this case, the autocorrelation of the informed order is therefore close

to zero. By contrast, at a lower frequency, the level trading component becomes a

larger part of the the variance of the informed order flow, and the autocorrelation of the

informed order flow increases.

5 Conclusions

We have argued that adverse selection has two components: a precision component,

and a speed component. To analyze the effect of speed on market quality, we have

proposed two models of trading with an informed trader who continuously observes a

stream of news. In the benchmark model, the informed trader learns about the asset

value at the same time as the market maker. In the fast model, the informed trader

has an infinitesimal speed advantage. We have shown that the difference in equilibrium

outcomes between the two models is large. In particular, we have shown that in the fast

model the optimal strategy of the informed trader has a flow trading component, which

is an order of magnitude larger and more volatile than the level trading component.

As a consequence, in the fast model the fraction of trading volume due to the in-

formed investor is large, while in the benchmark model this fraction is essentially zero

at high frequencies. As a result of an extra component of adverse selection, liquidity is

lower in the fast model, compared to the benchmark. Nevertheless, price volatility and

price informativeness are the same, due to a substitution effect. In the fast model, there

is more flow trading, but less level trading.

Our results are consistent with stylized facts about high frequency trading, and we

generate additional predictions about (i) the causal effect of high frequency trading on

various market performance measures; (ii) the effect of various determinants of high

frequency trading, both in the cross section and in the time series. For example, we find

that an increase in the precision of public news increases the amount of high frequency

trading, yet, surprisingly, liquidity is improved.
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A Models in Discrete Time

A.1 Discrete Time Fast Model

We divide the interval [0, 1] into T equally spaced intervals of length ∆t = 1
T
. Trading

takes place at equally spaced times, t = 1, 2, . . . , T − 1. The sequence of events is as

follows. At t = 0, the informed trader observes v0. At each t = 1, . . . , T − 1, the

informed trader observes ∆vt = vt − vt−1; and the market maker observes ∆zt−1 =

∆vt−1 + ∆et−1, except at t = 1. The error in the market maker’s signal is normally

distributed, ∆et−1 ∼ N (0, σ2
e∆t). The market maker quotes the bid price = the ask

price = qt. The informed trader then submits ∆xt, and the liquidity traders submit

in aggregate ∆ut ∼ N (0, σ2
u∆t). The market maker observes only the aggregate order

flow, ∆yt = ∆xt + ∆ut, and sets the price at which the trading takes place, pt. The

market maker is competitive, i.e., makes zero profit. This translates into the following

formulas:

pt = E(vt | Ip
t ), Ip

t = {∆y1, . . . , ∆yt, ∆z1, . . . , ∆zt−1}, (53)

qt+1 = E(vt | Iq
t ), Iq

t = {∆y1, . . . , ∆yt, ∆z1, . . . , ∆zt}. (54)

We also denote

Ωt = Var(vt | Ip
t ), (55)

Σt = Var(vt | Iq
t ). (56)

Definition 1. A pricing rule pt is called linear if it is of the form pt = qt + λt∆yt, for

all t = 1, . . . , T − 1.20 An equilibrium is called linear if the pricing rule is linear, and

the informed trader’s strategy ∆xt is linear in {vτ}τ≤t and {qτ}τ≤t.

The next result shows that if the pricing rule is linear, the informed trader’s strategy

is also linear, and furthermore it can be decomposed into a level trading component,

βt(vt−1 − qt), and a flow trading component, γt∆vt.

20We could defined more generally, a pricing rule to be linear in the whole history {∆yτ}τ≤t, but as
Kyle (1985) shows, this is equivalent to the pricing rule being linear only in ∆yt.
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Theorem 2. Any linear equilibrium must be of the form

∆xt = βt(vt−1 − qt)∆t + γt∆vt, (57)

pt = qt + λt∆yt, (58)

qt+1 = pt + µt(∆zt − ρt∆yt), (59)

for t = 1, . . . , T − 1, where βt, γt, λt, µt, ρt, Ωt, and Σt are constants that satisfy

λt =
βtΣt−1 + γtσ

2
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

, (60)

µt =

(
σ2

u + β2
t Σt−1∆t− βtγtΣt−1

)
σ2

v

(β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u) σ2
e + (β2

t Σt−1∆t + σ2
u) σ2

v

, (61)

mt = λt − ρtµt =
βtΣt−1(σ

2
v + σ2

e) + γtσ
2
vσ

2
e

(β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u) σ2
e + (β2

t Σt−1∆t + σ2
u) σ2

v

, (62)

ρt =
γtσ

2
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

, (63)

Ωt = Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1 + 2βtγtΣt−1σ

2
v + γ2

t σ
4
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

∆t, (64)

Σt = Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1(σ

2
v + σ2

e) + β2
t Σt−1∆tσ4

v + σ4
vσ

2
u + γ2

t σ
4
vσ

2
e + 2βtγtΣt−1σ

2
vσ

2
e

(β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u) σ2
e + (β2

t Σt−1∆t + σ2
u) σ2

v

∆t.

(65)

The value function of the informed trader is quadratic for all t = 1, . . . , T − 1:

πt = αt−1(vt−1 − qt)
2 + α′t−1(∆vt)

2 + α′′t−1(vt−1 − qt)∆vt + δt−1. (66)

31



The coefficients of the optimal trading strategy and the value function satisfy

βt∆t =
1− 2αtmt

2(λt − αtm2
t )

, (67)

γt =
1− 2αtmt(1− µt)

2(λt − αtm2
t )

, (68)

αt−1 = βt∆t(1− λtβt∆t) + αt(1−mtβt∆t)2, (69)

α′t−1 = αt(1− µt −mtγt)
2 + γt(1− λtγt), (70)

α′′t−1 = βt∆t + γt(1− 2λtβt∆t) + 2αt(1−mtβt∆t)(1− µt −mtγt), (71)

δt−1 = αt

(
m2

t σ
2
u + µ2

t σ
2
e

)
∆t + α′tσ

2
v∆t + δt. (72)

The terminal conditions are

αT = α′T = α′′T = δT = 0. (73)

The second order condition is

λt − αtm
2
t > 0. (74)

Given Σ0, conditions (60)–(74) are necessary and sufficient for the existence of a linear

equilibrium.

Proof. First, we show that Equations (60)–(65) are equivalent to the zero profit condi-

tions of the market maker. Second, we show that Equations (67)–(74) are equivalent to

the informed trader’s strategy (57) being optimal.

Zero Profit of Market Maker: Let us start with with the market maker’s update

due to the order flow at t = 1, . . . , T − 1. Conditional on Iq
t−1, the variables vt−1 − qt

and ∆vt have a bivariate normal distribution: vt−1 − qt

∆vt

 | Iq
t−1 ∼ N

 0

0

 ,

 Σt−1 0

0 σ2
v

 . (75)
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The aggregate order flow at t is of the form

∆yt = βt(vt−1 − qt)∆t + γt∆vt + ∆ut. (76)

Denote by

Φt = Cov

 vt−1 − qt

∆vt

 , ∆yt

 =

 βtΣt−1

γtσ
2
v

 ∆t. (77)

Then, conditional on It = Iq
t−1∪{∆yt}, the distribution of vt−1− qt and ∆vt is bivariate

normal:  vt−1 − qt

∆vt

 | It ∼ N

 µ1

µ2

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , (78)

where  µ1

µ2

 = Φt Var(∆yt)
−1∆yt =

 βtΣt−1

γtσ
2
v

 1

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

∆yt, (79)

and σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 = Var

 vt−1 − qt

∆vt

− Φt Var(∆yt)
−1Φ′

t (80)

=

 Σt−1 0

0 σ2
v∆t

− 1

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

 β2
t Σ

2
t−1 βtγtΣt−1σ

2
v

βtγtΣt−1σ
2
v γ2

t σ
4
v

 ∆t.

We compute

pt − qt = E(vt − qt | It) = µ1 + µ2 =
βtΣt−1 + γtσ

2
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

∆yt, (81)

which proves Equation (60) for λt. Also,

Ωt = Var(vt − qt | It) = σ2
1 + σ2

2 + 2ρσ1σ2

= Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1 + 2βtγtΣt−1σ

2
v + γ2

t σ
4
v

β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u

∆t, (82)

which proves (64).
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Next, to compute qt+1 = E(vt | Iq
t ), we start from the same prior as in (75), but we

consider the impact of both the order flow at t and the market maker’s signal at t + 1:

∆yt = βt(vt−1 − qt)∆t + γt∆vt + ∆ut, (83)

∆zt = ∆vt + ∆et. (84)

Denote by

Ψt = Cov

 vt−1 − qt

∆vt

 ,

 ∆yt

∆zt

 =

 βtΣt−1 0

γtσ
2
v σ2

v

 ∆t, (85)

V yz
t = Var

 ∆yt

∆zt

 =

 β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u γtσ
2
v

γtσ
2
v σ2

v + σ2
e

 ∆t. (86)

Conditional on Iq
t = Iq

t−1 ∪{∆yt, ∆zt}, the distribution of vt−1− qt and ∆vt is bivariate

normal:  vt−1 − qt

∆vt

 | Iq
t ∼ N

 µ1

µ2

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , (87)

where

 µ1

µ2

 = Ψt (V yz
t )−1

 ∆yt

∆zt

 =

 βtΣt−1(σ
2
v + σ2

e)∆yt − βtγtΣt−1σ
2
v∆zt

γtσ
2
vσ

2
e∆yt + (β2

t Σt−1∆t + σ2
u)σ

2
v∆zt


(β2

t Σt−1∆t + γ2
t σ

2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t + σ2
u)σ

2
v

, (88)

and σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 = Var

 vt−1 − qt

∆vt

−Ψt (V yz
t )−1 Ψ′

t

=

 Σt−1 0

0 σ2
v∆t

−
 β2

t Σ
2
t−1(σ

2
v + σ2

e) βtγtΣt−1σ
2
vσ

2
e

βtγtΣt−1σ
2
vσ

2
e (β2

t Σt−1∆t + γ2
t σ

2
e + σ2

u)σ
4
v


(β2

t Σt−1∆t + γ2
t σ

2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t + σ2
u)σ

2
v

∆t.

(89)
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Therefore,

qt+1 − qt = µ1 + µ2

=

(
βtΣt−1(σ

2
v + σ2

e) + γtσ
2
vσ

2
e

)
∆yt +

(
σ2

u + β2
t Σt−1∆t− βtγtΣt−1

)
σ2

v∆zt

(β2
t Σt−1∆t + γ2

t σ
2
v + σ2

u) σ2
e + (β2

t Σt−1∆t + σ2
u) σ2

v

(90)

= mt∆yt + µt∆zt = (λt − ρtµt)∆yt + µt∆zt, (91)

which proves Equations (61), (62), and (63). Also,

Σt = σ2
1 + σ2

2 + 2ρσ1σ2

= Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1(σ

2
v + σ2

e) + β2
t Σt−1∆tσ4

v + σ4
vσ

2
u + γ2

t σ
4
vσ

2
e + 2βtγtΣt−1σ

2
vσ

2
e

(β2
t Σt−1 + (βt + γt)2σ2

v + σ2
u) σ2

e + (β2
t Σt−1 + σ2

u) σ2
v

∆t,

(92)

which proves (65).

Optimal Strategy of Informed Trader: At each t = 1, . . . , T − 1, the informed

trader maximizes the expected profit: πt = max
∑T−1

τ=t E
(
(vT − pτ )∆xτ

)
. We prove by

backward induction that the value function is quadratic and of the form given in (66):

πt = αt−1(vt−1− qt)
2 +α′t−1(∆vt)

2 +α′′t−1(vt−1− qt)∆vt + δt−1. At the last decision point

(t = T − 1) the next value function is zero, i.e., αT = α′T = α′′T = δT = 0, which are the

terminal conditions (73). This is the transversality condition: no money is left on the

table. In the induction step, if t = 1, . . . , T − 1, we assume that πt+1 is of the desired

form. The Bellman principle of intertemporal optimization implies

πt = max
∆x

E
(
(vt − pt)∆x + πt+1 | Iq

t , vt, ∆vt

)
. (93)

Equations (58) and (59) show that the quote qt evolves by qt+1 = qt + mt∆yt + µt∆zt,

where mt = λt − ρtµt. This implies that the informed trader’s choice of ∆x affects the
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trading price and the next quote by

pt = qt + λt(∆x + ∆ut), (94)

qt+1 = qt + mt(∆x + ∆ut) + µt∆zt. (95)

Substituting these into the Bellman equation, we get

πt = max
∆x

E
(
∆x(vt−1 + ∆vt − qt − λt∆x− λt∆ut)

+ αt(vt−1 + ∆vt − qt −mt∆x−mt∆ut − µt∆vt − µt∆et)
2 + α′t∆v2

t+1

+ α′′t (vt−1 + ∆vt − qt −mt∆x−mt∆ut − µt∆vt − µt∆et)∆vt+1 + δt

) (96)

= max
∆x

∆x(vt−1 − qt + ∆vt − λt∆x)

+ αt

(
(vt−1 − qt −mt∆x + (1− µt)∆vt)

2 + (m2
t σ

2
u + µ2

t σ
2
e)∆t

)
+ α′tσ

2
v∆t

+ 0 + δt.

(97)

The first order condition with respect to ∆x is

∆x =
1− 2αtmt

2(λt − αtm2
t )

(vt−1 − qt) +
1− 2αtmt(1− µt)

2(λt − αtm2
t )

∆vt, (98)

and the second order condition for a maximum is λt − αtm
2
t > 0, which is (74). Thus,

the optimal ∆x is indeed of the form ∆xt = βt(vt−1 − qt)∆t + γt∆vt, where βt∆t and γt

are as in Equations (67) and (68). We substitute ∆xt in the formula for πt to obtain

πt =
(
βt∆t(1− λtβt∆t) + αt(1−mtβt∆t)2

)
(vt−1 − qt)

2

+
(
αt(1− µt −mtγt)

2 + γt(1− λtγt)
)
∆v2

t (99)

+
(
βt∆t + γt(1− 2λtβt∆t) + 2αt(1−mtβt∆t)(1− µt −mtγt)

)
(vt−1 − qt)∆vt

+ αt

(
m2

t σ
2
u + µ2

t σ
2
e

)
∆t + α′tσ

2
v∆t + δt.

This proves that indeed πt is of the form πt = αt−1(vt−1−qt)
2 +α′t−1(∆vt)

2 +α′′t−1(vt−1−

qt)∆vt + δt−1, with αt−1, α′t−1, α′′t−1 and δt−1 as in Equations (69)–(72).

We now briefly discuss the existence of a solution for the recursive system given in
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Theorem 2. The system of equations (60)–(72) can be numerically solved backwards,

starting from the boundary conditions (73). We also start with an arbitrary value of

ΣT > 0.21 By backward induction, suppose αt and Σt are given. One verifies that

Equation (65) implies

Σt−1 =
Σt

(
σ2

vσ
2
u + σ2

v(σ
2
u + γ2

t σ
2
e)

)
− σ2

vσ
2
uσ

2
e∆t(

σ2
uσ

2
e + σ2

v(σ
2
u + γ2

t σ
2
e) + β2

t ∆t2σ2
vσ

2
e − 2γtβt∆tσ2

vσ
2
e

)
− Σtβ2

t ∆t
(
σ2

v + σ2
e

) .

(100)

Then, Equations (60)–(62) can be rewritten to express λt, µt, mt as functions of (Σt, βt, γt)

instead of (Σt−1, βt, γt). Next, we use (67) and (68) to express λt, µt, mt as functions of

(λt, µt, mt, αt, Σt). This gives a system of polynomial equations, whose solution λt, µt, mt

depends only on (αt, Σt). Numerical simulations show that the solution is unique under

the second order condition (74), but the authors have not been able to prove theo-

retically that this is true in all cases. Once the recursive system is computed for all

t = 1, . . . , T − 1, the only condition left to do is to verify that the value obtained for

Σ0 is the correct one. However, unlike in Kyle (1985), the recursive equation for Σt is

not linear, and therefore the parameters cannot be simply rescaled. Instead, one must

numerically modify the initial choice of ΣT until the correct value of Σ0 is reached.

A.2 Discrete Time Benchmark Model

The setup is the same as for the fast model, except that the market maker gets the

signal ∆z at the same time as the informed trader observes ∆v. The sequence of events

is as follows. At t = 0, the informed trader observes v0. At each t = 1, . . . , T − 1,

the informed trader observes ∆vt = vt − vt−1; and the market maker observes ∆zt =

∆vt + ∆et, with ∆et ∼ N (0, σ2
e∆t). The market maker quotes the bid price = the ask

price = qt. The informed trader then submits ∆xt, and the liquidity traders submit

in aggregate ∆ut ∼ N (0, σ2
u∆t). The market maker observes only the aggregate order

flow, ∆yt = ∆xt + ∆ut, and sets the price at which the trading takes place, pt. The

21Numerically, it should be of the order of ∆t.
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market maker is competitive, i.e., makes zero profit. This implies

pt = E(vt | Ip
t ), Ip

t = {∆y1, . . . , ∆yt, ∆z1, . . . , ∆zt}, (101)

qt = E(vt | Iq
t ), Iq

t = {∆y1, . . . , ∆yt−1, ∆z1, . . . , ∆zt}. (102)

We also denote

Σt = Var(vt | Ip
t ), (103)

Ωt = Var(vt | Iq
t ). (104)

The next result shows that if the pricing rule is linear, the informed trader’s strategy

is also linear, and furthermore it only has a level trading component, βt(vt − qt).

Theorem 3. Any linear equilibrium must be of the form

∆xt = βt(vt − qt)∆t, (105)

pt = qt + λt∆yt, (106)

qt = pt−1 + µt−1∆zt, (107)

for t = 1, . . . , T − 1, where by convention p0 = 0, and βt, γt, λt, µt, Ωt, and Σt are

constants that satisfy

λt =
βtΣt

σ2
u

, (108)

µt =
σ2

v

σ2
v + σ2

e

, (109)

Ωt =
Σtσ

2
u

σ2
u − β2

t Σt∆t
, (110)

Σt−1 = Σt +
β2

t Σ
2
t

σ2
u − β2

t Σt∆t
∆t− σ2

vσ
2
e

σ2
v + σ2

e

∆t. (111)

The value function of the informed trader is quadratic for all t = 1, . . . , T − 1:

πt = αt−1(vt − qt)
2 + δt−1. (112)
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The coefficients of the optimal trading strategy and the value function satisfy

βt∆t =
1− 2αtλt

2λt(1− αtλt)
, (113)

αt−1 = βt∆t(1− λtβt∆t) + αt(1− λtβt∆t)2, (114)

δt−1 = αt

(
λ2

t σ
2
u + µ2

t (σ
2
v + σ2

e)
)
∆t + δt. (115)

The terminal conditions are

αT = δT = 0. (116)

The second order condition is

λt(1− αtλt) > 0. (117)

Given Σ0, conditions (108)–(117) are necessary and sufficient for the existence of a

linear equilibrium.

Proof. First, we show that Equations (108)–(111) are equivalent to the zero profit condi-

tions of the market maker. Second, we show that Equations (113)–(117) are equivalent

to the informed trader’s strategy (105) being optimal.

Zero Profit of Market Maker: Let us start with with the market maker’s update

due to the order flow at t = 1, . . . , T−1. Conditional on Iq
t , vt has a normal distribution,

vt|Iq
t ∼ N (qt, Ωt). The aggregate order flow at t is of the form ∆yt = βt(vt−qt)∆t+∆ut.

Denote by

Φt = Cov(vt − qt, ∆yt) = βtΩt∆t. (118)

Then, conditional on Ip
t = Iq

t ∪ {∆yt}, vt ∼ N (pt, Σt), with

pt = qt + λt∆yt, (119)

λt = Φt Var(∆yt)
−1 =

βtΩt

β2
t Ωt∆t + σ2

u

, (120)

Σt = Var(vt − qt)− Φt Var(∆yt)
−1Φ′

t

= Ωt −
β2

t Ω
2
t

β2
t Ωt∆t + σ2

u

∆t =
Ωtσ

2
u

β2
t Ωt∆t + σ2

u

.
(121)
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To obtain Equation (108) for λt, note that the above equations for λt and Σt imply

λt

Σt
= βt

σ2
u
. Equation (110) is obtained by solving for Σt in Equation (121).

Next, consider the market maker’s update at t = 1, . . . , T−1 due to the signal ∆zt =

∆vt + ∆et. From vt−1|Ip
t−1 ∼ N (pt−1, Σt−1), we have vt|Ip

t−1 ∼ N (pt−1, Σt−1 + σ2
v∆t) .

Denote by

Ψt = Cov(vt − pt−1, ∆zt) = σ2
v∆t. (122)

Then, conditional on Iq
t = Ip

t−1 ∪ {∆zt}, vt|Iq
t ∼ N (qt, Ωt), with

qt = pt−1 + µt∆zt, (123)

µt = Ψt Var(∆zt)
−1 =

σ2
v

σ2
v + σ2

e

, (124)

Ωt = Var(vt − pt−1)−Ψt Var(∆zt)
−1Ψ′

t

= Σt−1 + σ2
v∆t− σ4

v

σ2
v + σ2

e

∆t = Σt−1 +
σ2

vσ
2
e

σ2
v + σ2

e

∆t.
(125)

which proves Equation (109) for µt. Note that Equation (125) gives a formula for Σt−1

as a function of Ωt, and we already proved (110), which expresses Ωt as a function of

Σt. We therefore get Σt−1 as a function of Σt, which is (111).

Optimal Strategy of Informed Trader: At each t = 1, . . . , T − 1, the informed

trader maximizes the expected profit: πt = max
∑T−1

τ=t E
(
(vT − pτ )∆xτ

)
. We prove by

backward induction that the value function is quadratic and of the form given in (112):

πt = αt−1(vt− qt)
2 + δt−1. At the last decision point (t = T − 1) the next value function

is zero, i.e., αT = δT = 0, which are the terminal conditions (116). In the induction step,

if t = 1, . . . , T − 1, we assume that πt+1 is of the desired form. The Bellman principle

of intertemporal optimization implies

πt = max
∆x

E
(
(vt − pt)∆x + πt+1 | Iq

t , vt, ∆vt

)
. (126)

Equations (106) and (107) show that the quote qt evolves by qt+1 = qt+mt∆yt+µt∆zt+1.

This implies that the informed trader’s choice of ∆x affects the trading price and the
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next quote by

pt = qt + λt(∆x + ∆ut), (127)

qt+1 = qt + λt(∆x + ∆ut) + µt∆zt+1. (128)

Substituting these into the Bellman equation, we get

πt = max
∆x

E
(
∆x(vt − qt − λt∆x− λt∆ut)

+ αt(vt + ∆vt+1 − qt − λt∆x− λt∆ut − µt∆zt+1)
2 + δt

) (129)

= max
∆x

∆x(vt − qt − λt∆x)

+ αt

(
(vt − qt − λt∆x)2 + (λ2

t σ
2
u + µ2

t (σ
2
v + σ2

e))∆t
)

+ δt.
(130)

The first order condition with respect to ∆x is

∆x =
1− 2αtλt

2λt(1− αtλt)
(vt − qt), (131)

and the second order condition for a maximum is λt(1 − αtλt) > 0, which is (117).

Thus, the optimal ∆x is indeed of the form ∆xt = βt(vt − qt)∆t, where βt∆t satisfies

Equation (113). We substitute ∆xt in the formula for πt to obtain

πt =
(
βt∆t(1−λtβt∆t)+αt(1−λtβt∆t)2

)
(vt− qt)

2 + αt

(
λ2

t σ
2
u +µ2

t (σ
2
v +σ2

e)
)
∆t + δt.

(132)

This proves that indeed πt is of the form πt = αt−1(vt − qt)
2 + δt−1, with αt−1 and δt−1

as in Equations (114) and (115).

Equations (108)–(111) and (113)–(115) form a system of equations. As before, it is

solved backwards, starting from the boundary conditions (116), and so that Σt = Σ0 at

t = 0.

41



B Proofs

B.1 Proof of Theorem 1

Benchmark model: We compute the optimal strategy of the informed trader at

t + dt. As we have seen in the discrete version of the model, in Appendix A, we need to

consider only strategies dxτ of the type dxτ = βτ (vτ − pτ ) dτ + γτ dvτ . Recall that Ip
t

is the market maker’s information set immediately after trading at t. If we denote by

J p
t = Ip

t ∪ {vτ}τ≤t+dt the trader’s information set before trading at t + dt, the expected

profit from trading after t is

πt = E

(∫ 1

t

(v1 − pτ+ dτ ) dxτ | J p
t

)
. (133)

From (11), pτ+ dτ = pτ + µτ (dvτ + deτ ) + λτ (dxτ + duτ ). For τ ≥ t, denote by

Vτ = E
(
(vτ − pτ )

2 | J p
t

)
. (134)

Then the expected profit is

πt = E

(∫ 1

t

(vτ + dvτ − pτ − µτ dvτ − λτ dxτ ) dxτ | J p
t

)
(135)

=

∫ 1

t

(
βτVτ + (1− µτ − λτγτ )γτσ

2
v

)
dτ. (136)

Vτ can be computed recursively:

Vτ+ dτ = E
(
(vτ+ dτ − pτ+ dτ )

2 | J p
t

)
= E

(
(vτ + dvτ − pτ − µτ dvτ − µτ deτ − λτ dxτ − λτ duτ )

2 | J p
t

)
= Vτ + (1− µτ − λτγτ )

2σ2
v dτ + µ2

τσ
2
e dτ + λ2

τσ
2
u dτ − 2λtβtVτ dτ.

(137)

therefore the law of motion of Vτ is a first order differential equation

V ′
τ = −2λtβtVτ + (1− µτ − λτγτ )

2σ2
v + µ2

τσ
2
e + λ2

τσ
2
u, (138)

42



or equivalently βτVτ = −V ′
τ+(1−µτ−λτ γτ )2σ2

v+µ2
τ σ2

e+λ2
τ σ2

u

2λτ
. Substitute this into (133) and

integrate by parts. Since Vt = 0, we get

πt = − V1

2λ1

+

∫ 1

t

Vτ

( 1

2λτ

)′
dτ

+

∫ 1

t

(
(1− µτ − λτγτ )

2σ2
v + µ2

τσ
2
e + λ2

τσ
2
u

2λτ

+ (1− µτ − λτγτ )γτσ
2
v

))
dτ.

(139)

This is essentially the argument of Kyle (1985): we have eliminated the choice variable

βτ and replaced it by Vτ . Since Vτ > 0 can be arbitrarily chosen, in order to get an

optimum we must have
(

1
2λτ

)′
= 0, which is equivalent to

λτ = constant. (140)

For a maximum, the transversality condition V1 = 0 must be also satisfied.

We next turn to the choice of γτ . The first order condition is

−(1− µτ − λτγτ ) + (1− µτ − λτγτ )− λτγτ = 0 =⇒ γτ = 0. (141)

Thus, there is no flow trading in the benchmark model. Note also that the second order

condition is λτ > 0.22

Next, we derive the pricing rules from the market maker’s zero profit conditions.

The equations pt = E(v1|Ip
t ) and qt = E(v1|Ip

t , dzt) imply that qt = pt + µt dzt, where

µt =
Cov(v1, dzt | Ip

t )

Var( dzt | Ip
t )

=
Cov(v0 +

∫ 1

0
dvτ , dvt + det | Ip

t )

Var( dvt + det | Ip
t )

=
σ2

v

σ2
v + σ2

e

. (142)

The equations qt = E(v1|Iq
t+dt) and pt+dt = E(v1|Iq

t+dt, dyt) imply that pt+dt = qt +λtdyt,

where

λt =
Cov(v1, dyt | Iq

t+dt)

Var( dyt | Iq
t+dt)

=
Cov(v1, βt(vt − pt) dt + dut | Iq

t+dt)

Var(βt(vt − pt) dt + dut | Iq
t+dt)

=
βtΣt

σ2
u

, (143)

22The condition λτ > 0 is also a second order condition with respect to the choice of βτ . To see
this, suppose λτ < 0. Then if βτ > 0 is chosen very large, Equation (138) shows that Vτ is very large
as well, and thus βτVτ can be made arbitrarily large. Thus, there would be no maximum.
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where Σt = E
(
(vt − pt)

2|Ip
t

)
.23 The information set of the informed trader, J p

t , is a

refinement of the market maker’s information set, Ip
t . Therefore, by the law of iterated

expectations, Σt satisfies the same equation as Vt:

Σ′
t = −2λtβtΣt + (1− µt − λtγt)

2σ2
v + µ2

t σ
2
e + λ2

t σ
2
u, (144)

except that it has a different initial condition. One can solve this differential equation

explicitly and show that the transversality condition V1 = 0 is equivalent to
∫ 1

0
βt dt =

+∞, and in turn this is equivalent to Σ1 = 0. Since λt, µt and γt = 0 are constant,

by (143) βtΣt is also constant. Equation (144) then implies that Σ′t is constant. Since

Σ1 = 0, Σt = (1− t)Σ0, and βt = β0

1−t
. Finally, we integrate (144) between 0 and 1, and

substituting for λ = β0Σ0

σ2
u

, µ = σ2
v

σ2
v+σ2

e
, and γ = 0, we obtain β0 and λ as stated in the

Theorem.

Fast model: The informed trader has the same objective function as in (133):

πt = E

(∫ 1

t

(v1 − pτ+ dτ ) dxτ | J p
t

)
. (145)

but here we use qt instead of pt as a state variable. From (7), pt+dt = qt + λtdyt. Also,

from (17), qτ+ dτ = qτ + µτ (dzτ − ρτdyτ ) + λτ (dyτ ), and we obtain

qτ+ dτ = µτ dzτ + mτ dyτ , with (146)

mτ = λτ − µτρτ . (147)

As we have seen in the discrete version of the model, in Appendix A, we need to consider

only strategies dxτ of the type (16), dxτ = βτ (vτ − qτ ) dτ + γτ dvτ . For τ ≥ t, denote by

Vτ = E
(
(vτ − qτ )

2 | J p
t

)
. (148)

23Because Iq
t+dt = Ip

t ∪ {dzt}, the two information sets differ only by the infinitesimal quantity dzt,
and thus we can also write Σt = E

(
(vt − pt)2|Iq

t+dt

)
= E

(
(vt − pt)2|Ip

t

)
.

44



The expected profit is

πt = E

(∫ 1

t

(vτ + dvτ − qτ − λτ dxτ ) dxτ | J p
t

)
(149)

=

∫ 1

t

(
βτVτ + (1− λτγτ )γτσ

2
v

)
dτ. (150)

Vτ is computed as in the benchmark model, except that λτ is replaced by mτ :

Vτ+ dτ = E
(
(vτ+ dτ − qτ+ dτ )

2 | J p
t

)
= Vτ + (1− µτ −mτγτ )

2σ2
v dτ + µ2

τσ
2
e dτ + m2

τσ
2
u dτ − 2mtβtVτ dτ.

(151)

therefore the law of motion of Vτ is a first order differential equation

V ′
τ = −2mtβtVτ + (1− µτ −mτγτ )

2σ2
v + µ2

τσ
2
e + m2

τσ
2
u, (152)

or equivalently βτVτ = −V ′
τ+(1−µτ−mτ γτ )2σ2

v+µ2
τ σ2

e+m2
τ σ2

u

2mτ
. Substitute this into (133) and

integrate by parts. Since Vt = 0, we get

πt = − V1

2m1

+

∫ 1

t

Vτ

( 1

2mτ

)′
dτ

+

∫ 1

t

(
(1− µτ −mτγτ )

2σ2
v + µ2

τσ
2
e + m2

τσ
2
u

2mτ

+ (1− λτγτ )γτσ
2
v

))
dτ.

(153)

Since Vτ > 0 can be arbitrarily chosen, in order to get an optimum we must have(
1

2mτ

)′
= 0, which is equivalent to mτ = constant. For a maximum, the transversality

condition V1 = 0 must be also satisfied.

We next turn to the choice of γτ . The first order condition is

−(1− µτ −mτγτ ) + (1− λτγτ )− λτγτ = 0 =⇒ γτ =
µτ

2λτ −mτ

=
µτ

λτ + µτρτ

.

(154)

Thus, we obtain a nonzero flow trading component. The second order condition is

λτ + µτρτ > 0. There is also a second order condition with respect to β: mτ > 0: see

Footnote 22.

Next, we derive the pricing rules from the market maker’s zero profit conditions. As
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in the benchmark model, we compute

λt =
Covt(v1, dyt)

Vart( dyt)
=

Covt(v1, βt(vt − pt) dt + γt dvt + dut)

Var(βt(vt − pt) dt + γt dvt + dut)
=

βtΣt + γtσ
2
v

γ2
t σ

2
v + σ2

u

, (155)

ρt =
Covt( dzt, dyt)

Vart( dyt)
=

γtσ
2
v

γ2
t σ

2
v + σ2

u

, (156)

µt =
Covt(v1, dzt − ρt dyt)

Vart( dzt − ρt dyt)
=

−ρtβtΣt + (1− ρtγt)σ
2
v

(1− ρtγt)2σ2
v + ρ2

t σ
2
u + σ2

e

. (157)

By the same arguments as for the benchmark model, Σt = (1− t)Σ0, βt = β0

1−t
, and βtΣt,

λt, ρt, µt are constant. Since Σt satisfies the same Equation (152) as Vt, and Σ′
t = −Σ0,

we obtain

−Σ0 = −2mtβtΣt + (1− µτ −mτγτ )
2σ2

v + µ2
τσ

2
e + m2

τσ
2
u. (158)

We now define the following constants:

a =
σ2

u

σ2
v

, b =
σ2

e

σ2
v

, c =
Σ0

σ2
v

, (159)

f =
γ2

a
, λ̃ = λγ, ρ̃ = ργ, ν =

β0Σ0

σ2
u

γ, m̃ = mγ. (160)

With these notations, Equations (154)–(158) become

λ̃ = µ(1− ρ̃), λ̃ =
ν + f

1 + f
, ρ̃ =

f

1 + f
, µ =

1− ν

1 + b(1 + f)

c =
2ν

f
− (1− µ− m̃)2 − µ2b− m̃2

f
.

(161)

Substitute λ̃, ρ̃, µ in λ̃ = µ(1− ρ̃) and solve for ν:

ν =
1− (1 + b)f − bf 2

2 + b + bf
=

1 + f

2 + b + bf
− f. (162)

The other equations, together with m̃ = λ̃− µρ̃, imply

λ̃ =
1

2 + b + bf
, ρ̃ =

f

1 + f
, µ =

1 + f

2 + b + bf
, m̃ =

1− f

2 + b + bf
,

1 + c =
(1 + bf)(1 + f)2

f(2 + b + bf)2
.

(163)
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Putting together (162) and the last equation in (163), we compute

β0 =
a

cγ
ν =

a1/2

cf 1/2
ν =

a1/2

cf 1/2(1 + c)

1

(1 + f)1/2

(
c + (1− f)

1 + b + bf

2 + b + bf

)
. (164)

Now substitute a, b, c from (159) in Equations (163)–(164) and use γ = a1/2f 1/2 to obtain

Equations (18)–(23). One can also check that the second order conditions λ+µρ > 0 and

m > 0 are equivalent to f ∈ (−1, 1). Next, we show that the equation 1+c = (1+bf)(1+f)2

f(2+b+bf)2

has a unique solution f ∈ (−1, 1), which in fact lies in (0, 1). This can be shown by

noting that

Fb(f) = 1 + c, with Fb(x) =
(1 + bx)(1 + x)2

x(2 + b + bx)2
. (165)

One verifies F ′
b(x) = (x+1)(x−1)(2+b+3bx)

x2(2+b+bx)2
, so Fb(x) decreases on (0, 1). Since Fb(0) = +∞

and Fb(1) = 1
1+b

< 1, there is a unique f ∈ (0, 1) so that Fb(f) = 1 + c.24

B.2 Proof of Proposition 1

We use the notations from the proof of Theorem 1. We start by showing that µF < µB;

by computation, 1+f
2+b+bf

< 1
1+b

is equivalent to f < 1, which is true since f ∈ (0, 1).

We show that λF > λB, i.e., (c+1)1/2

a1/2
1

(1+bf)1/2(1+f)
> c1/2

a1/2

(
1+ b

c(1+b)

)1/2
. After squaring

the two sides, and using 1 + c = (1+bf)(1+f)2

f(2+b+bf)2
, we need to prove that 1

f(2+b+bf)2
> c +

1− 1
1+b

, or equivalently 1
1+b

> (1+bf)(1+f)2

f(2+b+bf)2
− 1

f(2+b+bf)2
. This can be reduced to proving

1 + b + (1− f)(1 + bf) > 0, which is true.

The same type of calculations can be used to show that βF
0 < βB

0 , or to prove the

other comparative statics.

B.3 Proof of Proposition 2

In the benchmark model, V ar(dxt) = (βB
t )2Σtdt2 and V ar(dut) = σ2

udt. Therefore,

IPRB
t = 0.

In the fast model, V ar(dxt) = (γB
t )2σ2

vdt. Therefore, IPRF
t = (γB

t )2σ2
v/((γ

B
t )2σ2

v +

24One can check that Fb(x) = 1 + c has no solution on (−1, 0): When b ≤ 1, Fb(x) < 0 on (−1, 0).
When b > 1, Fb(x) attains its maximum on (−1, 0) at x∗ = − 2+b

3b , for which Fb(x∗) = (b−1)3

b(b+2)3 < 1.
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σ2
u) = f/(f + 1), using the equation for γF

t in Theorem 1.

B.4 Proof of Proposition 3

We start with a useful preliminary result:

Lemma 2. In the benchmark model and in the fast model, for all s < u, we have

Cov(vs − ps, vu − pu) = Σs

(
1− u

1− s

)mβ0

, (166)

Cov(dvs, vu − pu) = (1−mγ − µ)σ2
v

(
1− u

1− s

)mβ0

ds, (167)

where m ≡ λ− µρ.

Proof. We start from

Cov(vs − ps, vu − pu) = Cov(vs − ps, vs − ps)−
∫ u

s

Cov(vs − ps, dph) dh

= Σs −
∫ u

s

Cov(vs − ps, mβh(vh − ph)) dh

Differentiating with respect to u we obtain

∂

∂u
Cov(vs − ps, vu − pu) = −mβuCov(vs − ps, vu − pu),

which rewrites as

∂

∂τ
log Cov(vs − ps, vu − pu) = −mβu = −mβ0

1

1− u
= mβ0

∂

∂u
log(1− u).

Integrating between s and u and using Cov(vs − ps, vs − ps) = Σs, we obtain equation

(166).

Similarly, we have

Cov(dvs, vu − pu) = Cov(dvs, dvs − dps)−
∫ u

s

Cov(dvs, dph) dh

= (1−mγ − µ)σ2
vds−

∫ u

s

mβhCov(dvs, vh − ph) dh.
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Proceeding as above we obtain (167).

We can now prove Proposition 3. The formula in the benchmark model follows

immediately from Equation (166). In the fast model, the auto-covariance of the order

flow is of order dt2 while the variance is of order dt, therefore the autocorrelation is of

order dt, which is zero in continuous time.

B.5 Proof of Proposition 5

Follows immediately from Lemma 2.

B.6 Proof of Lemma 1

We start from

Σt = V ar(vt − pt) = V ar(vt) + V ar(pt)− 2Cov(vt,

∫ t

0

dpτ ).

We have V ar(vt) = Σ0 + tσ2
v . Since the price is a martingale and given that we prove

in the proof of Proposition 7 that the volatility of the price is equal to the volatility of

the asset value, we have V ar(pt) = t(Σ0 + σ2
v). Finally, using that price change cannot

be correlated with future innovation in asset value, we obtain equation (41).

B.7 Proof of Proposition 7

In the benchmark model, V ar(pt+dt−qt) = (λB)2σ2
udt and V ar(qt+dt−pt+dt) = (µB)2σ2

vdt.

Using the equilibrium parameter values of Theorem 1 we obtain V ar(dpt) = Σ0 + σ2
vt.

Similarly, in the fast model, V ar(pt+dt−qt) = (λF )2((γF )2σ2
v +σ2

u)dt and V ar(qt+dt−

pt+dt) = (µB)2((1 − ρF γF )2σ2
v + σ2

e + (ρF )2σ2
u)dt. Using the equilibrium parameter

values of Theorem 1, we obtain that V ar(pt+dt − qt) is higher than in the benchmark,

V ar(qt+dt− pt+dt) is lower than in the benchmark, and V ar(dpt) = Σ0 +σ2
vt is the same

as in the benchmark.
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B.8 Proof of Proposition 10

When returns are computed using post-trade quotes, we have

rt = µt−∆t(∆zt−∆t − ρt−∆t∆yt−∆t) + λt∆yt.

Using that ∆xt−∆t ≈ γt−∆t∆vt−∆t when ∆t → 0, and that γt, λt, µt, and ρt are constant

over time, the above equation rewrites as

rt ≈ λ∆xt + λ∆ut + µ(1/γ − ρ)∆xt−∆t − µρ∆ut−∆t + µ∆et−∆t.

Similarly, when pre-trade quotes are used, we have

rt = λt∆yt + µt(∆zt − ρt∆yt)

= (λ− µρ + µ/γ)∆xt + (λ− µρ)∆ut + µ∆et.

B.9 Proof of Proposition 11

In the limit ∆t → 0, we have

Cov(∆xj(n), rj+1(n)) = µγ(1− ργ)σ2
v∆t,

V ar(∆xj) = nγ2σ2
v∆t,

V ar(rj+1) = (σ2
v + Σ0)n∆t.

Therefore

Corr(∆xj, rj+1) =
µ(1− ργ)σv

n
√

σ2
v + Σ0

is decreasing in n and goes to 0 when n goes to infinity.
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B.10 Proof of Proposition 12

We consider the limit ∆t → 0 and n → +∞ such that n∆t = τ is fixed. In this case,

we have V ar(∆xj) = V ar(xt+τ − xt), where t = (j − 1)τ . Then, we can write

V ar(xj) = V ar(

∫ t+τ

s=t

βs(vs − ps)ds + γsdvs)

=

∫ t+τ

s=t

γ2
sV ar(dvs)

+2

∫ t+τ

s=t

∫ t+τ

u=s

βsβuCov (vs − ps, vu − pu) ds du

+2

∫ t+τ

s=t

∫ t+τ

u=s

γsβuCov (dvs, vu − pu) du.

It then follows from Lemma 2 that

V ar(xj) = γ2σ2
vτ + βt(β0Σ0 + γ(1−mγ − µ)σ2

v)τ
2 + o(τ 2)

when τ is small and where m ≡ λ− µρ. Using that V ar(uj) = σ2
uτ , we obtain

IPRj =
γ2σ2

v

γ2σ2
v + σ2

u

+
σ2

u

(γ2σ2
v + σ2

u)
2
βt(β0Σ0 + γ(1−mγ − µ)σ2

v)τ + o(τ).

B.11 Proof of Proposition 13

We consider the limit ∆t → 0 and n → +∞ such that n∆t = τ is fixed. In this case,

we have

Cov(∆xj, ∆xj+1) = βt(β0Σ0 + γ(1−mγ − µ)σ2
v)τ

2 + o(τ 2),

V ar(∆xj) = V ar(∆xj+1) = γ2σ2
vτ + βt(β0Σ0 + γ(1−mγ − µ)σ2

v)τ
2 + o(τ 2).

Therefore

Corr(∆xj, ∆xj+1) =
β2

t Σt + βtγt(1−mγ − µ)σ2
v

γ2σ2
v

τ + o(τ).

References

[1] Back, Kerry, Henry Cao, and Gregory Willard (2000): “Imperfect Competition

51



among Informed Traders,” Journal of Finance, 55, 2117–2155.

[2] Back, Kerry, and Hal Pedersen (1998): “Long-Lived Information and Intraday
Patterns,” Journal of Financial Markets, 1, 385–402.

[3] Biais, Bruno, Thierry Foucault, and Sophie Moinas (2011): “Equilibrium High
Frequency Trading,” Working Paper.

[4] Brogaard, Jonathan (2010): “High Frequency Trading and Its Impact on Market
Quality,” Working Paper.

[5] Brogaard, Jonathan (2011): “The Activity of High Frequency Traders,” Working
Paper.

[6] Chaboud, Alain, Benjamin Chiquoine, Erik Hjalmarsson, and Clara Vega
(2009): “Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market,”
Working Paper, Board of Governors of the Federal Reserve System.

[7] Chau, Minh, and Dimitri Vayanos (2008): “Strong-Form Efficiency with Monopolistic
Insiders,” Review of Financial Studies, 21, 2275–2306.

[8] Hasbrouck, Joel (1991a): “Measuring the Information Content of Stock Trades,” Jour-
nal of Finance, 46, 179–207.

[9] Hasbrouck, Joel (1991b): “The Summary Informativeness of Stock Trades: An Econo-
metric Analysis,” Review of Financial Studies, 4, 571–595.

[10] Hasbrouck, Joel (1996): “Order Characteristics and Stock Price Evolution: An Ap-
plication to Program Trading,” Journal of Financial Economics, 41, 129–149.

[11] Hasbrouck, Joel, and Gideon Saar (2011): “Low-Latency Trading,” Working Paper.

[12] Hendershott, Terrence, Charles Jones, and Albert Menkveld (2011): “Does
Algorithmic Trading Improve Liquidity?,” Journal of Finance, 66, 1–33.

[13] Hendershott, Terrence, and Pamela Moulton (2011): “Automation, Speed, and
Stock Market Quality: The NYSE’s Hybrid,” Journal of Financial Markets, 14, 568–604.

[14] Hendershott, Terrence, and Ryan Riordan (2010): “Algorithmic Trading and
Information,” Working Paper.

[15] Hendershott, Terrence, and Ryan Riordan (2011): “High Frequency Trading and
Price Discovery,” Working Paper.

[16] Jovanovic, Boyan, and Albert Menkveld (2011): “Middlemen in Limit-Order Mar-
kets,” Working Paper.

[17] Karatzas, Ioannis, and Steven Shreve (1991): Brownian Motion and Stochastic
Calculus, Springer Verlag.

[18] Kirilenko, Andrei, Albert Kyle, Mehrdad Samadi, and Tugkan Tuzun (2011):
“The Flash Crash: The Impact of High Frequency Trading on an Electronic Market,”
Working Paper.

52



[19] Kyle, Albert (1985): “Continuous Auctions and Insider Trading,” Econometrica, 53,
1315–1335.

[20] Menkveld, Albert (2012): “High Frequency Trading and the New-Market Makers,”
Working Paper.

[21] Pagnotta, Emiliano, and Thomas Philippon (2011): “Competing on Speed,” Work-
ing Paper.

[22] SEC (2010): “Concept Release on Equity Market Structure,” Release No. 34-61358; File
No. S7-02-10.

53


