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Abstract

We study a dynamic limit order market with a finite number of strategic

liquidity suppliers who post limit orders. Their limit orders are hit by ei-

ther news (i.e. informed) traders or noise traders. We show that repeatedly

playing a mixed strategy equilibrium of a certain static game is a subgame

perfect equilibrium with flickering quotes. Furthermore, regardless of the dis-

tributions of the liquidation value and noise trade quantity, we always find a

sequence of equilibria in mixed strategies such that the resulting random sup-

ply schedule converges in mean square, as the number of liquidity suppliers

increases to infinity, to the deterministic competitive supply function.

An oft noted feature of today’s equity markets is that quoting and quickly

canceling are common and frequent events. Nanex describes times in which

quote rates exceed 75,000 quotes per second. In one case, Protective Life

Corp., which typically trades a few hundred times a day, had 21,000 messages

in a 10 second interval in which there was only one transaction.3 Rapid

cancellation of quotes is often associated with high frequency trading (HFT).

In fact, according to the Security and Exchange Commission (SEC) 2010
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Concept Release on Equity Market Structure “the submission of numerous

orders that are cancelled shortly after submission” is one of the characteristics

of HFT. But this is not just a recent phenomenon. We have evidence of

flickering quotes, though in a less extreme form, going back to 1999, well

before machine trading. Hasbrouck and Saar (2007) document that in 1999

data, on the Island ECN, more than a quarter of quotes were canceled within

two seconds.4

The rapid cancelation of quotes does not appear to coincide with the

competitive equilibrium in Glosten (1994), which predicts a well-behaved

supply curve that responds to transactions and other new information. It

seems rather implausible to think new information was, in 1999, coming in

on a second by second basis, or in 2012, on a millisecond by millisecond basis.

Moreover, Hasbrouck (2012) shows that the volatility of quote changes at one

millisecond intervals is nearly five times what would be predicted by thirty-

four minute quote change volatility-volatility that is more likely to represent

information arrival. It is thus fairly clear that the flickering of quotes is not

due to the arrival of information.

Gaming or even fraudulent behavior by HFT has been proposed as a

rationale for flickering quotes. For example, some see excessive quote activity,

or quote stuffing, as an attack on the Consolidated Quote System, causing

the reporting of quotes to fall behind the reporting of trades. Another alleged

scheme involves a quick cancelation of quotes when trade takes place, giving

the impression that a quotation was traded-through and hence that there is

4In 2000 we thought two seconds was a short period of time.
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more buying (or selling) interest than there actually is. It was also suggested

in the SEC discussion of Reg. NMS that quote flashing is done to earn market

data revenues.

This paper explores the possibility that limit-order traders manage their

undercutting risk by rapidly canceling their quotes and replacing them with

new randomly chosen ones.5 Given these random choices, it is easy to see why

we should see the quotes flicker. Once a constellation of quotes is revealed,

a trader will want to revise hers. But everyone knows that everyone else will

want to change and they are back to picking another price at random. Thus,

quote revisions occur frequently even though trade is sporadic. In a sense,

traders mitigate their undercutting risk by “undoing” transparency. Thus,

our model supports the notion that flickering quotes are not necessarily a

part of a nefarious plan to manipulate the market, but rather the way the

liquidity provision game is played. This is our first contribution.

It is standard in market microstructure models of price determination

with private information to assume that the liquidity supplied in an elec-

tronic limit order book (“LOB”) is characterized by a certain zero-profit

condition (see Glosten (1994)). The argument presented there is that this

is the limit, as the number of players gets large, of the equilibria of games

between liquidity suppliers. This is formalized for some environments by

Biais et al. (2000, 2013) and Back and Baruch (2013). In particular the

latter two make clear that the standard pure strategy equilibrium, in which

liquidity suppliers provide supply schedules may not exist. Furthermore, for

5The notion of random prices idea is well understood in economic theory. For example

Varian (1980) uses the same reasoning to explain the price heterogeneity in sales ads.
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a common microstructure model in which there are noise traders and in-

formed traders arriving randomly to the market, Dennert (1993) shows that

one equilibrium in mixed strategies does not converge to the competitive

equilibrium. Quite the contrary. In his setting, as the number of liquidity

suppliers gets large, all the submitted offer quotes pile up at the upper end

of the allowable set of prices. Our second contribution is the result that,

quite generally, there does exist a sequence of mixed strategy equilibria that

converges to the competitive LOB equilibrium in a setting with noise and

informed traders.

What we show is that, for the class of market microstructure models

with informed and noise trade, it is easy to find a symmetric mixed strategy

equilibrium.6 If there are n competing liquidity suppliers, an equilibrium

involves each of them picking a price at random and quoting 1
n−1

of the

maximum noise trade quantity (for ease of exposition, normalize this largest

trade to one). The random prices are i.i.d. and hence the number of shares

offered at a price p or lower is a binomial random variable (the number of

liquidity suppliers that happened to choose a price lower than p) divided

by n − 1. This is approximately the sample mean of n Bernoulli random

variables. As n gets large, this converges to a constant function of p.7 We

6How reasonable is the notion of a symmetric model in the context of HFT? According

to a Wall Street Journal article published on 11/20/2012 “exchanges have had to institute

mandated cord lengths from the main exchange server... one high-frequency firm’s com-

puter a foot from the exchange server and one across the room will have the same cord

length so as neither is seen as having a split-second advantage.”.
7The proof is a little more difficult, since as n changes, the mixing distribution changes.
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prove that this limit is the number of shares offered at p or lower in the

competitive equilibrium.

The paper is set out as follows. Section 1 lays out the dynamic game

and presents an example that illustrates existence. We also obtain a rather

novel result from the example that as the probability of informed trade goes

to zero, the stage game expected profit goes to zero but the expected profit

in the dynamic game is positive. Section 2 analyzes the game presented in

Dennert (1993) and shows, in contrast, that there is a sequence of equilibria

converging to the competitive limit order book. Section 3 shows the difficulty

of obtaining a pure strategy equilibrium. Section 4 proves, for the general

news/noise trader model the existence of a mixed strategy equilibrium that

converges to the competitive limit order book. The equilibrium described in

Section 4 is a ”no rents” equilibrium. Section 5 illustrates convergence to

the competitive of positive rents equilibria. Section 6 concludes the paper.

1. Continuous Time Market and Flickering Quotes

We consider a market for a single risky asset and risk free asset with

interest rate set to zero. Orders arrive at the market instantaneously and

trade is reported instantaneously. However, quotes are disseminated only

when trade takes place or after ∆t units of time, whichever comes first. Any

real number is a feasible price; i.e. the tick size is zero.

The market is organized as a pure limit order book market with the usual

price-time priority: An incoming marketable buy (resp. sell) order walks up

(resp. down) the book picking off outstanding limit orders at their limit
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prices.8 If at the last transaction price there is more than one outstanding

limit order, then a tie occurs. Ties are resolved using the time precedence

rule; i.e. the limit order that was submitted earlier gets to transact.

Information relevant to the value of the risky asset is released to the

public at a random time τ̃ ∼ exp(θ). Following the public announcement,

the value of the asset is realized and the asset liquidates.9 The liquidation

value, denoted by ṽ, is drawn from either a continuous or a discrete random

variable. We denote by FV and v̄ its distribution function and least upper

bound, respectively.10

There are three types of traders in the market: noise traders, news traders,

and limit-order traders. The noise traders submit market orders.11 The

cumulative order flow of the noise traders is a compound Poisson processes,

z̃t, with symmetric jumps

z̃t =
Ñt∑
m=1

ε̃mq̃m

where Ñt is a standard Poisson process with intensity β, ε̃m ∈ {−1, 1} indi-

cates whether the m-th order is a buy or sell order (we assume equal prob-

abilities), and q̃m is the order size of the m-th order, drawn from a common

8A marketable order is an order that can be executed upon submission. Any buy (resp.

sell) limit order with a limit price greater than then the ask price (resp. smaller than the

bid price) is marketable. In particular, market orders are marketable.
9The assumption that the asset liquidates following the announcement is a convenient

way to wrap up the model.
10If ṽ is unbounded, then v̄ equals infinity.
11All the results in this paper hold if we assume instead that noise traders submit buy

and sell limit orders with prices equal the upper and lower least value of ṽ, respectively.
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distribution FQ with a least upper bound of one.12 We use the notation q̃ for

a generic order size. Accordingly, the symbol q denotes a positive number.

We assume that τ̃ , ṽ, and z̃t are independent.

News traders learn ṽ at τ̃ . An instant before the limit-order traders can

refresh their quotes, news traders pick off all stale bids and offers. I.e.; news

traders submit buy or sell orders with unbounded size and limit price ṽ.

Having specified the exogenous strategies of the noise and news traders,

we turn our attention to the group of limit-order traders. This group consists

of n strategic risk neutral traders. The i-th limit-order trader has, at time t,

a collection of outstanding orders that contains all buy and sell limit orders

that were submitted in the past and were not executed or canceled prior to

time t. We denote this collection by bti. The trader may send a message to the

exchange at time t. A message contains instructions to add new limit orders

and/or cancel existing ones. After the exchange executes the instructions at

time t, the updated collection of limit orders is bt+i .

We sort the orders in bti according to their price, and summarize the result

in a non-decreasing price schedule P t
i : Rr{0} → R+ with the interpretation

that P t
i (q) and P t

i (−q) are the prices of the q-th unit that the i-th trader

offers and bids, respectively.

Analogously, we can express the sorted collection of orders in a non-

decreasing function Sti : R+ → R r {0}. In its positive range, Sti (p) is the

number of shares the i-th trader offers at prices smaller or equal to p, and

in its negative range, Sti (p) is the number of shares the i-th trader bids at

12The latter assumption is a normalization that allows us to seamlessly move from the

equilibrium mixing distribution to the deterministic competitive supply function.
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prices greater or equal than p. We let St−i =
∑

j 6=i S
t
j. Informationally, P t

i

and Sti are equivalent, and we use them interchangeably.13

We look for a stationary equilibrium with fleeting orders in which time

precedence plays no role. In this equilibrium, traders cancel their limit orders

immediately after quotes are disseminated by the exchange and replace them

with new ones. The fresh orders are viewed as random by other market

participants and to emphasize this uncertainty we write S̃t−i. The equilibrium

is stationary in the sense that the distributions of S̃t−i, is independent of time.

To keep our exposition succinct, in the following we compute the i-th

trader’s best response using an artificial payoff function that is not smaller

than the one prescribed by the game. More specifically, we assume that ties

are always broken in favor of the i-th trader. Since ties may occur only when

noise traders trade, this is an advantage. Our approach is valid if ties occur

with zero probability. In that case, the optimal strategy for the artificial

payoff function is also the best response. We emphasize that we only alter

the payoff function, but we do not restrict the i-th trader’s strategy.

Suppose a market buy order of size q̃ arrives at time t < τ̃ . The order

walks up the book picking off limit orders until the order is filled up. If the

i-th trader offers his/her q-th unit at p, then the trader sells this unit (i.e.

sells at least q) if and only if St−i(p−), the number of shares other traders

13Formally, we take supply function S to be right continuous left limit (resp. left con-

tinuous right limit) in its positive (resp. negative) range. We take price schedule P to be

left continuous right limit (resp. right continuous left limit) in its positive (resp. negative)

domain. In its positive domain P (q) = inf{p : S(p) ≥ q}, and in its negative domain

P (−q) = sup{p : S(p) ≤ −q}. We can reconstruct S from P in a similar manner.

8



offer at prices strictly smaller than p, plus q is still smaller than the size of

the incoming order q̃; i.e. q + S̃t−i(p−) ≤ q̃. The payoff is

π0(P t
i , S̃

t
−i(p), q̃, ṽ) =

∫ ∞
0

I{q+S̃t−i(Pi(q)−)≤q̃}(P
t
i (q)− ṽ)dq

Analogously, we compute π0(P t
i , S̃

t
−i(p),−q̃, ṽ), the payoff when the in-

coming market order is a sell order of size q̃. Therefore, the i-th trader’s

payoff at time t < τ̃ is π0(P t
i , S̃

t
−i(p), dz̃t, ṽ), which is typically zero except at

those times when a noise order arrives; i.e. when dz̃t 6= 0. We integrate out

the random variables ṽ, the sign and the size of the jump, and S̃t−i, and get

the expected payoff when trading with noise traders:

π̄0(P t
i ) ≡ E

[
π0(P t

i , S̃
t
−i(p), dz̃t, ṽ)

∣∣∣ I{∆Ñt>0}

]
Note that because S̃t−i has a stationary distribution, the functional π̄0 is

independent of time.

News traders pick off all stale limit orders; i.e. news traders submit limit

orders with unbounded size. The payoff at time τ̃ is:

π1(P τ
i , ṽ) =

∫ ∞
0

(P τ
i (q)− ṽ)I{ṽ≥P τi (q)}dq +

∫ ∞
0

(ṽ − P τ
i (−q))I{ṽ≤P τi (−q)}dq

Note that again the functional π1 is time independent. We integrate ṽ out

to get the expected payoff at time τ :

π̄1(P τ
i ) = E[π1(P τ

i , ṽ)|τ̃ = τ ]
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The expected payoff of the i-th trader at time s is

Πi(s) = E

∫ τ̃

s

π0(P t
i , S̃−i(p), dz̃t, ṽ)dNt + π1(P τ̃

i , ṽ)

= E

∫ τ̃

s

π̄0(P t
i )β dt+ π̄1(P τ̃

i )

=

∫ ∞
s

e−θ(t−s)
[
π̄0(P t

i )β + θπ̄1(P t
i )
]
dt

=

∫ ∞
s

(β + θ)e−θ(t−s)
[
(1− µ)π̄0(P t

i ) + µπ̄1(P t
i )
]
dt

(1)

where for the second equality, we integrate out all random variables except τ̃ ,

which we integrate out in the third equality. The forth equality is a change

of variable, where µ ≡ θ/(θ + β).

The profit flow is

π̄(Pi) = [(1− µ)π̄0(Pi) + µπ̄1(Pi)] (2)

and it is time independent.

To sum up, if S̃−i is stationary, and the allocation rules favor the i-th

trader, then the expected payoff flow is history independent. To find a sub-

game perfect equilibrium we analyze the following stage game.

The Stage Game: In the stage game the book is initially empty. Next, the

limit-order traders simultaneously submit price schedules. With probability

µ a noise trader trades, the size of the order is q̃, and with probability (1−µ)

news traders trade. Allocations are determined by the price priority rule,

and ties are broken using an unspecified random mechanism.
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If a trader knows that there is a positive probability that a tie will occur

at p′, then the trader can offer/bid the same number of shares, ∆Si(p
′), at

a slightly better price. Moreover, because all traders would like to have ties

broken in their favor, the infinitesimal undercutting reasoning implies that

in any equilibrium of the stage game ties occur with zero probability.14

Let P̃i be a symmetric mixed-strategy equilibrium of the stage game.

Consider the dynamic game. Assume that each of the j 6= i limit-order

traders uses a stationary fleeting order strategy; i.e. each time the exchange

disseminates quotes, the traders replace their quotes with new ones drawn

from the same mixing distribution of the stage game equilibrium. A standard

pointwise maximization (for each t maximize the integrand of (1)) implies

that each Pi in the support of P̃i belongs to the argmax set of (1). More-

over, it is also optimal for the i-th trader to cancel outstanding quotes each

time the exchange disseminates quotes, and replace them with new random

quotes drawn from the mixing distribution of the stage game equilibrium.

Because, in the stage game, ties occur with probability zero, the argmax of

(1) is also the set of best responses. We conclude that the mixed strategy

equilibrium of the stage game is a Nash equilibrium with fleeting orders of the

dynamic game. Because history does not play any role in this equilibrium,

the equilibrium is subgame perfect.

If we denote by π∗ the value of (2) when using the equilibrium strategies,

14A formal proof that ties occur with probability zero can be constructed along the lines

of Proposition 3 in Varian (1980).
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then the equilibrium expected expected payoff in the dynamic game is

Π∗ =

∫ ∞
s

(β + θ)e−θ(t−s)π∗ dt =
π∗

µ
(3)

The following example illustrates our theory. The example shows that

limit-order traders may randomize both the size and the limit price of their

orders. The example also demonstrates that even for marginal levels of ad-

verse selection, the profits in the dynamic game may be bounded away from

zero.

Example: Let n = 2, ṽ be either 0 or 1 with equal probabilities, q̃ be

either 1/2 of a lot, with probability 3/4, or a lot, with probability 1/4.15

We start with the offer side of the book and hence we compute π ∗ /2.

We postulate that an equilibrium in mixed strategies exists in which each

of the limit-order traders offers half a lot at a random price, with support

(ask, 1), and a second half either at the same price (with probability l) or at

one (with probability 1 − l). Thus, the unknowns are the constants ask, l,

π∗, and the mixing distribution function Ma. For p ∈ (ask, 1), we have

π∗

2
=
µ

2
(p− 1) +

1− µ
2

(p− 0.5)(1−Ma(p) +Ma(p)0.25(1− l)) (4)

0 ≤µ
2

(p− 1) +
1− µ

2
(p− 0.5)(1−Ma(p))0.25, with equality if l > 0

(5)

Examining the right side of (4): with probability µ, a news event occurs

and with probability 0.5 the news trader buys in which case the limit order at

p will lose (1−p). With probability (1−µ)
2

a noise trader buyer arrives and the

profit will be (p − 0.5). A limit order at p will transact with a noise trader

15In Section 5 we extend this example to arbitrary n.
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if either the other limit order is placed higher than p, which occurs with

probability (1 −Ma(p)); or the other limit order is at p or lower, that limit

order only offers half, and the noise trader buys one all of which happens

with probability Ma(p)(1 − l)0.25. Equation (4) states that the expected

payoff associated with offering the first half is independent of the offering

price price. Thus, the limit-order trader is willing to randomize the limit

order price.

The right hand side of (5) is the expected profit when a second half is

offered (i.e. if l > 0). The expected profit must be zero if the second half is

offered at a price smaller than one, since the right hand side of (5) is zero

at p = 1. Because we focus on the offer side, the expected profit is half the

total profit; i.e., the left hand side of (4) is π∗/2.

To compute the equilibrium, we start with the guess l = 0. Thus, equation

(4) is reduced to

π∗ = µ(p− 1) + (1− µ)(p− 0.5)(1−Ma(p) +Ma(p)0.25)

At p = 1, Ma(p) = 1, and we get π∗ = (1 − µ)0.5 · 0.25. We plug π∗ back

into (4) and solve for Ma(p). We then find ask by solving Ma(ask) = 0.

We verify that as long as µ ≥ 1/9, (5) holds. However, when µ < 1/9, it

is “profitable” to offer an additional half at prices smaller than one; i.e. the

right hand side of (5) is strictly positive.

To find the equilibrium when µ < 1/9, we guess l > 0, and use (5) to solve

for Ma(p). We than find the lower support of Ma by solving Ma(ask) = 0.

At p = ask, (4) gives us

π∗ = µ(ask − 1) + (1− µ)(ask − 0.5)
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We then solve (4) for l and verify that l is a constant. We note that our

initial guess l > 0 holds only if µ < 1/9.

When pasting the two solutions, we get Ma, ask, l and π∗ that are con-

tinuous in µ. They are given by

Ma(p) =
p− ask

(1− ask)(2p− 1)
, ask ≤ p < 1

where the lower support is

ask =


1+7µ
2+6µ

µ ≤ 1/9

5+3µ
8

µ ≥ 1/9

The probability that a second half is offered at the same price as the first

one is

l =


1−9µ
1+3µ

µ ≤ 1/9

0 µ ≥ 1/9

and the expected profit is

π∗ =


3µ(1−µ)

6µ+2
µ ≤ 1/9

1−µ
8

µ ≥ 1/9

Symmetrically, each limit-order trader bids half at a random price p dis-

tributed Mb(p) = 1 −Ma(1 − p) and bids the second half at the same price

with probability l and at zero with probability 1− l.

Lemma 1. An equilibrium with the above mentioned properties exists.

The proof of the lemma is in the appendix. Even though both traders

offer shares at 1 (with positive probability, and when µ ≥ 1/9 with proba-

bility one), the tie breaking rule is not required because the noise trader’s
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order is always executed at prices smaller than one. In addition, the mixing

distribution is continuous, and therefore ties occur with probability zero.

We note that as µ goes to zero, the expected profit in the stage game

goes to zero. This means that the profit flow in the dynamic game goes to

zero. However, as µ goes to zero, the number of transactions before a news

event gets arbitrarily large, and from (3) the aggregate profit in the dynamic

game is strictly positive:

lim
µ→0

π∗/µ = lim
µ→0

3µ(1− µ)

µ(6µ+ 2)
=

3

2

This concludes the example.

What if the equilibrium of the stage game is in pure strategies? If S−i

is continuous so ties never occur, we can implement the equilibrium in the

dynamic game in exactly the same way. However, limit orders are now fore-

castable. So there is no need to cancel orders just to replace them with

identical orders. Thus, if there is an equilibrium in pure strategies, then

traders send messages to the exchange only after trade takes place. That is,

traders only replenish executed orders. In Section 5 we provide an example

in which we can find an equilibrium in pure strategies.

2. Convergence

We saw that if the stage game has a mixed strategy equilibrium, then

there is an equilibrium with fleeting orders in which quotes are random and

short lived. This calls into question the assertion that the competitive equi-

librium is a viable description of quotes with a large number of limit-order

traders. We will show that as their number increases, the total equilibrium
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random supply function converges, in mean square, to the competitive supply

function.

Because the stage game equilibrium is played repeatedly, we can focus on

the stage game. In addition, thanks to the symmetry of the game, we can

examine the offer side of the book separately from the bid side. Therefore,

for the remaining of the paper, we analyze only the offer side of the stage

game.

We define the functions v(p) = E[ṽ|ṽ > p], and

G(p) =
µ(v(p)− p)(1− FV (p))

0.5(1− µ)(p− Eṽ)
(6)

We need the following technical result.

Lemma 2. The equation G(p) = 1 has a solution pc > Eṽ. In the interval

(pc, v̄), the function G(p) is continuous, strictly decreasing, and

G(pc) = 1

lim
p↑v̄

G(p) = 0

Consequently, in the interval (0, 1), the inverse function G−1 is also strictly

decreasing.

Theorem 1. Assume q̃ ≡ 1. The stage game has a symmetric equilibrium in

mixed strategies in which each limit-order trader offers 1/(n−1) at a random

price with distribution function

Mn(p) = (1−G(p))1/(n−1) , p ∈ (pc, v̄) (7)

In this equilibrium, the limit-order traders earn zero profit.
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Proof. From Lemma 2 it follows that the mixing distribution is well defined.

Suppose other traders follow the strategy stated in the theorem, and consider

the problem of the i-th trader. Let p̃j be j-th trader’s random offering price.

Clearly to offer shares at prices strictly smaller than pc is suboptimal because

the trader can offer the shares at pc and still be ahead of all other offers in

the book.

The expected profit associated with offering the q-th unit at p ≥ pc, and

as long as q ≤ 1/(n− 1), is

µE[(p− ṽ)I{p<ṽ}] + (1− µ)E[I{q+S̃−i(p)<1}](p− Eṽ)

= µ(p− v(p))(1− FV (p)) +
(1− µ)

2
(1− Prob(p > max

j 6=i
p̃j))(p− E[ṽ])

= µ(p− v(p))(1− FV (p)) +
(1− µ)

2
(1−Mn(p)n−1)(p− E[ṽ])

= 0

(8)

where for the last equality we use the definition of the mixing distribution. If

the trader were to offer strictly more than 1/(n−1), then to trade with a noise

trader, the offering price for the “higher units” has to be better than at least

two other random offering prices. Because the probability of undercutting

two random prices is strictly smaller than the probability of undercutting

one, it follows that the payoff of higher units has to be negative,

We conclude that the i-th trader is indifferent at which price, in the

support of Mn(p), to offer each of the the first 1/(n− 1) units. In particular,

it is optimal to offer a block of 1/(n− 1) at a random price.

The equilibrium in Theorem 1, however, is not unique. Dennert (1993)

looks at a special case of Theorem 1 in which the liquidation value is either

-1 or 1, and reports that in equilibrium each limit-order trader offers one at

17



a random price.16 In this equilibrium, to gain from trade (i.e. trade with

a noise trader) a limit-order trader has to post the best offer in the book.

As a result, the chances of trading with a noise trader decrease with n, and

the mixing distribution shifts to the right as n increases. In particular, the

sequence of equilibria does not converge to the competitive equilibrium.

In contrast with the result in Dennert (1993), in the equilibrium in The-

orem 1, to gain from trade, a limit-order trader has to undercut only one

of the other limit-order traders. To see that the equilibrium in Theorem 1

converges to the competitive equilibrium, let S̃n(p) denote the total number

of shares offered in equilibrium at prices smaller or equal to p, and let Sc(p)

denote the supply function in the competitive equilibrium.

Theorem 2. As n goes to infinity, the equilibrium in Theorem 1 converges,

in mean square, to the competitive equilibrium; i.e.

E(S̃n(p)− Sc(p))2 → 0

Proof. When q̃ ≡ 1, the competitive supply function is

Sc(p) = I{p≥pc}

In the mixed strategy equilibrium, the total supply of shares is

S̃n(p) =
1

n− 1

n∑
i=1

I{p̃i≤p} (9)

16Dennert (1993) models a dealer market, where the active trader shops for the best

available price. In limit order markets, offers are already ranked from best to worse by the

exchange. Thus, the equilibrium in Dennert can be implemented in a limit order market.

More generally, any equilibrium in dealers market in which dealers don’t offer quantity

discounts can be implemented in a limit order market.
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Because (n− 1)S̃n(p) ∼ B(n,Mn(p)), we have

ES̃n(p) =
n

n− 1
Mn(p) −−−→

n→∞
I{p≥pc} = Sc(p)

and

V ar(S̃n(p)) =
n

(n− 1)2
Mn(p)(1−Mn(p)) <

n

4(n− 1)2
−−−→
n→∞

0

Thus,

E(S̃n(p)− Sc(p))2 = V ar(S̃n(p)) +
(
ES̃n(p)− Sc(p))

)2

−−−→
n→∞

0

The convergence of the equilibrium in Theorem 1 cannot be uniform

because the competitive supply function is discontinuous at the ask price.

The convergence is illustrated in Figure 1. Even with a huge number of

limit-order traders (n = 1, 000), the depth at the ask price suffices for only

about 80% of the noise order. The remaining 20% of the order executes at a

dramatically higher price than the competitive. In the following, we consider

continuous economies in which the competitive supply function is smooth

and the convergence is uniform (Corollary 1 in Section 4 and in Figure 2.)
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Figure 1: Convergence to the competitive outcome. In both figures, the q axis is the

competitive equilibrium (i.e. Sc(0.8) = 1). In the left figure, the two step functions define

the 95% confidence band when n = 10; E.g. with probability 0.95 the asking price for

the first, second and third 1/(n− 1) units are virtually the competitive price 0.8. On the

other hand, the last fraction of a noise order of size one is executed, with 0.95 probability,

anywhere between 0.801 and 0.942. The narrow band, in the same figure, is the 95%

confidence band when n = 1, 000. The right figure shows the mixing distributions when

n = 5 (the upper curve), n = 10 (the middle curve), and n = 1, 000 (the lowest curve). In

both figures, the liquidation value is either zero or one with equal probabilities, the noise

order size is deterministic and equals to one, and µ = 0.6.

3. The Continuous Economy

It is common in the literature to assume that the random variables

can take on any real value. This abstraction sometimes make the analy-

sis tractable. We therefore further assume that q̃ is a continuous random

variable with support (0, 1).

The competitive equilibrium is given implicitly by

FQ(Sc(p)) = 1−G(p), p ∈ (pc, v̄) (10)

20



where G(p) is defined in (6), pc = G−1(1) is the competitive ask price, and

v̄ = G−1(0).

We follow Back and Baruch (2013), and conjecture that there is an equi-

librium in which S−i is continuous. We define the profitability function

u(p, q) = µ(p− v(p))(1− FV (p)) +
1− µ

2
(p− Eṽ) (1− FQ(q)) (11)

If S−i is continuous, then the objective of the ith trader is to choose a

non-decreasing price schedule P that maximizes∫ ∞
0

u(P (q), q + S−i(P (q))) dq (12)

The objective (12) can be maximized pointwise; i.e., for each q ≥ 0,

maximize the function p→ u(p, q + S−i(p)). The f.o.c. is

∂

∂p
u(p, q + S−i(p))

∣∣∣∣
p=P ∗(q)

= 0 (13)

We can now use the symmetric equilibrium condition, namely, S−i =

(n − 1)S∗ to derive an o.d.e. that the total supply function function, Sn,

satisfies at prices greater than the ask price:

up(p, Sn(p)) +
(n− 1)

n
S ′n(p)uq(p, Sn(p)) = 0 (14)

The solution of the o.d.e. is strictly increasing (because up > 0 and uq <

0), and hence the individual supply function Sn(p)/n is feasible. Moreover,

the sequence of solutions converges to the competitive equilibrium supply

function as n goes to infinity.17

17The competitive supply function satisfies u(p, Sc(p)) = 0, and therefore, expressed

in terms of a differential equation, Sc is the solution of the o.d.e. up(p, Sc(p)) +

S′c(p)uq(p, Sc(p)) = 0.
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The pointwise optimization we carried above is valid if p→ u(p, q+S−i(p))

is quasi-concave. It is not obvious that this should be the case. In fact, if

we assume that q̃ is a standard uniform random variable, we can readily see

that the pointwise objective is quasi-convex! Indeed,

∂2

∂p∂q
u(p, q + S−i(p)) =

µ− 1

2
< 0

which implies that for every p, the function q → ∂
∂p
u(p, q+S−i(p)) is strictly

decreasing. Thus, for every p there is a value, call it S∗(p), such that for all

q > 0,

∂

∂p
u(p, q + S−i(p))

< 0, if q > S∗(p)

> 0, if q < S∗(p)

A priori, S∗(p) may be zero or infinity, however from (13), it follows that

S∗(p) must be the inverse of P ∗. Thus,

∂

∂p
u(p, q + S−i(p))

< 0, if P ∗(q) > p

> 0, if P ∗(q) < p

We conclude that the objective function of the pointwise maximization,

p → u(p, q + S−i(p)), is first decreasing and than increasing and hence it is

quasi-convex. Thus, when q̃ is uniformly distributed, S∗ is the not an an

equilibrium individual supply function. We will see in Section 5 a different

distributional assumption for which S∗ is an equilibrium.

4. Convergence and the Continuous Economy

In this section we show the existence of a sequence of Nash equilibria with

a random aggregate supply function that converges to the the competitive
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supply function in the continuous economy given by (10). To construct the

equilibria, we discretize the order size that noise traders use. That is, in the

nth economy there are n limit-order traders, and the order size of the noise

trader is a lattice random variable, q̃n, with support

{1/(n− 1), 2/(n− 1), . . . , (n− 1)/(n− 1)}

The demand q̃n is related to the demand in the continuous economy via

q̃n ≡
dq̃(n− 1)e
n− 1

,

where dxe is the smallest integer larger than x. In particular,

Prob(q̃n ≤ j/(n− 1)) = FQ(j/(n− 1)) (15)

Note that even though we use a lattice model, the feasible strategies

are general and we do not restrict the limit-order traders to discrete orders.

However, in the following, we prove the existence of a symmetric equilibrium

in which each limit-order trader offers a block of 1/(n−1) at a single random

price, p̃i. That is,

S̃n(p) =
n∑
i=1

1

n− 1
I{p̃i≤p}

and thanks to the symmetry, (n− 1)S̃n(p) ∼ Bin(n,Mn(p)), where Mn(p) is

the common mixing distribution. We have the following

Lemma 3. Assume (n− 1)S̃−i(p) ∼ Bin(n,Mn(p)), and let

K(p) = Prob(q̃n > S̃−i(p)) (16)

Then

K(p) = 1− EFQ(S̃−i(p))
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Proof. The definition of the lattice variable q̃n implies that for any point in

its support, say j/(n−1) for some integer j ≤ (n−1), we have q̃n ≤ j/(n−1)

if and only if q̃ ≤ j/(n − 1). Because (n − 1)S̃−i(p) is a binomial random

variable, and hence an integer random variable, S̃−i(p) takes values only in

the support of the q̃n. Hence,

Prob(q̃n ≤ S̃−i(p))

= E[E[I{q̃n≤S̃−i(p)}|S̃−i]] = E[E[I{q̃≤S̃−i(p)}|S̃−i]] = E[FQ(S̃−i(p))]

Theorem 3. In the lattice model there exists a symmetric Nash equilibrium

in which each limit-order trader offers 1/(n − 1) at a random price. The

limit-order traders break even, and the distribution function of the random

price is given implicitly by

Mn(p) = h(G(p)), p ∈ (pc, v̄)

where G is defined in (6), and h(·) is the inverse of the function

k(h) = 1− E[FQ(j̃/(n− 1))], j̃ ∼ Bin(n− 1, h)

In particular, for every p ∈ (pc, v̄), we have K(p) = G(p)

The proof is in the Appendix.

Lemma 4. In the lattice equilibrium, we have

E[FQ(S̃−i)] = FQ(Sc(p)) (17)

where Sc(p) is the competitive supply function in the continuous economy.
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Proof. Outside the support of Mn(p) the identity is obvious. For p ∈ (pc, v̄),

we have

1− FQ(Sc(p)) = G(p) = K(p) = 1− E[FQ(S̃−i)]

where the first equality is (10), the second equality is from Theorem 3, and

the last equality is (16).

Corollary 1. As we increase n, the equilibrium mixing distribution, Mn,

converges uniformly to the competitive supply function, Sc(p).

The proof of the corollary is involved because the transformations between

the mixing distribution, the expected random supply, and the competitive

supply function are all implicit. The proof is deferred to the appendix. That

said, if we assume that q̃ is a standard uniform random variable, then the

corollary is immediate. From Lemma 4, we have

Sc(p) = E[S̃−i] = Mn(p)

In this example the mixing distribution is exactly the competitive supply

function, and in particular the mixing distribution is independent of n. The

strategy itself depends on n, because the number of units offered is 1/(n−1).

Finally, we note that in the uniform example, ES̃n(p) ≥ Sc(p).
18.

Endowed with Corollary 1, the convergence result is immediate.

Theorem 4. As n goes to infinity, the equilibrium in lattice economy con-

verges, in mean square, to the competitive equilibrium.

18In fact, Lemma 4 implies that whenever FQ is concave (i.e. its density is decreasing),

ES̃n(p) ≥ Sc(p).
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Proof. Because (n− 1)S̃n(p) ∼ Bin(n,Mn(p)), we have

lim
n→∞

E[S̃n(p)] = lim
n→∞

n

n− 1
Mn(p) = Sc(p)

where the last equality is the Corollary. Additionally,

V ar(S̃n(p)) =
n

(n− 1)2
Mn(p)(1−Mn(p)) <

n

4(n− 1)2
−−−→
n→∞

0

and therefore

E[(S̃n(p)− Sc(p))2] = V ar(S̃n(p)) +
(
E[S̃n(p)]− Sc(p))

)2

−−−→
n→∞

0

5. Economic Rents

The lattice equilibrium in Theorem 3 is a workhorse model: without

making distributional assumptions about ṽ and q̃, the equilibrium converges

to the competitive. However, in this equilibrium the strategic limit-order

traders break even. This type of equilibrium is easy to work with because

once we have verified that to offer 1/(n − 1) has zero expected profits, it

follows immediately that one cannot gain by offering even more units. If we

were to look for equilibrium with positive expected profit, then we have to

carefully check whether it is optimal or not to offer additional units.

In this section, we present an example of equilibrium with positive ex-

pected profit, and the equilibrium converges to the competitive. Interestingly,

the example we consider can also be dealt with using the technology devel-

oped in Back and Baruch (2013). In the example, the liquidation value, ṽ, is

either zero or one, with equal probabilities, so (6) reduces to

G(p) =
µ(1− p)

(1− µ)(p− 0.5)
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and pc = 0.5(1 + µ). Also, we assume that q̃ has a triangular distribution

with strictly decreasing density; i.e. 1− FQ(q) = (1− q)2.

Thus, the competitive equilibrium in this example is

Sc(p) = 1−
√
G(p), p ∈ (pc, 1)

The no-rents equilibrium mixing distribution in Theorem 3 is given by

Mn(p) =

1−G(p) n = 2

1 + 1
2(n−2)

−
√

1
4(n−2)2

+ (n−1)G(p)
(n−2)

n > 2

and by Theorem 4 this equilibrium converges to the competitive equilibrium.

5.1. Mixed Strategy, Positive Rents

To construct a mixed strategy equilibrium with rents that converges to

the competitive, we assume that the order size is a lattice random variable,

q̃n, with support

{1/n, 2/n, . . . , n/n}

and distribution Prob(q̃n ≤ j/n) = FQ(j/n). Note that the case n = 2 was

studied in Section 3. In the notation of the n = 2 case, we posit l = 0 and

we search for an equilibrium in which each of the limit-order traders offers

1/n at a random price, with support (askn, 1) and a yet another 1/n at one.

Given our results for n = 2, we suspect we need to impose a lower bound on

µ. Thus, for p ∈ (askn, 1), (4) and (5) become

π∗

2
=
µ

2
(p− 1) +

1− µ
2

(p− 0.5)E(1− S̃−i(p))2 (18)

0 ≥µ
2

(p− 1) +
1− µ

2
(p− 0.5)E(1− S̃−i(p)− 1/n)2 (19)
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We get π∗ by evaluating (18) at p = 1:

π∗ = (1− µ)(1− 0.5)
1

n2

After noting that S̃−i(p) is 1/n times a binomially distributed random

variable with parameters n− 1 and the mixing distribution at p, Mn(p), we

get a quadratic equation in Mn(p). The solution is given by:

Mn(p) =

(n−1)(2n−1)
n2 −

√
(n−1)2(2n−1)2

n4 − 4
[
1−G(p)− 0.5

n2(p−0.5)

]
(n−2)(n−1)

n2

2 (n−1)(n−2)
n2

To find the ask price, we solve Mn(askn) = 0 and get

askn = 0.5(1 + µ) +
(1− µ)

2n2

To satisfy the inequality (19) for all p between askn and 1, we need to

assume

µ ≥ (n− 1)

(n+ 1)(2n− 1)

Obviously, as n gets large, the constraint becomes non-binding. That is, the

existence of this type of equilibrium is more likely the greater the number of

limit-order providers. That in turn means that the profit, while positive, is

likely to be small.

One could speculate, based on the n = 2 case, that for smaller µ a doubly

mixed strategy might be an equilibrium; i.e. traders randomize prices and

quantities. We have been unable to verify whether or not there is a positive

profit equilibrium in which limit-order traders either supply 1/n or 2/n at

random prices.
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Figure 2: Convergence of total supply of shares. The left figure corresponds to the equilib-

rium in mixed strategies with rents. The the two step functions define the 95% confidence

band when n = 10; E.g. with probability 0.95 the asking price for the first 0.1 shares is

anywhere between 0.8 and 0.87 while the asking price for the next 0.1 shares is between

0.805 and 0.9. The solid inner band is the 95% confidence band when n = 1, 000. Finally,

the dashed curve corresponds to the competitive equilibrium. The right figure corresponds

to the pure strategy equilibrium. The solid line is the total supply curve when n = 10,

and the dashed curve is the competitive supply function. The case n = 1, 000 is not shown

because it is indistinguishable from the competitive. In both figures, the liquidation value

is either zero or one with equal probabilities, the noise order size has the the triangle

distribution, and µ = 0.6.

It is easy to see that Mn(p) converges to the competitive supply function.

As noted above, the supply at a price p or below is the sample mean of

independent Bernoulli trials with success probability Mn(p) and hence, for

the reasons given in Section 4, the random supply function converges to the

competitive supply function. Figure 2 illustrates the convergence.
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5.2. Pure Strategy, Positive Rents

The profitability function (11) is

u(p, q) = µ(p− 1)0.5 +
1− µ

2
(p− 0.5)(1− q)2

and the solution to the o.d.e. (14) is

Sn(p) = 1−
√

µ

1− µ

√
(2p− 1)

−n
n−1 − 1, p ∈ (askn, 1)

where askn is

askn = 0.5
(

1 + µ
n−1
n

)
This may or may not be an equilibrium. As with the example in Section 3,

it is important to check the second order conditions that for all q > 0 and at

the solution Sn(p):

∂

∂p
u(p, q + S−i(p))

< 0, if q < Sn(p)/n

> 0, if q > Sn(p)/n

In the case at hand ∂
∂p
u(p, q + S−i(p)) is given by:

0.5µ+ 0.5(1− µ)

(
1− q − n− 1

n
Sn(p)

)2

− n− 1

n
S ′n(p)(1− µ)(1− q − n− 1

n
Sn(p))(p− .5)

Note that this expression is quadratic and convex in q and that Sn(p)/n

is one of its zeros. We need to check that Sn(p)/n derived above is its larger

root. To do so we check that the derivative of the above with respect to q

evaluated at Sn(p)/n is positive:

−(1− µ)

(
1− q − n− 1

n
Sn(p)

)
+
n− 1

2n
S ′n(p)(1− µ)(2p− 1) > 0
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After substitution for Sn(p) and S ′n(p) we note that the derivative above

is given by: √
µ(1− µ)

2

√
(2p− 1)

−n
n−1 − 1

[
2− (2p− 1)−n/(n−1)

]
This derivative should be positive for all p and that is determined by the

expression in square brackets. This expression is increasing in p and positive

at p = 1. It will be positive for all p if it is positive at askn. Noting

the expression for askn above, the derivative will be positive if and only if

2 − 1
µ
> 0 or µ > .5. We also need to check that the smaller root of the

quadratic equation in q is less than zero. Brute force shows that this is

true if µ > .5. Thus, the pure strategy equilibrium is as described above

as long as there is sufficient adverse selection, namely µ > 0.5. If on the

other hand, µ < 0.5 then, if there is a pure strategy equilibrium, it is not as

characterized above. Figure 2 contrasts this equilibrium with the equilibrium

in mixed strategies.

6. Conclusion

We analyze a dynamic model of liquidity provision using limit orders.

Actual trade in the model happens sporadically, but quotes are revised fre-

quently. We also look for equilibrium with forecastable quotes, and consistent

with Back and Baruch (2013), we can find the equilibrium only when the ad-

verse selection is extreme.

We show that we can always construct a zero-rents equilibrium that

converges to the competitive equilibrium. We also solve an example with

positive-rents equilibrium that converges to the competitive equilibrium of

Glosten (1994).
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Appendix A. Proofs

Proof of Lemma 1. To verify that we have found an equilibrium, we consider

the offer side of the stage game, the bid side is symmetric. We assume the

second trader uses the equilibrium strategy, and consider the problem of the

first trader. Offering more than one cannot be optimal because noise traders

buy at most one. We therefore focus on price schedules P1 : [0, 1] → R+.

We note that shares offered at prices greater than one are never executed

because trader 2 offers one at prices smaller or equal to one.

The expected profit, conditional on q̃ > 0, is

µ

2

∫ 1

0

I{P1(q)≤1}(P1(q)− 1) dq +
1− µ

1

∫ 1

0

Prob(q + S̃2(Pi(q)−) ≤ q̃)(P1(q)− 0.5) dq

=

∫ 1/2

0

I{P1(q)≤1}

[µ
2

(P1(q)− 1)

+
1− µ

2

(
1−Mn(P1(q)) +

Mn(P1(q))(1− l)
4

)
(P1(q)− 0.5)

]
dq (I)

+

∫ 1

1/2

I{P1(q)≤1}

[
µ

2
(P1(q)− 1) +

1− µ
2
· 1−Mn(P1(q))

4
(P1(q)− 0.5)

]
dq (II)

The integrand of (I) is π∗/2 as long as P1(q) ∈ (ask, 1], and strictly less

otherwise. The integrand of (II) is zero if (i) P1(q) = 1 or (ii) µ ≤ 1/9 and

P1(q) ∈ (ask, 1]. The integrand of (II) is strictly negative otherwise.

We conclude that it is also optimal for the first trader to offer half at

any price in (ask, 1]. In particular it is optimal to randomize. Also, there is

no harm in offering an additional half at one, and when µ ≤ 1/9 it is also

optimal to offer the additional half at the same price at which the first half

is offered. In particular, it is optimal to randomize and with probability l to

offer one at the same price. Thus, we have verified the equilibrium.
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Proof of Lemma 2: In the interval (Eṽ, v̄], the function G(p) is continuous.

To see this, note that the denominator in (6) continuous. The numerator in

(6) is

µ

∫ v̄

p

(v − p)I{p<v}dFV (v)

which is continuous in p whether ṽ is a discrete or continuous random vari-

able. Thus, G(p) is continuous in (Eṽ, v̄].

In the interval (Eṽ, v̄], the function G(p) is strictly decreasing. Indeed,

the derivative of the numerator is µ(FV (p) − 1) < 0. The denominator is

clearly increasing in p. Hence we conclude that G(p) is strictly decreasing.

Because limp↓v̄ G(p) = 0, and limp↓Eṽ G(p) =∞, it follows that a solution

to the equation G(p) = 1 exists. Because G is strictly decreasing, its inverse

is also strictly decreasing.

Proof of Theorem 3. We first show that the mixing distribution in Theorem

3 is well defined. Because FQ is a distribution, clearly, k(0) = 1 and k(1) = 0.

Also,

k(h) = 1− EFQ(j̃/(n− 1) = 1− EE[I{q̃<j̃/(n−1)}|j̃] = 1− EE[I{(n−1)q̃<j̃}|q̃]

= EB((n− 1)q̃;n− 1, h)

where B(x;n, h) is the distribution function of a binomial random variable

with n Bernoulli trials, each with a probability of successes h. Since B(x;n, h)

is strictly decreasing with h, it follows that also the expectation, k(h), is

strictly decreasing. 19

19Formally, let j = bxc be the floor of x, then

B(j, n, h) = (n− j)
(
n

j

)∫ 1−h

0

tn−j−1(1− t)jdt
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From Lemma 2, we know that G is strictly decreasing, and hence Mn(p) =

h(G(p)) is strictly increasing. To conclude that Mn is a distribution with

support [G−1(1), G−1(0)], we verify:

Mn(G−1(1)) = h(1) = 0

and

Mn(G−1(0)) = h(0) = 1

Therefore, Mn is a distribution function.

Next, we apply k(h) to both sides of the definition of Mn(p) to get that

in (G−1(p), G−1(0)), we have K(p) = G(p). More generally,

K(p) =


1 p < G−1(1)

G(p) G−1(p) ≤ p < G−1(0)

0 G−1(p) ≤ p

Consider now the problem of the ith trader, assuming all other limit-order

traders follow the strategy stated in the theorem. For q ∈ (0, 1/(n− 1)], we

have

Prob(q̃n ≥ q + S̃−1(Pi(q))) = Prob(q̃n ≥ S̃−1(Pi(q))) = K(p)

where the second equality is the definition of K(p). Hence, the expected

profits associated with the “first” 1/(n-1) units, each unit may be offered at

and hence the probability is strictly decreasing. Informally, when we increase the proba-

bility of success in each trial, then the probability of having a total of j or less successes

strictly decreases - while this is not true for the probability of having exactly j successes,

it is true for the cumulative probability.
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different prices, is∫ 1/(n−1)

0

µ(Pi(q)− v(Pi(q)))(1− FV (Pi(q))) +
1− µ

2
(Pi(q)− Eṽ)K(p) dq

(A.1)

We consider the value of the integrand for different p’s. For p < pc, the in-

tegrand is negative because pc is the ask price of the competitive equilibrium.

For p > v̄, the integrand is zero.

For p in the support of the mixing distribution, we use the definitions of

G(p) (equation (6)) and Mn(p) to conclude that the integrand of the objective

(A.1) is zero. Therefore, the expected gain on the first 1/(n − 1) unit is at

most zero, and exactly zero if the units are offered in the interval of prices

(pc, v̄).

We need to show that it is suboptimal to offer more than 1/(n−1) units.

But this is obvious because the chances that additional units will be picked

by the noise traders are strictly smaller than the probability that the first

1/(n−1) units are. Since the profitability of the latter is zero, it follows that

it is suboptimal to offer more than 1/(n− 1) units.

We conclude that it is optimal to offer 1/(n − 1) in the support of Mn

and in particular it is optimal to offer the entire block at the same random

price with distribution Mn. Finally, as we have seen, the expected profit is

zero.

Proof of Corollary 1. The proof is in steps.

Step 1: Given δ > 0 and ε > 0, there exists an N , independent of p, such

that for all n > N , we have Prob(|S̃−i(p)−Mn(p)| > δ) ≤ ε/4. In particular,

for every p, S̃−i(p)−Mn(p) converges to zero in probability.
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Indeed, we have (n − 1)S̃−i(p) ∼ B(n − 1,Mn(p)). Take N > 1/(εδ2),

then from Chebyshev’s Inequality

Prob(|S̃−i(p)−Mn(p)| > δ)

≤ V ar(S̃−i(p))

δ2
=
Mn(p)(1−Mn(p))

(n− 1)δ2
≤ 1

4nδ2
<
ε

4

Step 2: EFQ(S̃−i(p))−FQ(Mn(p)) uniformly converges to zero. Let ε > 0

be given. We need to show that there is an N such that for all n > N we

have
∣∣∣EFQ(S̃−i(p))− FQ(Mn(p))

∣∣∣ < ε.

The distribution function FQ is continuous in the closed interval [0, 1] and

hence it is uniformly continuous. Thus, there exists a δ > 0, associated only

with ε, such that if |q1 − q2| < δ, then |FQ(qq)− FQ(q2)| < ε/2.

We take now N > 1/(εδ2) (as in Step 1). Now,

|EFQ(S̃−i(p))− FQ(Mn(p))|

≤E|FQ(S̃−i(p))− FQ(Mn(p))|

=E|FQ(S̃−i(p))− FQ(Mn(p))|I{|S̃−i(p)−Mn(p)|≤δ}

+ E|FQ(S̃−i(p))− FQ(Mn(p))|I{|S̃−i(p)−Mn(p)|>δ}

≤ ε
2

+ 2Prob
(∣∣∣S̃−i(p)−Mn(p)

∣∣∣ > δ
)
< ε

Step 3: We use Lemma 4 to replace, in Step 2, EFQ(S̃−i(p)) with FQ(Sc(p))

and conclude that FQ(Sc(p))− FQ(Mn(p))→ 0 uniformly.

Step 4: We are now ready to show that Sc(p)−Mn(p)→ 0 uniformly. In

other words, we need to show that given ε, there is an N , independent of p,

such that

|Sc(p)−Mn(p)| < ε
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The inverse distribution function, F−1
Q (x) is continuous in [0, 1] and hence

uniformly continuous. Thus, there is a δ > 0 such that |x1 − x2| < δ implies

|F−1
Q (x1) − F−1

Q (x2)| < ε. From Step 3, we know that there is an N that

depends only δ such that for n > N , we have

|FQ(Sc(p))− FQ(Mn(p))| < δ

Thus, for n > N , we also have

|Sc(p)−Mn(p)| = |F−1
Q (FQ(Sc(p)))− F−1

Q (FQ(Mn(p)))| < ε

where the inequality follows from the uniform continuity of F−1
Q .
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