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Abstract

We propose continuous scaled limit orders to implement Fischer Black’s vision

of financial markets. By making trading continuous in price, quantity, and time,

continuous scaled limit orders eliminate rents high frequency traders earn exploit-

ing artifacts of the current market design. By avoiding time priority, this new or-

der type protects slow traders from being picked off by high frequency traders and

makes high frequency traders compete among themselves. All traders, regardless

of their technological capacity, can optimally spread trades out over time to min-

imize adverse price impact. Organized exchanges should move not toward more

discreteness but toward a full continuity.
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About half a century ago, Fischer Black (1971a,b) made bold predictions about how

stock market trading would change if the design of the stock market moved from the

human-dominated specialist system to a system in which trading and market-making

used computers. He predicted that liquidity would not be supplied cheaply, especially

over short periods of time. Realizing that trading large quantities over a short horizon

was expensive, customers would spread large trades out over time to reduce tempo-

rary price impact costs. He believed an efficient market design could reduce bid-ask

spreads on small trades to a vanishingly small level while providing practical ways for

large traders to reduce impact by trading gradually over time.

The purpose of this paper is to show how to implement Fischer Black’s vision of

an efficient market design using a new order type that we call “continuous scaled limit

orders.” Continuous scaled limit orders eliminate the rents that high frequency traders

earn at the expense of other traders and thus also eliminate resulting inefficiencies in

today’s markets. To illustrate this point, let us first describe how the current markets

work.

Since the late 1990s, human beings have been replaced by computerized limit order

books. The trading of equities in the U.S. and Europe has in recent decades become

dominated by continuous limit order books which handle millions of buy and sell or-

ders each day. A continuous limit order book is, however, hardly continuous. A stan-

dard limit order is a message conveying an offer to buy or sell a discrete quantity at a

discrete price, where the quantity is an integer multiple of minimum lot size and the

price is an integer multiple of a minimum tick size. In most U.S. stocks, the minimum

lot size is one share or one hundred shares and the minimum tick size is $0.01 or one

cent per share. A limit order book then processes discrete orders sequentially in the or-

der of their arrivals. Because sending, receiving, and processing messages take time, no

trader can trade in continuous time. Thus, a continuous limit order book has elements

of discreteness in price, quantity, and time.

In today’s markets, high frequency traders who expend real resources to acquire

technological advantages earn rents exploiting artifacts of the current market design

related to the discreteness of prices, quantities, and time. When several traders want

to purchase shares at the same price at the same time, exchanges often allocate trades
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based on time priority; the first trader in line to buy or sell at a given price is the first

to receive quantities traded at that price. High frequency traders use their speed to

take advantage of time priority by placing orders quickly to be the first in the queue.

High frequency traders also use their speed to “pick off” slow traders orders by hitting

or lifting stale bids or offers before the slow traders can cancel them. Furthermore, to-

day’s limit order book requires an allocation rule because discrete prices and quantities

prevent the market clearing price from being uniquely defined. The allocation rule pro-

vides additional rents high frequency traders can earn from gaming it.

A continuous scaled limit order is a message conveying an offer to buy or sell grad-

ually at a specific trading rate over a specific range of the prices. With such orders,

traders’ inventories are piecewise differentiable functions of time, with the rates of buy-

ing or selling changing when the price changes. Traders can buy at a faster rate when

prices fall and sell at a faster rate when prices rise. Continuous scaled limit orders make

price, quantity, and time continuous.

With continuous scaled limit orders, all orders are treated symmetrically and ex-

ecuted simultaneously. Because slow traders spread their orders over time, high fre-

quency traders can pick off only a small quantity before slow traders cancel their orders.

With the market clearing price uniquely defined, an allocation rule is no longer neces-

sary. This automatically eliminates the rents high frequency traders would have earned

from gaming it. More importantly, there is no time priority. The market is no longer

the fastest-takes-all. High frequency traders with varying speeds and bandwidths com-

pete with one another. This increased competition among high frequency traders has

a broader implication for economic efficiency. Today’s market structure encourages

arms race among fast traders to become the fastest as emphasized by Harris (2013); Li

(2014); Biais, Foucault and Moinas (2015); Budish, Cramton and Shim (2015). Continu-

ous scaled limit orders deter over-competition in technology by increasing competition

in trading, which further benefits slow traders who experience price improvements.

Fischer Black was remarkably prescient. Large institutional traders around the world

nowadays spread their trading out over time exactly like he said they would. Widespread

algorithmic trades are often executed by breaking large intended trades into many small

pieces and trading the many small pieces over time. For example, some algorithms try
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to achieve the volume-weighted average price (“VWAP”) of trades during a day by trad-

ing gradually along with the rest of the market. Our proposal for continuous scaled

limit orders allows traders to do this without incurring large bandwidth costs for plac-

ing, modifying, and canceling thousands of orders throughout the day so that all traders

regardless of their technological capacity can implement their trading strategies in an

efficient manner.

Theoretical models of dynamic trading are also consistent with traders optimally

choosing to trade gradually using continuous scaled limit orders. In the model of Kyle,

Obizhaeva and Wang (2017) traders face temporary and permanent price impacts. Be-

cause traders have private information, the price moves against the trader, meaning

that the price goes up when the trader wants to buy, and the price goes down when the

trader wants to sell. Moreover, the extent to which the price moves against the trader

increases in the speed with which the trader buys or sells because more urgency sig-

nals stronger private information. Therefore, traders smooth their trading over time

with optimal trading strategies that almost perfectly map into continuous scaled limit

orders.

Such gradual trading directly opposes to the model of Grossman and Miller (1988),

in which continuously present market makers must satisfy urgent trading needs of buy-

ers and sellers. In their model, traders demand urgency because they do not take into

account their own price impact costs; instead, they trade as perfect competitors. In a

one-period model, Kyle and Lee (2017) show that fully strategic traders restrict quanti-

ties they trade whenever they face price impacts and may even completely refrain from

trading, foregoing gains from trade. This suggests that strategic traders do not demand

urgency and choose to trade gradually over time.

We believe that trading with continuous scaled limit orders dominates the current

market design. While we cannot prove continuous scaled limit orders are an optimal

mechanism, this new order type eliminates rents high frequency traders earn from ex-

ploiting the discreteness in today’s markets. By allowing all traders to trade gradually

without being picked off, continuous scaled limit orders make rapid trading more ex-

pensive compared to slower trading. As a result, traders are deterred from acquiring

ultra short-term information with little to no social value and are encouraged to pro-
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duce more long-term information. Future exchanges should move not toward more

discreteness but toward full continuity.

The plan of this paper is as follows. Section 1 describes the difference between con-

tinuous scaled limit orders and standard limit orders. Section 2 explains how contin-

uous scaled limit orders benefit long-term traders by eliminating socially counterpro-

ductive games high-frequency traders play using their speed to pick off resting limit or-

ders and exploit time and price priority when the tick size is economically meaningful.

It also shows how our proposal addresses the efficiency costs of a high-frequency trad-

ing arms race better than the proposal of Budish, Cramton and Shim (2015). Section 3

discusses remaining issues such as transparency and trust, execution of market orders,

flash crashes, speed bumps, privately arranged trades, minimum resting times, market

fragmentation, dark pools, and clock synchronization. Section 4 show that our proposal

is deeply grounded in relevant economic theory. Continuous scaled limit orders allow

traders to implement with greater message efficiency the gradual trading strategies that

they are implementing today.

1 Continuous Scaled Limit Orders

Today’s exchanges operate as “continuous limit order books” which process discrete

limit orders arriving sequentially in continuous time. Each limit order is a message con-

veying a contractually binding offer to buy or sell a specific quantity at a specific price.

The message also includes information about time stamps, the identities of traders, and

routing. Traders send messages to exchanges to place, cancel, or modify limit orders.

Exchanges log messages and send traders additional messages to confirm receipt of the

messages and to update prices and quantities for shares bought or sold. Encryption and

decryption of messages is computationally costly. Sending, receiving, and processing

messages takes time and consumes real resources such as telecommunications band-

width and computer processing power.

A continuous limit order book has elements of discreteness with respect to price,

quantity, and time. Standard limit orders are discrete in both price and quantity in the

sense that the price is an integer multiple of a minimum tick size and the quantity is
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an integer multiple of minimum lot size. Whether orders are processed one-at-a-time

or in batches, continuous limit order books are discrete in time in the sense that finite

quantities are exchanged at specific points in time based on the arrival of orders rather

than exchanged gradually over time. For example, a standard limit order to buy 100

shares at a price of $40.00 per share will be executed immediately when an order to sell

100 shares at a price of $40.00 arrives; it is not executed at a rate of one share per second

over a time period of 100 seconds.

Although messages are sent and received in continuous time, no trader can effec-

tively trade continuously because there are time lags associated with sending, receiving,

and processing orders. The degree to which a trader can participate continuously de-

pends on the speed of the trader’s technology and is ultimately limited by the speed of

light. From a trader’s perspective, the market operates more continuously if the trader

can send, receive, and process messages at a faster speed than others. A trader who can

easily and cheaply send 100 limit orders to buy or sell one share of stock each over a

time period of 100 seconds (or milliseconds) can effectively participate more continu-

ously than a trader who cannot do so because it is technologically impractical or too

costly. The discreteness of today’s continuous limit order books in price, quantity, and

time gives faster traders advantages with respect to slower traders.

In this section, we introduce dynamic trading with continuous scaled limit orders

to achieve continuity in price, quantity, and time. Continuous scaled limit orders are

different from standard limit orders in two respects. First, prices and quantities vary

continuously. Second, trades are executed continuously over time. Continuous scaled

limit orders allow traders to participate continuously while consuming fewer real re-

sources.

We begin by describing how current exchanges work using standard limit orders.

Sequential Auctions of Standard Limit Orders. Currently, exchanges process stan-

dard limit orders sequentially in the order in which they arrive. A limit order is a mes-

sage with three parameters: a buy-sell indicator, a quantity Q, and a price P , where Q
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and P are multiples of a minimum lot size and a minimum tick size respectively.1 In the

U.S. market, the stated minimum tick size for most actively traded stocks is currently

one cent per share. It was reduced from 1/8 of a dollar (12.5 cents per share) to 1/16

of a dollar (6.25 cents per share) in the late 1990s and reduced again to its current level

of one cent per share in 2001. There is also a distinction between “round lots” of 100

shares for most stocks and “odd lots” of fewer than 100 shares. Historically, odd lots

have been subject to different order execution and price reporting rules.

A standard buy limit order conveys the message “Buy up to Q shares at a price of P

or better.” Let X denote the number of shares purchased and let p(t ) denote the market

clearing price. Then X always satisfies

X =


Q if p(t ) < P,

αQ if p(t ) = P, where α ∈ [0,1],

0 if p(t ) > P.

(1)

If the market price p(t ) is above the limit price P , nothing is bought; if it is below the

market price p(t ), the order is fully executed (X = Q). If the market clearing price p(t )

exactly equals the limit price P , X depends on the rule of assigning market clearing

quantities α. Depending on α, the order receives a full execution (α= 1), a partial exe-

cution (0 <α< 1), no executed quantity (α= 0).2

An allocation rule to determine α is necessary because of discreteness in the limit

price and quantity. The market demand schedule calculated from aggregating all buy

orders and the market supply schedule calculated by aggregating all sell orders are dis-

continuous step functions. Although the market demand schedule is weakly downward

1An order may also contain additional time parameter T1 defining the time when the order begins
execution. We assume for simplicity that orders are for immediate execution and are good until canceled.

2The notation in equation (1) is meant to convey intuition; it is not meant to be mathematically pre-
cise. With more formal notation, the quantities Q, P , α, and X would have superscripts indicating the
identity of the specific message, which could be mapped to a specific trader. The price p(t ) is the same
for all traders and changes over time. If a limit order rests in the market for some period of time, then
α and X would become functions of time α(t ) and X (t ). The quantity X (t ) would be a monotonically
increasing step function of time indicating the cumulative number of shares bought or sold as of time t .
The fractionα(t ) could be interpreted as the fraction of the remaining quantity Q−X (t ) executed at time
t .

6



sloping and the market supply schedule is weakly upward sloping, there may not be

a unique point of intersection. Instead, there is typically a pair of best bid and offer

prices with excess demand at the best bid and excess supply at the best offer. The ex-

change typically chooses as the market clearing price the price at which trading volume

is maximized. Since there is typically excess supply or demand at this price, some rule

is needed to allocate prices and quantities.

Orders are matched according to rules specifying price and time priority. Price pri-

ority matches incoming executable limit orders against the lowest sell prices and high-

est buy prices in the limit order book. When there is more than sufficient quantity at a

given price to satisfy an incoming limit order, time priority executes the oldest limit or-

der at the best price first. Traders have strategic incentives to place orders in a manner

which exploits price and time priority at the expense of other traders. Obviously, fast

traders have an incentive to place orders quickly, to get ahead of other traders in the

time priority queue at a given price.

Conceptually, one way to get around the need for an allocation rule is to allow

traders to submit orders which are not discontinuous step functions but rather arbi-

trary weakly monotonic functions which specify quantity demanded or supplied as a

function of price. If traders choose continuous upward-sloping supply schedules and

continuous downward sloping demand schedules, then there is a unique market clear-

ing price at which the market exactly clears and all traders’ quantities demanded and

supplied are fulfilled (α = 1). This is typically what happens in theoretical models of

market equilibrium. In rational expectations model with exponential utility and nor-

mally distributed random variables—or models with quadratic storage costs—the de-

mand and supply schedules are linear.

This approach makes limit orders continuous in quantities and prices but not con-

tinuous in time by eliminating minimum tick size and minimum lot size. It does not

make quantities continuous functions of time. Our approach makes trading continu-

ous in price, quantity, and time. We explain first how to make trading continuous in

time, then explain later how to make trading continuous in price and quantity.
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Auctions of Continuous Standard Limit Orders. Quantities traded can be made con-

tinuous functions of time by adding to each limit order an urgency parameter specify-

ing the maximum rate at which to buy or sell. We define a “continuous standard limit

order”as an order which conveys the message, “Buy up to a cumulative total of Qmax

shares at a price of Pmax or better at maximum rate Umax shares per hour.” The quan-

tities Qmax and Umax are multiples of a minimum lot size and Pmax is a multiple of a

minimum tick size. The speed parameter Umax defines the maximum of the derivative

of the trader’s inventory as a continuous function of time.3 The trading speed U
(
p (t )

)
is a function of the the market clearing price p (t ) at time t ; it is given by

U
(
p (t )

)
:=


Umax if p (t ) < Pmax,

α ·Umax if p (t ) = Pmax, where α ∈ [0,1]

0 if p (t ) > Pmax.

(2)

For an order placed at time t0 and canceled or filled at time Tmax, the cumulative quan-

tity executed by time t is given by the integral

Q (t ) :=
∫ t0+t

t0

U
(
p (τ)

)
dτ, for t ∈ [0,Tmax] . (3)

If the order is canceled at time Tmax without being filled, then Q (Tmax) < Qmax; if the

order is filled at time Tmax, then Q (Tmax) =Qmax.

When the price is strictly below Pmax, the trader buys at rate U . When the price

is strictly above Pmax, the inventory does not change, implying dQ(t )/dt = 0. If the

price remains low enough so that that order is executed at maximum rate U , the order

will be fully executed exactly after Tmax =Q/U . If the price fluctuates above and below

P , the full execution will take longer than Q/U . If the price stays above P , the order

will not be executed. Since U (p(t )) changes only when p(t ) changes and p(t ) changes

only when discrete events like order arrivals, executions, and cancelations occur, the

cumulative quantity executed Q(t ) is a piecewise continuously differentiable function

of time. A standard limit order corresponds to U → ∞, which allows the cumulative

3We conjecture that future exchanges could develop additional order types which allow Umax to be a
function of other market characteristics such as trading volume, price volatility, or “market liquidity”.
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quantity executed to be a discontinuous step function.

When the market clearing price is exactly equal to the limit price P during order

execution, the trader’s inventory changes at a rate such that 0 ≤ dQ(t )/dt ≤Umax. The

exact rate αUmax depends on the rule for allocating market-clearing quantities.4

While Qmax, and Umax are multiples of minimum lot size, the cumulative quantity

traded Q(t ) is an arbitrary real number. To settle market clearing quantities, we propose

the following approach. Let X denote the net purchases or sales a trader makes, calcu-

lated at the end of the day based on full or partial execution of all orders the trader has

submitted. The quantity X can be expressed as the sum of an integer portion fraction

part ε by writing X = int(X )+ ε. To clear the fractional part of X , we propose cash-

settling the fraction ε by buying 1−ε shares or selling ε shares in a manner such that the

expected fractional share traded is approximately zero. This insures that traders have

little incentive to game the end-of-day settlement of these fractional shares.

Continuous orders allow traders to slice their orders into small pieces and gradu-

ally trade toward their target inventories. As discussed below, economic theory implies

that such order shredding is an optimal trading strategy. Nowadays large institutional

investors by in the manner implied by theory. They shred large orders into small pieces

and trade numerous small quantities more or less continuously throughout the day.

Implementing such strategies in today’s markets requires sending numerous messages,

which is more costly for traders with low technological capacity. Continuous limit or-

ders allow all traders to trade smoothly without being equipped with large bandwidth

and processing power. To the extent that price impact depends not only the quantity

traded but also the speed with which the same quantity is traded, traders can optimally

choose their trading speed by trading off the price impact against the impatience of

their trading needs.

Continuous orders do not eliminate the need for an allocation rule which deter-

mines the fractional rate of order execution α when there is excess flow demand or

supply at the market clearing price. To deal with the possibility that faster traders may

4The notation in equations (2) and (3) is also meant to be intuitive, not mathematically rigorous. More
formally, the quantities Umax, Pmax, U (p(t )), and α should have subscripts indicating the order to which
they apply. The quantities U (p(t )) and α are functions of time t .
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be able to profit at the expense of slower traders by gaming the allocation rule with

continuous limit orders, we propose continuous scaled limit orders, which we discuss

next.

Market Design with Continuous Scaled Limit Orders. We define a “continuous scaled

limit order” as a generalization of a continuous limit order. Instead of one price Pmax,

a continuous scaled limit order conveys the message, “Buy up to Qmax total shares at

prices between PL and PH at maximum rate Umax,” where Qmax and Umax are multiples

of a minimum lot size and PL and PH are multiples of a minimum tick size satisfying

PL < PH .If PL = PH , the order corresponds to a continuous (unscaled) limit order. Then

the trading speed U
(
p (t )

)
is a function of the the market clearing price p (t ) given by

U
(
p (t )

)
:=


Umax if p (t ) < PL ,(

PH−p(t )
PH−PL

)
Umax if PL ≤ p (t ) ≤ PH ,

0 if p (t ) > PH .

(4)

A continuous scaled limit buy order defines a piecewise linear demand schedule ac-

cording to which the derivative of a trader’s inventory U
(
p (t )

)
is equal to Umax when

the price is less than PL , is equal to zero when the price is greater than PH , and de-

creases linearly when the price is between PL and PH . The trader’s inventory Q (t ) is

defined by equation (3).

A set of continuous scaled limit buy orders defines an aggregate flow demand sched-

ule, denoted D
(
p

)
, as the sum of the trading speed U (p) of all buy orders. An aggre-

gate demand schedule is the graph of a continuous, weakly monotonically decreasing,

piecewise linear function of price p, with possible kinks at integer multiples of the min-

imum tick size. An aggregate supply schedule, denoted by S
(
p

)
, is defined analogously

to a demand schedule and is the graph of a continuous, weakly monotonically increas-

ing, piecewise linear function.

Suppose the aggregate demand and supply schedules to intersect at a point where

either of the two is not flat. Then the excess demand schedule D
(
p

)−S
(
p

)
is strictly

decreasing in the neighborhood of the intersection, and, thus, there exist P0 and P1,
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where P1 is one tick size larger than P0, such that

D (P0)−S (P0) ≥ 0 and D (P1)−S (P1) < 0. (5)

Define the relative order imbalance ω ∈ [0,1] by

ω := D (P0)−S (P0)

D (P0)−S (P0)−D (P1)+S (P1)
. (6)

Then the market clearing price p(t ) is uniquely defined by

p (t ) = P0 +ω (P1 −P0) . (7)

Intuitively, the price is a weighted average of the two prices P0 and P1, with weights 1−ω
and ω proportional to the excess demand and supply at these prices.

If the demand and supply schedules intersect at overlapping flat sections, then we

adopt the convention that the market clearing price is the midpoint of the overlapping

interval. We do not expect this to be the case. Suppose the demand and supply sched-

ules intersect over a horizontal interval. Then each buyer could increase a minuscule

amount of demand at the lower price of the interval, forcing the price down. Similarly,

each seller could increase a minuscule quantity of supply at the higher price of the in-

terval, forcing the price up. Since a flat demand schedule around the intersection is not

an optimal response to a flat supply schedule and vice versa, we expect the demand and

supply schedules almost always to intersect at a single point which uniquely defines the

market clearing price p (t ) as above.

Requiring the price limits PH and PL to be multiples of minimum tick size makes

both the aggregate demand and supply schedules to be piecewise linear functions of

price p with all kinks occurring at integer multiples of the minimum tick size. This fea-

ture simplifies algorithmically the calculation of the market clearing price p(t ). The

aggregate demand schedule and the aggregate supply schedule can both be described

as vectors of fixed length, with each vector entry corresponding to the demand or sup-

ply at a particular price. The vectors are monotonic in in quantities. This makes it easy

to calculate the two prices P0 and P1 at which the difference between quantity sup-
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plied and quantity demanded changes sign. The price can then be calculated as a real

number from , which is an arbitrary real number from equation (7). Given the speed of

modern computers, these calculations are nowadays trivial. Since the calculations are

performed at the exchange, they do not involve sending and receiving extra messages.

Furthermore, since the price p(t ) and thus the trading rates U
(
p (t )

)
are uniquely

defined, an allocation rule α is no longer necessary; it does not appear in equation (4).

Since the allocation rule is not necessary, traders can accurately infer the quantities they

trade from a public feed of prices, or equivalently from P0, P1, and ω. Exchanges need

not send constant updates of prices and quantities for each fractional share bought

on each order. Sending confirmation messages at infrequent time intervals, like one

second or one minute, would be sufficient. This conserves bandwidth and computation

costs because sending and receiving messages is computationally costly.

With continuous scaled limit orders, a trader is likely to place, modify, and can-

cel orders much less frequently than with standard limit orders. A continuous scaled

limit order automatically implements a strategy to buy patiently over time, as Fischer

Black (1971a) suggest traders would want to do. The patient strategies which traders

use today can be implemented with small number of continuous scaled limit orders

rather than a gigantic number of standard limit orders. As we discuss next, such orders

not only conserve the real resources needed to operate an organized exchange but also

level the playing field between fast and slow traders.

2 Practical Implications for High Frequency Trading

High frequency traders expend real resources to acquire technological advantages over

other traders related to lower latency, larger bandwidth, and more processing power.

As we discuss in this section, this technological advantage allows fast traders to make

profits exploiting artifacts of the current market design related to discreteness of prices,

quantities, and time. Although such rents may have great private value, such rents have

little to no social value; they are earned at the expense of other traders with less ad-

vanced technology.

Slow traders often seek to profit by uncovering long-term information about the
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value of assets. This long-term information tends to create a positive externality by giv-

ing the market signals about value which can steer resource allocation decisions related

to investment and corporate strategy. To the extent that the fast traders increase the

trading costs of slow traders, the fast traders discourage production of socially valuable

long-term information. Continuous scaled limit orders create long-term social value

by reducing the incentives high frequency trader have to engage in a costly technology

arms race..

High frequency traders may also perform socially useful services by using their speed

to arbitrage prices better and to hold inventories temporarily for short periods of time.

Continuous scaled limit orders improve the efficiency with which these services are

formed by making it cost effective for slower traders to participate in providing trad-

ing services which would otherwise be too technologically expensive for slow traders to

provide.

This section first discusses how continuous scaled limit orders eliminate artificial

discreteness in price, quantity, and time in the current markets. This not only dimin-

ishes the rents earned by fast traders but also changes the nature of competition among

fast and faster traders to make the market more competitive. We then compare contin-

uous scaled limit orders to frequent batch auctions proposed by Budish, Cramton and

Shim (2015) and random delays proposed by Harris (2013).

2.1 How Fast Traders Earn Rents in Today’s Markets.

Fast traders earn rents in today’s market by using their speed to process information

and submit messages faster. This allows them to profit by arriving early, canceling early,

and taking advantage of the allocation rule when there is time and price priority.

To illustrate these ideas, consider a hypothetical stock with a price of about $40.00

per share and volume of about one million shares per day. Suppose the return volatility

of the stock is 2.00 percent per day. Thus, a one standard deviation event represents a

price change of 2.00 percent of $40.00 or 80 cents per share. This price, share volume,

and volatility are typical for a stock just below the median of the S&P 500.

Suppose a portfolio manager desires to buy 10000 shares of this stock over the course
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of one day. Such an order represents one percent of one day’s trading volume, a typi-

cal amount that an institutional investor might want to trade in one day. Buying 10000

shares will likely incur significant, unavoidable price impact costs related to adverse

selection. Now suppose that the trader submits a 10000 share limit order and leaves

it resting in the market. Such a strategy exposes the order to being exploited by faster

traders in several ways. We examine these next.

Arriving Early and Canceling Early. Fast traders can access, process, and act on short-

term information than unfolds over short periods of time like fractions of a second.

They can learn the price in other markets before others and attempt to take a cross-

market arbitrage. Alternatively, fast traders may be able to use public information within

a market, such as quantities and prices of active bids and offers, to infer others’ trading

motives and anticipate their orders to the advantage of the fast traders themselves.

For example, suppose that the institutional investor entered the 10000 share order

in reaction to some fast-unfolding piece of information. Suppose a fast trader entered

an order to purchase 4000 shares at the same price based on reacting to the same in-

formation. If the fast trader’s arrives one microsecond earlier than the slower trader’s

order, then the fast trader gains time priority in the limit order book. If there are incom-

ing orders to sell 4000 shares at $40.00, the fast traders takes the other side of all 4000

shares because of time priority. If the price rises substantially immediately after these

4000 share finish executing, the fast trader gains all of the benefit from the purchase of

4000 shares and the slower trader gains nothing. The slow trader loses the entire trading

opportunity by being one microsecond slower than the fast trader.

If there is an infinitesimal tick size, then the fast trader does not need to be fast to

step in front of the 10000 share order. He can place a limit order to buy at $40.000 000 001

and thereby gain price priority at negligible cost. With this slight modification, the ex-

ample plays out in the same way.

Now suppose there is no order ahead of the 10000 order in the time priority queue

at $40.00 per share. Suppose new short-term information, observed simultaneously

by all traders, suddenly changes the expected future price of the stock from $40.00 per

share to $39.80 per share. Fast traders will race to hit the 10000 share buy order while
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the slower buyer simultaneously will try to cancel the 10000 share order first. The likely

outcome is that the fastest trader hits the 10000 share order before it can be canceled,

earning an instantaneous profit of 20 cents per share on 10000 shares, or $2000. The

slow trader, whose order is “picked off,” loses $2000.

The expected losses associated with being picked off are proportional to the size of

the order, the frequency with which relevant information events occur, and the price

movement associated with the events conditional on their occurring. If prices follow a

martingale, there are some interesting connections between the frequency of informa-

tion events and the size of the price movements that result from them. Suppose that

20 cents per share of return standard deviation results from such information events.

This corresponds to one information event which results in a 20 cent per share price

change. The same 20 cents of standard deviation can also result from 4 events which

move prices 10 cents each (since 10×p
4) = 20) or 16 events which move prices 5 cents

each (since 5×p
16 = 20). Clearly, holding constant the size of resting limit orders, the

total losses to resting limit orders are greater when a given standard deviation of returns

volatility is associated with many small information arrivals. Total losses per share of

resting limit orders are 20 cents when there is one information event (1×20 = 20), 40

cents when there are 4 events (10 × 4 = 40), and 80 cents when there are 16 events

(16× 5 = 80). Since market prices tend to change in very small increments, the pre-

sumption must be that costs of being picked off are significant when measured in cents

per resting-order share. In the limit as prices follow geometric Brownian motion, leav-

ing a resting limit order of any size continuously in the market, replacing it with a new

order every time it is picked off, results in infinite losses on infinite trading volume with

infinitesimal losses on each order.

Clearly, this logic suggests that the potential net gains from following a market-

making strategy of continuously place limit orders to buy at the bid price and sell at

the offer price are going to be greater for a fast trader than a slow trader since the fast

trader can more easily avoid losses from being picked off. This logic does not imply

that a slow trader who only wants to buy or only wants to sell should never place resting

limit orders. A slow trader who wants to trade in one direction must weigh the losses

from being picked off against the bid-ask spread costs from placing executable limit or-
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ders to sell at the bid price or buy at the offer price. In equilibrium, it is possible that

these costs are about the same for slow traders, with slow traders therefore following

mixed strategies of sometimes placing executable orders which hit bids and lift offers

while other times placing non-executable orders to attempt to buy at the bid or sell at

the offer before being picked off. Another possible equilibrium is that high frequency

traders are so competitive among themselves and so adept at avoiding being picked off

that the bid-ask spread is very tight, due to numerous fast traders competing at the best

bid and offer prices, that slower traders always find it optimal to sell at the bid and buy

at the offer.

A fast trader may also use the 10000 share buy order as a free “liquidity option”

as discussed by Cohen et al. (1978). A fast trader may place another 10000 share buy

order at a price of $40.01 per share. Price priority places the face trader at a better

position in the queue. Suppose there are some incoming sell orders executable at a

price of $40.00 per share. The fast trader’s order will begin to execute at a price of $40.01

per share before the slow trader’s order executes at all. If the price rises after the fast

trader has bought some shares, he makes profits but the slow trader earns nothing. If

the price looks like it might fall after the fast trader has bought some shares, he can

cancel his order early and place a new order to sell the shares he just bought to the slow

trader by hitting his resting order. The fast trader loses only $0.01 per share on up to

10000 shares, or $100. The possible gains if the price rises would likely be much greater,

thereby stacking the odds in favor of the fast trader and against the portfolio manager.

The portfolio manager’s order will likely execute when prices move against him and will

likely not execute when prices move in his favor. If negative information arrives before

the fast trader has bought any shares at $40.01, he avoids losses by canceling early. The

slow trader may limit the losses of fast traders by placing small orders.

To summarize, fast traders earn gains by arriving early to pick off resting orders and

canceling early to avoid being picked off. These advantages of arriving early and can-

celing early do not specifically take advantage of tick size and allocation rules.

Gaming the Allocation Rule with Minimum Tick Size. As discussed in Section 1, the

discreteness in the limit price and quantity makes some allocation rule necessary be-
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cause multiple combinations of the price and quantity may clear the market. Different

allocation rules determine the fractional allocation α in different ways. For example,

time priority specifies that before newer orders receive any execution (α > 0), older

orders must receive full execution (α= 1). Instead of time priority, some markets use a

“pro rata” or proportional allocation rule according to which all orders receive the same

fractional allocation α. Both time priority and pro rata allocation create incentives for

gaming which benefit fast traders at the expense of slow traders.

In addition to using their speed to arrive early and pick off resting limit orders or

cancel early to avoid being picked off, fast traders can also use their speed to make

profits by gaming the allocation rule.

The reason is, essentially, that both the time priority and the pro-rata allocation re-

ward traders from providing liquidity. At first, this might seem fair. Placing large orders

before everyone else gives everyone else opportunities to hit the order and thus exposes

the trader to being picked off. Not all traders, however, have the same ability to provide

liquidity. It is more costly for slow traders to provide liquidity as they are more likely to

be picked off. Furthermore, if fast traders can cancel their orders before everyone else

can hit them, fast traders do not have to provide any liquidity. Therefore, an allocation

rule that results from discrete prices produces additional rents that fast traders can earn

at the expense of the rest of the market.

To illustrate how fast traders might game the allocation with a nontrivial tick size,

consider the following example. There are two portfolio managers, a buyer and a seller.

A buyer wants to buy 10000 shares and a seller wants to sell 10000 shares. They both

would be happy to trade at a price of $40.0050. With a one cent tick size, however, the

allocation rule must determine the price at the bid of $40.00 or the ask of $40.01. Now a

fast trader can place orders to sell at the offer price of $40.01 and to buy at the bid price

of $40.00 as well. It depends on the allocation rule whether the buyer and the seller can

trade with each other or not.

If the allocation rule is based on time priority, the fast trader may gain the best po-

sition in time priority queue by being at the best bid or offer first. For example, if the

market recently changed from being offered at $40.00 to being bid at $40.00, this change

may have occurred as a result of an incoming executable limit buy order trading against
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an existing offer. After this trade occurred, there may have momentarily been no bid or

offer at $40.00. If traders realize that a new best bid is likely to be established at $40.00,

then fast traders may be the first to establish this bid, thereby obtaining time priority. If

there is uncertainty about whether $40.00 is going to be the bid price or the offer price,

then slow traders may avoid placing either a buy or sell limit order at this price for fear

of being picked off.

With the pro-rata allocation, a fast trader can gain a larger allocation by placing a

large order. For example, suppose a fast trader places orders to sell 90000 shares at

$40.01 and to buy 90000 shares at $40.00, even though there are only 10000 shares

available on the other side of his trades. Now suppose the limit price on the buy order at

$40.00 is increased to $40.01. This order will fully execute at a price of $40.01. The pro-

rata allocation rule assigns the fast trader 9000 shares while the slow seller will trade

only 1000 shares. It is more economically advantageous for the fast trader to submit

large orders than a slow trader because the fast trader can cancel orders more quickly

to avoid being picked off when conditions change. If the market clearing price falls one

tick and begins to bounce back and forth between $39.99 and $40.00, then the fast buy-

ers will cancel their bids at $40.00, leaving the buyer to buy at the new offer price of

$40.00. This is, of course, what prevents slow traders from gaming the allocation rule

like fast traders in the first place.

By placing arbitrarily gigantic large orders, the fast trader can have almost all of the

10000 shares allocated to him. As prices bounce back and forth between $40.00 and

$40.01, the fast traders earned $0.01 in spread profits on each share bought at $40.00

and sold at $40.01. These profits are proportional to the minimum tick size. A large tick

size provides economic incentives for fast traders to place large orders at the bid and

offer, forcing slow traders to incur a high bid-ask spread cost when they buy or sell.

In sum, fast traders earn rents at the expense of portfolio managers by exploiting the

time priority, the price priority, and the minimum tick size. The discreteness in time,

price, and quantity in today’s exchanges rewards traders who can submit and cancel

orders quickly, making the market winner-takes-all, where only the fastest wins.
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Message Costs. One way for the portfolio manager to protect himself from fast traders

is to buy 10000 shares gradually over time by placing many small orders, none of which

leaves large quantities resting in the market for a significant period. Nowadays large

traders shred orders into small pieces, one share each, several price points, change

prices as needed to keep close to market. For example, a traders may choose to par-

ticipate in about one percent of trading volume on a relatively continuous basis. If the

trader approximately matches the prices of other traders, he will obtain the Volume-

Weighted Average Price (VWAP).

For example, the portfolio might trade 10000 shares by placing 100 limit orders for

100 shares each, revising the limit prices as necessary to ensure that the orders are ex-

ecuted gradually over the day. Suppose a trader keeps an order close to the market,

changing it each time the market moves one tick. If 80 cent standard deviation re-

sults from independently distribute price changes of plus or minus one cent, then price

changes 6400 times per day, about once every 3–4 seconds. This increases the num-

ber of times limit prices on orders need to be changed. Purchasing 10000 shares may

require many tens of thousands of messages.

Sending numerous messages is costly, especially for traders with smaller bandwidth

or processing power. When message costs are economically significant, traders face a

tradeoff between incurring high message costs and submitting large orders. As a result

of this trade-off, they may submit large messages and leave them resting in the market

for a longer period of time, expos the orders to being picked off by fast traders. Consis-

tent with the idea that fast traders have lower message costs than slow traders, Kirilenko

et al. (Forthcoming) show that high-frequency traders have trades that are half as large

(five versus ten contracts) as other traders.

Suppose the stock’s daily return volatility of 2.00 percent per day results from the

price impact of 100 independently distributed institutional bets of one percent of daily

volume each. If prices fluctuate as a result of incoming orders then each bet is expected

to move prices about 0.20 percent, or 20 basis points (calculated as 2.00/
p

100 = 0.20).

This price impact of 8 cents per share is the natural, unavoidable price impact associ-

ated with order flowing creating return volatility. With suboptimal execution resulting

from message costs, the price impact may larger in expectation, perhaps as little as 21
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basis points or perhaps as large as 30 basis points or more. Quantifying these costs

empirically takes us beyond the scope of this paper.

2.2 How Continuous Scaled Limit Orders Help Slow Traders.

Continuous scaled limit orders dramatically lower the potential rents fast traders earn

at the expense of slow traders.

With continuous order types, fast traders do not earn substantial rents from arriv-

ing early. There is no longer time priority; all orders are treated symmetrically and exe-

cuted simultaneously. The reward for placing an order one millisecond early lasts one

millisecond. Suppose a portfolio manager submits one continuous scaled limit order

to buy 10000 shares at a price between $40.00 and $40.01 at a maximum rate of one

share per second. There are 23400 seconds of regular hours from 9:30 a.m. to 4:00 p.m.

during a trading day. The trader can revise the limit price to keep the order close to the

market. The order will be executed in one day if the market price is above $40.01 at least

42.73 percent of the day. When new public information suddenly changes the expected

future price of the stock from $40.00 per share to $39.80 per share, the losses associated

with being picked off are economically negligible. Since the continuous order buys at

a maximum rate of one share per second, the portfolio manager’s loss is limited to less

than $0.20 if he cancels the order in less than one second. This is far less than losing

$2000 when a standard limit order for 10000 shares is picked off in the same way.

Similarly, the free “liquidity option” provided by slow traders is no longer valuable.

When the price looks like it might fall, fast traders may try to liquidate their purchases

by hitting the resting limit orders. The number of shares they can liquidate, however, is

now much smaller. If the portfolio manager cancels his order within one second, fast

traders can sell a maximum of only one share, not 10000 shares. This eliminates the

value of the liquidity option.

Since the market is no longer the fastest-takes-all, slow traders are protected by

competition among fast traders. Suppose in the previous example that the slow trader

took much longer than one second to cancel his order after the the public information

was released. As fast traders race to sell their stocks to the slow trader, the price will
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quickly go down. With the improved price, the losses to the slow trader will be much

less than $0.20 per share per second. If the equilibrium price falls $0.18 per share due to

competition among fast traders, the slow trader only loses $0.02 per share per second.

The increased competition among fast traders has broader implications for eco-

nomic efficiency. Today’s winner-takes-all market structure encourages arms race among

fast traders to become the fastest, as emphasized by Harris (2013); Li (2014); Biais,

Foucault and Moinas (2015); and Budish, Cramton and Shim (2015). In a sense, fast

traders excessively compete on their technology to avoid competition in price. Both

over-competition in technology and under-competition in trading can be economically

inefficient.

To summarize, continuous scaled limit orders address both inefficiencies. First, by

providing a mechanism by which traders can trades gradually without having to send

numerous messages, they reduce the rents that fast traders as a whole can earn by pick-

ing off slow traders considerably. Second, by removing time priority and treating orders

symmetrically, they make fast traders with varying capacities compete with one an-

other, which further reduces the rents that an individual fast trader can earn and the

incentives to invest in technology to become the fastest.

Continuous scaled limit orders, unlike continuous (unscaled) limit orders, allow the

market clearing price to be continuous even when the limit prices (PH and PL) respect

the minimum tick sizes, which renders the allocation rule unnecessary and, thus, gam-

ing the allocation rule impossible. Naturally, continuous scaled limit orders eliminate

the rents fast traders earn from gaming the allocation rule. To illustrate how this works,

suppose there are two portfolio managers, a buyer and a seller, who now can submit

continuous scaled limit orders. The buyer places an order to buy QBU Y
max = 10000 shares

between P BU Y
L = $40.00 and P BU Y

H = $40.01 at maximum rate U BU Y
max = 1 share per sec-

ond. The seller places an order to sell QSELL
max = 10000 between P SELL

L = $40.00 and

P SELL
H = $40.01 shares at maximum rate U SELL

max = 1 share per second. If the buyer and

the seller are the only traders in the market, then the equilibrium price is the midpoint

$40.0050, and the buyer and seller trader with each other at a rate of 1/2 share per sec-

ond.

Now suppose a high frequency trader tries to get between the buyer and the seller by
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buying between P HF T
L = $40.00 and P HF T

H = $40.01 shares at maximum rate U HF T
max = 2

shares per second. Since

D(P0) = 3, D(P1) = 0, S(P0) = 0, S(P1) = 3, (8)

we obtain

ω= D(P0)−S(P0)

D(P0)−S(P0)+S(P1)−D(P1)
= 3

4
, p(t ) = (1−ω)P0 +ωP1 = 40.0075. (9)

The higher price reduces the buyer’s rate of buying from U BU Y = 0.50 shares per second

to U BU Y = 0.25 shares per second and raises the seller’s rate of selling from U SELL = 0.50

shares per second to U SELL = 0.75 shares per second. The high frequency trader buys

U HF T = 0.50 shares per second. As a result of his participation, the high frequency

trader drives the price above the midpoint, but does not change the sum of the buyers

rate of buying and the sellers rate of selling, which is 1 share per second.

With continuous scaled limit orders, the high frequency trader earns a profit by

predicting future prices, not by earning a spread by intermediating trade between the

buyer and seller. For example, cross-market arbitrage opportunities may still exist, and

high frequency traders may exploit these opportunities. Competition among high fre-

quency traders will make such arbitrage opportunities disappear quickly.

2.3 Comparison with Frequent Batch Auctions.

To reduce the rents that fast traders earn and the resulting arms race among fast traders,

Budish, Cramton and Shim (2015) propose frequent batch auctions which match orders

at discrete time intervals. Their approach contrasts with our approach in that they pro-

pose to make time more discrete while we propose to make time more continuous. Al-

though frequent batch auctions have several desirable properties, frequent batch auc-

tions do not sufficiently address all the perverse incentives that high-frequency traders

enjoy in today’s markets. Our continuous scaled limit orders fix these problems more

robustly.

Frequent batch auctions reduce the costs slow traders incur from being picked off.
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Here is the intuition of Budish, Cramton and Shim (2015). Suppose that a super-fast

trader can react to changing market conditions in 2 milliseconds, a fast trader can react

in 5 milliseconds, and a slow trader (portfolio manager) can react in 50 milliseconds. As

before, suppose a slow trader has a limit order to buy 10000 shares at $40.00 resting in

the market. Suppose for now that a batch auction is held each second. If new public

information that changes the stock value to $39.80 arrives one millisecond before the

next batch auction, even the super-fast trader cannot react fast enough, and the slow

trader’s order is not picked off. If conditions change 3–4 milliseconds before the next

batch auction, the super-fast trader can pick off the resting limit order at the next auc-

tion, and the fast high frequency traders’ similar orders arrive too late. If conditions

change 5–49 milliseconds before the next batch auction, the orders of both the super-

fast and the fast traders arrive in time for the auction but the slow trader is unable to

cancel. The slow trader may lose less than $2000 or $0.20 per share due to competition

among fast traders. If the change occurs between from 50–1000 milliseconds before the

auction, the portfolio manager successfully cancels his order.

This logic would seem to suggest that the longer batching interval reduces the losses

of slow traders. If the news arrives with constant probability over time, a portfolio man-

ager will be picked off with a probability that corresponds to 50 milliseconds divided

by the length of the batching interval. The one-second interval reduces the loss of the

portfolio manager by at least about 95 percent, and perhaps more than 99 percent if the

competition among fast traders improves the price that the portfolio manager pays.

The logic, however, is incorrect because the order size submitted to auctions de-

pends on the batching interval. Suppose a trader would place a one-share order if batch

auctions are held every second. If batch auctions are held every two seconds, the same

trader might submit an order for two shares. The theoretical trading models of Vayanos

(1999) and Du and Zhu (2017) are consistent with this interpretation. If traders place

larger orders in batch auctions, the losses suffered when the order are picked off are

proportionally larger as well. Holding batch auctions every two seconds rather than ev-

ery second may halve the probability of an order being picked off at a given auction, but

a doubled order size the doubles the losses conditional on being picked off. Since these

two effects cancel, changing the time interval between batch auctions does not change
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the expected dollar losses traders suffer from being picked off.

Batch auctions do not resolve the costs of being picked off unless all traders opti-

mally slice their orders and trade gradually. As we discussed earlier, without contin-

uous order types, order shredding requires sending numerous messages, which is es-

pecially costly for traders with small bandwidth or processing power. Lee et al. (2004)

and Barber et al. (2009) examine trading on the Taiwan Stock Exchange, which had one

to two batch auctions every 90 seconds from 1995 to 1999. They show while large in-

stitutions smooth out their trading by participating in numerous auctions, individual

traders place less frequent orders. Individual traders lose more than two percent of

Taiwan’s GDP trading stocks. These results are consistent with the interpretation that

message costs cause slow traders to place suboptimally few and large orders.

Since frequent batch auctions do not address discreteness in the price, fast traders

will still exercise their superior ability to game the allocation rule as they do in today’s

market standard limit orders. The risks of being picked off by fast traders when new in-

formation arrives a few milliseconds before the next auction limit slow traders’ capacity

to play the same games as fast traders.

Another issue is whether orders not fully executed from previous auctions should

have time priority compared to new orders submitted to the current auction. On the

one hand, it might be argued that traders who placed their orders in the previous auc-

tion should receive priority since they bear the risk of being picked off by other traders

who observe the order imbalance and choose not to place their orders in the first place.

On the other hand, it might be argued that it is likely that older orders in the limit or-

der book come disproportionately from fast traders because their ability to react more

quickly allows them to place large orders. Either way, it is likely that fast traders will be

able to earn extra rents by exploiting the auction rules.

Clock synchronization is a major issue with frequent batch auctions. It is techno-

logically difficult for exchanges to synchronize clocks exactly. If one exchange holds its

frequent batch auction a millisecond or so earlier than another one, the outcome of the

early exchange may be used by super-fast traders to pick off orders on the late exchange.

Even with perfectly synchronized clocks, competing exchanges holding simultaneous

single-price auctions will likely produce prices consistent with arbitrage opportunities
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across the same stock traded on different exchanges and arbitrage opportunities across

different assets traded on the same exchange. With continuous scaled limit orders, fast

traders eliminate such arbitrage opportunities by submitting multiple offsetting orders.

They do not have to wait for the next batch auction.

The last issue is transparency. Real-time pre-trade transparency is inconsistent with

the spirit of frequent batch auctions because fast traders can exploit such information.

If exchanges broadcast changes to the limit order book in real time, traders will wait

until the end of the one-second batch interval before submitting new orders to prevent

other traders from being able to react to their order changes, which rewards fast traders.

Thus exchanges should not broadcast changes to the limit order book in real time but

instead should consider only publishing information about unexecuted orders in the

limit order book immediately after batch auctions, if at all. Suspicious traders may still

suspect that exchanges will leak information about their orders to other traders. It is,

therefore, important that exchanges have mechanisms in place to ensure that some

traders do not obtain such information before other traders.

3 Policy Issues Related to Implementation

This section discusses how commonly proposed policies play out with continuous scaled

limit orders. We first discuss pre-trade and post-trade transparency. We next discuss

policies related to transparency, including competition among exchanges, dark pools,

minimum resting times, privately arranged trades, and our proposed solution—quantity

speed bumps. Finally, we discuss issues related to flash crashes, including price speed

bumps and execution of market orders.

3.1 Transparency

This subsection discusses the issue of transparency with continuous scaled limit orders.

Typically pre-trade transparency refers to publicly announcing information about cur-

rent bid and ask prices, quantities at the best bid and ask, and potentially the quantities

bid and ask at prices below or above the best bid and offer. Post-trade transparency
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refers to revealing traders the prices and quantities traded in transactions.

With continuous scaled limit orders, these concepts play out differently. Post-trade

transparency might consist of revealing trading volume and price, without revealing

how many traders are buying and selling. As discussed in Section 1, an allocation rule

is unnecessary because the market clearing price is always uniquely determined. Thus,

traders can accurately infer the total quantity executed on their orders and the average

price paid or received on their orders from the public feed of the market clearing prices.

Such straightforward execution of all orders provides full post-trade transparency with-

out exchanges having to send constant updates to all traders.

Pre-trade transparency implies releasing information that traders find useful for

constructing optimal strategies. To determine the effect of new buy and sell orders on

prices and trading rates, traders need to know the slopes of the aggregate demand and

supply schedules around the market clearing price. Using the notation in Section 1,

it follows that the minimum actionable pre-trade transparency includes the aggregate

demand rates, D0 and D1, and supply rates, S0, and S1, and the two price points P0 and

P1 around the market clearing price p(t ). These six pieces of data can be used to calcu-

late the slope of the supply schedule S1−S0, the slope of the demand schedule D0−D1,

the relative order imbalance ω in (6), the market clearing price as in equation (7), and

the aggregate rate of trading volume

v (t ) := S (P0)+ω (S (P1)−S (P0)) = D (P1)+ (1−ω) (D (P0)−D (P1)) . (10)

The slopes of the supply and demand schedules determine the dynamic depth of

the market. Given that the aggregate demand and supply schedules are piecewise lin-

ear functions with kinks at multiples of the minimum tick size, traders might want to

know the slopes of aggregate demand and supply schedules outside the market clearing

price. The exchanges may make public the aggregate demand and supply rates D
(
p

)
and S

(
p

)
at several integer multiples of the minimum tick size around P0 and P1. One

argument for disclosing the slopes of the demand and the supply schedules outside

the market clearing price is that fast traders can learn this information anyway. Fast

traders with large bandwidth can place buy and sell orders away from the market for
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brief periods of time, determine urgency away from the market from the execution of

these orders over a few milliseconds, then cancel the orders quickly.5 Determining ex-

actly the price interval over which aggregate demand and supply rates are disclosed is

a complex subject which takes us beyond the scope of this paper.

3.2 Market Fragmentation.

Competition Among Exchanges. In today’s markets, various exchanges operate si-

multaneously and compete for trading volume. We believe that continuous scaled limit

orders would be widely used in many exchanges. Suppose one exchange offers con-

tinuous scaled limit orders and the other standard limit orders. Which exchange will

attract the most trading volume? We think the exchange offering continuous scaled

limit orders will attract the most volume because its traders will not pay rents to fast

traders while conserving bandwidth costs. Consider what happens to a resting limit

order when the price suddenly changes. On the one hand, traders on the continuous

exchange will pick off the orders on the standard exchange and earn meaningful profits

if the size of the resting order is significant. On the other hand, traders on the stan-

dard exchange will not make meaningful profits picking off the orders on the exchange

offering continuous scaled limit orders.

Dark Pools. Dark pools are trading venues which are not open to all traders and do

not have pre-trade transparency. Dark pools exist for many reasons. In the 1990s and

earlier, many large block trades were arranged privately off the NYSE exchange floor in

the upstairs market. Negotiating trades privately outside the exchange is like partici-

pating in a dark pool. Dark pools also exist so that dealers can internalize small order

from unsophisticated, uninformed customers. Dark pools also exist to facilitate trading

inside the bid-ask spread and to avoid the adverse selection costs incurred when orders

are picked off by fast traders.

5In a market with standard limit orders, traders need to know the quantities and prices at the best bids
and offers. Currently, many exchanges also reveal quantities and prices for supply and demand schedules
away from the market clearing price.
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We think continuous scaled limit orders on organized open exchanges would dom-

inate dark pools, including privately arranged trades in upstairs dealer markets. Histor-

ically, the frequency of large block trades declined after electronic order handling tech-

nology improved in the later 1990s, tick size was reduced to $0.01 in 2001, the NYSE

specialists became less active in intermediating trades, and order flow dispersed across

competing exchanges. Traders instead shredded large orders into tiny pieces which

were executed as smaller trades of 100 or 200 shares. Furthermore, continuous scaled

limit orders are designed to make gradual execution of large orders more cost effec-

tive for institutional traders by eliminating slippage in execution costs due to tick size

and allocation rules and by reducing the bandwidth costs of executing large orders with

many small trades.

Minimum Resting Time. Dealers have incentives to steer customers to trading venues

which benefit the dealers at the expense of their customers. To protect unsophisticated

customers from bad execution, we propose a minimum resting time for all dark pools.

Dark pools would have to post tentative matched transactions to public scrutiny for

some minimum resting time during which any market participant would be allowed

to take one side or the other of the transaction, perhaps after offering modest price

improvement.6 For example, if a dark pool matches a 100 share trade at $39.99, this

proposed transaction might be exposed to the market for five seconds, during which

time the buyer or seller can by displaced by any trader offering price improvement of

$0.01. 7

6An alternative to our proposal is SEC regulations which mandate that customer orders be given “best
execution” according to a regulatory definition. This approach, however, is unlikely to be optimal in a
trading environment with rapid technological change, competing exchanges, and incentives for regula-
tory arbitrage.

7The rule is defined by two parameters: a five-second minimum exposure time and $0.01 minimum
price improvement. These parameters might vary with the level of trading activity in the stock, with
longer times and greater price improvement required for less actively traded stocks. The two parameter
values proposed here are hypothetical. The optimal parameter might be quite different, say 1 second and
zero price improvement. The two parameter values should be coordinated so that the free option to trade
has little economic value if both sides of the transaction are matched at a market price. The parameters
should also mimic the rules for infinitely impatient trades on the exchange offering continuous scaled
limit orders.
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Privately Arranged Trades. Similar problems arise in privately arranged trades brought

to the exchange to be executed in a coordinated manner. Suppose two traders privately

negotiate a gigantic trade outside the market. They negotiate a trade for, say, one mil-

lion shares at $41.00, one entire day’s normal trading volume traded at a price $1.00

higher than the prevailing price at the time the trade is negotiated. On an exchange that

offers continuous scaled limit orders, two traders might enter continuous scaled limit

orders to buy and sell, respectively, one million shares at rates of one billion shares per

second at a price range of $39.99 to $41.01. If both orders arrive in the market at about

the same time, both orders will fully execute their desired one million shares in one mil-

lisecond at a price close to $41.00. By executing such a large quantity so fast, the two

traders will likely make it impossible for other traders in the market to participate in the

transaction in a meaningful manner.

Such order executions are problematic. Despite its large size, one side of the trade

may be a naive and poorly informed customer, perhaps the victim of an unscrupulous

intermediary. Even if both the buyer and the seller are sophisticated and well-informed,

there is a sense in which they are taking advantage of positive externalities provided by

a transparent liquid market while not providing positive externalities to other traders.

If all traders were to negotiate all trades privately, there is a danger that markets would

be less transparent and less liquid, making all traders worse off.

Solution: Quantity Speed Bumps. Exchanges can deal with this issue by requiring or-

ders of large urgency to take a meaningful amount of time to execute. For example,

large urgency might be defined as a level of urgency which would execute one day’s

trading volume in five minutes, or 200000 shares per minute for this stock. A mean-

ingful amount of time is enough time for traders with moderately slow technology to

submit orders to participate in the transaction. If a slow trader can react in approx-

imately 50 milliseconds, any order which trades at an urgency of 200000 shares per

minute or faster might be required to have a minimum resting time of 5 seconds and

not be fully executed in less than 5 seconds.8 In effect, a minimum resting time for very

8If it is possible to execute such an urgent order fully in less than five seconds, either the order could
be rejected by the exchange or, alternatively, the urgency of the order reduced so that full execution takes
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urgent orders prevents traders from supplying instantaneous liquidity to other traders,

which allows any trader with a 50 millisecond response time to participate in at least

99 percent of the time the order is actively in the market. Maintaining a level playing

field suggests coordinating this minimum resting time rule with the the rule for crossing

privately negotiated trades.9

Maker-Taker Pricing. When there is a legally binding minimum tick size, exchanges

will engage in strategies of regulatory arbitrage to allow trading at fractional ticks. In

the U.S. market, one mechanism for engaging in regulatory arbitrage is called “maker-

take pricing.” With maker-taker pricing, a trader placing a resting limit order pays a

negative transactions fee while the trader placing an executable order pays a higher fee.

For example, instead of both the buy- and sell sides to a trade paying a fee of $0.0002

per share, the nonexecutable order “making” the market incurs a fee of −$0.0030 and

the order executable “taking” the market pays a fee of $0.0034. Either way, the total fees

earned by the exchange from matching a buy and a sell are $0.0004 per share (since

2×$0.0002 =−$0.0030+$0.0034 = $0.0004).

This example of maker-taker pricing is economically equivalent to shifting all prices

up by $0.0032 per share, approximately 1/3 of a cent. Not surprisingly, there are also

exchanges symmetrically offering “taker-maker” pricing, which has the effect of shifting

prices down by approximately 1/3 of a cent. Altogether, the effect of maker-taker and

taker-maker pricing is to cut the minimum tick size by a factor of approximately three.

Since the best price jumps around from one exchange to another as prices change by

fractions of a cent, maker-taker pricing rewards traders with low message costs and high

bandwidth at the expense of other traders. For unsophisticated traders, the market

becomes less transparent and more confusing, especially if data feeds report market

bids and offers in whole cents which do not net out maker-taker fees.

With continuous scaled limit orders, there is no minimum tick size. There is there-

fore no regulatory arbitrage for maker-take fees to exploit. We believe that continuous

a minimum of five seconds.
9Of course, traders might try to violate the spirit of the rule by trading through multiple accounts with

undisclosed common ownership or coordination. Such suspicious trading, which would be genuinely
highly coincidental if not the result of coordination, should trigger an automatic audit by the exchange.

30



scaled limit orders would make maker-taker pricing go away.

3.3 Flash Crashes

Continuous scaled limit orders do not automatically prevent flash crashes, during which

rapid executions of large orders cause substantial temporary disruptions to prices and

volumes. On May 6, 2010, for example, one trader entered a series of orders to sell ap-

proximately $4 billion of S&P 500 E-mini futures contracts over a period of about 20

minutes rather than several hours that would have been typical for such a large amount

of selling. Subsequently, prices collapsed by more than five percent and then quickly

rebounded, as discussed by Kirilenko et al. (Forthcoming). The large seller who caused

the flash crash above used an automated algorithm to participate in about 9 percent

of trading volume without regard to price and time. The order executed very rapidly

because trading volume increased dramatically partly as a result of his trading.

In many cases, extremely rapid selling is likely not an optimal strategy but rather a

mistake; the traders who cause flash crashes do not benefit from them economically

because they trade at unfavorable prices after the market moves against them. We be-

lieve that continuous scaled limit orders focus traders’ attention on the time dimension

of their orders, and thus would make flash crashes less likely. With continuous scaled

limit orders, it is still possible that some traders may disrupt the market by trading large

quantities quickly, whether intentionally or unintentionally. As Black (1971a) observed,

it is a fundamental property of markets that executing large quantities over short peri-

ods of time will create adverse price movements.

Price Speed Bumps. To prevent unreasonable prices at times when new public infor-

mation or extremely urgent orders move prices we propose price speed bumps. The im-

plementation is straightforward. A speed bump begins when the price changes quickly

over a short period of time, for example, by more than one cent per second, plus five

cents, over any period during the day. Suppose the price has been stable at $40.00 per

share for several minutes, at which point a sudden order imbalance makes the tentative

market clearing price fall by $0.20 per share to $39.80. Since the maximum immediate
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price change allowed is $0.05 per share and $39.95 is well-above the tentative price of

$39.80, the speed bump kicks in. The speed bump stays in effect until the minimum

price it allows, which falls at the rate of $0.01 per second, generates no excess supply.

Excess supply is calculated by hypothetically executing at the minimum allowed price

all orders in the market over the time interval that the speed bump is in effect. At the

moment when the minimum allowed price generates excess supply, the new market

clearing price will be the slightly higher price that clears the market for the entire dura-

tion of the speed bump.

This particular structure for a speed bump has several desirable features. First, if

the price falls dramatically due to new very short-term information, very slow traders

who do not cancel their orders receive price improvement. Second, if a trade with an

extreme urgency triggered the price decline, the speed bump protects a naive urgent

trader from his price impact by allowing new orders flowing into the market to offer

price improvement. Third, the speed bump is hard to game. Suppose a trader places

a large urgent order for the purpose of disrupting trading by stopping price formation,

then tries to cancel the order before the minimum allowed price ever becomes a market

clearing price. Then the cancelation itself is likely to end the speed bump and execute

all of his disruptive trades at the worst possible price for him. The rule discourages

intentionally disruptive as well as naively disruptive trading.

Market Orders. Nowadays a market order is essentially a limit order with an infinite

price for a buy order and a price of $0.01 for a sell order. If a computer receives such an

order, and there are no reasonable bids and offers available, the computer may execute

the order at an unreasonably high or low price. During the flash crash of May 6, 2010,

many market orders for individual stocks were executed at a price of $0.01 even though

the stocks traded at prices like $40.00 per share seconds before and seconds after the

orders were executed.

The possibility of executions at unreasonable prices suggests that market orders

should either not be allowed or, if allowed, should not always be executed immediately

at the best available price. We propose to replace a market order with a continuous

scaled limit order with an automatic speed designed to achieve good quality execu-
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tion over a short amount of human time. For example, a 100 share market order in the

$40.00 stock might execute over 100 seconds, buying at a rate of one share per second

with limit prices close to the market. Then the limit prices adjust gradually to more ag-

gressive levels only if the execution is unusually slowly because prices are rapidly mov-

ing against the order. If a trader wants the more urgent execution of his order, then he

could explicitly enter a continuous scaled limit order with the desired speed parameter,

in which case the trader has himself to blame if his order creates a sudden temporary

distortion in prices.

The way in which market orders are executed has changed over time. With human

trading, a human broker would likely execute a market order by asking for bid and ask

prices, accept the prices if they were competitive in the sense of being consistent with

recent transactions, and ask for prices again if the available bids and offers did not seem

reasonable. Asking for prices several times might take several seconds or even a minute

or two, depending on the speed of recent trading. Our proposal for market orders re-

sembles the way an honest, competent human broker might have handled market or-

ders in the era of human trading.

4 Discussion of Related Literature and Institutions

A persistent theme in market microstructure concerns whether traders demand to trade

immediately as opposed to slowly in the way continuous scaled limit orders are de-

signed to help achieve.

Static Models. In theoretical models, infinite urgency results from assuming that noise

trading is exogenous or assuming that traders act like perfect competitors. Under either

assumption, a given quantity is traded immediately regardless of price.

In the model of Kyle (1989), informed and uninformed traders submit demand sched-

ules which are downward sloping as a result of imperfect competition and risk aversion.

Noise traders mimic infinite urgency by trading an exogenous quantity.

Grossman and Miller (1988) present a model of competitive trading in which mar-

ket makers are continuously present in the market buy traders with a need to hedge
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an inventory shock are not continuously present. If M market makers have the same

risk aversion as one trader, the trader hedges the fraction M/(M +1) of his endowment

shock. This model does not justify artificially stimulating a demand for immediacy by

increasing the tick size. They assume that traders are non-strategic perfect competitors

who believe they do not incur price impact costs. In fact, such costs are substantial and

induce traders to trade gradually to reduce trading costs.

In the one-period model of Kyle and Lee (2017), informed traders also receive en-

dowment shocks. In contrast to the two models above, all traders are strategic. They

show that optimal exercise of monopoly power induces privately informed traders not

to demand urgency. Instead, they hedge only a fraction of endowment shocks to market

impact. Trading less aggressively because of market power does not reduce the infor-

mativeness of prices. Indeed, the opposite is the case; traders trade more aggressively

precisely when they have less price impact and their private information is not reflected

in prices.

Dynamic Models. In the model of Kyle (1985), noise traders demand to trade exoge-

nous random quantities immediately, and market makers supply immediacy by offer-

ing an upward-sloping supply schedule which allows traders to buy or sell significant

quantities immediately. The informed trader does not need to trade with urgency be-

cause he has monopolistic access to private information which does not decay over

time. Since price impact does not depend on time, the informed trader’s price impact

costs do not depend on how urgently he buys or sells. By trading gradually, the informed

trader walks up and down the residual supply schedule like a perfectly discriminating

monopolist.

The noise traders, who trade with infinite urgency, do not take advantage of the re-

duction in price impact costs that would result from trading smoothly. If noise traders

were to trade gradually over an arbitrarily short period of time, they would halve their

price impact costs. Not doing so essentially implies that noise traders do not take ad-

vantage of an arbitrage opportunity. If noise traders were to slow down their trading

slightly, so that their inventories were a differentiable function of time rather than a

Brownian motion, then noise traders would cut their trading costs in half but the mar-
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ket makers would lose money. The equilibrium would collapse and be replaced by

something else. What it is replaced with depends on the noise traders’ motivations for

trading, which might be inventory shocks or private values. Our proposal is designed

to implement a trading equilibrium which would result from the natural operation of

market forces in a trading environment as free of frictions as possible. In particular, we

eliminate frictions associated with minimum tick size, minimum lot size, a costs asso-

ciated with submitting, modifying, and canceling many orders.

Modeling optimal trading strategies with private information in an equilibrium set-

ting is in principle very complicated. Kyle, Obizhaeva and Wang (2017) consider models

of continuous trading on private information, with trade generated by overconfidence

or stochastic private values. There is no exogenous demand for immediacy. The as-

sumption of constant absolute risk aversion and normally distributed random variable

allow to models to have nearly-closed-form solutions for equilibrium prices, quantities,

and trading strategies. Each trader acquires new information continuously and trades

on it with the expectation of making a profit. Traders are willing to take the other side of

one another’s trades because the believe trades of other traders are based on overconfi-

dence or private values. There is an equilibrium in which all traders’ trade slowly. Each

trader submits a continuous demand schedule to by at a rate linear in price, linear in

the trader’s inventory, and linear in the trader’s private valuation of the asset. The de-

mand schedule defines the derivative of the trader’s inventory as a function of the price.

These trading strategies map almost perfectly into continuous scaled limit orders.

Vayanos (1999) considers trading model motivated by privately observed endow-

ment shocks in discrete time. Du and Zhu (2017) consider a similar model in which

investors receive private information about a liquidating dividend. Instead of holding

auctions continuously, both models implement batch auctions by trading take place

at discrete points in time. As the period between batch auctions is reduced, traders’

expect a more liquid market and expand the quantities they expect to trade. For very

frequent batch auctions, the expected quantity traded is approximately proportional to

the length of the period between batch auctions.

Similar intuition describes all of these models. Traders trade gradually in order to

exercise monopoly power optimally to control trading costs. Less aggressive strategies

35



reduce market impact costs because the aggressiveness with which a trader buys or sells

signals his private information. When trade is motivated by overconfidence, the price

reveals an average of traders’ valuations immediately. Therefore, price react quickly

even though quantities react slowly.

These equilibrium models imply that a finite tick size, a minimum lot size, or dis-

crete batch auctions alter the underlying equilibrium. The models of Vayanos (1999)

and Du and Zhu (2017) pay particular attention to the welfare properties of chang-

ing the interval between batch auctions. Their models suggest that there may welfare

gains associated with moving from continuous batch auctions (equivalent to contin-

uous scaled limit orders) to auctions held at more infrequent intervals (equivalent to

non-continuous scaled limit orders). When information arrives almost continuously,

the optimal time interval between batch auctions is almost zero.

Institutional Issues. The U.S. Securities and Exchange Commission (SEC) is currently

implementing a “tick pilot” to study the effect of increasing the minimum tick size from

one cent to five cents. The tick pilot proposal is the opposite of ours since it proposes to

increase rather than decrease tick size. The intuition for the tick pilot is that if the bid-

ask spread is wider, there will be more quoted instantaneous depth at the best bid and

offer; this will allow impatient traders to trade toward their desired inventories faster.

In principle, this could be socially desirable if there is demand for immediacy which is

not being met due to market failures. The tick pilot disfavors small traders who want

to buy or sell fewer shares than available at the best bid or offer. It disfavors poorly

informed traders who cannot time their trades based on whether the midpoint of the

bid-ask spread is cheap or expensive. It also creates incentives for dealers to route un-

sophisticated traders’ orders to platforms where the dealer will be the opposite side of

trades that are unprofitable for their customers.

The tick pilot draws intellectual support from research based on the idea that traders

demand immediacy. The idea that market makers provide a risk-sharing service to in-

vestors is unrealistic. A typical investor is an asset management company managing

billions of dollars in assets with a mandate to bear market risk. Market making firms

are nowadays high frequency trading firms which are willing to bear limited risk. For
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example, Kirilenko et al. (Forthcoming) found that high frequency traders took maxi-

mum net long or short positions of about $250 million during the flash crash; they hold

positions on average for two minutes. Baron, Brogaard and Kirilenko (2013) find that

high frequency traders earn about $6 per contract (1 basis point) on trades with small

traders and about one dollar per contract on trades with institutional investors. Earn-

ing 0.1 basis points over two minutes corresponds to earning a return of about 50% for

holding the same risk for an entire year. Is it reasonable to assume that an asset man-

ager with tens of billions in assets under management be willing to pay so much for so

little?

Duffie (2010) suggests that slow-moving capital results from search frictions with

adverse selection. Dealer markets provide an efficient search mechanism when in-

vestors do not pay continuous attention, it takes time to search, intermediaries may

cause bottlenecks. Our proposal solves the inattention problem by allowing one mes-

sage to implement a near optimal gradual trading strategy. If all traders are contin-

uously present in the market and can use any trading strategy, they will likely trade

gradually over time.

Glosten (1994) argues that a consolidated, competitive limit order book with con-

tinuous prices and quantities dominates other types of exchanges. In his one-period

model, time is not divisible. This leads to a finite equilibrium bid-ask spread in which

very small orders incur a positive cost. We believe that allowing the limit order book to

evolve continuously in time will drive the bid-ask spread on infinitesimally small trades

to zero. Indeed, this interpretation is almost immediately implied by the models of Kyle,

Obizhaeva and Wang (2017), Vayanos (1999), and Du and Zhu (2017).

Kyle and Viswanathan (2008) argue that two goals of a markets are to provide mar-

ket liquidity and prices conveying economically useful information. Continuous scaled

limit orders deter traders from trading on high-frequency information and from ex-

ploiting allocation rules to gain time or price priority. By reducing trading costs for

traders who acquire long-term information, continuous scaled limit orders both in-

crease market liquidity and allow prices to contain more long-term information.
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5 Conclusion

Continuous scaled limit orders make it possible to implement Fischer Black’s vision of

continuous electronic markets without requiring traders to place enormous quantities

of limit orders. Continuous scaled limit orders do not eliminate price impact costs,

which are a natural feature of markets in which adverse selection is important. Con-

tinuous scaled limit orders dramatically reduce the profits that high frequency traders

make by using their speed to exploit time priority, price priority, large tick size. This en-

hances economic efficiency by reducing incentives to invest in costly technology to win

playing a zero-sum game. Other policy ideas to reduce the high-frequency-trading arms

race include frequent batch auctions proposed by Budish, Cramton and Shim (2015)

and random message processing delays proposed by Harris (2013). Unlike these pro-

posals, continuous scaled limit orders directly address the source of underlying prob-

lem, the perverse incentives created by limit order discreteness in price, quantity, and

time.
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