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 We propose a theoretical model to explain two salient features of the U.S. stock 

exchange industry: (i) the proliferation of stock exchanges offering identical transaction 

services; and (ii) sizable dispersion and frequent changes in stock exchange fees, highlighting 

the role of discrete pricing. Exchange operators in the United States compete for order flow by 

setting “make” fees for limit orders (“makers”) and “take” fees for market orders (“takers”). 

When traders can quote continuous prices, the manner in which operators divide the total fee 

between makers and takers is inconsequential because traders can choose prices that perfectly 

counteract any fee division. If such is the case, order flow consolidates on the exchange with 

the lowest total fee. The one-cent minimum tick size imposed by the U.S. Securities and 

Exchange Commission’s Rule 612(c) of Regulation National Market Systems for traders 

prevents perfect neutralization and eliminates mutually agreeable trades at price levels within 

a tick. These frictions (i) create both scope and incentive for an operator to establish multiple 

exchanges that differ in fee structure in order to engage in second-degree price discrimination; 

and (ii) lead to mixed-strategy equilibria with positive profits for competing operators, rather 

than to zero-fee, zero-profit Bertrand equilibrium. Policy proposals that require exchanges to 

charge one side only or to divide the total fee equally between the two sides would lead to zero 

make and take fees, but the welfare effects of these two proposals are mixed under tick size 

constraints. 
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I. INTRODUCTION 

Currently, stock prices are determined in stock exchanges through interactions between 

buyers and sellers. All stock exchanges in the U.S. are for-profit institutions that charge fees 

for transactions. In most finance models, however, stock exchanges either have no explicit role 

or make no economic profits in equilibrium. How do stock exchanges set their service fees? 

How does fee competition among stock exchanges shape the organization of the industry? In 

this paper, we propose a theoretical model to examine the role of discrete pricing in creating 

two salient features of the U.S. stock exchange industry. 
Violation of the “law of one price.” Figure I shows the fee structures in ten major U.S. 

stock exchanges in May 2015. Fees differ across competing exchanges as well as across 

exchanges owned by the same holding company (hereafter “operator”). Frequent fee changes 

add to the complexity, as “the pressure to establish novel and competitive pricing often leads 

exchanges to modify their pricing frequently, typically on a calendar-month basis” (U.S. 

Security and Exchanges Commission (SEC) 2015, p. 21). Such spatial and temporal dispersion 

of prices can hardly be justified by physical product differentiation, as these exchanges are so 

similar that the SEC even refers to some of them as “cloned markets” (SEC 2015, p. 22). All 

stock exchanges in the United States are organized as electronic limit-order markets and a stock 

can be traded on any of them.1 A trader can act as a liquidity maker by posting a limit order 

with a specified price and quantity. A trade occurs once another trader (a liquidity taker) accepts 

the terms of a previously posted limit order through a market order. Upon execution, the 

exchanges charge a “make” fee and a “take” fee per share to each side of the transaction, the 

sum of which, the so-called “total” fee, is a major source of exchanges’ revenues.2 

[Insert Figure I about here] 

Market fragmentation. Another puzzle is the proliferation of stock exchanges that 

offer almost identical services. Figure I demonstrates the market fragments along two 

dimensions: (i) multiple operators co-exist; and (ii) each operator offers multiple stock 

exchanges. The principle of tax-neutrality asserts that, at a given tax level, it does not matter 

who—buyer or seller—is liable for the tax. Therefore, all traders would choose the exchange 

with the lowest total fee. This prediction raises the question why an operator establishes 

                                                            
1 Unlisted trading privileges in the U.S. allow stocks to be traded outside the listing venue.  
2 For example, BATS reported in its filing for an IPO in 2015 that about 70% of its revenues come from transaction 
fees (p. F4 on BATS S1 registration statement). O’Donoghue (2015) estimates that 34.7% of the NASDAQ’s net 
income is from the fees. 
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multiple exchanges to trade the same assets. Furthermore, competition over the total fee among 

operators should lead to Bertrand equilibrium, resulting in a zero total fee and zero profit, and 

leaving no room for market entry with any fixed cost to establish an exchange. Yet new entries 

are commonly observed. For example, on October 22, 2010, BATS created a new stock 

exchange, BATS Y, in addition to its existing BATS X exchange. 

These puzzles have drawn attention from regulators, and a plan to ban the maker/taker 

pricing model is under discussion (SEC 2015). Yet relevant studies have provided limited 

theoretical understanding about what drives complex fee structures and the proliferation of 

exchanges that adopt them. 

We show that one driving force behind price dispersion and market fragmentation is 

the discrete tick size. 3  In this paper, we consider a game among exchange operator(s), a 

continuum of liquidity makers and liquidity takers with heterogeneous valuations. When 

liquidity makers can quote continuous prices, they are able to neutralize the make/take fee 

allocations by adjusting their quotes. Then they always choose the exchange with the lowest 

total fee. As a result, no operator has incentives to offer multiple exchanges, and the 

competition over the total fee between operators leads to Bertrand equilibrium. Although these 

predictions are consistent with canonical economic principles, they are inconsistent with the 

stylized facts. 

We next consider the case in which liquidity makers can propose only discrete trading 

prices. This setup is motivated by SEC Rule 612(c) of Regulation National Market Systems 

(NMS), which restricts the pricing increment to a minimum of $0.01 if the security is priced 

equal to or greater than $1.00 per share.4 Although liquidity makers cannot quote sub-penny 

prices, the make/take fees are not subject to the tick size constraints. Stock exchanges can use 

make/take fees to effectively propose sub-penny transaction prices that cannot be neutralized 

by liquidity makers. As a result, the discrete tick size changes the nature of price competition 

between exchanges from one-sided (over the total fee) to two-sided (over the make fee and the 

take fee). 

Non-neutrality creates product differentiation for otherwise identical exchanges. All 

else being equal, a liquidity maker prefers the exchange with a lower take fee because it 

                                                            
3 We are aware of other drivers for market fragmentation. Historically, the tick size used to be larger than one-
cent. However, before stock exchanges moved to electronic platforms, the high fixed cost to establish a physical 
exchange was a barrier to entry. Also, high monitoring costs can outweigh the small fraction of a tick profit margin 
per trade for human traders. Computer-based trading reduced these monitoring cost.  There are trading algorithms 
which profit from fees by specializing in market making, and algorithms which seek to minimize transaction costs. 
4 We discuss the exemptions from this rule in Section IX.  
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increases the probability that a liquidity taker will accept her offer. Therefore, exchanges with 

lower take fees are of higher “quality” to liquidity makers. From the point of the view of a 

liquidity maker, an operator’s choice between make and take fees is equivalent to simultaneous 

choices about the price of the execution service (the make fee) and the quality of the execution 

service (the take fee). 

This product differentiation then facilitates second-degree price discrimination. 

Discrete price can force liquidity makers with heterogeneous valuations to propose the same 

limit-order price. The operator then can open multiple exchanges with differentiated make/take 

fees to screen liquidity makers. Liquidity makers with larger (smaller) gains from execution 

select the exchanges with higher (lower) prices and higher (lower) execution probabilities. We 

show that such second-degree price discrimination increases not only the operator’s profit but 

also the welfare of both liquidity makers and liquidity takers, because new exchanges create 

more effective transaction prices. 

Choosing price and quality simultaneously destroys Bertrand equilibrium as well as any 

pure-strategy equilibrium. Consider a simple case of duopoly operators, each opening one 

exchange. No pure-strategy equilibrium exists when any operator charges a positive total fee, 

because competing operators have incentives to undercut each other toward zero total fees. 

Surprisingly, no pure-strategy equilibrium exists even when both operators charge zero total 

fees. If one operator charges a zero total fee, the other operator has two types of profitable 

deviation. One type increases the charge to liquidity makers by 𝜀𝜀 while decreasing the charge 

to liquidity takers by 𝜇𝜇 ∙ 𝜀𝜀  (0 < 𝜇𝜇 < 1). This deviation reduces gains from execution but 

increases execution probability, which attracts liquidity makers with high gains from execution. 

The other type of deviation decreases the charge to liquidity makers while increasing the charge 

to liquidity takers, which appeals to liquidity makers with low gains from execution. We also 

show the non-existence of pure-strategy equilibrium when we allow operators to choose the 

number of exchanges, because operators can implement the fee structure mentioned above by 

establishing new exchanges. 

We then prove the existence of symmetrical mixed-strategy equilibrium, and we show 

that any mixed-strategy equilibrium entails positive profits. As in Varian (1980), the fact that 

only mixed-strategy equilibrium exists rationalizes the spatial price dispersion (exchanges have 

different fees at the same time) and the temporal price dispersion (exchanges vary their fees 

over time). The driver of the mixed-strategy equilibrium in our paper, however, differs from 

that of the mixed strategy equilibrium in the one-dimensional price competition. When firms 

compete over one price, the violation of the law of one price is driven either by the cost to 
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consumers to obtain the prices (Rosenthal 1980; Varian 1980; Burdett and Judd 1983) or by 

the cost to firms to advertise their prices (Butters 1977; Baye and Morgan 2001). Our model 

does not include market frictions to react or transmit prices. The driver of the mixed-strategy 

equilibrium is the inability to rank prices uniquely in a two-dimensional space. 

To the best of our knowledge, we are the first to rationalize exchange fee dispersion 

and frequent fee changes, as documented by O’Donoghue (2015) and Cardella, Hao, and 

Kalcheva (2015). Colliard and Foucault (2012) predict that competition between exchanges 

leads to zero total fees. Two other extant interpretations shed light on the existence of rebates 

(negative fees), but they cannot explain why trading does not consolidate on the market with 

the maximum rebate. The first interpretation is that rebates to liquidity makers encourage 

liquidity provision (Malinova and Park 2015; Cardella, Hao, and Kalcheva 2015), which in 

turn attracts liquidity takers. Yet this interpretation cannot explain why new entries to the 

exchange industry, such as Direct Edge A and BATS Y, charge positive fees to liquidity makers. 

The second interpretation maintains that retail brokers have incentives to route customer orders 

to markets with the highest rebates, as brokers do not need to pass the rebates on to their 

customers (Angel, Harris, and Spatt 2010, 2013; Battalio, Corwin, and Jennings 2015). But this 

interpretation does not explain why exchanges do not simply copy the highest rebate set by 

their competitors. 

Our paper also contributes to the literature on market fragmentation. The fragmentation 

of stocks trading has recently become a focus of research interest, because market 

fragmentation affects liquidity and price discovery (O’Hara and Ye 2011), leads to mechanical 

arbitrage opportunities for high frequency traders (Budish, Cramton, and Shim 2015; Foucault, 

Kozhan, and Tham 2015), and can serve as a driver of systemic risk, such as the “Flash Crash” 

of 2010 (Madhavan 2012). However, it is not clear why markets fragment in the first place, as 

the literature generally predicts consolidation of trading due to network externality or 

economies of scale (e.g., Stigler 1964; Pagano 1989; Chowdhry and Nanda 1991; Biais, 

Glosten, and Spatt 2005). The tick size channel in our paper explains market fragmentation 

both within the same operator and across operators. To our knowledge, no existing theoretical 

model explains why an operator has economic incentive to establish multiple stock exchanges. 

Foucault (2012) conjectures that the co-existence of various make/take fees on exchanges 

operated by the same operator should serve to screen investors by type. However, Foucault 

also mentions that “it is not clear however how the differentiation of make/take fees suffices to 

screen different types of investors since, in contrast to payments for order flow, liquidity 

rebates are usually not contingent on investors’ characteristics (e.g., whether the investor is a 
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retail investor or an institution)” (Foucault 2012, p. 20).5 We address this puzzle: when end 

users cannot neutralize the breakdown of the total fee, the operators can screen liquidity makers 

based on the terms of trade offered to liquidity takers. Discrete tick size also provides a new 

interpretation of market fragmentation across operators. Researchers examining the co-

existence of operators either assume exogenous operators, or rely on differentiated services or 

switching costs.6  We contribute to the literature by showing that exchanges can endogenously 

co-exist in the absence of physical product differentiation or switching costs. 

Our modeling choice is inspired by the characteristics of stock markets, but its 

economic forces also shed light on other types of competition. Because SEC Rule 612(c) 

applies to displayed quotes, it is possible to create sub-penny pricing by designing either hidden 

order types or alternative trading systems (ATS), commonly referred to as “dark pools.” In this 

sense, the existence of a tick size sheds light on the proliferation of new order types and dark 

pools. We also contribute to the burgeoning literature on two-sided markets. Rochet and Tirole 

(2006, p. 646) define two-sided markets as those in which “the volume of transactions between 

end-users depends on the structure and not only on the overall level of the fees charged by the 

platform.” A fundamental question is whether the two-sided markets that Rochet and Tirole 

(2006) define can generate qualitatively different predictions from one-sided markets with 

identical setups.7 We fill in this gap in the literature by showing that non-neutrality creates 

product differentiation among intrinsically homogeneous exchanges, which, in turn, creates 

price dispersion and leads to market fragmentation. Finally, Shaked and Sutton (1982) and 

Tirole (1988) predict the occurrence of non-Bertrand pure-strategy equilibrium when quality 

is chosen before price in a game. In our model, the “qualities” of the exchanges for liquidity 

makers are determined by the take fees, which can be adjusted as easily as the make fees. Such 

simultaneous choices of price and quality can lead to mixed-strategy equilibrium.  

Besides rationalizing existing stylized facts pertaining to fee competition, our paper 

predicts the market outcomes of two alternative fee structures if policymakers were to ban the 

maker/taker pricing model: (i) charging fees only to one side; and (ii) distributing fees equally 

between two sides. We show that both proposals would reduce price competition to one 

dimension, which could drive the make fee, the take fee, and the exchange’s profit toward zero. 

                                                            
5 Since 2012, more exchanges have begun offering higher rebates to retail order flow, which can be another source 
of price discrimination. 
6 For models based on exogenous exchanges, see Glosten (1994), Parlour and Seppi (2003) and Foucault and 
Menkveld (2008). For product differentiation, see Pagnotta and Philippon (2015), Santos and Scheinkman (2001), 
Foucault and Parlour (2004), and Baldauf and Mollner (2015). For switching costs, see Cantillon and Yin (2008).  
7 For alternative definitions of two-sided markets, see Rysman (2009), Hagiu and Wright (2015), and Weyl (2010).  



7 
 

Operators for traditional exchanges can survive short-run zero profit from make/take fees using 

other revenue sources, such as stock listings, but operators for the new exchanges do not have 

the same buffer. This provides one economic interpretation of why NYSE asks the regulator to 

ban the maker/taker pricing model, 8  but BATS aggressively opposes such a proposal. 9 

Interestingly, we find that there are mixed welfare effects of banning the maker/taker pricing 

model. It could reduce welfare if liquidity makers’ and liquidity takers’ valuations were within 

the same tick, but increase welfare if their valuations were separated by price grids.  

On April 5, 2012, Congress passed the Jumpstart Our Business Startups (JOBS) Act. 

Section 106 (b) of the act requires the SEC to examine the effect of tick size on initial public 

offerings (IPOs). A pilot program to increase tick size to five cents for small- and mid-cap 

stocks is to be implemented on May 15, 2016. Proponents of the proposal argue that a large 

tick size might increase market-making profit and support sell-side equity research and, 

eventually, increase the number of IPOs (Weild, Kim, and Newport 2012). We doubt the 

existence of such an economic channel. Even if it were to exist, we believe that a more direct 

consequence of increased nominal tick size would be more aggressive fee competition between 

exchanges to create effective price levels within the tick. 

This article is organized as follows. In Section II, we describe the model. In Section III, 

we present the benchmark model in which the tick size is zero. In Section IV, we demonstrate 

the non-neutrality of the fee structure when there are tick size constraints. In Section V, we 

show product differentiation and liquidity makers’ segmentation into multiple exchanges. In 

Section VI, we show price discrimination under monopoly. In Section VII, we derive the non-

existence of pure-strategy equilibrium under competing operators. In Section VIII, we discuss 

the robustness of our model predictions. In Section IX, we discuss the policy implications of 

our model. We conclude in Section X and discuss the broader economic implications of our 

model. All proofs are presented in the Appendix. 

 

 

                                                            
8 See Jeffrey Sprecher, Chairman and Chief Executive Officer of Intercontinental Exchange, and owner of New 
York Stock Exchange, Statement to the U.S. Senate Banking, Housing and Urban Affairs Committee, Hearing on 
“The Role of Regulation in Shaping Equity Market Structure and Electronic Trading,” on July 8, 2014, available 
at:http://www.banking.senate.gov/public/index.cfm?FuseAction=Hearings.Hearing&Hearing_ID=2e98337f-
d5c5-490f-80e7-6c1c81af7243. 
9 See Joe Ratterman, Chief Executive Officer, and Chris Concannon, President, of BATS, “Open Letter to U.S. 
Securities Industry Participants Re: Market Structure Reform Discussion,” on January 6, 2015, available at 
http://cdn.batstrading.com/resources/newsletters/OpenLetter010615.pdf. 

http://www.banking.senate.gov/public/index.cfm?FuseAction=Hearings.Hearing&Hearing_ID=2e98337f-d5c5-490f-80e7-6c1c81af7243
http://www.banking.senate.gov/public/index.cfm?FuseAction=Hearings.Hearing&Hearing_ID=2e98337f-d5c5-490f-80e7-6c1c81af7243
http://cdn.batstrading.com/resources/newsletters/OpenLetter010615.pdf
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II. MODEL 

We consider a three-period game between three types of risk-neutral players: exchange 

operator(s), a continuum of liquidity makers with valuation of a stock 𝑣𝑣𝑏𝑏 uniformly distributed 

on [1
2

, 1] and liquidity takers with valuation of the stock 𝑣𝑣𝑠𝑠 uniformly distributed on �0, 1
2
�. 𝑣𝑣𝑏𝑏 

and 𝑣𝑣𝑠𝑠 , respectively, are the liquidity makers’ and liquidity takers’ private information. 

Because liquidity makers have higher valuations than liquidity takers, the former intend to buy 

from the latter.10 

We consider both a monopoly operator and competition between operators. Figure II 

demonstrates the actions available to players arriving in each period. At Date 0, operators 

simultaneously choose the number of exchanges to establish and set the make fee 𝑓𝑓𝑚𝑚𝑖𝑖  and the 

take fee 𝑓𝑓𝑡𝑡𝑖𝑖 on each exchange 𝑖𝑖 to maximize their expected profits. Fees are charged upon order 

execution, and a negative fee means a rebate for the trader. At Date 1, nature randomly draws 

one liquidity maker from the uniform distribution[1
2

, 1] . The liquidity maker makes two 

decisions after observing the fee structures: (i) submitting a limit order of one share to exchange 

𝑖𝑖 or to no exchange at all; and (ii) proposing the limit order at price 𝑃𝑃𝑖𝑖 if she chooses exchange 𝑖𝑖. 

The liquidity maker aims  to maximize her expected surplus: 

𝐵𝐵𝐵𝐵𝑖𝑖�𝑃𝑃𝑖𝑖; 𝑣𝑣𝑏𝑏� ≡ �𝑣𝑣𝑏𝑏 − 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑚𝑚𝑖𝑖 � ∙ Pr�𝑣𝑣𝑠𝑠 ≤ 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖�. 

The first term of the expected surplus is the liquidity maker’s gains from execution, and the 

second term reflects the probability of the liquidity taker accepting the limit order. We make a 

technical assumption that the liquidity maker cannot submit “stub-quotes,” that is, a limit-order 

price so low that no liquidity taker accepts it. 11 The liquidity maker submits no limit order if 

her maximal expected surplus is negative for any limit-order price in any exchange. At Date 2, 

nature randomly draws one liquidity taker from the uniform distribution �0, 1
2
�. The liquidity 

taker chooses to accept or decline the limit order at the exchange chosen by the liquidity 

maker.12  She accepts the limit order if her surplus is non-negative after paying the limit order 

                                                            
10 When the liquidity maker intends to sell to the liquidity taker, our model predictions do not change, given that 
traders’ valuations are symmetric and uniformly distributed. 
11 Stub quotes lead mechanically to zero expected surplus. The SEC, however, prohibits market maker stub quotes. 
See https://www.sec.gov/news/press/2010/2010-216.htm.  
12 In practice, an exchange charges a fee to route a market order to another exchange. This routing fee imposes a 
barrier to submitting an order to a low take-fee exchange aiming to interact with a limit order in a high take-fee 
exchange for the purpose of reducing the trading cost. For an example of a routing fee, see: 
 https://www.batstrading.com/support/fee_schedule/edga/. 

https://www.sec.gov/news/press/2010/2010-216.htm
https://www.batstrading.com/support/fee_schedule/edga/
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price and the take fee. The exchange where the trade occurs profits from the total fee, the sum 

of the make fee and the take fee.  

 We determine the subgame-perfect equilibrium of the sequential-move game by 

backward induction. First, we look for the probability that a liquidity taker accepts the limit 

orders at price 𝑃𝑃𝑖𝑖  given the take fee   𝑓𝑓𝑡𝑡𝑖𝑖 , Pr�𝑣𝑣𝑠𝑠 ≤ 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖� . Then, we study the liquidity 

maker’s exchange choice and the optimal limit-order price 𝑃𝑃𝑖𝑖∗  to maximize her expected 

surplus, given 𝑓𝑓𝑡𝑡𝑖𝑖 and 𝑓𝑓𝑚𝑚𝑖𝑖  and the liquidity taker’s best response at Date 2. The liquidity maker 

chooses not to participate if her expected surplus is negative. Finally, given the probability of 

participation based on the above subgames, a monopoly operator chooses the number of 

exchanges and the associated fee structures to maximize its expected profit, while competing 

operators choose the number of exchanges to establish and the associated fee structures 

simultaneously such that those strategies form a Nash equilibrium. 

 [Insert Figure II about here] 

 Our main purpose is to model exchange competition, so our model is parsimonious with 

respect to traders’ choices between limit and market orders: traders do not choose the order 

type, and the limit-order book is empty when the liquidity maker arrives. 13  These two 

assumptions follow from Menkveld (2010) and Foucault, Kadan, and Kandel (2013).14 Such 

simplification of the limit-order book allows us to gain economic insights that extend beyond 

the stock exchange industry; we discuss these implications in the Conclusion. 

 By proposing a nominal trading price 𝑃𝑃𝑖𝑖 to exchange 𝑖𝑖, the liquidity maker essentially 

chooses the cum fee buy and sell prices to be 𝑝𝑝𝑏𝑏𝑖𝑖 ≡ 𝑃𝑃𝑖𝑖 + 𝑓𝑓𝑚𝑚𝑖𝑖  and 𝑝𝑝𝑠𝑠𝑖𝑖 ≡ 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖. Under zero tick 

size, 𝑃𝑃𝑖𝑖 can be any real number. Under a discrete tick size, 𝑃𝑃𝑖𝑖 can only be on price grids with 

the minimum distance as tick size; we call such restrictions tick size constraints. Our baseline 

model considers a tick size of 1, that is,       

(1)                                                   𝑃𝑃𝑖𝑖 ∈ {𝑛𝑛}, where n is an integer.                                           

                                                            
13 Theoretical studies on order-placing strategy generally provide a richer structure of order selection by assuming 
exogenous exchanges (Parlour and Seppi 2003; Foucault and Menkveld 2008; Rosu 2009). For example, Foucault 
and Menkveld (2008) find that two exogenous exchanges can co-exist because of queuing behavior. Our model, 
however, demonstrates the co-existence of endogenous trading exchanges. 
14 In practice, the decision between making and taking liquidity is not so rigid. Yet it is evident that traders 
specialize in trading activities, creating differentiation. For example, high-frequency traders account for a large 
fraction of liquidity supply in electronic markets (Menkveld 2010; Foucault, Kadan, and Kandel 2013). Our model 
captures this feature. 
 

http://albertjmenkveld.org/
http://albertjmenkveld.org/
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Under this assumption, the valuations of the liquidity maker and the liquidity taker fall within 

the same tick. 

In Section VIII, we relax this assumption by allowing price to be any rational numbers 

with equal space, that is,   

(1′)                          �𝑃𝑃𝑖𝑖 ∈ 𝑛𝑛
𝑁𝑁
�, where n is an integer and N is a natural number. 

The tick size under (1′) is 1
𝑁𝑁

 . When 𝑁𝑁 > 1, the support of traders’ valuation goes 

beyond one tick.  

Our main analysis focuses on 𝑁𝑁 = 1, or tick size constraints (1). In Section VIII, we 

consider tick size constraints (1′) and demonstrate that our main results still hold for N>1.  

 

III. BENCHMARK: NO TICK SIZE CONSTRAINTS 

In this section, we analyze market outcomes when 𝑃𝑃𝑖𝑖  can be any real number. The 

results in this section serve as the benchmark for future discussions when we incorporate tick 

size constraints.  

We solve the model through backward induction. At Date 2, a liquidity taker accepts a 

limit order if 𝑣𝑣𝑠𝑠 ≤ 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖, and the probability for the liquidity taker to accept the limit order 

is Pr (𝑣𝑣𝑠𝑠 ≤ 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖).  At Date 1, a liquidity maker proposes a limit-order price to maximize her 

expected surplus 𝐵𝐵𝐵𝐵𝑖𝑖�𝑃𝑃𝑖𝑖;𝑣𝑣𝑏𝑏�. 

max
𝑃𝑃𝑖𝑖

𝐵𝐵𝐵𝐵𝑖𝑖�𝑃𝑃𝑖𝑖;𝑣𝑣𝑏𝑏� = max
𝑃𝑃𝑖𝑖

��𝑣𝑣𝑏𝑏 − 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑚𝑚𝑖𝑖 � ∙ max�0, min { 2 ∙ �𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖�, 1}�� 

We denote the total fee on exchange i as 𝑇𝑇𝑖𝑖 ≡ 𝑓𝑓𝑚𝑚𝑖𝑖 +  𝑓𝑓𝑡𝑡𝑖𝑖. The solution for the optimal 

limit-order price is   

(2) 𝑃𝑃𝑖𝑖∗(𝑣𝑣𝑏𝑏) =
𝑣𝑣𝑏𝑏 + 𝑇𝑇𝑖𝑖

2
− 𝑓𝑓𝑚𝑚𝑖𝑖 ,  if 𝑣𝑣𝑏𝑏 ≥ 𝑇𝑇𝑖𝑖 .  

Equation (2) shows that the nominal limit-order price strictly increases in the liquidity 

maker’s valuation when 𝑣𝑣𝑏𝑏 ≥ 𝑇𝑇𝑖𝑖 .  The cum fee buy price and the cum fee sell price are 

𝑝𝑝𝑏𝑏𝑖𝑖 (𝑣𝑣𝑏𝑏) = 𝑃𝑃𝑖𝑖 + 𝑓𝑓𝑚𝑚𝑖𝑖 = 𝑣𝑣𝑏𝑏+𝑇𝑇𝑖𝑖

2
 and 𝑝𝑝𝑠𝑠𝑖𝑖(𝑣𝑣𝑏𝑏) = 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖 = 𝑣𝑣𝑏𝑏−𝑇𝑇𝑖𝑖

2
, respectively. Therefore, the 

economic outcome is affected by the total fee 𝑇𝑇𝑖𝑖, and not by its breakdown into 𝑓𝑓𝑚𝑚𝑖𝑖  and 𝑓𝑓𝑡𝑡𝑖𝑖 

under a zero tick size.  

The neutrality of fee structures implies that all traders would rush to the exchange with 

the lowest total fee. As a result, the monopoly operator cannot benefit from opening more than 
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one exchange. Also, competition among operators leads to Bertrand equilibrium. In Proposition 

1, we posit the market outcomes without tick size constraints. 

PROPOSITION 1 (market outcome under zero tick size). Under continuous pricing:  

(i) only the total fee, not its breakdown, has effect on the market outcome for the three types 

of players; 

(ii) a monopoly operator has no incentive to open more than one exchange. The standing 

exchange charges a total fee of  3
8
  and earns a profit of 9

64
; 

(iii) competing operators set total fees at zero and earn zero profits. 

 
 Proposition 1 implies that we should not observe any price dispersion of total fees if 

the tick size is zero. We should also expect consolidation with one operator on one exchange, 

as long as establishing an exchange involves non-zero costs. Nevertheless, these predictions 

are not consistent with the stylized facts. Next, we demonstrate that tick size constraints can 

generate results that are dramatically different yet consistent with reality. 

 

IV. NON-NEUTRALITY OF FEE STRUCTURES UNDER TICK SIZE 

CONSTRAINTS 

In this section, we show that the fee structure becomes non-neutral in the presence of 

tick size constraints (1). In Section IV.A. we establish the results for one exchange. In Section 

IV.B. we advance the non-neutrality intuition by showing that, with the same total fee but 

inverting make and take fees, one exchange can dominate the other. 

 

IV.A. Fee Structure under Tick Size Constraints: One Exchange   

For a given limit-order price 𝑃𝑃, a trade occurs if and only if: 

(3) � 0 ≤ 𝑣𝑣𝑠𝑠 ≤ 𝑝𝑝𝑠𝑠 = 𝑃𝑃 − 𝑓𝑓𝑡𝑡
𝑝𝑝𝑏𝑏 = 𝑃𝑃 + 𝑓𝑓𝑚𝑚 ≤ 𝑣𝑣𝑏𝑏 ≤ 1    

A necessary condition for the exchange to survive is a budget-balanced total fee, 

𝑇𝑇 = 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑡𝑡 ≥ 0, which is equivalent to: 

(4) 𝑃𝑃 − 𝑓𝑓𝑡𝑡 ≤ 𝑃𝑃 + 𝑓𝑓𝑚𝑚.   

Thus, in order for a trade to occur, (3) and (4) together require: 

(5) 0 ≤ 𝑣𝑣𝑠𝑠 ≤ 𝑃𝑃 − 𝑓𝑓𝑡𝑡 ≤ 𝑃𝑃 + 𝑓𝑓𝑚𝑚 ≤ 𝑣𝑣𝑏𝑏 ≤ 1.     

For a trade to occur, the total fee set by the operator must be less than 1. Here we restrict 
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our attention to |𝑓𝑓𝑖𝑖| ≤ 1 (i=m,t) , because U.S. regulations prohibit any exchange from 

charging fees greater than one tick.15 Lemma 1 establishes the result that the fee structure 

matters in the presence of tick size constraints. 

LEMMA 1 (fee structure and trading price under tick size constraints). Under tick size 

constraints (1) and |𝑓𝑓𝑖𝑖| ≤ 1 (i=m,t) 

(i) In order for a trade to happen and the exchange to survive, the exchange must charge 

one side while subsidizing the other. Moreover, the total fee cannot exceed the tick size. 

That is, 

(6) 𝑓𝑓𝑚𝑚 ∙ 𝑓𝑓𝑡𝑡 < 0 and 0 ≤ 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑡𝑡 < 1.    

(ii) The liquidity maker proposes a trading price: 

(7) 𝑃𝑃 = �
0 when 𝑓𝑓𝑚𝑚 > 0 (so that 𝑓𝑓𝑡𝑡 < 0)
1 when 𝑓𝑓𝑚𝑚 < 0 (so that 𝑓𝑓𝑡𝑡 > 0).    

(iii) The cum fee buy and sell prices are:  

(8) 

𝑝𝑝𝑏𝑏 ≡ 𝑃𝑃 + 𝑓𝑓𝑚𝑚 = � 𝑓𝑓𝑚𝑚 when 𝑓𝑓𝑚𝑚 > 0
1 + 𝑓𝑓𝑚𝑚 when 𝑓𝑓𝑚𝑚 < 0  

𝑝𝑝𝑠𝑠 ≡ 𝑃𝑃 − 𝑓𝑓𝑡𝑡 = � −𝑓𝑓𝑡𝑡 when 𝑓𝑓𝑚𝑚 > 0
1 − 𝑓𝑓𝑡𝑡 when 𝑓𝑓𝑚𝑚 < 0  

 

 

When 𝑓𝑓𝑚𝑚 = 𝑓𝑓𝑡𝑡 = 0, Equation (5) cannot hold if 𝑃𝑃 must be an integer, except for the 

knife-edge cases of 𝑣𝑣𝑏𝑏 = 1 or 𝑣𝑣𝑠𝑠 = 0. It is also easy to see that Equation (5) cannot hold when 

both 𝑓𝑓𝑚𝑚 > 0 and 𝑓𝑓𝑡𝑡 > 0. Part (i) of Lemma 1 is thus established. Other parts of Lemma 1 follow 

directly from Equation (5). 

Equation (6) shows that the make and take fees must carry opposite signs. This result 

is driven by the simplifying assumption that the liquidity maker’s and liquidity taker’s 

valuations are within the same tick.16 Yet the prediction is consistent with the stylized facts. In 

reality, it is rare for a major exchange to charge both liquidity makers and liquidity takers 

positive fees. Among 108 fee structure changes documented by Cardella, Hao, and Kalcheva 

(2015), exchanges differ on which side they subsidize, but no exchange ever charges both sides 

positive fees. 17  Lemma 1 provides the first plausible explanation of this puzzle. Fees of 

                                                            
15 Allowing fees with absolute values greater than 1 does not change our results; we show in Proposition 5 that 
the liquidity maker can neutralize fees breakdowns that are multiples of a tick.   
16 In Section VIII, we show that the make and take fees can both be positive when the liquidity maker’s and 
liquidity taker’s valuations range beyond one tick. 
17 We thank Laura Cardella for helping us confirm this claim. IEX, an Alternative Trading System currently 
applying for registration to become a national securities exchange, charges positive fees to both sides based on 
the market fairness argument. IEX is very far from achieving significant trading volume. It would be interesting 
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opposite sign are able to create sub-tick cum fee buy and sell prices when the liquidity maker’s 

and liquidity taker’s valuations fall within the same tick. 

The non-neutrality of the fee structure can be seen from Equation (8): cum fee buy and 

sell prices are now functions of (𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡). In Section VIII, we show that such non-neutrality 

holds as long as the tick size is greater than zero. We start with a tick size of 1 to simplify the 

model, as it restricts the quotes proposed by a liquidity maker to either zero or 1, so that 

exchanges can mandate cum fee buy price 𝑝𝑝𝑏𝑏 and cum fee sell price 𝑝𝑝𝑠𝑠. When we reduce the 

tick size to less than 1 in Section VIII, exchanges can no longer mandate the cum fee buy and 

sell prices, because a liquidity maker has more price levels at which to post limit orders. Yet a 

tick size of 1 conveys the model’s economic mechanism in the simplest way, and we show in 

Section VIII that similar intuitions hold for any discrete tick size with much greater 

mathematical complexity. In addition, most studies of two-sided platforms assume that they 

can mandate the prices of both sides (Weyl 2010). Assuming a large tick size of 1 makes our 

pricing structure similar to other two-sided market models.  

 

IV.B. The Maker/Taker Market vs. the Taker/Maker Market 

In this subsection, we consider competition between an exchange that subsidizes the 

liquidity maker while charging the liquidity taker (a maker/taker exchange) and an exchange 

that subsidizes the liquidity taker while charging the liquidity maker (a taker/maker exchange, 

also called an inverted fee exchange). In our game, the liquidity taker seems to play a passive 

role: she always follows the liquidity maker’s exchange choice because the unselected 

exchange has an empty limit-order book. It thus seems that the priority of an exchange is to 

attract the liquidity maker, and that a natural way to attract the liquidity maker is to subsidize 

her, as the maker/taker market does. The literature is silent as to why the taker/maker market 

can attract the liquidity maker from a market that subsidizes her, particularly when the current 

U.S. regulation provides other advantages to subsidize the liquidity maker.18, 19 We fill this gap 

by identifying two costs of a subsidy to a liquidity maker. Lemma 2 shows that the costs of 

                                                            
to see whether IEX will change its fee structure if it ever becomes a national exchange subject to the same 
regulation as other exchanges are.   
18 Foucault, Kadan, and Kandel (2013) demonstrate that a monopoly exchange may choose to subsidize liquidity 
takers to maximize the trading rate of the exchange. 
19 The Reg NMS no trade-through rule requires orders to be routed to the exchange with the best nominal limit-
order price. Colliard and Foucault (2012) show that liquidity makers are able to display better nominal prices 
when they obtain rebates, which encourages exchanges to give them such rebates. Battalio, Corwin, and Jennings 
(2015) find that retail brokers have incentives to route customer limit orders to exchanges with maximum rebates, 
because the regulation does not require them to pass rebates on to customers.  
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such a subsidy can be so high that any liquidity maker prefers an exchange that charges her to 

an exchange that subsidizes her when the total fees in the two exchanges are the same. 

LEMMA 2. Under tick size constraints (1), suppose exchange 1 adopts fee structure 𝐹𝐹1 =

(𝛼𝛼,𝛽𝛽), and exchange 2 adopts fee structure 𝐹𝐹2 = (𝛽𝛽,𝛼𝛼), where 1 > 𝛼𝛼 > −𝛽𝛽 > 0. The liquidity 

maker is indifferent to the two exchanges when |𝛼𝛼| + |𝛽𝛽| = 1. She prefers exchange 1 when 

|𝛼𝛼| + |𝛽𝛽| < 1, and exchange 2 when |𝛼𝛼| + |𝛽𝛽| > 1.  

Lemma 2 demonstrates that the liquidity maker prefers a market that charges her and 

subsidizes the liquidity taker when the tick size is large relative to the level of the make/take 

fees. Such a result is driven by two costs of a subsidy. First, a subsidy for a liquidity maker 

forces the liquidity maker to quote a more aggressive price: she proposes a limit order at 𝑃𝑃 = 0 

when charged, and a limit order at 𝑃𝑃 = 1 when subsidized (Part (ii) of Lemma 1). Second, the 

subsidy of a liquidity maker comes from the charge to a liquidity taker. A higher take fee can 

reduce the probability that the liquidity taker accepts the limit order and thus the liquidity 

maker’s probability to realize the gains from execution. Lemma 2 shows that the costs of a 

subsidy are higher when the tick size is larger relative to the sum of the absolute values of the 

make and take fees. Therefore, an increase in the tick size while holding the fee fixed would 

lead the liquidity maker to choose an exchange that charges her instead of subsidizing her.  

 

V. VERTICAL PRODUCT DIFFERENTIATION AND LIQUIDITY 

MAKERS’ SEGMENTATION 

Hereafter, we consider each exchange’s decision variables as cum fee buy and sell 

prices to avoid a tedious discussion of fee structures that achieve the same equilibrium outcome. 

In this section, we consider the liquidity maker and the liquidity taker’s choice given cum fee 

buy and sell prices. The purpose is to show that the non-neutrality of the fee structure, led by 

the tick size constraints, allows operators to create product differentiations for otherwise 

identical exchanges.  

 

V.A. Product Differentiation  

Given the cum fee sell price, the marginal liquidity taker’s valuation on exchange i is: 

(9) 𝑣𝑣�𝑠𝑠𝑖𝑖 ≡ 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑝𝑝𝑠𝑠𝑖𝑖 ,
1
2
�.      

It follows that the probability that a liquidity taker accepts the buy limit order is:  
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(10) 𝑞𝑞𝑠𝑠𝑖𝑖 = 𝑃𝑃𝑃𝑃�𝑣𝑣𝑠𝑠 ≤ 𝑣𝑣�𝑠𝑠𝑖𝑖� = 2 ∙  𝑣𝑣�𝑠𝑠𝑖𝑖 = 2 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑝𝑝𝑠𝑠𝑖𝑖 ,
1
2
�.  

Clearly, a higher cum fee sell price implies higher execution probability for the liquidity maker. 

 The liquidity maker’s expected surplus for choosing exchange i is:  

(11) 𝐵𝐵𝐵𝐵𝑖𝑖 = �𝑣𝑣𝑏𝑏 − 𝑝𝑝𝑏𝑏𝑖𝑖 � ∙ 𝑞𝑞𝑠𝑠𝑖𝑖 = 2 ∙ �𝑣𝑣𝑏𝑏 − 𝑝𝑝𝑏𝑏𝑖𝑖 � ∙ 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑝𝑝𝑠𝑠𝑖𝑖 ,
1
2
�.    

 Equation (11) shows that a liquidity maker’s expected surplus increases with the cum 

fee sell price. All else being equal, a liquidity maker prefers an exchange with a higher cum 

fee sell price because such an exchange increases the probability of realizing gains from 

execution. Thus, two exchanges with differentiated cum fee sell prices are vertically 

differentiated for the liquidity maker: the exchange with the higher cum fee sell price is of 

higher quality. Such vertical product differentiation is the fundamental rationale behind the 

second-degree price discrimination we will discuss in Section VI. 

 In our model, exchanges simultaneously set the price and quality of their execution 

service for the liquidity maker. In the standard literature the decision about product quality is 

usually made prior to deciding product price, because product quality involves a long-term 

decision and price a short-term decision (Tirole 1988). Models with sequential quality and price 

choices usually predict non-Bertrand pure-strategy equilibrium (Shaked and Sutton 1982; 

Tirole 1988). Yet the “quality”—the execution probability—in our model is determined 

entirely by the cum fee sell price, which can be adjusted as easily as the cum fee buy price. 

Such a simultaneous choice is the main cause of the non-existence of pure strategy, as we will 

discuss in Section VII. 

 The differentiation across exchanges depends crucially on the non-neutrality of the fee 

structure. If end users can neutralize the fees set by an operator, exchanges are homogeneous 

and compete along one dimension, the total fee, as shown in Section III. Once end users cannot 

neutralize the fees, price competition becomes two-dimensional and an operator is able to set 

the price and quality of the product simultaneously. 

 

V.B. Liquidity Makers’ Segmentation  

 Our model has only one liquidity maker, but that liquidity maker is drawn randomly 

from a uniform distribution. In this subsection, we consider the segmentation of the whole 

distribution of liquidity makers.  

 Given the cum fee buy and sell prices on exchanges 1 and 2, (𝑝𝑝𝑏𝑏1,𝑝𝑝𝑠𝑠1) and (𝑝𝑝𝑏𝑏2,𝑝𝑝𝑠𝑠2) 

respectively, a liquidity maker’s expected surpluses for choosing exchange i  is: 
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(12) 𝐵𝐵𝐵𝐵𝑖𝑖 = �𝑣𝑣𝑏𝑏 − 𝑝𝑝𝑏𝑏𝑖𝑖 � ∙ 𝑞𝑞𝑠𝑠𝑖𝑖 = 2 ∙ �𝑣𝑣𝑏𝑏 − 𝑝𝑝𝑏𝑏i � ∙ 𝑝𝑝𝑠𝑠𝑖𝑖 ,       𝑖𝑖 = 1,2   

 These equalities follow from 𝑣𝑣�𝑠𝑠𝑖𝑖 = 𝑝𝑝𝑠𝑠𝑖𝑖(𝑖𝑖 = 1,2), because neither exchange would set 

𝑝𝑝𝑠𝑠𝑖𝑖 > 1
2
 ): doing so would reduce its per-trade profit without increasing trading volume. 

When 𝑝𝑝𝑠𝑠1 = 𝑝𝑝𝑠𝑠2, a liquidity maker’s surplus would be 𝐵𝐵𝐵𝐵1 ⋛ 𝐵𝐵𝐵𝐵2 if and only if 𝑝𝑝𝑏𝑏1 ⋚

𝑝𝑝𝑏𝑏2. Without loss of generality, suppose that 𝑝𝑝𝑠𝑠1 < 𝑝𝑝𝑠𝑠2, which implies that exchange 1 is of low 

quality and exchange 2 is of high quality. The liquidity maker’s surpluses in each exchange are 

shown in Figure III. 

[Insert Figure III about here] 

When 𝑝𝑝𝑏𝑏1 ≥ 𝑝𝑝𝑏𝑏2, as shown in Panel (a) of Figure III, 𝐵𝐵𝐵𝐵1 ≤ 𝐵𝐵𝐵𝐵2 for any 𝑣𝑣𝑏𝑏 ≥ 𝑝𝑝𝑏𝑏2. So 

any liquidity maker chooses exchange 2, because exchange 2 offers higher execution 

probability, along with a lower cum fee buy price.20 

When 𝑝𝑝𝑏𝑏1 < 𝑝𝑝𝑏𝑏2, there is a unique intersection: 

(13) 𝜑𝜑 ≡
𝑝𝑝𝑏𝑏2 ∙ 𝑝𝑝𝑠𝑠2 − 𝑝𝑝𝑏𝑏1 ∙ 𝑝𝑝𝑠𝑠1

𝑝𝑝𝑠𝑠2 − 𝑝𝑝𝑠𝑠1
   

and 𝐵𝐵𝐵𝐵1 ⋚ 𝐵𝐵𝐵𝐵2 for any 𝑣𝑣𝑏𝑏 ⋛ 𝜑𝜑, as shown in Panel (b) of Figure III. Liquidity makers with a 

valuation higher than 𝜑𝜑 choose high-quality exchange 2 and liquidity makers with a valuation 

lower than 𝜑𝜑  choose low-quality exchange 1. Because we assume that 𝑣𝑣𝑏𝑏  is uniformly 

distributed on [1
2

, 1], exchanges 1 and 2 co-exist when 1
2

< 𝜑𝜑 <1. All things being equal, 

liquidity makers prefer the high-quality exchange. Yet liquidity makers are not uniformly 

inclined to choose the higher execution probability. Those with larger gains from execution 

care more about execution probability than those with smaller gains. This heterogeneity across 

traders allows an exchange with higher cum fee buy and sell prices to coexist with an exchange 

with lower cum fee buy and sell prices. 

  

VI. MONOPOLY: PRICE DISCRIMINATION 

 In this section, we characterize a monopoly operator’s optimal choice of the number of 

exchanges to offer as well as her choice of fee structure on each exchange. The purpose is to 

explore the second-degree price discrimination facilitated by product differentiation.  

                                                            
20 In Figure I, we show that exchanges can have the same fees on one side but unequal fees on the other side. One 
reason for this phenomenon is that exchanges can also set their own criteria for traders to obtain a certain level of 
fees or rebates. Such criteria may lead to price discrimination within the same exchange, but our paper focuses on 
operators using multiple exchanges to conduct price discrimination.       
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PROPOSITION 2 (number of exchanges established by a monopoly operator and associated fee 

structures). Under tick size constraints (1), for a monopoly operator who operates k exchanges, 

the optimal cum fee buy and cum fee sell prices in each exchange i are: 

(14) 𝑝𝑝𝑏𝑏𝑖𝑖 =
1
2

+
𝑖𝑖

2(2𝑘𝑘 + 1)
,𝑝𝑝𝑠𝑠𝑖𝑖 =

𝑖𝑖
2𝑘𝑘 + 1

 with 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘.  

A liquidity maker with valuation 𝑣𝑣𝑏𝑏𝜖𝜖[𝜑𝜑𝑖𝑖−1,𝜑𝜑𝑖𝑖] chooses exchange 𝑖𝑖, where: 

𝜑𝜑𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧ 𝑝𝑝𝑏𝑏1             for 𝑖𝑖 = 0
𝑝𝑝𝑏𝑏𝑖𝑖+1𝑝𝑝𝑠𝑠𝑖𝑖+1 − 𝑝𝑝𝑏𝑏𝑖𝑖 𝑝𝑝𝑠𝑠𝑖𝑖

𝑝𝑝𝑠𝑠𝑖𝑖+1 − 𝑝𝑝𝑠𝑠𝑖𝑖
  for 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 1

1                for 𝑖𝑖 = 𝑘𝑘.

 

The liquidity maker’s expected surplus, the liquidity taker’s expected surplus, and the 

monopoly operator’s expected profit are: 

(15) 𝐵𝐵𝐵𝐵𝑀𝑀(𝑘𝑘) =
𝑘𝑘 ∙ (𝑘𝑘+ 1)
3(2𝑘𝑘+ 1)2 , 𝑆𝑆𝑆𝑆𝑀𝑀(𝑘𝑘) =

𝑘𝑘 ∙ (𝑘𝑘+ 1)
3(2𝑘𝑘+ 1)2 ,Π𝑀𝑀(𝑘𝑘) =

2𝑘𝑘 ∙ (𝑘𝑘+ 1)
3(2𝑘𝑘+ 1)2 ,  

respectively, which all increase in k.  

If opening a new exchange requires a fixed cost c, the number of exchanges opened by the 

monopoly operator is:   

𝑘𝑘� = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑘𝑘 𝜖𝜖 ℕ� 4𝑘𝑘
3(2𝑘𝑘 + 1)2(2𝑘𝑘 − 1)2 ≥ 𝑐𝑐�. 

 In Proposition 2, we show that the monopoly operator uses 𝑘𝑘 exchanges to segment the 

uniformly distributed liquidity makers into 𝑘𝑘 + 1 groups. The group with the lowest gains from 

execution does not participate. Among the rest of the k groups, liquidity makers with higher 

gains from execution tend to choose exchanges with higher cum fee buy and sell prices. The 

monopoly operator’s strategy follows standard menu pricing under second-degree price 

discrimination. Mussa and Rosen (1978) find, for example, that a monopoly firm can screen 

customers by offering a menu with a quality-differentiated spectrum of goods of the same 

generic type.  

 Our model provides two unique features compared with the standard menu-pricing 

model. First, the two exchanges in our model are physically identical, and the quality of the 

exchange is the take fee. Therefore, the exchanges use the terms of the trade offered to liquidity 

takers to screen liquidity makers. This finding explains the puzzle raised by Foucault (2012) 

that “it is not clear however how the differentiation of make/take fees suffices to screen 

different types of investors.” Second, we discover the source of this price discrimination: non-
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neutrality led by the discrete price, because such price discrimination does not exist when 

liquidity makers and liquidity takers can neutralize the fee breakdown. 

 We find that the monopoly operator’s profit increases with the number of exchanges, 

but the marginal benefit of adding an exchange decreases with the number of existing 

exchanges. Any fixed cost for establishing exchanges thus constrains the number of exchanges. 

Interestingly, Equation (15) indicates that the liquidity maker’s and the liquidity taker’s 

expected surpluses also increase with the number of exchanges. The welfare gain originates 

from a higher participation rate: increasing the number of exchanges creates more cum fee 

price levels within the tick. As 𝑘𝑘 goes to infinity, the lowest cum fee buy price across all 

exchanges, 𝑘𝑘+1
2𝑘𝑘+1

, approaches 1
2
, which indicates almost full participation by liquidity makers. 

In our model, the creation of new cum fee price levels reduces the inefficiency created by 

discrete tick size, which increases the expected trading gains for all parties. 

 Table I provides an example of second-degree price discrimination using make/take 

fees. Column (1) shows that a monopoly that operates one exchange sets the cum fee buy price 

at 𝑝𝑝𝑏𝑏𝑀𝑀 = 2
3
 and the cum fee sell price at 𝑝𝑝𝑠𝑠𝑀𝑀 =  1

3
. Liquidity makers with valuation in [2

3
, 1] and 

liquidity takers with valuation in [0, 1
3
] participate in this exchange. The operator has a profit 

of 4
27

. The second and third columns show that a monopoly can screen liquidity makers by 

setting up two exchanges. The low-quality exchange sets the cum buy price at 𝑝𝑝𝑏𝑏1 = 3
5
 and the 

cum fee sell price at 𝑝𝑝𝑠𝑠1 = 1
5
. The execution probability is 2

5
 on the low-quality exchange, which 

attracts liquidity makers with lower gains from execution (𝑣𝑣𝑏𝑏 ∈ [3
5

, 4
5
] ). The high-quality 

exchange sets the cum fee buy price at 𝑝𝑝𝑏𝑏2 = 7
10

 and the cum fee sell price at 𝑝𝑝𝑠𝑠2 = 2
5
.  The 

execution probability is 4
5
 on the high-quality exchange, which attracts liquidity makers with 

higher gains from execution (𝑣𝑣𝑏𝑏 ∈ [4
5

, 1]).  This second-degree price discrimination increases 

the monopoly’s profit from 4
27

 to 4
25

. The expected surplus for both liquidity makers and 

liquidity takers increases from 2
27

 to 2
25

. The expected trading volume increases from 12
27

 to 12
25

, 

which provides a justification for the expected welfare gains for all parties.  

[Insert Table I about here] 
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VII. COMPETITION: THE NON-EXISTENCE OF PURE-STRATEGY 

EQUILIBRIUM 

In this section, we consider the case of two competing operators, each of whom 

establishes one exchange. In Section A, we establish the non-existence of the pure-strategy 

equilibrium under tick size constraints. In Section B, we show the existence of symmetric 

mixed-strategy equilibrium and that any mixed-strategy equilibrium leads to positive profit. 

VII.A. No Pure-strategy Equilibrium  

In Proposition 3, we show that tick size constraints destroy not only Bertrand 

equilibrium but also any pure-strategy equilibrium. 

PROPOSITION 3 (no pure-strategy equilibrium). Under tick size constraints (1), there exists no 

pure-strategy equilibrium when two exchanges compete. 

The detailed proof of this proposition is in the Appendix. Here we sketch the proof and 

the corresponding intuitions. The non-existence of pure-strategy equilibrium with unequal 

profits follows the intuition in the Bertrand game. The lower-profit exchange can increase its 

expected profit by undercutting the higher-profit exchange’s cum fee buy price by 𝜀𝜀  and 

mimicking its cum fee sell price. 

Our model also does not have pure-strategy equilibrium entailing positive and equal 

profits. If identical profits are led by identical price structures, one exchange can increase its 

expected profit by undercutting its rival’s cum fee buy price by 𝜀𝜀 and mimicking its rival’s cum 

fee sell price. The two-dimensional price competition also raises the possibility that two 

exchanges have different price structures but the same total profits.21 Without loss of generality, 

suppose that, initially, exchange 2 has higher quality than exchange 1 (𝑝𝑝𝑠𝑠2 > 𝑝𝑝𝑠𝑠1 = 𝛾𝛾). Figure 

III shows that exchange 2 must have a higher cum fee buy price than exchange 1 (𝑝𝑝𝑏𝑏2 > 𝑝𝑝𝑏𝑏1 =

𝛿𝛿), and that liquidity makers with high valuations choose exchange 2 while liquidity makers 

with low valuation choose exchange 1. A profitable deviation for exchange 2 is reducing the 

cum fee sell price to 𝛾𝛾 and undercutting exchange 1’s cum fee buy price by setting its new cum 

fee buy price to 𝛿𝛿 − 𝜀𝜀. This deviation allows exchange 2 to attract low-valuation liquidity 

makers with infinitesimal profit concession. In addition, high-valuation liquidity makers still 

choose exchange 2 because (i) they prefer (𝛿𝛿 − 𝜀𝜀, 𝛾𝛾) to (𝛿𝛿, 𝛾𝛾) and (ii) they choose to participate 

                                                            
21 Numerical examples of such cases are available from the author on request. For a general discussion of 
asymmetry networks, see Ambrus and Argenziano (2009).  
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because the cum fee buy price 𝛿𝛿 − 𝜀𝜀 is lower than their valuation. When 𝜀𝜀 is sufficiently small, 

the expected profit from retaining high-valuation liquidity makers is greater than the 

infinitesimal decrease in profit from low-valuation liquidity makers.22  

 Unlike the Bertrand game, no pure-strategy equilibrium exists here even if both 

operators make zero profit. Two possible scenarios lead to the zero-profit outcome: (i) at least 

one side of the market does not participate; or (ii) the cum fee buy and sell prices are equal. 

Suppose that both exchanges have zero participation rates; in that case at least one of the two 

operators can deviate profitably by facilitating some trades. Then we need only consider the 

case in which one exchange sets the cum fee buy price equal to the cum fee sell price. Without 

loss of generality, suppose that 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1. The proof then involves two types of deviation.  

First, we consider 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1 ≥
1
2
. Then exchange 2 can have a profitable deviation by 

setting 𝑝𝑝𝑏𝑏2 = 𝑝𝑝𝑏𝑏1 − 𝜇𝜇𝜀𝜀 , and 𝑝𝑝𝑠𝑠2 = 𝑝𝑝𝑠𝑠1 − 𝜀𝜀  with 𝜀𝜀 > 0  and 0 < 𝜇𝜇 < 1.  When 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1 > 1
2

, 

exchange 2 reduces the cum fee sell price but not the execution probability, because any 

liquidity taker accepts 𝑝𝑝𝑠𝑠2 = 1
2
. A lower cum fee buy price then attracts liquidity makers with a 

valuation above 𝑝𝑝𝑏𝑏2 to exchange 2, and exchange 2 makes a positive profit. When 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1 = 1
2
, 

such a deviation reduces the execution probability, but also reduces the cum fee buy price, 

which attracts liquidity makers with lower gains from execution; this is illustrated in Panel (a) 

of Figure IV. Second, we consider 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1 < 1
2
. In this case the execution probability is less 

than 1. Panel (b) of Figure IV shows that exchange 2 can have a profitable deviation by setting 

𝑝𝑝𝑏𝑏2 = 𝑝𝑝𝑏𝑏1 + 𝜀𝜀 and 𝑝𝑝𝑠𝑠2 = 𝑝𝑝𝑠𝑠1 + 𝜇𝜇 ∙ 𝜀𝜀. Such a deviation increases the execution probability, and 

also increases the cum fee buy price, which attracts liquidity makers with higher gains from 

execution. 

[Insert Figure IV about here] 

Traditional price-quality games (Shaked and Sutton 1982; Tirole 1988) feature non-

Bertrand pure-strategy equilibrium. An important cause of the non-existence of pure-strategy 

equilibrium in our model lies in the simultaneous choice of price and quality. If we allow the 

operator to choose the take fee in the first stage and the make fee in the second stage, the model 

generates standard non-Bertrand pure-strategy equilibrium (unreported for brevity). In most 

                                                            
22 Unlike the Bertrand game, the deviation to (𝛿𝛿 − 𝜀𝜀, 𝛾𝛾) does not attract all the original customers of exchanges 1 
and 2. The participation probability of the liquidity taker decreases due to a drop in the cum fee sell price.  
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industries, it is natural to assume that the product quality decision is made prior to the product 

price decision because price can often be adjusted faster than quality (Tirole 1988). Yet in our 

model “quality,” in terms of execution probability, is determined purely by the cum fee sell 

price. The cum fee sell price can be adjusted as easily as the cum fee buy price. Therefore, in 

our setting, it is reasonable to consider simultaneous price and quality competition. 

 

VII.B. Mixed-strategy Equilibrium 

 The non-existence of pure-strategy equilibrium further motivates us to investigate 

symmetric mixed-strategy equilibria. It is a daunting task to find analytical solutions for all 

possible mixed-strategy equilibria. Nevertheless, we are able to demonstrate the existence of a 

symmetric mixed-strategy equilibrium and prove that it always entails positive profit.  

PROPOSITION 4 (mixed-strategy equilibrium). Under tick size constraints (1): 

(i) symmetric mixed-strategy equilibrium exists; 

(ii) in equilibrium, both exchanges earn strictly positive profits.  

The proof of Proposition 4 shows that our game satisfies conditions specified in 

Theorem 6* of Dasgupta and Maskin (1986), which studies the mixed-strategy equilibrium 

existence problem in a discontinuous game.  

Varian (1980) states that the mixed-strategy equilibrium justifies the spatial price 

dispersion (different prices at the same time) and temporal price dispersion (price change over 

time). From this perspective, our paper provides the first theoretical justification for diverse 

fee structures across exchanges and their frequent changes. As indicated by an SEC statement, 

“these exchanges compete vigorously on price which leads to some rather complicated fee 

schedule that can change from month to month, making it a near full-time job to keep track of 

them all.” 23 The driver of our mixed-strategy equilibrium, however, differs significantly from 

those in canonical one-dimensional mixed-strategy equilibrium. In the literature, one-

dimensional mixed-strategy equilibrium generally involves frictions that prevent customers 

from finding the best price (Rosenthal 1980; Varian 1980; Burdett and Judd 1983), or cost to 

firms to transmit their prices (Butters 1977; Baye and Morgan 2001). For example, Rosenthal 

(1980) assumes loyal customers, while Varian (1980) assumes uninformed customers who are 

not aware of better prices. The incentive to exploit loyal or uninformed customers prevents 

                                                            
23 See Richard Holley, SEC Trading and Division, Statement in Panel Discussion at SEC Equality Market 
Structure Advisory Committee Meeting on October 27, 2015, available at 
 https://www.sec.gov/news/otherwebcasts/2015/equity-market-structure-advisory-committee-102715.shtml. 

https://www.sec.gov/news/otherwebcasts/2015/equity-market-structure-advisory-committee-102715.shtml
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firms from undercutting each other toward the marginal cost. In our model, the liquidity maker 

and liquidity taker fully optimize their choices, are fully aware of the fees, and exchanges do 

not feature any costs to transmit make/take fees to traders. The driving force behind the mixed-

strategy equilibrium is two-dimensional price competition. When price competition is one-

dimensional, all customers prefer a lower price even if their valuations are heterogeneous. No 

such consensus exists if price competition is two-dimensional. As Figure 3 demonstrates, 

liquidity makers choose different fee structures based on gains from execution.  

 The existence of strictly positive profit in mixed-strategy equilibrium rationalizes the 

entries of new exchanges and market fragmentation. This result arises from the two-sided 

feature of the markets caused by tick size regulation. When the tick size is zero, as shown in 

Section III, the markets are one-sided. Hence, competition between two exchanges can drive 

their profits to zero (Colliard and Foucault 2012), which implies that any positive cost involved 

in establishing a new stock exchange would deter entry. In reality, however, we continue to 

witness “the formation of new exchanges to experiment different price structures.”24 When the 

tick size is positive, the markets become two-sided. Competition between exchanges does not 

lead them to earn zero profit, which encourages the entry of new exchanges. Regulators are 

often concerned that the entry of new stock exchanges will generate greater market 

fragmentation (O’Hara and Ye 2011), but there is only limited understanding of why the market 

becomes increasingly fragmented. We show that one driving force behind fragmentation is the 

existing tick size regulation. 

 

VIII. ROBUSTNESS CHECK AND EXTENSIONS 

In this section, we relax two assumptions made in Sections IV–VII. In Section VIII.A. 

we allow trades to occur on more price grids by reducing the tick size while keeping traders’ 

valuations constant. In Section B, we relax the assumption of duopoly operators, and allow 

each operator to choose the number of exchanges. These extensions produce qualitatively 

similar results to those reported in Sections IV–VII.  

 

VIII.A. Multiple Ticks  

In previous sections we compare market outcomes when the tick size is equal to zero 

with those that obtain when the tick size is equal to 1. All else being equal, in this subsection, 

                                                            
24 Holley, fn 23. 
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we consider the case in which the tick size is equal to 1
𝑁𝑁

, where N is a natural number greater 

than 1. As a liquidity maker has more price grids from which to choose, exchanges cannot 

mandate unique cum fee buy and sell prices by setting make and take fees. Predictions under 

this relaxed setting, however, are qualitatively similar to those under N = 1. As long as the tick 

size is not zero, exchanges can use make and take fees to create sub-tick prices that cannot be 

neutralized by end users, which facilitates second-degree price discrimination and destroys 

pure-strategy equilibrium. 

We start from the simplest case, in which a monopoly opens one exchange. We solve 

the problem backwards by first considering the limit-order price proposed by the liquidity 

maker. 

PROPOSITION 5 (the limit-order price proposed by the liquidity maker). Under tick size 

constraints (1′) 

i) The liquidity maker submits no limit order when 𝑣𝑣𝑏𝑏 <   𝑓𝑓𝑚𝑚 + ⌈𝑁𝑁∙𝑓𝑓𝑡𝑡⌉
𝑁𝑁

, and a liquidity 

maker submits a limit order at price  𝑃𝑃 = 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡)
𝑁𝑁

 otherwise. Here 

𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚, 𝑓𝑓𝑡𝑡) = �
𝑁𝑁 ∙ (𝑣𝑣𝑏𝑏 − 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑡𝑡) + 1

2
� , 

where ⌈𝑥𝑥⌉ and ⌊𝑥𝑥⌋ denote the ceiling and floor functions, respectively. 

ii) Compared with fee structure (𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡), fee structure (𝑓𝑓𝑚𝑚 + 𝑘𝑘
𝑁𝑁

, 𝑓𝑓𝑡𝑡 −
𝑘𝑘
𝑁𝑁

), 𝑘𝑘 ∈ 𝑍𝑍 shifts 

the limit-order price proposed by the liquidity maker by -k ticks, but leads to the 

same cum fee buy and sell prices as those that occur under fee structure (𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡).  

Proposition  5 shows that, for a given total fee, if the exchange increases its make fee 

by, say, one tick, then a liquidity maker can neutralize the effect of this increase by proposing 

a limit-order price that is one tick lower, leaving the cum fee buy and sell prices unchanged. 

Therefore, Part (i) of Proposition 1 is a limiting case of Proposition 5: when the tick size is 

zero, a liquidity maker is able to neutralize any fee breakdowns.   

Proposition 5 also demonstrates that the limit-order price is a non-decreasing step 

function of the liquidity maker’s valuation: a liquidity maker with higher gains from execution 

tends to propose a higher limit-order price to increase the probability of execution. Unlike 

continuous pricing, the limit-order price does not strictly increase in 𝑣𝑣𝑏𝑏, as 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡)
𝑁𝑁

 involves 

a floor function of 𝑣𝑣𝑏𝑏 . When pricing is discrete, the unconstrained limit-order price that a 
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liquidity maker would propose might not coincide with any of the price grids, which results in 

the same limit-order price proposed by liquidity makers with heterogeneous valuations. 

The second-degree price discrimination under multiple ticks involves screening 

liquidity makers who have heterogeneous valuations but quote the same price. Obtaining the 

analytical solution for the optimal fee structure is a complex process, because the nominal price 

proposed by the liquidity maker 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚, 𝑓𝑓𝑡𝑡) involves a floor function of 𝑓𝑓𝑚𝑚 and 𝑓𝑓𝑡𝑡. For the 

case of a monopoly opening one exchange, we are able to obtain the optimal fee structure as a 

function of N, and we present the results in Appendix B. We are not able to obtain a closed-

form solution for the optimal make and take fees as a function of N when the operator 

establishes two exchanges. Therefore, we conduct a numerical search and present the results 

for N = 2, 4, and 8 as examples in Table II.25 

Table II shows that the N = 2 case is identical to the N = 1 case, as the tick size is still 

large enough for the monopoly operator to mandate unique cum fee buy and sell prices by 

setting make and take fees. The N = 4 and N = 8 cases illustrate two interesting features. 

[Insert Table II about here] 

First, the monopoly obtains strictly higher profits by establishing two vertically 

differentiated exchanges than by establishing one exchange. For example, for N = 4, the low-

quality exchange sets the take fee at −0.0340 and the high-quality exchange sets the take fee at 

−0.1595. The exchange with the lower take fee is of higher quality because a liquidity maker 

always chooses the exchange with the lower take fee if both exchanges set the same make fee.26 

The second-degree price discrimination involves charging a low make fee (0.4095) for the low-

quality exchange and a high make fee (0.5840) for the high-quality exchange. The operator 

increases her total profit from 0.1406 to 0.1445.27   

Second, liquidity makers rotate between the low-quality and the high-quality exchange 

as their valuation increases. For example, under tick size  1
4
, a liquidity maker with valuation 

                                                            
25 Our Internet Appendix provides C++ code for the simulations. We restrict the level of the take fee to [− 1

𝑁𝑁
, 0] 

in the simulation, as the equivalence of fee structures (𝑓𝑓𝑚𝑚, 𝑓𝑓𝑡𝑡)  and (𝑓𝑓𝑚𝑚 + 𝑘𝑘
𝑁𝑁

, 𝑓𝑓𝑡𝑡 −
𝑘𝑘
𝑁𝑁

), 𝑘𝑘 ∈ 𝑍𝑍  suggested by 
Proposition 5. 
26 To see this, consider two exchanges with different take fees but charging the same make fee. Suppose that the 
optimal limit-order price for the liquidity maker is 𝑃𝑃∗  on the high take-fee exchange. If the liquidity maker 
proposes the same 𝑃𝑃∗ on the low take-fee exchange, her gain from execution remains the same but the lower take 
fee increases her execution probability. Therefore, she would achieve a higher expected surplus by proposing the 
same 𝑃𝑃∗ on the lower take-fee exchange. The optimal price for the liquidity maker on the low-fee exchange may 
be different from 𝑃𝑃∗on the high-take fee exchange, but a different optimal price implies that the liquidity maker 
can achieve even higher expected surplus than proposing 𝑃𝑃∗ in the low take-fee exchange. 
27 0.1445 is the sum of the profits from the low-quality exchange and the high-quality exchange. 
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𝑣𝑣𝑏𝑏 ∈ [0.5000,0.6313]  proposes a limit order at 𝑃𝑃 = 0  on the low-quality exchange. A 

liquidity maker with valuation 𝑣𝑣𝑏𝑏 ∈ [0.6313, 0.7562] chooses the high-quality exchange, and 

proposes the same price  𝑃𝑃 = 0 . Interestingly, a further increase in valuation to 𝑣𝑣𝑏𝑏 ∈

[0.7562, 1.000] leads a liquidity maker to switch back to the low-quality exchange with an 

increased limit-order price of  𝑃𝑃 = 1
4
.  In fact, column (9) in Table II reveals that a liquidity 

maker with the lowest valuation 𝑣𝑣𝑏𝑏∈[0.5000, 0.6501] chooses the high-quality exchange and 

proposes a limit order at price 𝑃𝑃 = 0. 

The rotation of the exchange choice seems to suggest horizontal differentiation of 

exchanges. Yet exchanges in our model are only vertically differentiated: all else being equal, 

all liquidity makers prefer an exchange with a lower take fee. Exchange rotation is driven by 

the definitions of the high valuation and low valuation types in our model. Unlike the usual 

models of vertical differentiation, the high and low types in our game are defined on each price 

grid. Table II shows that, at the same proposed limit-order price, liquidity makers who choose 

the high-quality exchange have higher valuation than those who choose the low-quality 

exchange. For example, for N = 8, liquidity makers who propose 𝑃𝑃 = 1
8
 on the low-quality 

exchange have valuations in [0.6501, 0.7334], whereas liquidity makers who propose 𝑃𝑃 = 1
8
 on 

the high-quality exchange have valuations in [0.7334, 0.9164]. Yet a further increase in 

valuation beyond 0.9164 makes a liquidity maker propose a price of 1
4
 on the low-quality 

exchange. The nature of such second-degree price discrimination is to screen liquidity makers 

with relatively high and low valuations on the same price grid. Therefore, the price 

discrimination with multiple ticks serves as an extension of our baseline model with only one 

tick, in which all liquidity makers have to quote the same price.  

 

VIII.B. Multiple Operators Each Choosing the Number of Exchanges   

In this subsection, we allow multiple operators to participate in the game, and each 

operator can choose the number of exchanges to offer. Still, no pure-strategy equilibrium exists 

as long as pricing is discrete.  

PROPOSITION 6.  Under tick size constraints (1′), no pure-strategy equilibrium exists when the 

number of operators is greater than 1.   

Allowing an operator to choose the number of exchanges introduces a new type of 

profitable deviation: increasing the number of exchanges. Proposition 6 holds for any discrete 
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tick size. Here we offer an intuitive explanation based on a tick size of 1. Suppose the number 

of exchanges with positive profits is H. We can always find an operator who does not own all 

these H exchanges. The operator can increase her profits by establishing H new exchanges, 

each of which undercuts the cum fee buy prices of the existing H exchanges by 𝜀𝜀, and sets the 

same cum fee sell prices. Such a deviation allows the operator to capture the entire market. In 

reality, opening an additional exchange to compete with rivals is certainly more aggressive 

than changing fees on an existing exchange. Yet we find evidence consistent with this strategy. 

The exchange industry starts from the maker/taker model that offers rebates to liquidity makers 

while charging takers. On April 1, 2009, the Boston Stock Exchange became the first exchange 

to charge liquidity makers and subsidize liquidity takers. This inverted fee structure was 

subsequently adopted by Direct Edge’s new exchange EDGA, and BATS soon followed by 

establishing the BATS Y. 28  Among the three current major operators—NASDAQ OMX, 

Intercontinental Exchange (ICE), and BATS Global Markets)—only the ICE has no exchange 

with an inverted fee structure. However, in a recent panel discussion held by the SEC, the 

president of the NYSE admitted that, facing pressure from competitors, the NYSE is 

considering establishing an exchange with an inverted fee structure. 29 

Now consider the case in which all exchanges make zero profit. An exchange has zero 

profit if (i) no trader participates in that exchange or (ii) the cum fee buy price equals the cum 

fee sell price. For exchanges with a positive participation rate, we can find the one with the 

lowest cum fee price, 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚. The operator can find a profitable deviation by establishing a new 

exchange using the same deviating strategy depicted in the proof of Proposition 3. If 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 < 1
2
, 

the new exchange can choose 𝑝𝑝𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜀𝜀  and  𝑝𝑝𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜇𝜇𝜇𝜇 (0 < 𝜇𝜇 < 1) . This 

pricing structure increases both the cum fee buy price and execution probability, thus attracting 

liquidity makers with high gains from execution.  If 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 1
2
, the new exchange can choose 

𝑝𝑝𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜇𝜇𝜇𝜇  and 𝑝𝑝𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀 and attracts liquidity makers with low gains from 

execution.   

  

IX. DISCUSSION AND POLICY IMPLICATIONS 

 In this section, we discuss the policy implications of our results. In Section IX.A., we 

                                                            
28 BATS established BATS Y before its acquisition of Direct Edge. 
29 See Thomas Farley, President of the NYSE, panel discussion during the Equity Market Structure Advisory 
Committee Meeting at SEC on October 27, 2015, available at:  
https://www.sec.gov/news/otherwebcasts/2015/equity-market-structure-advisory-committee-102715.shtml.  

https://www.sec.gov/news/otherwebcasts/2015/equity-market-structure-advisory-committee-102715.shtml
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discuss recent policy debates on the maker/taker pricing model. In Section IX.B., we discuss 

the new insights our paper provides on the proliferation of new order types and alternative 

trading systems such as dark pools. 

 

IX.A. Policy Debates on the Maker/Taker Pricing Model  

 Recently, the holding company of the NYSE, the ICE, proposed eliminating the 

maker/taker pricing model.30 Two replacement fee structures were proposed: (i) reducing take 

fees after eliminating rebates31; and (ii) distributing the total fee equally between liquidity 

makers and liquidity takers32. BATS, on the other hand, aggressively opposes banning the 

maker/taker pricing structure. 33  Proposition 7 predicts market outcomes under these two 

proposed fee structures.  

PROPOSITION 7. Under tick size constraints (1′), eliminating rebates, thereby charging only 

one side, or splitting the total fee equally between a liquidity maker and a liquidity taker:  

(i) leads competing operators to make zero profit; 

(ii) discourages operators from opening more than one exchange.34  

 First, consider the policy proposal to remove rebates to liquidity makers and to charge 

only liquidity takers. Any liquidity maker then chooses the exchange with the lowest take fee, 

because it offers the highest quality at the same zero make fee. Our model also allows us to 

evaluate the consequence of charging liquidity makers only. In this case, competing exchanges 

are of the same quality and the liquidity maker chooses the exchange with the lowest price 

(make fee). Charging only one side changes the two-sided price competition to one-sided price 

competition, which leads competing operators to undercut each other toward zero make and 

take fees. Also, no operators have incentives to establish multiple exchanges, because the 

liquidity maker always chooses the exchange with the lowest fee.  

 The proposal to split the total fee equally between a liquidity maker and a liquidity taker 

also changes two-sided price competition to one-sided price competition.  When such a 

restriction is imposed, a high-quality (low take fee) exchange must also charge a low price (or 

                                                            
30 Sprecher, fn 8.  
31 Sprecher, fn 8. 
32 See Matt Lyons, Senior V.P. & Global Trading Manager of the Capital Group, Panel Discussion at SEC on 
October 27, 2015, available at: https://www.sec.gov/news/otherwebcasts/2015/equity-market-structure-advisory-
committee-102715.shtml.  
33 Ratterman, fn 9. 
34 When 𝑁𝑁 = 1, charging one side only or splitting the total fee equally results in no trade (Lemma 1). Thus, all 
exchanges make zero profit. The proposition holds trivially. 

https://www.sec.gov/news/otherwebcasts/2015/equity-market-structure-advisory-committee-102715.shtml
https://www.sec.gov/news/otherwebcasts/2015/equity-market-structure-advisory-committee-102715.shtml
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low make fee), which destroys the exchange’s ability to balance price and quality with respect 

to the liquidity maker. The liquidity maker thus chooses the exchange with the lowest total fee, 

which in turn results in competing operators undercutting each other toward a zero total fee, 

and no operators having an incentive to establish multiple exchanges. 

 Proposition 7 provides a possible rationale for the differing stances of operators on the 

policy debate over fee schedules. A major concern of traditional stock exchanges such as the 

NYSE is the loss of market share to new market entrants such as BATS. Under two-sided price 

competition, the proof of Proposition 3 demonstrates that no operator can prevent its rivals 

from making strictly positive profits without losing money itself. One-dimensional price 

competition, however, can drive profits toward zero. This provides a plausible explanation of 

why BATS aggressively opposes one-dimensional price competition, as its major source of 

revenue comes from make/take fees. The NYSE, however, obtains revenue from stock listings 

as well as fees; this additional revenue could help it to survive short-run zero profit from 

make/take fees. To be sure, the opposing positions taken by the NYSE and BATS in the policy 

debate can be driven by other considerations, but the extant literature has yet to explain their 

divergence of opinion.35 

 Surprisingly, having competition to drive exchange profit to zero may not necessarily 

improve social welfare under a discrete tick size. As demonstrated in Lemma 1, suppose that 

the tick size equals 1 and the liquidity maker’s valuation is 𝑣𝑣𝑏𝑏 ∈ [1
2

, 1] while the liquidity 

taker’s valuation is 𝑣𝑣𝑠𝑠 ∈ [0, 1
2
]. Charging one side while subsidizing the other creates a new 

price level within a tick that can facilitate trades, while charging one side or equal splitting 

results in no trades occurring, and consequently a loss of social welfare. By contrast, suppose 

that the tick size equals 1
2
, and the liquidity maker’s and liquidity taker’s valuations stay the 

same as in the previous case but they are now separated by the price grid P = 1
2
. In this case, 

charging no fees to either side facilitates all trading on the price grid   1
2
, which improves social 

welfare. In the real world, the liquidity maker’s and liquidity taker’s valuations can either fall 

within a tick or be separated by a price grid. Under a discrete tick size, the overall effect of 

having zero make and take fees on social welfare is mixed. 

                                                            
35 For example, the NYSE argues that brokers tend to route orders to exchanges with the highest rebates, because 
brokers are not required to pass on the rebates to customers. Yet it is puzzling why the NYSE does not simply 
match the rebates offered by BATS as a competing device, and instead calls on regulators to ban the rebates. 
BATS argues that the NYSE’s proposal to ban the rebate is anticompetitive, but it is not clear why price 
competition in a one-dimensional configuration is less competitive than in a two-dimensional configuration. 
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IX.B. Implications for the Proliferation of Order Types and Dark pools    

The nature of the fee game is that the operator proposes sub-tick price increments within 

a given tick. Such an interpretation also sheds light on the proliferation of new order types and 

dark pools. SEC Rule 612(c) imposes the tick size on displayed orders, but operators can create 

sub-penny prices using hidden order types or by creating trading systems in which the quotes 

are hidden. For example, midpoint peg orders have a nominal price at the midpoint, while the 

midpoint dark pool matches buyers and sellers using the midpoint of the national best bid and 

offer prices. The pricing of these two mechanisms is similar to a fee structure of 

(𝑓𝑓𝑚𝑚 = 0.5,𝑓𝑓𝑡𝑡 = −0.5) in our model. This fee structure facilitates trading between any liquidity 

maker and any liquidity taker with valuations specified in our model. In a competitive 

environment, however, the fee structure (𝑓𝑓𝑚𝑚 = 0.5,𝑓𝑓𝑡𝑡 = −0.5) cannot preempt the entry of 

other fee structures, other order types, or the dark pools implied by the fee structure, as is 

posited in Proposition 3.  

More importantly, new order types and dark pools are run by for-profit institutions that 

charge service fees, so the implied fee structures are different from (𝑓𝑓𝑚𝑚 = 0.5,𝑓𝑓𝑡𝑡 = −0.5). We 

are aware that new order types and dark pools can serve other purposes, such as hiding 

information. Nevertheless, our model provides one explanation for the proliferation of new 

order types and dark pools. This intuition is consistent with the empirical evidence reported by 

Kwan, Masulis, and McInish (2015), that the market share of a dark pool increases with the 

relative tick size (a one-cent tick size divided by the stock price). Also, we provide one 

plausible explanation why new order types and dark pools do not drive public exchanges and 

regular limit and market orders out of business, despite their ability to provide transaction costs 

within the tick. 

 

X. CONCLUSION 

In this paper, we examine make/take fee competition between stock exchanges. When 

traders can quote a continuous price, the breakdown of the make/take fees is neutralized and 

order flow consolidates to the exchange with the lowest total fee. Under tick size constraints, 

fee breakdowns are no longer neutral, and two-sided competition over make and take fees leads 

to the proliferation of stock exchanges offering almost identical services but charging dispersed 

fees. We first show that the two-sidedness of such a market allows operators to establish 

multiple, intrinsically identical, exchanges with heterogeneous fee structures for the purpose 

of second-degree price discrimination. Second, we demonstrate the non-existence of pure-
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strategy equilibrium in the fee game under tick size constraints, which leads to fee diversity 

and frequent fluctuations. Mixed-strategy equilibrium entails positive profits for all competing 

operators, which encourages the entry of exchanges with new fee structures. 

This understanding of the nature of make/take fee competition helps in the evaluation 

of a recent proposal to ban maker/taker pricing model. There are three arguments for banning 

the make/take fee pricing model: fairness, complexity, and agency issues. The fairness 

argument claims that fees lead to wealth transfer from one side of the market to the other. We 

show, however, that in the presence of tick size constraints the fees imposed by the exchanges 

can improve welfare by creating sub-tick transaction prices. The second argument for banning 

the fee cites its complexity and frequent fluctuations. Since the literature provides limited 

economic rationale for this complexity, Dolgopolov (2014) and Lewis (2014) conjecture that 

such complexity may serve fraudulent practices to disproportionately benefit certain market 

participants (SEC 2015). However, the mixed-strategy equilibrium in the model provides an 

alternative interpretation of this complexity. The final argument for banning the fee involves 

agency concerns. Battalio, Corwin, and Jennings (2015) find that broker/dealers have a strong 

incentive to route customers’ limit orders to the market offering the highest rebate, because 

brokers/dealers are permitted to keep such rebates. This conflict of interest leads to two policy 

proposals: (i) passing the rebate back to customers; and (ii) eliminating the fees (Angel, Harris, 

and Spatt 2010, 2013). This paper reveals economic forces that favor the first solution. Passing 

the rebate back to customers is a direct solution to the agency issue, while eliminating the fees 

might hinder the would-be efficiency of trading within the tick size. Finally, our model predicts 

that charging one side or splitting fees equally would drive make and take fees toward zero, 

but the welfare effects of these proposals are mixed under tick size constraints.   

We also show that make/take fees are responses from competing exchanges seeking to 

bypass the existing tick size regulations. 36  This result questions the rationale of a recent 

initiative to increase the tick size for small stocks to five cents. Encouraged by the 2012 JOBS 

Act, the SEC plans to implement a pilot program to increase the tick size on May 6, 2016.37 

The motivation for increasing the tick size is that it may increase market-making profits, 

support sell-side equity research, and, eventually, increase the number of IPOs (Weild, Kim, 

and Newport 2012). We show, however, that exchanges can use fee structures to create cum 

                                                            
36 For studies on the tick size, see Kandel and Marx (1997), Kalay and Anshuman (1998), Buti et al. (2014), 
O’Hara, Saar, and Zhong (2015), and Yao and Ye (2015), among others.  
37 See SEC press release “SEC Approves Pilot to Assess Tick Size Impact for Smaller Companies” on May 6, 
2015, available at http://www.sec.gov/news/pressrelease/2015-82.html. 

http://www.sec.gov/news/pressrelease/2015-82.html
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fee prices that fall within the tick. An increase in the tick size will potentially create more room 

for multiple exchanges to co-exist and lead to a more fragmented market. 

Our model is based on the stock exchange industry, but it reveals two economic 

mechanisms that can potentially be extended to other industries. First, non-neutrality in our 

paper stems from the tick size regulation in the exchange industry, but we believe this economic 

insight applies to other market frictions that also generate non-neutrality. For example, non-

surcharge provisions in credit card contracts discourage merchants from charging differentiated 

prices for payments using different credit cards. The similarity between credit cards and 

make/take fees resides in market designs that prevent the two user groups from neutralizing the 

breakdown of the fees. Cards with high rebates to customers generally have lower acceptance 

rates because they usually charge a high fee to merchants. Suppose that merchants can impose 

surcharges on transactions to recover the fees they are charged. Credit card issuers would 

compete over the sum of charges to both merchants and card-holders, which could reduce the 

variety of credit cards. It would be interesting to explore whether gradual removal of non-

surcharge provision would reduce the variety of credit cards.38 Second, the non-existence of a 

pure-strategy equilibrium in our model is driven by the simultaneous choice of price and quality. 

In our paper, quality refers to another price (execution probability implied by the cum fee price 

for the liquidity taker), but the predictability of the model should hold if quality is a product 

feature that can be easily adjusted. Such a feature may be hard to find in manufacturing, but 

we believe it may exist in financial or service-oriented industries. Thus, we hope that this paper 

proves fruitful in generating further useful research in the competition between financial 

products.  
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38 Since January 27, 2013, 40 U.S. states have allowed merchants to add a surcharge to purchases paid with a Visa 
or MasterCard. However, the competition between credit cards is still two sided. First, this settlement does not 
cover all states. Second, this settlement does not cover all cards. A merchant that accepts American Express cannot 
surcharge Visa and MasterCard credit cards. Most importantly, merchants are not allowed to discriminate or 
surcharge based on the involved payment card issuer (i.e. national bank, state bank, credit union, etc.), or whether 
the card is a rewards card or a non-rewards card. 
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APPENDIX A: PROOFS 

Proof of PROPOSITION 1 

 Part (i) follows from Equation (2), which implies that for any 𝑣𝑣𝑏𝑏 ≥ 𝑇𝑇𝑖𝑖, the maximal 

surplus for a buyer with valuation 𝑣𝑣𝑏𝑏 to submit a limit order to exchange (hereafter, EX) i is   

 𝐵𝐵𝐵𝐵𝑖𝑖∗(𝑣𝑣𝑏𝑏) = �𝑣𝑣𝑏𝑏 − 𝑃𝑃𝑖𝑖∗(𝑣𝑣𝑏𝑏) − 𝑓𝑓𝑚𝑚𝑖𝑖 � ∙ Prob �𝑣𝑣𝑠𝑠 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑃𝑃𝑖𝑖∗(𝑣𝑣𝑏𝑏) − 𝑓𝑓𝑡𝑡𝑖𝑖 ,
1
2
��

= �𝑣𝑣𝑏𝑏 − 𝑇𝑇𝑖𝑖� ∙ 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑣𝑣𝑏𝑏 − 𝑇𝑇𝑖𝑖

2
,
1
2
� 

= �𝑣𝑣𝑏𝑏−𝑇𝑇𝑖𝑖�
2

2
 (because 𝑣𝑣𝑏𝑏 − 𝑇𝑇𝑖𝑖 ≤ 1 for any 𝑇𝑇𝑖𝑖 ≥ 0), 

 

which depends only on total fee 𝑇𝑇𝑖𝑖. Consequently, the liquidity maker chooses the EX with the 

lowest total fee. Since the liquidity taker follows the liquidity maker’s choice of EX, she also 

chooses the EX with the lowest total fee. 

 For any given 𝑣𝑣𝑏𝑏, the EX with the lowest total fee earns a profit 

𝛱𝛱�𝑇𝑇𝑖𝑖 , 𝑣𝑣𝑏𝑏� = �𝑇𝑇
𝑖𝑖 ∙ Prob �𝑣𝑣𝑠𝑠 ≤ min �𝑃𝑃𝑖𝑖∗(𝑣𝑣𝑏𝑏) − 𝑓𝑓𝑡𝑡𝑖𝑖 ,

1
2
��    𝑖𝑖𝑖𝑖 𝑣𝑣𝑏𝑏 ≥ 𝑇𝑇𝑖𝑖 

                                     0                                    𝑖𝑖𝑖𝑖 𝑣𝑣𝑏𝑏 < 𝑇𝑇𝑖𝑖
. 

Accordingly, its total expected profit is given by 

𝛱𝛱𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = � 2 ∙ 𝛱𝛱�𝑇𝑇𝑖𝑖 , 𝑣𝑣𝑏𝑏� 𝑑𝑑𝑣𝑣𝑏𝑏
𝑣𝑣𝑏𝑏≥𝑇𝑇𝑖𝑖

 

= 2𝑇𝑇𝑖𝑖 ∙ � Prob �𝑣𝑣𝑠𝑠 ≤ min �𝑃𝑃𝑖𝑖∗(𝑣𝑣𝑏𝑏) − 𝑓𝑓𝑡𝑡𝑖𝑖 ,
1
2
�� 𝑑𝑑𝑣𝑣𝑏𝑏

1

max�𝑇𝑇𝑖𝑖,   12�
 

= 2𝑇𝑇𝑖𝑖 ∙ � Prob�𝑣𝑣𝑠𝑠 ≤
𝑣𝑣𝑏𝑏 − 𝑇𝑇𝑖𝑖

2
�𝑑𝑑𝑣𝑣𝑏𝑏

1

max�𝑇𝑇𝑖𝑖,   12�
 

= 2𝑇𝑇𝑖𝑖 ∙ � (𝑣𝑣𝑏𝑏 − 𝑇𝑇𝑖𝑖)𝑑𝑑𝑣𝑣𝑏𝑏
1

max�𝑇𝑇𝑖𝑖,   12�
 

which is a function of  𝑇𝑇𝑖𝑖, and does not depend on how 𝑇𝑇𝑖𝑖 is decomposed into 𝑓𝑓𝑚𝑚𝑖𝑖  and 𝑓𝑓𝑡𝑡𝑖𝑖. EXs 

whose total fees are not the lowest earn zero profits. 

 Thus for all three types of players, only the total fee matters. 

 Parts (ii) and (iii) follow directly from part (i). Since all traders go to the EX with the 

lowest total fee, no operator can increase its profit by establishing multiple exchanges with 

heterogeneous total fee. When multiple operators compete, they undercut each other to zero 

total fee and earn zero profits. 
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 To solve for optimal monopoly pricing, note that a monopoly operator does not have 

any incentive to open multiple EXs, because any liquidity maker chooses the EX with the 

lowest total fee. So using the formula for 𝛱𝛱𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 above (we suppress superscript 𝑖𝑖 here as a 

monopoly does not open multiple EXs), the monopoly EX’s profit can be written as 

𝛱𝛱𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) = 2𝑇𝑇 ∙ � (𝑣𝑣𝑏𝑏 − 𝑇𝑇)𝑑𝑑𝑣𝑣𝑏𝑏
1

max�𝑇𝑇,   12�
= �

𝑇𝑇 ∙ (
3
4
− 𝑇𝑇)     𝑖𝑖𝑖𝑖  

1
2
≥ 𝑇𝑇

𝑇𝑇 ∙ (1 − 𝑇𝑇)2   𝑖𝑖𝑖𝑖  
1
2

< 𝑇𝑇
 

The solutions are 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗ = 3
8
 and 𝛱𝛱𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗ = 9

64
. ■ 

Proof of LEMMA 1 

 Part (i) follows from the necessary condition identified by Equation (5), for a trade to 

occur. If the make fee 𝑓𝑓𝑚𝑚 > 0, the liquidity maker must propose a limit-order price at 𝑃𝑃 ≤ 0, 

because otherwise 𝑃𝑃 + 𝑓𝑓𝑚𝑚 > 1. It then follows that for a trade to happen, the take fee 𝑓𝑓𝑡𝑡 < 0, 

because otherwise 𝑃𝑃 − 𝑓𝑓𝑡𝑡 ≤ 0. 

 Similarly, if the make fee 𝑓𝑓𝑚𝑚 < 0, the liquidity maker must propose a limit-order price 

at 𝑃𝑃 ≥ 1 and the take fee 𝑓𝑓𝑡𝑡 > 0. In summary, a necessary condition for a trade to occur is 

charging one side and subsidizing the other.  

 In addition, Equation (5) implies that, for a trade to occur, we need � 0 < 𝑃𝑃 − 𝑓𝑓𝑡𝑡
𝑃𝑃 + 𝑓𝑓𝑚𝑚 < 1, which 

is equivalent to �𝑓𝑓𝑡𝑡 < 𝑃𝑃
𝑓𝑓𝑚𝑚 < 1 − 𝑃𝑃. Thus, 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑡𝑡 < 1. For the EX to survive, we need 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑡𝑡 ≥ 0. 

 Part (ii) follows from part (i) and |𝑓𝑓𝑖𝑖| ≤ 1 (i=m,t). In particular, if 𝑓𝑓𝑚𝑚 > 0, from the 

proof in part (i), we have 𝑃𝑃 ≤ 0 and 𝑓𝑓𝑡𝑡 < 0. Equation (5) and |𝑓𝑓𝑖𝑖| ≤ 1 (i=m,t) together yield 

−1 ≤ 𝑓𝑓𝑡𝑡 < 𝑃𝑃. So 𝑃𝑃 = 0. In parallel, we can show 𝑃𝑃 = 1 if 𝑓𝑓𝑚𝑚 < 0. 

Part (iii) follows directly from the definitions of the cum fee buy and sell prices. ■ 

Proof of LEMMA 2 

 Under EX 1’s fee structure (𝛼𝛼,𝛽𝛽), according to parts (ii) and (iii) of Lemma 1, the 

liquidity maker proposes a buy limit order at price 𝑃𝑃 = 0, and trade with the liquidity taker 

with valuation 𝑣𝑣𝑠𝑠 ≤ min {− 𝛽𝛽, 1
2
}. So the liquidity maker’s surplus when choosing EX 1 is 

 𝐵𝐵𝐵𝐵1 = (𝑣𝑣𝑏𝑏 − 𝛼𝛼) ∙ Prob �𝑣𝑣𝑠𝑠 ≤ min �−𝛽𝛽,
1
2
��  
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 = �
(𝑣𝑣𝑏𝑏 − 𝛼𝛼) ∙ 2(−𝛽𝛽) if − 𝛽𝛽 < 1

2

𝑣𝑣𝑏𝑏 − 𝛼𝛼 if − 𝛽𝛽 ≥ 1
2

.  

 Similarly, under EX 2’s fee structure (𝛽𝛽,𝛼𝛼), the liquidity maker proposes a buy limit 

order at price 𝑃𝑃 = 1, and trade with the liquidity taker with valuation 𝑣𝑣𝑠𝑠 ≤ min {1 − 𝛼𝛼, 1
2
}. So 

the liquidity maker’s surplus when choosing EX 2 is 

 𝐵𝐵𝐵𝐵2 = (𝑣𝑣𝑏𝑏 − 1 − 𝛽𝛽) ∙ Prob (𝑣𝑣𝑠𝑠 ≤ min {1 − 𝛼𝛼,
1
2

})  

 = �
(𝑣𝑣𝑏𝑏 − 1 − 𝛽𝛽) ∙ 2(1 − 𝛼𝛼) if 𝛼𝛼 > 1

2

𝑣𝑣𝑏𝑏 − 1 − 𝛽𝛽 if 𝛼𝛼 ≤ 1
2

 .  

 We consider the following three possible cases: 

 Case (i): 𝛼𝛼 > −𝛽𝛽 ≥ 1
2
 

 ∆𝐵𝐵𝐵𝐵(𝑣𝑣𝑏𝑏) ≡ 𝐵𝐵𝐵𝐵1 − 𝐵𝐵𝐵𝐵2 = 𝑣𝑣𝑏𝑏 − 𝛼𝛼 − (𝑣𝑣𝑏𝑏 − 1 − 𝛽𝛽) ∙ 2(1 − 𝛼𝛼)  

 = 2 ∙ ��𝛼𝛼 −
1
2�

∙ 𝑣𝑣𝑏𝑏 −
1
2
∙ 𝛼𝛼 + (1 + 𝛽𝛽) ∙ (1 − 𝛼𝛼)�.  

Note that ∆𝐵𝐵𝐵𝐵(𝑣𝑣𝑏𝑏) increases with 𝑣𝑣𝑏𝑏, because 𝛼𝛼 > 1
2
. Hence, 

 ∆𝐵𝐵𝐵𝐵(𝑣𝑣𝑏𝑏) ≤ ∆𝐵𝐵𝐵𝐵(1)  

 =  2 ∙ (1 − 𝛼𝛼) ∙ (
1
2

+ 𝛽𝛽) ≤ 0.  

The liquidity maker thus prefers EX 2. 

 Case (ii): 𝛼𝛼 > 1
2

> −𝛽𝛽 

 ∆𝐵𝐵𝐵𝐵(𝑣𝑣𝑏𝑏) = 2 ∙ (𝑣𝑣𝑏𝑏 − 𝛼𝛼) ∙ (−𝛽𝛽) − (𝑣𝑣𝑏𝑏 − 1 − 𝛽𝛽) ∙ 2(1 − 𝛼𝛼)  

 = 2 ∙ (𝛼𝛼 − 𝛽𝛽 − 1) ∙ (𝑣𝑣𝑏𝑏 − 1).  

So 

∆𝐵𝐵𝐵𝐵(𝑣𝑣𝑏𝑏) ⋛ 0 if and only if 𝛼𝛼 − 𝛽𝛽 ⋚ 1. 

 Case (iii): 1
2
≥ 𝛼𝛼 > −𝛽𝛽 

 ∆𝐵𝐵𝐵𝐵(𝑣𝑣𝑏𝑏) = 2 ∙ (𝑣𝑣𝑏𝑏 − 𝛼𝛼) ∙ (−𝛽𝛽) − 𝑣𝑣𝑏𝑏 − 1 − 𝛽𝛽  

 = 2 ∙ ��−𝛽𝛽 −
1
2�

∙ 𝑣𝑣𝑏𝑏 − (−𝛽𝛽) ∙ 𝛼𝛼 + (1 + 𝛽𝛽) ∙
1
2
�.  

Note that ∆𝐵𝐵𝐵𝐵(𝑣𝑣𝑏𝑏) decreases with 𝑣𝑣𝑏𝑏, because 1
2

> −𝛽𝛽. Hence, 

 ∆𝐵𝐵𝐵𝐵(𝑣𝑣𝑏𝑏) ≥ ∆𝐵𝐵𝐵𝐵(1)  

 =  2 ∙ (−𝛽𝛽) ∙ (
1
2
− 𝛼𝛼) ≥ 0.  
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The liquidity maker thus prefers EX 1. 

 Combining cases (i)–(iii), Lemma 2 follows. ■ 

Proof of PROPOSITION 2 

 Suppose a monopoly operator opens 𝑘𝑘 EXs. Denote 𝑝𝑝𝑏𝑏𝑖𝑖  and 𝑝𝑝𝑠𝑠𝑖𝑖  as EX 𝑖𝑖’s cum fee buy 

price and cum fee sell price, respectively, where 1 ≤ 𝑖𝑖 ≤  𝑘𝑘. Without loss of generality, we 

can assume that 𝑝𝑝𝑠𝑠1  ≤ 𝑝𝑝𝑠𝑠2 ≤ · · · ≤ 𝑝𝑝𝑠𝑠𝑘𝑘 . The analysis of product differentiation in Section V 

suggests that 𝑝𝑝𝑏𝑏1  ≤ 𝑝𝑝𝑏𝑏2 ≤ · · · ≤ 𝑝𝑝𝑏𝑏𝑘𝑘. If not, suppose that EX 𝑖𝑖 has a lower cum fee buy price and 

a higher cum fee sell price than EX 𝑗𝑗. Then no liquidity maker chooses EX 𝑗𝑗. Moreover, the 

cum fee sell price 𝑝𝑝𝑠𝑠𝑖𝑖 ≤
1
2
 for all 𝑖𝑖, because whenever the cum fee sell price 𝑝𝑝𝑠𝑠𝑖𝑖 > 1

2
, EX 𝑖𝑖 can 

increase its profit by lowering 𝑝𝑝𝑠𝑠𝑖𝑖  by a small amount, so that it earns a higher per-transaction 

fee 𝑝𝑝𝑏𝑏𝑖𝑖 − 𝑝𝑝𝑠𝑠𝑖𝑖  but still has the full participation of liquidity takers.  

 Now we analyze liquidity makers’ segmentation across these 𝑘𝑘 EXs. A liquidity maker 

with valuation 𝑣𝑣𝑏𝑏 < 𝑝𝑝𝑏𝑏1 posts no limit order on any EX. A liquidity maker with valuation 𝑝𝑝𝑏𝑏1  ≤

𝑣𝑣𝑏𝑏 < 𝑝𝑝𝑏𝑏2 posts a limit order on EX 1. A liquidity maker with valuation 𝑝𝑝𝑏𝑏2  ≤ 𝑣𝑣𝑏𝑏 < 𝑝𝑝𝑏𝑏3 posts a 

limit order on EX 1 only if 

(A.1)                         2 ∙ (𝑣𝑣𝑏𝑏 − 𝑝𝑝𝑏𝑏2) ∙ 𝑝𝑝𝑠𝑠2 ≤ 2 ∙ (𝑣𝑣𝑏𝑏 − 𝑝𝑝𝑏𝑏1) ∙ 𝑝𝑝𝑠𝑠1,                                     

which is equivalent to 𝑣𝑣𝑏𝑏 ≤
𝑝𝑝𝑏𝑏
2𝑝𝑝𝑠𝑠2−𝑝𝑝𝑏𝑏

1𝑝𝑝𝑠𝑠1

𝑝𝑝𝑠𝑠2−𝑝𝑝𝑠𝑠1
. Denote 𝜑𝜑𝑖𝑖 = 𝑝𝑝𝑏𝑏

2𝑝𝑝𝑠𝑠2−𝑝𝑝𝑏𝑏
1𝑝𝑝𝑠𝑠1

𝑝𝑝𝑠𝑠2−𝑝𝑝𝑠𝑠1
. It follows that a liquidity maker 

with valuation 𝑣𝑣𝑏𝑏𝜖𝜖[𝑝𝑝𝑏𝑏1,𝜑𝜑1] posts a limit order on EX 1. Similarly, denote 

𝜑𝜑𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧ 𝑝𝑝𝑏𝑏1                  for 𝑖𝑖 = 0
𝑝𝑝𝑏𝑏𝑖𝑖+1𝑝𝑝𝑠𝑠𝑖𝑖+1 − 𝑝𝑝𝑏𝑏𝑖𝑖 𝑝𝑝𝑠𝑠𝑖𝑖

𝑝𝑝𝑠𝑠𝑖𝑖+1 − 𝑝𝑝𝑠𝑠𝑖𝑖
       for 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 1

1                     for 𝑖𝑖 = 𝑘𝑘

   

A liquidity maker with valuation 𝑣𝑣𝑏𝑏𝜖𝜖�𝜑𝜑𝑖𝑖 ,𝜑𝜑𝑖𝑖−1� posts a limit order on EX 𝑖𝑖 for 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘. 

The monopoly operator chooses a cum fee buy price 𝑝𝑝𝑏𝑏𝑖𝑖  and cum fee sell price 𝑝𝑝𝑠𝑠𝑖𝑖  on 

each EX i to maximize 

𝛱𝛱𝑀𝑀(𝑘𝑘) = 4�(𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑖𝑖−1) ∙ 𝑝𝑝𝑠𝑠𝑖𝑖 ∙ (𝑝𝑝𝑏𝑏𝑖𝑖 −𝑝𝑝𝑠𝑠𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

 

s.t. 𝜑𝜑0 ≤ 𝜑𝜑1 ≤ ⋯ ≤ 𝜑𝜑𝑘𝑘 
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We first maximize the profit function above without constraint 𝜑𝜑0 ≤ 𝜑𝜑1 ≤ ⋯ ≤ 𝜑𝜑𝑘𝑘, 

which yields the optimal cum fee buy and sell prices for each EX 𝑖𝑖, given by Equation (14). 

 Under the cum fee buy and sell prices from Equation (14), we have 

𝜑𝜑𝑖𝑖 = 𝑘𝑘+𝑖𝑖+1
2𝑘𝑘+1

, 𝑖𝑖 = 0, 1,⋯ ,𝑘𝑘  

which satisfies constraint 𝜑𝜑0 ≤ 𝜑𝜑1 ≤ ⋯ ≤ 𝜑𝜑𝑘𝑘. So the cum fee buy and sell prices given by 

Equation (14) are also solutions to the constrained maximization problem. By establishing 𝑘𝑘 

EXs, the profit of the monopoly operator is 

𝛱𝛱𝑀𝑀(𝑘𝑘) = 4��
k + i + 1

2k + 1
−

𝑘𝑘 + 𝑖𝑖
2𝑘𝑘 + 1�

⋅
𝑖𝑖

2𝑘𝑘 + 1
⋅ �

1
2

+
𝑖𝑖

2(2𝑘𝑘 + 1) −
𝑖𝑖

2𝑘𝑘 + 1�
𝑘𝑘

𝑖𝑖=1

 

=
2𝑘𝑘 ∙ (𝑘𝑘 + 1)
3(2𝑘𝑘 + 1)2

 

 The liquidity maker’s expected surplus is  

𝐵𝐵𝑆𝑆𝑀𝑀(𝑘𝑘) = 4�(𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑖𝑖−1) ∙ 𝑝𝑝𝑠𝑠
𝑖𝑖 ∙ �𝐸𝐸�𝑣𝑣𝑏𝑏�𝜑𝜑𝑖𝑖−1 ≤ 𝑣𝑣𝑏𝑏 ≤ 𝜑𝜑𝑖𝑖� − 𝑝𝑝𝑏𝑏

𝑖𝑖 � =
𝑘𝑘 ∙ (𝑘𝑘+ 1)
3(2𝑘𝑘+ 1)2

𝑘𝑘

𝑖𝑖=1
 

 The liquidity taker’s surplus is  

𝑆𝑆𝑆𝑆𝑀𝑀(𝑘𝑘) = 4�(𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑖𝑖−1) ∙ 𝑝𝑝𝑠𝑠
𝑖𝑖 ∙ (𝑝𝑝𝑠𝑠

𝑖𝑖 − 𝐸𝐸�𝑣𝑣𝑠𝑠�𝑣𝑣𝑠𝑠 ≤ 𝑝𝑝𝑠𝑠
𝑖𝑖 �)

𝑘𝑘

𝑖𝑖=1
=
𝑘𝑘 ∙ (𝑘𝑘+ 1)
3(2𝑘𝑘+ 1)2 

If a fixed cost 𝑐𝑐  is involved in opening a new EX, the monopoly operator keeps 

establishing the 𝑘𝑘𝑡𝑡ℎ EX as long as 

𝛱𝛱𝑀𝑀(𝑘𝑘) − 𝛱𝛱𝑀𝑀(𝑘𝑘 − 1) = 4𝑘𝑘
3(2𝑘𝑘+1)2(2𝑘𝑘−1)2

≥ 𝑐𝑐. ■ 

Proof of PROPOSITION 3 

 We prove this proposition through contradiction. Without loss of generality, suppose 

that pure-strategy equilibrium exists and that 𝛱𝛱1 ≥ 𝛱𝛱2  in equilibrium. We prove that a 

profitable deviating strategy always exists for EX 2, so the pure strategy cannot be sustained 

in equilibrium. Two cases are to be considered: (i) 𝛱𝛱1 > 0; (ii) 𝛱𝛱1 = 𝛱𝛱2 = 0. 

(i) There are two subcases to be considered: (i-a) 𝛱𝛱1 > 𝛱𝛱2 ≥ 0; (i-b) 𝛱𝛱1 = 𝛱𝛱2 > 0. 

(i-a) EX 2 can set its fees such that 

(A.2) 𝑝𝑝𝑏𝑏2 = 𝑝𝑝𝑏𝑏1 − 𝜀𝜀 and 𝑝𝑝𝑠𝑠2 = 𝑝𝑝𝑠𝑠1,  

where 𝜀𝜀 > 0. Then any liquidity maker chooses EX 2, and EX 2’s profit becomes 
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 𝛱𝛱�2 = (𝑝𝑝𝑏𝑏1 − 𝜀𝜀 − 𝑝𝑝𝑠𝑠1) ∙  Prob (𝑣𝑣𝑏𝑏 ≥ 𝑣𝑣�𝑏𝑏2) ∙ Prob (𝑣𝑣𝑠𝑠 ≤ 𝑣𝑣�𝑠𝑠2)  

 ≥ (𝑝𝑝𝑏𝑏1 − 𝑝𝑝𝑠𝑠1 − 𝜀𝜀) ∙  Prob (𝑣𝑣𝑏𝑏 ≥ 𝑣𝑣�𝑏𝑏1) ∙ Prob (𝑣𝑣𝑠𝑠 ≤ 𝑣𝑣�𝑠𝑠1)  

 = (𝛱𝛱1 − 𝜀𝜀) ∙ Prob(𝑣𝑣𝑏𝑏 ≥ 𝑣𝑣�𝑏𝑏1) ∙ Prob(𝑣𝑣𝑠𝑠 ≤ 𝑣𝑣�𝑠𝑠1),  

where the inequality follows from (A.2), 𝑣𝑣�𝑠𝑠𝑖𝑖 is given by Equation (9), and 𝑣𝑣�𝑏𝑏𝑖𝑖 ≡ max {𝑝𝑝𝑏𝑏1, 1
2
}. 

Clearly, as long as 𝛱𝛱1 > 𝛱𝛱2, EX 2 can always strictly increase its profit by using the deviating 

strategy (A.2) with a sufficiently small 𝜀𝜀. 

(i-b) If EX 2 and EX 1 have the same cum fee sell price, they must have the same cum fee 

buy price to obtain equal profit. It is then easy to see that deviation (A.2) nearly doubles EX 

2’s profit. Now consider the case that they have heterogeneous cum fee sell prices but the same 

profit.  Without loss of generality, suppose that EX 2 starts with higher quality than EX 1. Then 

EX 2 must have higher cum fee buy price than EX 1 does. Liquidity makers with relatively 

higher valuations choose EX 2 while liquidity makers with relatively lower valuation choose 

EX 1. 

Deviation (A.2) of EX 2 first attracts low-valuation liquidity makers with infinitesimal 

profit concession. Deviation (A.2) also retains EX 2’s original liquidity makers. They choose 

to participate because the new cum fee buy price is lower than 𝑝𝑝𝑏𝑏1, which is lower than EX 2’s 

original cum fee buy price and (A.2) is better than (𝑝𝑝𝑏𝑏1,𝑝𝑝𝑠𝑠1). EX 2 can choose 𝜀𝜀 sufficiently 

small such that the expected profit from retaining high-valuation liquidity makers is greater 

than the infinitesimal decrease in profit from low-valuation liquidity makers. 

Therefore, deviation (A.2) rules out the possibility that two EXs earn the same positive 

profits in equilibrium. 

(ii) There are two subcases that two EXs earn zero profits: (ii-a) no trading; (ii-b) trading 

with 𝑝𝑝𝑏𝑏𝑖𝑖 = 𝑝𝑝𝑠𝑠𝑖𝑖 ∈ (0, 1), 𝑖𝑖 = 1,2. 

 (ii-a) No trading implies that 𝑝𝑝𝑏𝑏𝑖𝑖 ≥ 1 or 𝑝𝑝𝑠𝑠𝑖𝑖 ≤ 0 for 𝑖𝑖 = 1,2. Then EX 2 earns positive 

profit by setting 0 < 𝑝𝑝𝑠𝑠2 < 𝑝𝑝𝑏𝑏2 < 1 such that liquidity makers with valuation 𝑣𝑣𝑏𝑏 ≥ 𝑣𝑣�𝑏𝑏2  trade 

with the liquidity taker with valuation 𝑣𝑣𝑠𝑠 ≤ 𝑣𝑣�𝑠𝑠2. 

(ii-b) Denote 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1 = 𝛾𝛾. Two further subcases are to be considered: (ii-b-I) 0 < 𝛾𝛾 < 1
2
; 

(ii-b-II) 1
2
≤ 𝛾𝛾 < 1. 

(ii-b-I) EX 2 can set its fees such that 

(A.3) 𝑝𝑝𝑏𝑏2 = 𝛾𝛾 + 𝜀𝜀 and 𝑝𝑝𝑠𝑠2 = 𝛾𝛾 + 𝜇𝜇 ∙ 𝜀𝜀,  

where 𝜀𝜀 > 0 and 0 < 𝜇𝜇 < 1. For sufficiently small 𝜀𝜀, we have 𝑣𝑣�𝑠𝑠2 = 𝑝𝑝𝑠𝑠2 > 𝛾𝛾 = 𝑣𝑣�𝑠𝑠1 and 𝑝𝑝𝑏𝑏2 >

𝑝𝑝𝑏𝑏1. From Equation (13) in Section V.B., the liquidity maker’s segmentation cutoff is 
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 𝜑𝜑 = 𝑝𝑝𝑏𝑏
2∙𝑝𝑝𝑠𝑠2−𝑝𝑝𝑏𝑏

1∙𝑝𝑝𝑠𝑠1

𝑝𝑝𝑠𝑠2−𝑝𝑝𝑠𝑠1
.  

 = 𝛾𝛾 �1 + 1
𝜇𝜇
� + 𝜀𝜀.  

Note that 𝜑𝜑 decreases with 𝜇𝜇.  For 𝜇𝜇 sufficiently close to 1 and 𝜀𝜀 sufficiently close to zero, 

lim
𝜇𝜇→1

𝜑𝜑 = 2𝛾𝛾 + 𝜀𝜀 < 1, where the inequality follows from𝛾𝛾 < 1
2
. Based on the liquidity makers’ 

segmentation in Section V.B., a liquidity maker with valuation  𝑣𝑣𝑏𝑏 ∈ (𝜑𝜑, 1] chooses EX 2, and 

trades with a liquidity taker with valuation 𝑣𝑣𝑠𝑠 ∈ (0, 𝛾𝛾 + 𝜇𝜇 ∙ 𝜀𝜀]. EX 2 earns a strictly positive 

profit 𝑝𝑝𝑏𝑏2 − 𝑝𝑝𝑠𝑠2 = (1 − 𝜇𝜇) ∙ 𝜀𝜀 from such liquidity makers and liquidity takers.  

(ii-b-II) EX 2 can set its fees such that 

(A.4) 𝑝𝑝𝑏𝑏2 = 𝛾𝛾 − 𝜇𝜇 ∙ 𝜀𝜀 and 𝑝𝑝𝑠𝑠2 = 𝛾𝛾 − 𝜀𝜀,  

where  𝜀𝜀 > 0  and 0 < 𝜇𝜇 < 1. 

When 𝑎𝑎 > 1
2
, for sufficiently small 𝜀𝜀, we can always have 𝑝𝑝𝑠𝑠2 = 𝛾𝛾 − 𝜀𝜀 ≥ 1

2
 and 𝑝𝑝𝑏𝑏2 < 𝑝𝑝𝑏𝑏1. 

This implies that any liquidity maker chooses EX 2, and EX 2 earns a strictly positive profit, 

as 𝑝𝑝𝑏𝑏2 − 𝑝𝑝𝑠𝑠2 = (1 − 𝜇𝜇) ∙ 𝜀𝜀 > 0. 

When  𝛾𝛾 = 1
2
,  for sufficiently small 𝜀𝜀, we have 𝑣𝑣�𝑠𝑠2 = 𝑝𝑝𝑠𝑠2 < 𝛾𝛾 = 𝑣𝑣�𝑠𝑠1 and 𝑝𝑝𝑏𝑏2 < 𝑝𝑝𝑏𝑏1. The 

liquidity maker’s segmentation cutoff is 

 𝜑𝜑 = 𝑝𝑝𝑏𝑏
2∙𝑝𝑝𝑠𝑠2−𝑝𝑝𝑏𝑏

1∙𝑝𝑝𝑠𝑠1

𝑝𝑝𝑠𝑠2−𝑝𝑝𝑠𝑠1
.  

 = 1
2

+ 𝜇𝜇 ∙ �1
2
− 𝜀𝜀�.  

For sufficiently small 𝜀𝜀, 𝜑𝜑 > 1
2. From the liquidity makers’ segmentation analysis in Section 

V.B., liquidity makers with valuation 1
2
≤ 𝑣𝑣𝑏𝑏 ≤ 𝜑𝜑 choose EX 2. EX 2 earns a strictly positive 

profit, as 𝑝𝑝𝑏𝑏2 − 𝑝𝑝𝑠𝑠2 = (1 − 𝜇𝜇) ∙ 𝜀𝜀 > 0. ■ 

Proof of PROPOSITION 4 

Part (i): We establish the existence of symmetric mixed-strategy equilibrium by 

applying Theorem 6* in Dasgupta and Maskin (1986) (hereafter, D-M). 

 Theorem 6* (D-M, p. 24). Let 𝐴̿𝐴 ⊆ 𝑅𝑅𝑚𝑚 be non-empty, convex and compact, and let 

[�𝐴̿𝐴,𝑈𝑈𝑖𝑖�; 𝑖𝑖 = 1, … ,𝑁𝑁]  be a symmetric game, where ∀𝑖𝑖 ,𝑈𝑈𝑖𝑖 : 𝐴̿𝐴 × … × 𝐴̿𝐴�������
N times

→ 𝑅𝑅1 is continuous, 

except on a subset 𝐴𝐴∗∗(𝑖𝑖) of 𝐴𝐴∗(𝑖𝑖), where 𝐴𝐴∗(𝑖𝑖) is defined by (A1). Suppose ∑ 𝑈𝑈𝑖𝑖(𝑎𝑎)𝑁𝑁
𝑖𝑖=1  is 

upper semicontinuous, and for all 𝑖𝑖,𝑈𝑈𝑖𝑖 is bounded and satisfies Property (𝛼𝛼∗). 
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Then there exists a symmetric mixed-strategy equilibrium (𝜇𝜇∗, … , 𝜇𝜇∗) with the property 

that ∀𝑖𝑖 and ∀𝑎𝑎�𝑖𝑖𝜖𝜖𝐴𝐴𝑖𝑖∗∗(𝑖𝑖), 𝜇𝜇∗({𝑎𝑎�𝑖𝑖}) = 0. 

Condition (A1) and Property (𝛼𝛼∗) are as follows in D-M (1986): 

(A1) Let 𝑄𝑄 ⊆ {1, … ,𝑚𝑚}. For each pair of agents 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑁𝑁}, let 𝐷𝐷(𝑖𝑖) be a positive 

integer. For each integer 𝑑𝑑, with 1 ≤ 𝑑𝑑 ≤ 𝐷𝐷(𝑖𝑖), let 𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑:𝑅𝑅1 → 𝑅𝑅1 be a one-to-one, continuous 

function with the property that 𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑 = (𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑)−1. Finally, ∀𝑖𝑖, define 

𝐴𝐴∗(𝑖𝑖) = �(𝑎𝑎1, … , 𝑎𝑎𝑁𝑁) ∈ 𝐴𝐴�∃𝑗𝑗 ≠ 𝑖𝑖,∃𝑘𝑘 ∈ 𝑄𝑄,∃𝑑𝑑, 1 ≤ 𝑑𝑑 ≤ 𝐷𝐷(𝑖𝑖), such that 𝑎𝑎𝑗𝑗𝑗𝑗 =𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑(𝑎𝑎𝑖𝑖𝑖𝑖)�. 

 Property (𝜶𝜶∗). ∀𝑎𝑎�𝑖𝑖𝜖𝜖𝐴𝐴𝑖𝑖∗∗(𝑖𝑖),∃ a non-atomic measure 𝜈𝜈 on 𝐵𝐵𝑚𝑚 such that for all 𝒂𝒂−𝒊𝒊 that 

(𝑎𝑎�𝑖𝑖 ,𝒂𝒂−𝑖𝑖)𝜖𝜖𝐴𝐴 
∗∗(𝑖𝑖)  

� �lim
𝜃𝜃→0

inf𝑈𝑈𝑖𝑖(𝑎𝑎�𝑖𝑖 + 𝜃𝜃𝜃𝜃,𝒂𝒂−𝒊𝒊)𝑑𝑑𝜈𝜈(e)�
 

𝐵𝐵𝑚𝑚
≥ 𝑈𝑈𝑖𝑖(𝑎𝑎�𝑖𝑖 ,𝒂𝒂−𝒊𝒊) 

where the inequality is strict if 

𝒂𝒂−𝒊𝒊 =  𝑎𝑎�𝑖𝑖 × … × 𝑎𝑎�𝑖𝑖�������
(N-1) times

 

We now confirm that the game satisfies the conditions of  Theorem 6* in D-M.  

Our game has two EXs, and each EX sets its cum fee buy and sell price 𝑎𝑎𝑖𝑖 =

�𝑝𝑝𝑏𝑏𝑖𝑖 ,𝑝𝑝𝑠𝑠𝑖𝑖�, 𝑖𝑖 = 1,2. The feasible set of fee structures is given by 𝐴̿𝐴 ≡ {(𝑝𝑝𝑏𝑏,𝑝𝑝𝑠𝑠)|𝑝𝑝𝑏𝑏−𝑝𝑝𝑠𝑠 ≥ 0, 0 ≤

𝑝𝑝𝑏𝑏 ≤ 1}, which is non-empty, convex, compact, and a subset of 𝑅𝑅2. Each EX’s profit function 

𝑈𝑈𝑖𝑖(𝑎𝑎1,𝑎𝑎2) is continuous, except when 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎�. 𝐴𝐴∗∗(𝑖𝑖) = {(𝑎𝑎�,𝑎𝑎�)|𝑎𝑎� = 𝑎𝑎1 = 𝑎𝑎2, 𝑎𝑎1 ∈ 𝐴̿𝐴}. 

The 𝑓𝑓𝑖𝑖𝑖𝑖𝑑𝑑  in (A1) is the identity function. It is easy to see that 𝑈𝑈𝑖𝑖  is bounded and that the 

discontinuities of 𝑈𝑈𝑖𝑖, 𝐴𝐴∗∗(𝑖𝑖), are confined to a subset of 𝐴𝐴∗(𝑖𝑖).  

If the sum of EXs’ profits, 𝑈𝑈 (𝑎𝑎1,𝑎𝑎2) ≡ 𝑈𝑈1(𝑎𝑎1, 𝑎𝑎2) + 𝑈𝑈2(𝑎𝑎1,𝑎𝑎2), is continuous, it is 

upper semi-continuous. Because 𝑈𝑈𝑖𝑖(𝑎𝑎1, 𝑎𝑎2) is continuous except at 𝑎𝑎1 =  𝑎𝑎2 = 𝑎𝑎�, we need to 

prove the continuity only at  𝑈𝑈 (𝑎𝑎�,𝑎𝑎�), where 𝑎𝑎� = (𝑝𝑝𝑏𝑏,𝑝𝑝𝑠𝑠). Denote 𝑒𝑒(𝜂𝜂) = (cos 𝜂𝜂 , sin 𝜂𝜂) , 𝜂𝜂 ∈

[0,2𝜋𝜋). So 𝑎𝑎� + 𝜃𝜃𝜃𝜃 = (𝑝𝑝𝑏𝑏 + 𝜃𝜃cos 𝜂𝜂 , 𝑝𝑝𝑠𝑠 + 𝜃𝜃sin 𝜂𝜂) . The following three steps show that for any 

ε > 0,  there always exists 𝜃𝜃 such that 𝑈𝑈 (𝑎𝑎� + 𝜃𝜃𝜃𝜃,𝑎𝑎�) − 𝑈𝑈(𝑎𝑎�,𝑎𝑎�) < 𝜀𝜀  and 𝑈𝑈 (𝑎𝑎�,𝑎𝑎� + 𝜃𝜃𝜃𝜃) −

𝑈𝑈 (𝑎𝑎�, 𝑎𝑎�) < 𝜀𝜀.  

(i) Liquidity makers who still choose fee structure 𝑎𝑎� do not affect the total profit. 

(ii) Each liquidity maker who prefers fee structure 𝑎𝑎� + 𝜃𝜃𝜃𝜃 over 𝑎𝑎� reduces the total profit 

by 2 ∙ (𝑝𝑝𝑏𝑏 − 𝑝𝑝𝑠𝑠) ∙ 𝑝𝑝𝑠𝑠 , but increases the total profit by 2 ∙ (𝑝𝑝𝑏𝑏 + 𝜃𝜃cos 𝜂𝜂 − 𝑝𝑝𝑠𝑠 −



40 
 

𝜃𝜃sin 𝜂𝜂) ∙ (𝑝𝑝𝑠𝑠 + 𝜃𝜃sin 𝜂𝜂) = 2 ∙ (𝑝𝑝𝑏𝑏 − 𝑝𝑝𝑠𝑠) ∙ 𝑝𝑝𝑠𝑠 + 2𝜃𝜃 ∙ [𝑝𝑝𝑏𝑏 ∙ sin 𝜂𝜂 + 𝑝𝑝𝑠𝑠 ∙ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −

2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝜃𝜃 ∙ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ∙ 𝜂𝜂]. As the measure of liquidity makers is  1
2
, the total 

profit change is no more than𝜃𝜃 ∙ [𝑝𝑝𝑏𝑏 ∙ sin 𝜂𝜂 + 𝑝𝑝𝑠𝑠 ∙ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝜃𝜃 ∙ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ∙ 𝜂𝜂]. So there exists a sufficiently small 𝜃𝜃 to ensure that the total profit change 

is smaller than 𝜀𝜀
2
. 

(iii) The new fee structure 𝑎𝑎� + 𝜃𝜃𝜃𝜃 can also increase total participation. As the cum fee 

buy price changes at most by 𝜃𝜃, the change in probability of total participation on 

the part of liquidity makers is less than 𝜃𝜃
1−0.5

= 2𝜃𝜃. This participation change affects 

the total profit at most by1 ∙ 2𝜃𝜃 ∙ 1 , because both liquidity takers’ participation 

probability and the total fee are no more than one. So there exists a sufficiently small 

𝜃𝜃 to ensure that the total profit change is less than 𝜀𝜀
2
. 

Combining the effects of (i)–(iii), we can always find a sufficiently small 𝜃𝜃 to ensure 

that the total profit change is less than  𝜀𝜀.  

We then check that Property (𝛼𝛼∗) holds in our game. Note that Property (𝛼𝛼∗) implies 

that, for any sufficiently small 𝜃𝜃 > 0, one EX (without loss of generality, suppose it is EX 1) 

can slightly deviate its fee structure from the discontinuous point to a non-zero measure set on 

𝐵𝐵2 (a circle with radius 𝜃𝜃) and receive higher profit to the one at the discontinuity point. If, for 

any sufficiently small 𝜃𝜃 > 0, we can find an arc 𝑒𝑒𝑜𝑜 ∈ 𝐵𝐵2 (a non-zero measure set) such that for 

all 𝑒𝑒 ∈ 𝑒𝑒𝑜𝑜, we have 

𝑈𝑈1(𝑎𝑎� + 𝜃𝜃𝜃𝜃, 𝑎𝑎�) > 𝑈𝑈1(𝑎𝑎�,𝑎𝑎�), 

then we can always uniformly distribute all 𝜈𝜈(𝑒𝑒)  to arc 𝑒𝑒𝑜𝑜  and ensure that the LHS of  

Property(α∗) is strictly larger than the RHS of Property(α∗). 

Next, we show the existences of  𝑒𝑒0 for all possible 𝑎𝑎� = (𝑝𝑝𝑏𝑏,𝑝𝑝𝑠𝑠).  

Case (i): 𝑝𝑝𝑏𝑏 − 𝑝𝑝𝑠𝑠 > 0   

We propose 𝑒𝑒0 = �𝑒𝑒(𝜂𝜂)� 1
2
𝜋𝜋 < 𝜂𝜂 < 𝜋𝜋�, which implies that 𝜃𝜃cos 𝜂𝜂 < 0, and 𝜃𝜃sin 𝜂𝜂 > 0. 

That is, EX 1 undercuts both the make fee and the take fee of EX 2. Hence EX 1 attracts any 

liquidity maker and its profit increases when 𝜃𝜃 is sufficiently small.  

Case (ii): 𝑝𝑝𝑏𝑏 − 𝑝𝑝𝑠𝑠 = 0 

The cutoff valuation of the marginal liquidity maker, 𝜑𝜑, is, 

(𝜑𝜑 − 𝑝𝑝𝑏𝑏 − 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 𝜂𝜂) ∙ (𝑝𝑝𝑠𝑠 + 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 𝜂𝜂) = (𝜑𝜑 − 𝑝𝑝𝑏𝑏) ∙ (𝑝𝑝𝑠𝑠) 

∴ 𝜑𝜑 = 𝑝𝑝𝑏𝑏 ∙ (1 + cot𝜂𝜂) +𝜃𝜃cos𝜂𝜂. 
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When  𝑝𝑝𝑏𝑏 ∈ [0,0.5) , 𝑒𝑒0 = �e(𝜂𝜂)�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 1
𝑝𝑝𝑏𝑏
− 1� < 𝜂𝜂 < 1

4
𝜋𝜋�  satisfies the following 

conditions. 39    

a. 𝜃𝜃sin 𝜂𝜂 > 0, which implies that EX 1 is of higher quality than EX 2. A liquidity maker 

with valuation 𝑣𝑣 > 𝜑𝜑 chooses EX 1. 

b. 𝜑𝜑 < 1, which guarantees the existence of the liquidity maker who has valuation 𝜑𝜑 <

𝑣𝑣𝑏𝑏 < 1 mentioned in (a). 

c. 𝜃𝜃cos 𝜂𝜂 − 𝜃𝜃sin 𝜂𝜂 > 0, which ensures that the total fee is greater than zero. 

Combining (a)–(c), we have 

𝑈𝑈1(𝑎𝑎� + 𝜃𝜃𝜃𝜃,𝑎𝑎�)|𝑒𝑒∈𝑒𝑒0 > 0 = 𝑈𝑈1(𝑎𝑎�,𝑎𝑎�). 

When 𝑝𝑝𝑏𝑏 ∈ [0.5,1], 𝑒𝑒0 = �e(𝜂𝜂)� 5
4
𝜋𝜋 < 𝜂𝜂 < 3

2
𝜋𝜋� satisfies the following conditions. 40  

a. 𝜃𝜃sin 𝜂𝜂 < 0, which implies that EX 1 is of lower quality than EX 2. A liquidity maker 

with valuation 𝑣𝑣 < 𝜑𝜑 chooses EX 1. 

b. 𝑝𝑝𝑏𝑏 < 𝜑𝜑, which guarantees the existence of the liquidity maker who has valuation 𝑝𝑝𝑏𝑏 <

𝑣𝑣𝑏𝑏 < 𝜑𝜑 mentioned in (a). 

c. 𝜃𝜃cos 𝜂𝜂 − 𝜃𝜃sin 𝜂𝜂 > 0 , which ensures that the total fee is greater than zero. 

Combining (a)–(c), we have 

𝑈𝑈1(𝑎𝑎� + 𝜃𝜃𝜃𝜃,𝑎𝑎�)|𝑒𝑒∈𝑒𝑒0 > 0 = 𝑈𝑈1(𝑎𝑎�,𝑎𝑎�). 

In summary, Property (α∗) holds for any 𝑎𝑎�1 = 𝑎𝑎�2 = (𝑝𝑝𝑏𝑏,𝑝𝑝𝑠𝑠). 

Part (ii): It is easy to see that mixed-strategy equilibrium should not entail negative 

profit. We then prove the non-existence of mixed-strategy equilibrium with exchanges earning 

zero profit by contradiction.   

1. If mixed-strategy equilibrium involves zero profit, the probability that the effective 

buy price is greater than 0.5 must be zero, that is, under measure 𝜈𝜈, which is the 

probability measure of the equilibrium strategy,  Prob(𝑥𝑥 < 𝑝𝑝𝑏𝑏 < 𝑦𝑦) = 0  for any 

𝑥𝑥 > 0.5, i.e. the strategy with 𝑝𝑝𝑏𝑏 > 𝑥𝑥 is played with zero probability in a mixed-

strategy equilibrium. Here 𝑝𝑝𝑠𝑠 ≤ 𝑝𝑝𝑏𝑏. 

If not, one EX can set  𝑝𝑝�𝑏𝑏 = 0.5+𝑥𝑥
2

 and 𝑝𝑝�𝑠𝑠 = 0.5. This deviation attracts at least 

liquidity makers with valuation 𝑣𝑣𝑏𝑏𝜖𝜖[0.5+𝑥𝑥
2

, 𝑥𝑥] and makes positive profits.  

                                                            
39 This deviation corresponds to 𝑝𝑝𝑏𝑏� = 𝑝𝑝𝑏𝑏 + 𝜀𝜀 , 𝑝𝑝𝑠𝑠� = 𝑝𝑝𝑠𝑠 + 𝜇𝜇𝜇𝜇 �0 < 𝜀𝜀 and 𝑝𝑝𝑏𝑏

1−𝑝𝑝𝑏𝑏
< 𝜇𝜇 < 1�. 

40 This deviation corresponds to 𝑝𝑝𝑏𝑏� = 𝑝𝑝𝑏𝑏 − 𝜇𝜇𝜇𝜇 , 𝑝𝑝𝑠𝑠� = 𝑝𝑝𝑠𝑠 − 𝜀𝜀 (0 < 𝜀𝜀 and 0 < 𝜇𝜇 < 1). 
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2. If mixed-strategy equilibrium involves zero profit, the probability that the effective 

buy price is smaller than 0.5 must be zero, that is, Prob(𝑥𝑥 < 𝑝𝑝𝑏𝑏 < 𝑦𝑦) = 0 for any 

𝑦𝑦 < 0.5. 

If not, one EX can have a profitable deviation by setting its fee structure as 𝑝𝑝�𝑏𝑏 =

0.5 ,𝑝𝑝�𝑠𝑠 = 0.5 − 𝜀𝜀 (𝜀𝜀 > 0),  because (𝑝𝑝�𝑏𝑏,𝑝𝑝�𝑠𝑠)  could attract some traders for any 

 𝑝𝑝𝑏𝑏 = 𝑝𝑝𝑠𝑠 = 𝜆𝜆 , where 𝜆𝜆 ∈ (𝑥𝑥, 𝑦𝑦) . The proof is equivalent to show that, for 

sufficiently small 𝜀𝜀, we can find 𝜑𝜑 < 1 such that 

(𝜑𝜑 − 0.5)(0.5 − 𝜀𝜀) = (𝜑𝜑 − 𝜆𝜆)𝜆𝜆 

𝜑𝜑 =
0.25 − 0.5𝜀𝜀 − 𝜆𝜆2

0.5 − 𝜀𝜀 − 𝜆𝜆
 

𝜑𝜑 < 1
 
⇔𝜀𝜀 < 2 (0.5 − 𝜆𝜆)2 

Thus we can always find  𝜀𝜀 > 0  such that 𝑝𝑝�𝑏𝑏 = 0.5 ,𝑝𝑝�𝑠𝑠 = 0.5 − 𝜀𝜀  attracts any 

liquidity maker with valuation 𝑣𝑣𝑏𝑏𝜖𝜖[𝜑𝜑, 1] for any  𝑝𝑝𝑏𝑏 = 𝑝𝑝𝑠𝑠 = 𝜆𝜆 ∈ (𝑥𝑥, 𝑦𝑦). It follows 

that such deviation can also outperform any  𝑝𝑝𝑏𝑏 = 𝜆𝜆 > 𝑝𝑝𝑠𝑠, because  𝑝𝑝𝑏𝑏 = 𝑝𝑝𝑠𝑠 = 𝜆𝜆 

dominates any  𝑝𝑝𝑏𝑏 = 𝜆𝜆 > 𝑝𝑝𝑠𝑠  for the liquidity maker. Consequently, such a 

deviation can always yield positive profit with positive probability. 

3. If mixed-strategy equilibrium involves zero profit, the probability that the effective 

buy price is equal to 0.5 must be zero. If not, one EX can use strategy (A.4) to 

ensure itself positive profit with positive probability. 

To summarize, a strategy with zero profit is strictly dominated by some other strategy, 

which implies such a strategy must be played with zero probability.  ■ 

Proof of PROPOSITION 5 

i) Conditions for the Existence of Proposed Price on Grid: 

Given 𝑣𝑣𝑏𝑏, when the liquidity maker can only quote on the price grids given by tick 

size constraints (1′), her expected surplus is 

𝐵𝐵𝐵𝐵(𝑃𝑃; 𝑣𝑣𝑏𝑏) ≡ (𝑣𝑣𝑏𝑏 − 𝑃𝑃 − 𝑓𝑓𝑚𝑚) ∙ Prob(𝑣𝑣𝑠𝑠 ≤ 𝑃𝑃 − 𝑓𝑓𝑡𝑡) 

= (𝑣𝑣𝑏𝑏 − 𝑃𝑃 − 𝑓𝑓𝑚𝑚) ∙ 2 ∙ max �0, min �
1
2

,𝑃𝑃 − 𝑓𝑓𝑡𝑡��, 

where 𝑃𝑃 = 𝑛𝑛
𝑁𝑁

, and 𝑛𝑛 and 𝑁𝑁 are integers. 
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To ensure 𝐵𝐵𝐵𝐵(𝑃𝑃; 𝑣𝑣𝑏𝑏) ≥ 0 so that the liquidity maker will propose a price, we need the 

existence of some feasible 𝑃𝑃 = 𝑛𝑛
𝑁𝑁

 to ensure �0 ≤ 𝑣𝑣𝑏𝑏 − 𝑃𝑃 − 𝑓𝑓𝑚𝑚
0 ≤ 𝑃𝑃 − 𝑓𝑓𝑡𝑡

. That is, we need some 𝑛𝑛 ∈ 𝑍𝑍 

s.t. �
𝑛𝑛
𝑁𝑁
≤ 𝑣𝑣𝑏𝑏 − 𝑓𝑓𝑚𝑚

0 ≤ 𝑛𝑛
𝑁𝑁
− 𝑓𝑓𝑡𝑡

, which can be reduced to 

(A.5) ⌈𝑁𝑁 ∙ 𝑓𝑓𝑡𝑡⌉ ≤ 𝑛𝑛 ≤ ⌊𝑁𝑁 ∙ (𝑣𝑣𝑏𝑏 − 𝑓𝑓𝑚𝑚)⌋  

For (A.5) to hold, we need ⌈𝑁𝑁 ∙ 𝑓𝑓𝑡𝑡⌉ ≤ ⌊𝑁𝑁 ∙ (𝑣𝑣𝑏𝑏 − 𝑓𝑓𝑚𝑚)⌋, which is equivalent to 

(A.6) 𝑣𝑣𝑏𝑏 ≥ 𝑓𝑓𝑚𝑚 +
⌈𝑁𝑁 ∙ 𝑓𝑓𝑡𝑡⌉
𝑁𝑁

 (∵ ⌈𝑦𝑦⌉ ≤ ⌊𝑥𝑥⌋ ⟺ ⌈𝑦𝑦⌉ ≤ 𝑥𝑥)   

Since 1
2
≤ 𝑣𝑣𝑏𝑏 ≤ 1, for non-zero participation from liquidity makers, we need  

(A.7) 𝑓𝑓𝑚𝑚 +
⌈𝑁𝑁 ∙ 𝑓𝑓𝑡𝑡⌉
𝑁𝑁

< 1.  

ii) Optimal Proposed Limit-Order Price 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡)
𝑁𝑁

: 

When 𝑣𝑣𝑏𝑏 < 𝑓𝑓𝑚𝑚 + ⌈𝑁𝑁∙𝑓𝑓𝑡𝑡⌉
𝑁𝑁

, the liquidity maker does not submit limit order. When  𝑣𝑣𝑏𝑏 ≥

𝑓𝑓𝑚𝑚 + ⌈𝑁𝑁∙𝑓𝑓𝑡𝑡⌉
𝑁𝑁

, the liquidity maker chooses a grid to maximize her expected surplus 𝐵𝐵𝐵𝐵(𝑃𝑃; 𝑣𝑣𝑏𝑏) =

(𝑣𝑣𝑏𝑏 − 𝑃𝑃 − 𝑓𝑓𝑚𝑚) ∙ 2 ∙ max �0, min �1
2

,𝑃𝑃 − 𝑓𝑓𝑡𝑡�� 

 Note that 𝐵𝐵𝐵𝐵(𝑃𝑃; 𝑣𝑣𝑏𝑏) is essentially a quadratic function of  𝑃𝑃, as shown in Figure A1. 

When 𝑃𝑃 can be any real number, the optimal price is 𝑣𝑣𝑏𝑏−𝑓𝑓𝑚𝑚+𝑓𝑓𝑡𝑡
2

. 

Due to tick size constraints (1’), 𝑃𝑃 can only be at price grids 𝑛𝑛
𝑁𝑁

. Hence, when  (A.6) 

holds, a liquidity maker with valuation 𝑣𝑣𝑏𝑏 proposes a limit order at a price grid 𝑛𝑛
𝑁𝑁

 that is closest 

to the unconstrained optimal price 𝑣𝑣𝑏𝑏−𝑓𝑓𝑚𝑚+𝑓𝑓𝑡𝑡
2

 . So 𝑃𝑃∗(𝑣𝑣𝑏𝑏) ≡ 𝑛𝑛
𝑁𝑁

 if and only if 
𝑛𝑛−12
𝑁𝑁
≤ 𝑣𝑣𝑏𝑏−𝑓𝑓𝑚𝑚+𝑓𝑓𝑡𝑡

2
<

𝑛𝑛+12
𝑁𝑁

, which is equivalent to 

𝑁𝑁 ∙ (𝑣𝑣𝑏𝑏 − 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑡𝑡)
2

−
1
2

< 𝑛𝑛 ≤
𝑁𝑁 ∙ (𝑣𝑣𝑏𝑏 − 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑡𝑡)

2
+

1
2

. 

Thus 

𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡) = �
𝑁𝑁 ∙ (𝑣𝑣𝑏𝑏 − 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑡𝑡) + 1

2
�. 
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FIGURE A.1 

Optimal Limit-Order Price under Multiple Ticks 

Notes: This figure illustrates the decision of the liquidity maker with valuation  𝑣𝑣𝑏𝑏 . The 
horizontal axis represents the price level and the vertical axis represents the liquidity maker’s expected 
surplus. Each red dot on the parabola represents a price level in the grid that gives the liquidity maker 
a positive expected surplus. The optimal price in the grid is the one closest to 𝑣𝑣𝑏𝑏−𝑓𝑓𝑚𝑚+𝑓𝑓𝑡𝑡

2
 , which is the 

liquidity maker’s optimal price without tick size constraints.    

iii) Equivalence of fee structure (𝑓𝑓𝑚𝑚, 𝑓𝑓𝑡𝑡) and fee structure (𝑓𝑓𝑚𝑚, 𝑓𝑓𝑡𝑡): 

For any given (𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡), we have 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡) = �𝑁𝑁∙(𝑣𝑣−𝑓𝑓𝑚𝑚+𝑓𝑓𝑡𝑡)+1
2

�, and thus the cum fee 

buy and sell prices are 𝑝𝑝𝑏𝑏 = 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡)
𝑁𝑁

+ 𝑓𝑓𝑚𝑚, and 𝑝𝑝𝑠𝑠 = 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡)
𝑁𝑁

− 𝑓𝑓𝑡𝑡. 

 Now consider (𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡), where �
𝑓𝑓𝑚𝑚 = 𝑓𝑓𝑚𝑚 + 𝑘𝑘

𝑁𝑁

𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡 −
𝑘𝑘
𝑁𝑁

, 𝑘𝑘 ∈ 𝑍𝑍.  Under (𝑓𝑓𝑚𝑚, 𝑓𝑓𝑡𝑡), 𝑛𝑛�𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡� =

�𝑁𝑁∙�𝑣𝑣−𝑓̃𝑓𝑚𝑚+𝑓̃𝑓𝑡𝑡�+1
2

� = �𝑁𝑁∙(𝑣𝑣−𝑓𝑓𝑚𝑚+𝑓𝑓𝑡𝑡)+1
2

− 𝑘𝑘� = 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚, 𝑓𝑓𝑡𝑡) − 𝑘𝑘 . It follows that 𝑝𝑝�𝑏𝑏 = 𝑛𝑛�𝑣𝑣𝑏𝑏,𝑓̃𝑓𝑚𝑚,𝑓̃𝑓𝑡𝑡�
𝑁𝑁

+

𝑓𝑓𝑚𝑚 = 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡)
𝑁𝑁

− 𝑘𝑘
𝑁𝑁

+ 𝑓𝑓𝑚𝑚 + 𝑘𝑘
𝑁𝑁

= 𝑝𝑝𝑏𝑏, and 𝑝𝑝�𝑠𝑠 = 𝑛𝑛�𝑣𝑣𝑏𝑏,𝑓̃𝑓𝑚𝑚,𝑓̃𝑓𝑡𝑡�
𝑁𝑁

− 𝑓𝑓𝑡𝑡 = 𝑛𝑛(𝑣𝑣𝑏𝑏,𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡)
𝑁𝑁

− 𝑘𝑘
𝑁𝑁
− 𝑓𝑓𝑡𝑡 + 𝑘𝑘

𝑁𝑁
= 𝑝𝑝𝑠𝑠 . 

Since, for any given 𝑣𝑣𝑏𝑏, the cum fee buy and sell prices are the same under the fee structure 

(𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡) and the fee structure (𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡), these fee structures are equivalent for the liquidity maker, 

the liquidity taker and EXs.
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Proof of PROPOSITION 6 

We prove this proposition through contradiction. It is easy to see that no exchange 

should take a negative profit in pure-strategy equilibrium, because the operator can simply shut 

down the exchange. The proof is then divided into two steps.  

 Step 1: No exchange should take a positive profit in pure-strategy equilibrium.    

  Suppose not: denote the total number of EXs that take positive profits as 𝐻𝐻. As we 

have more than one operator, we can always find an operator 𝑗𝑗  who does not own all 𝐻𝐻 

exchanges, that is, her profit is lower than the combined profits of these 𝐻𝐻 exchanges. 

Operator 𝑗𝑗 can increase her profits by establishing 𝐻𝐻 additional EXs to undercut each 

of the existing profitable EXs with the following fee structure: 

𝑓𝑓𝑚𝑚
𝑗𝑗ℎ = 𝑓𝑓𝑚𝑚ℎ − 𝜀𝜀 and 𝑓𝑓𝑡𝑡

𝑗𝑗ℎ = 𝑓𝑓𝑡𝑡ℎ,  for ℎ = 1,2,3,⋯ ,𝐻𝐻. 

 Such a deviation allows operator j to capture the entire market. Therefore, step 1 

requires all exchanges to take a zero profit in pure-strategy equilibrium.  

Step 2: It is impossible for all exchanges to have zero profit in pure-strategy equilibrium. 

Suppose that all operators have zero profit. We can rank the feasible cum fee sell prices 

in equilibrium as 𝑝𝑝𝑠𝑠1 < 𝑝𝑝𝑠𝑠2 < ⋯ < 𝑝𝑝𝑠𝑠
𝑄𝑄, where Q is the number of feasible cum fee sell prices in 

all exchanges.    

Similar to case (ii-b) in Proposition 3, two subcases are to be considered: (I) 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1 =

𝛾𝛾 < 1
2
; (II) 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1 = 𝛾𝛾 ≥ 1

2
. 41 In (I), operator 𝑗𝑗 can open a new EX using strategy (A.3) to 

ensure herself positive profits at positive probability. In (II), operator 𝑗𝑗 can open a new EX 

using strategy (A.4) to ensure herself positive profits at positive probability. 

Combining Steps 1–2, the proposition follows. ■ 

Proof of PROPOSITION 7 

We prove the proposition using the example of two exchanges, and the results for 

multiple exchanges follow directly.  

Charging One Side Only: 

                                                            
41 Under multiple tick sizes, there are multiple cum fee sell prices that are determined by both the take fees and 
the liquidity maker’s limit-order price. Such multiplicity does not affect the proof, because we need only a 
profitable deviation from the EX with the lowest cum fee sell price. 
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Here we consider the case in which only the liquidity taker is charged fees, and the 

liquidity maker is not charged, that is, 

𝑓𝑓𝑚𝑚𝑖𝑖 = 0 and  𝑓𝑓𝑡𝑡𝑖𝑖 ≥ 0. 

The case in which 𝑓𝑓𝑚𝑚𝑖𝑖 ≥ 0, and  𝑓𝑓𝑡𝑡𝑖𝑖 = 0 can be proved similarly. 

Recall that �𝑝𝑝𝑏𝑏
𝑖𝑖 = 𝑃𝑃𝑖𝑖 + 𝑓𝑓𝑚𝑚𝑖𝑖

𝑝𝑝𝑠𝑠𝑖𝑖 = 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖
. When the rebate to the liquidity maker is banned, the 

liquidity maker’s maximal surplus under (0,𝑓𝑓𝑡𝑡𝑖𝑖) becomes 

𝐵𝐵𝐵𝐵𝑖𝑖∗�𝑣𝑣𝑏𝑏;𝑓𝑓𝑡𝑡𝑖𝑖� = max
𝑃𝑃𝑖𝑖

��𝑣𝑣𝑏𝑏 − 𝑃𝑃𝑖𝑖� ∙ min {1,2�𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖�}�𝑣𝑣𝑏𝑏 − 𝑃𝑃𝑖𝑖 ≥ 0 and 𝑃𝑃𝑖𝑖 − 𝑓𝑓𝑡𝑡𝑖𝑖 ≥ 0�. 

For any 𝑓𝑓𝑡𝑡1 ≥ 𝑓𝑓𝑡𝑡2 ≥ 0, we must have 

(A.8)                                        𝐵𝐵𝐵𝐵𝑖𝑖∗(𝑣𝑣𝑏𝑏; 𝑓𝑓𝑡𝑡1) ≤ 𝐵𝐵𝐵𝐵𝑖𝑖∗(𝑣𝑣𝑏𝑏;𝑓𝑓𝑡𝑡2) for any 𝑣𝑣𝑏𝑏. 

Thus, any liquidity maker chooses the EX with the lowest take fee, if she chooses to trade. 

Then exchanges compete to undercut each other in take fee, which yields a Bertrand outcome. 

Equal Splitting the Total Fee: 

 Now we consider the case in which the total fee is equally split between a liquidity 

maker and a liquidity taker, that is, 

𝑓𝑓𝑚𝑚𝑖𝑖 = 𝑓𝑓𝑡𝑡𝑖𝑖 =
𝑇𝑇𝑖𝑖

2
≥ 0. 

The liquidity maker’s maximal surplus under (𝑇𝑇
𝑖𝑖

2
, 𝑇𝑇

𝑖𝑖

2
) is 

𝐵𝐵𝐵𝐵𝑖𝑖∗�𝑣𝑣𝑏𝑏;𝑇𝑇𝑖𝑖�

= max
𝑃𝑃𝑖𝑖

��𝑣𝑣𝑏𝑏 − 𝑃𝑃𝑖𝑖 − 𝑇𝑇𝑖𝑖
2 � ∙ min {1,2 �𝑃𝑃𝑖𝑖 − 𝑇𝑇𝑖𝑖

2 �}�𝑣𝑣𝑏𝑏 − 𝑃𝑃𝑖𝑖 − 𝑇𝑇𝑖𝑖
2 ≥ 0 and 𝑃𝑃𝑖𝑖 − 𝑇𝑇𝑖𝑖

2 ≥ 0� . 

For any 𝑇𝑇1 ≥ 𝑇𝑇2 ≥ 0, we must have 

𝐵𝐵𝐵𝐵𝑖𝑖∗(𝑣𝑣𝑏𝑏;𝑇𝑇1) ≤ 𝐵𝐵𝐵𝐵𝑖𝑖∗(𝑣𝑣𝑏𝑏;𝑇𝑇2) for any 𝑣𝑣𝑏𝑏. 

Thus, any liquidity maker chooses the EX with the lowest 𝑇𝑇𝑖𝑖, if she chooses to trade. Then 

the competition between exchanges yields a Bertrand outcome. ■ 
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APPENDIX B: FEE STRUCTURE UNDER MULTIPLE TICKS 

Here we present the optimal fee structure and profit as a function of 𝑁𝑁 when 𝑁𝑁 > 8. 

When the value of N is between 2 and 8, the optimal solutions are discussed on a case-by-case 

basis, the results of which are available upon request. 

PROPOSITION B1 (monopoly fee structure under multiple ticks). Under tick size constraints 

(1′), for 𝑁𝑁 > 8, the following fee structure maximizes the profit:  

𝑓𝑓𝑚𝑚∗ = −
𝑛𝑛
𝑁𝑁

+
7𝑁𝑁2 + 8𝑁𝑁 + 𝑟𝑟 ∙ (4 − 𝑟𝑟)

16𝑁𝑁2  

𝑓𝑓𝑡𝑡∗ =
𝑛𝑛
𝑁𝑁
−
𝑁𝑁2 + 8𝑁𝑁 − 𝑟𝑟 ∙ (4 − 𝑟𝑟)

16𝑁𝑁2  

where  𝑛𝑛
𝑁𝑁

 is the proposed limit-order price at  𝑣𝑣𝑏𝑏 = 1
2

 , i.e., 𝑛𝑛 ≡ �
𝑁𝑁�12−𝑓𝑓𝑚𝑚+𝑓𝑓𝑡𝑡�+1

2
� , and 𝑟𝑟 ∈

{0,1,2,3} is the remainder of 𝑁𝑁 divided by 4.  

The maximum profit of the monopoly exchange is: 

𝛱𝛱∗(𝑓𝑓𝑚𝑚∗ ,𝑓𝑓𝑡𝑡∗) = �3
8

+ 𝑟𝑟∙(4−𝑟𝑟)
8𝑁𝑁2

�
2
, 

and 𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁→∞

𝛱𝛱∗(𝑓𝑓𝑚𝑚∗ ,𝑓𝑓𝑡𝑡∗) = 9
64

. 

 

We prove this proposition in three steps.  

Step 1: Notations and Preliminary Analysis 

Denote the sum and difference between the make and take fees, respectively, as 

𝑇𝑇 ≡ 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑡𝑡 , and 𝐷𝐷 ≡ 𝑓𝑓𝑚𝑚 − 𝑓𝑓𝑡𝑡 . 

Note that the optimal make and take fees (𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡) follow directly from  𝑇𝑇 and 𝐷𝐷. 

A liquidity maker with valuation within [𝜑𝜑𝑛𝑛,𝜑𝜑𝑛𝑛+1] proposes a limit order at price 𝑃𝑃 =
𝑛𝑛
𝑁𝑁

. To find the threshold 𝜑𝜑𝑛𝑛, we need  

�𝜑𝜑𝑛𝑛 − 𝑓𝑓𝑚𝑚 −
𝑛𝑛 − 1
𝑁𝑁 ��−𝑓𝑓𝑡𝑡 +

𝑛𝑛 − 1
𝑁𝑁 � = �𝜑𝜑𝑛𝑛 − 𝑓𝑓𝑚𝑚 −

𝑛𝑛
𝑁𝑁
� �−𝑓𝑓𝑡𝑡 +

𝑛𝑛
𝑁𝑁
�. 

Thus 

𝜑𝜑𝑛𝑛 = 𝑓𝑓𝑚𝑚 − 𝑓𝑓𝑡𝑡 +
2𝑛𝑛 − 1
𝑁𝑁

= 𝐷𝐷 +
2𝑛𝑛 − 1
𝑁𝑁

. 

It follows that 
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𝜑𝜑𝑛𝑛+1 − 𝜑𝜑𝑛𝑛 =
2
𝑁𝑁

. 

Therefore, the length of a complete interval [𝜑𝜑𝑛𝑛,𝜑𝜑𝑛𝑛+1] for liquidity makers who propose the 

same limit-order price is 2
𝑁𝑁

. 

For now, we assume that any liquidity maker with valuation 𝑣𝑣𝑏𝑏 ∈ [1
2

, 1] participates in 

trading. We verify that such a condition is satisfied when 𝑁𝑁 > 8. Full participation implies that 

the number of complete intervals contained in [1
2

, 1] is�
1−12
2
𝑁𝑁
� = �𝑁𝑁

4
� = �𝑧𝑧 + 𝑟𝑟

4
� = 𝑧𝑧, where 𝑁𝑁 =

4𝑧𝑧 + 𝑟𝑟, 𝑧𝑧 is a non-negative integer, and 𝑟𝑟 ∈ {0,1,2,3} is the remainder of 𝑁𝑁 divided by 4. 

We denote the number of thresholds (𝜑𝜑𝑛𝑛) contained in [1
2

, 1] as 𝑥𝑥 , noting that the 

thresholds closest to two ends of [1
2

, 1] may be from incomplete intervals. Then 𝑥𝑥 can only be 

𝑧𝑧 or 𝑧𝑧 + 1, as illustrated in Figure B1, where 𝑛𝑛
𝑁𝑁

 is the proposed price for 𝑣𝑣𝑏𝑏 = 1
2
, i.e., 𝑛𝑛 ≡

�
𝑁𝑁�12−𝑓𝑓𝑚𝑚+𝑓𝑓𝑡𝑡�+1

2
�. 

Step 2: Optimal Fee Breakdown D for Given 𝑻𝑻 

For any given 𝑇𝑇, suppose 𝐷𝐷∗ ≡ argmax
𝐷𝐷

Π(𝐷𝐷;𝑇𝑇). Then any disturbance ∆ on 𝐷𝐷∗ such 

that 𝐷𝐷� = 𝐷𝐷∗ + 2∆ (i.e., 𝑓𝑓𝑚𝑚 = 𝑓𝑓𝑚𝑚∗ + ∆ and 𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡∗ − ∆) should not improve profits. Under the 

new fee structure �𝑇𝑇,𝐷𝐷�� (or equivalently, 𝑓𝑓𝑚𝑚 = 𝑓𝑓𝑚𝑚∗ + ∆ and 𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡∗ − ∆), all thresholds have 

been shifted by 2∆, that is, 

𝜑𝜑�𝑛𝑛 = 𝜑𝜑𝑛𝑛∗ + 2∆. 

 There are two cases to be considered: 

(i) 𝑟𝑟 ≠ 0 

If ∆> 0, all thresholds 𝜑𝜑�𝑛𝑛 shift toward the right, compared with 𝜑𝜑𝑛𝑛∗ . For each original 

interval [𝜑𝜑𝑛𝑛∗ , 𝜑𝜑𝑛𝑛+1∗ ], 2∆ liquidity makers reduce their quotes by one tick (1
𝑁𝑁

). As a result, the 

EX’s execution probability for these liquidity makers decreases by 2
𝑁𝑁

. Since there are 𝑥𝑥 

thresholds, the aggregate profit loss for the EX is 𝑇𝑇 ∙ 𝑥𝑥∙2∆
1−12

∙ 2
𝑁𝑁

= 2∆𝑇𝑇 ∙ 4𝑥𝑥
𝑁𝑁

. 

At the same time, for the whole interval [1
2

, 1] , a decrease in 𝑓𝑓𝑡𝑡 �recall that 

𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡∗ − ∆� increases the execution probability by 2∆. It yields a profit gain for the EX of 𝑇𝑇 ∙

1−12
1−12

∙ 2∆= 2∆𝑇𝑇. 
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In panels (b) and (c) of Figure B1, there are 𝑧𝑧 effective thresholds when all thresholds 

𝜑𝜑�𝑛𝑛 shift toward the right (∆> 0). Since 4𝑥𝑥
𝑁𝑁

= 4𝑧𝑧
𝑁𝑁

< 1 , a deviation of ∆> 0 increases the EX’s 

total profit. So the cases presented in panels (b) and (c) cannot be optimal. 

 
FIGURE B1 

Disturbance on Fee Breakdown  

 Similarly, the cases presented in panels (a) and (b) cannot be optimal, because ∆< 0 

leads to higher profit when 𝑥𝑥 = 𝑧𝑧 + 1. As a result, only the case in panel (d) can be optimal. 

So at optimal, we have 𝜑𝜑𝑛𝑛 = 1
2
. 

(ii) 𝑟𝑟 = 0 
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We have 𝑥𝑥 = 𝑧𝑧 and thus 2∆𝑇𝑇 ∙ 4𝑥𝑥
𝑁𝑁

= 2∆𝑇𝑇 ∙ 4𝑧𝑧
𝑁𝑁

= 2∆𝑇𝑇, because 𝑁𝑁 = 4𝑧𝑧. Thus, a small 

disturbance ∆ has no effect on the EX’s profit. Therefore, fee breakdown happens to be neutral 

for a monopoly EX when 𝑟𝑟 = 0. Without loss of generality, we assume 𝜑𝜑𝑛𝑛 = 1
2
, so that we can 

use the same formula for any 𝑁𝑁 > 8.42  

Combining (i) and (ii) above, at optimum, we must have 𝑛𝑛 = �
𝑁𝑁�12−𝑓𝑓𝑚𝑚+𝑓𝑓𝑡𝑡�+1

2
�  such 

that 𝜑𝜑𝑛𝑛 = 𝐷𝐷 + 2𝑛𝑛−1
𝑁𝑁

= 1
2
. This condition implies that 𝐷𝐷 = 1

2
− 2𝑛𝑛−1

𝑁𝑁
. It follows that 

𝑓𝑓𝑚𝑚 =
𝑇𝑇 + 𝐷𝐷

2
=
𝑇𝑇 −

2𝑛𝑛 − 1
𝑁𝑁 + 1

2
2

, 𝑓𝑓𝑡𝑡 =
𝑇𝑇 − 𝐷𝐷

2
=
𝑇𝑇 +

2𝑛𝑛 − 1
𝑁𝑁 − 1

2
2

. 

Step 3: Determination of Optimal 𝑻𝑻 

 When any liquidity maker with valuation 𝑣𝑣𝑏𝑏 ∈ [1
2

, 1] submits a limit order, the EX’s 

expected profit depends on the total fee and the limit order’s execution probability.  

𝛱𝛱(𝑓𝑓𝑚𝑚,𝑓𝑓𝑡𝑡) = total fee × � (execution probability × interval width)
all price levels

 

= 𝑇𝑇 ∙ 2 ∙ � � �−𝑓𝑓𝑡𝑡 +
𝑖𝑖
𝑁𝑁�

𝑧𝑧+𝑛𝑛−1

𝑖𝑖=𝑛𝑛

∙
2
𝑁𝑁

1 − 1
2

 + �−𝑓𝑓𝑡𝑡 +
𝑧𝑧 + 𝑛𝑛
𝑁𝑁 � ∙

𝑟𝑟
2𝑁𝑁

1 − 1
2
� 

= 𝑇𝑇 ∙ �
3
4

+
𝑟𝑟 ∙ (4 − 𝑟𝑟)

4𝑁𝑁2 − 𝑇𝑇� 

Thus, 

𝑇𝑇∗ =
3
8

+
𝑟𝑟 ∙ (4 − 𝑟𝑟)

8𝑁𝑁2 , and 𝛱𝛱∗ = �
3
8

+
𝑟𝑟 ∙ (4 − 𝑟𝑟)

8𝑁𝑁2 �
2

. 

 The optimal fees follow directly as 

𝑓𝑓𝑚𝑚∗ =
𝑇𝑇∗ + 𝐷𝐷∗

2
= −

𝑛𝑛
𝑁𝑁

+
7𝑁𝑁2 + 8𝑁𝑁 + 𝑟𝑟 ∙ (4 − 𝑟𝑟)

16𝑁𝑁2  

𝑓𝑓𝑡𝑡∗ =
𝑇𝑇∗ − 𝐷𝐷∗

2
=
𝑛𝑛
𝑁𝑁
−
𝑁𝑁2 + 8𝑁𝑁 − 𝑟𝑟 ∙ (4 − 𝑟𝑟)

16𝑁𝑁2 . 

This proof requires the full participation of liquidity makers even after we increase the 

make fee by an amount ∆> 0 . This full participation requires the liquidity maker with 

                                                            
42 Yet we are aware that, for 𝑟𝑟 = 0, Proposition B1 only presents one set of fees that maximize the profit. When 
N is the multiple of 4, the fee breakdown happens to be neutral and the optimal fee and profit coincides with the 
case of zero tick size under one (monopoly) exchange. Yet Table II shows that fee breakdown is no longer neutral 
when the monopoly operator establishes two exchanges, and Proposition 6 shows that no pure strategy exists for 
any tick size N. 
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valuation 𝑣𝑣𝑏𝑏 = 1
2
 to quote a limit-order price such that the cum fee sell price is larger than 1

𝑁𝑁
. If 

not, an increase in make fee leads the liquidity maker with  𝑣𝑣𝑏𝑏 = 1
2
 to quote a price one tick 

lower because she is at the threshold, which leads to a cum fee sell price no larger than 

zero.  Because no liquidity taker accepts a negative cum fee sell price, the full participation 

condition is violated.  Therefore, we need  

𝑝𝑝𝑠𝑠
∗ = −𝑓𝑓𝑡𝑡

∗ +  
𝑛𝑛
𝑁𝑁

=
𝑁𝑁2 + 8𝑁𝑁 − 𝑟𝑟 ∙ (4 − 𝑟𝑟)

16𝑁𝑁2 >  
1
𝑁𝑁

, 

which reduces to 𝑁𝑁 > 8. ■ 
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TABLE I 

 Participations in Exchange(s) Established by a Monopoly and the Welfare of the Three 
Parties 

 One Exchange Two Exchanges 

  Low Quality High Quality 

Panel A: Cum Fee Prices    

Cum Fee Sell Price 1/3 1/5 2/5 
Execution Probability (Quality) 2/3 2/5 4/5 
Cum Fee Buy Price 2/3 3/5 7/10 

    
Panel B: Range of Participants   

Liquidity Maker Participation [2/3, 1] [3/5, 4/5] [4/5, 1] 
Liquidity Taker Participation [0,1/3] [0,1/5] [1/5, 2/5] 

   
Panel C: Welfare   

Operator 4/27 4/25 
Liquidity Maker 2/27 2/25 
Liquidity Taker 2/27 2/25 

Notes. This table shows the market outcomes when a monopoly establishes one 
exchange and when a monopoly establishes two exchanges. Panel A displays the cum fee sell 
and buy prices in each exchange. Panel B displays the valuation ranges of liquidity makers and 
liquidity takers who participate in the exchange, and their corresponding choices of the 
exchanges. Panel C shows the expected welfare for the operator, liquidity makers, and liquidity 
takers. 
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TABLE II 

Exchange Fee Structures and Liquidity Makers’ Segmentation under Various Tick Sizes 

  N = 2 N = 4 N = 8 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 One 
Exchange Two Exchanges One 

Exchange Two Exchanges One 
Exchange Two Exchanges 

    Exchange 1 Exchange 2   Exchange 1 Exchange 2   Exchange 1 Exchange 2  
Panel A: Fee Structure of Exchanges       

Make Fee 0.6667 0.6000 0.7000 0.3750 0.4095 0.5840 0.3750 0.4165 0.4705 
Take Fee -0.3333 -0.2000 -0.4000 0.0000 -0.0340 -0.1595 0.0000 -0.0339 -0.0961 
Total Fee 0.3333 0.4000 0.3000 0.3750 0.3755 0.4245 0.3750 0.3826 0.3744 

Profit 0.1481 0.0640 0.0960 0.1406 0.1107 0.0338 0.1406 0.0421 0.0994 
Panel B: liquidity Markers' Segmentation             

P=0 0.6667–1.0000 0.6000–0.8000 0.8000–1.0000  0.5000–0.6313 0.6313–0.7562   0.5000–0.6501 

P=1/8       0.5000–0.7500 0.6501–0.7334 0.7334–0.9164 

P=2/8    0.6250–1.0000 0.7562–1.0000  0.7500–1.0000 0.9164–1.0000  

P=3/8          

P=4/8                   

Notes. This table provides an example of fee structures set by a monopoly and the segmentation of liquidity makers under various tick 
sizes. Columns (1)–(3), (4)–(6) and (7)–(9) display the market outcomes under tick sizes of 1

2
, 1
4
 and 1

8
 , respectively. Columns (1), (4), and (7) 

display cases in which the monopoly establishes only one exchange, and columns (2)–(3), (5)–(6), and (8)–(9) display cases in which the monopoly 
establishes two exchanges. Panel A lists the fee structures chosen by the monopoly. The horizontal row in Panel B indicates the limit-order price 
that the liquidity maker proposes and the vertical row indicates the liquidity maker’s choice of exchange conditional on her valuation of the security 
presented in the cell.   
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FIGURE I 

Structure of U.S. Stock Exchanges and Corresponding Fee Structures on Each Exchange 

Notes. This figure displays the ten U.S. stock exchanges run by three holding companies 
(operators). This figure also displays the corresponding make/take fees on each exchange on May 
15, 2015.43 

 

 

                                                            
43 The figure displays the fee structure for NYSE-listed stocks. Standard rates are presented in the figure; for exchanges 
not stating standard rates, fees unconditional on the participants’ activities are presented.  
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FIGURE II 

Timeline of the Model 
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FIGURE III 

Liquidity Maker’s Surplus under Two Exchanges 

Notes. This figure shows the liquidity maker’s surplus when choosing between two 
exchanges. The horizontal axis indicates the liquidity maker’s valuation of the security and the 
vertical axis indicates the liquidity maker’s trading surplus. Without loss of generality, we assume 
that the cum fee sell price in Exchange 1, 𝑝𝑝𝑠𝑠1, is lower than the cum fee sell price in Exchange 2 , 
𝑝𝑝𝑠𝑠2. BS1 and BS2 depict the liquidity maker’s surplus when choosing Exchange 1 and Exchange 2, 
respectively. The liquidity maker chooses the exchange that offers her a higher surplus. The thick 
red lines depict the liquidity maker’s choice, which is the upper envelope of the two surplus curves. 
𝜑𝜑 is the cut-off value for the marginal liquidity maker.  
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FIGURE IV 

Two Types of Deviation from Bertrand Equilibrium 

Notes. This figure shows two types of profitable deviation for Exchange 2 when Exchange 
1 and Exchange 2 start by setting the total fee at zero. The horizontal axis indicates the liquidity 
maker’s valuation of the security and the vertical axis indicates the liquidity maker’s trading 
surplus. BS1 and BS2 depict the liquidity maker’s surplus when choosing Exchange 1 and Exchange 
2, respectively. In Panel (a), exchange 1 and exchange 2 start by setting 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1 = 1

2
. Exchange 2 

can profitably deviate by decreasing the cum fee buy price to 𝑝𝑝𝑏𝑏2 = 1
2
− 𝜇𝜇𝜇𝜇 and the cum fee sell 

price to 𝑝𝑝𝑠𝑠2 = 1
2
− 𝜀𝜀 . In Panel (b), Exchange 1 and Exchange 2 start by setting 𝑝𝑝𝑏𝑏1 = 𝑝𝑝𝑠𝑠1 < 1

2
. 

Exchange 2 can profitably deviate by increasing the cum fee buy price to 𝑝𝑝𝑏𝑏2 = 𝑝𝑝𝑏𝑏1 + 𝜀𝜀 and the cum 
fee sell price to 𝑝𝑝𝑠𝑠2 = 𝑝𝑝𝑠𝑠1 + 𝜇𝜇 ∙ 𝜀𝜀. 𝜀𝜀 > 0 and 0 < 𝜇𝜇 < 1 in both panels. The liquidity maker chooses 
the exchange that offers her a higher surplus. The thick red lines depict the segment of liquidity 
makers who are drawn to Exchange 2. 𝜑𝜑 is the cut-off value for the marginal liquidity maker. 

 

 


