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Abstract 

 

We incorporate discrete tick size and allow non-high-frequency traders (non-HFTs) to supply 

liquidity in the framework of Budish, Cramton, and Shin (2015). When adverse selection risk is 

low or tick size is large, the bid-ask spread is typically below one tick, and HFTs dominate liquidity 

supply. In other situations, non-HFTs dominate liquidity supply by undercutting HFTs, because 

supplying liquidity to HFTs is always less costly than demanding liquidity from HFTs. A small 

tick size improves liquidity, but also leads to more mini-flash crashes. The cancellation-to-trade 

ratio, a popular proxy for HFTs, can have a negative correlation with HFTs’ activity. 
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In decades past, specialists on the New York Stock Exchange and dealers in NASDAQ supply 

liquidity to other traders, that is, they buy when other traders sell and sell when other traders buy. 

The transition to electronic trading not only destroyed these traditional liquidity suppliers, but also 

blurs the definition of liquidity supply. Everyone can supply liquidity, but no one is obligated to 

do so. Liquidity supply simply means to post a limit order, an offer to buy or sell at a certain price. 

A trade occurs when another trader (a liquidity demander) accepts the terms of a posted offer. 

Every trader has to decide whether to supply or demand liquidity in order to complete a trade. In 

this paper, we examine how the contemporary trading environment of voluntary liquidity supply 

and demand reaches its equilibrium. Who supplies liquidity and who demands liquidity? Can 

voluntary liquidity supply and demand lead to systemic risk such as a flash crash? And, if this is 

possible, what conditions lead up to it?  

 In this paper, we show how the equilibria in liquidity supply and demand depend on the 

characteristics of securities, market structures, and market conditions. Our model extends Budish, 

Cramton, and Shim (2015; BCS hereafter) along two dimensions. BCS include two types of traders: 

high-frequency traders (HFTs) and non-HFTs. In the BCS model, non-HFTs can only demand 

liquidity, while in our model we allow non-HFTs to provide liquidity. In addition, BCS consider 

a continuous price, whereas we consider a discrete price to reflect the tick size (minimum price 

variation) imposed by the U.S. Security and Exchange Commission’s (SEC’s) Regulation National 

Market Systems (Reg NMS) Rule 612, and to reflect the recent policy debate to increase the tick 

size from one cent to five cents.  

 Our model includes one security, whose fundamental value is public information. However, 

liquidity suppliers in our model are subject to adverse selection risk, because they may fail to 

cancel stale quotes during value jumps. HFTs in our model have no private value to trade. They 
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consistently monitor the market for profit opportunities. For example, they supply liquidity when 

the expected profit from doing so is positive, or snipe stale quotes after value jumps. Non-HFTs 

arrive at the market with a private value to buy or sell one unit of a security. We allow a fraction 

of non-HFTs to choose between providing or demanding liquidity. We call these non-HFTs “buy-

side algorithmic traders” (BATs) to represent algorithms used by buy-side institutions (e.g., mutual 

funds and pension funds) to minimize the cost of executing trades in portfolio transition 

(Hasbrouck and Saar, 2013; Frazzini, Israel, and Moskowitz, 2014). BATs are major players in 

modern financial markets (O’Hara, 2015). We build the first theoretical model to study their 

trading behavior. Our model captures two main features of BATs. First, BATs are slower than 

HFTs (O’Hara, 2015). Second, BATs supply liquidity to minimize the transaction costs of 

portfolio rebalancing (Hasbrouck and Saar, 2013), not to profit from the bid-ask spread. As both 

BATs and HFTs are algorithmic traders (Hasbrouck and Saar, 2013), we call the fraction of non-

HFTs who are not BATs non-algorithmic traders (non-algos).  

 As in BCS, the adverse selection risk increases with the arrival rate of value jumps and 

decreases with the arrival rate of non-HFTs. Supplying liquidity to non-HFTs leads to revenue, 

but value jumps lead to sniping cost. With the continuous price in BCS, the competitive bid-ask 

spread strictly increases with adverse selection risk. In our model, the tick size constrains price 

competition in the bid-ask spread. When adverse selection risk is low or the tick size is large, the 

competitive bid-ask spread can be less than one tick, which generate rents for liquidity supply. The 

rents are typically allocated to HFTs, because most U.S. stock exchanges use time to decide 

execution priority for orders quoted at identical prices. The market thus reaches equilibrium 

through queuing, not through price competition. In this first type of equilibrium, the queuing 

equilibrium, in which bid-ask spread is binding at one tick, HFTs dominate liquidity supply due to 
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their speed advantage over BATs.  

 When the tick size does not bind, we find that BATs never demand liquidity from HFTs. 

Instead, they provide liquidity at more aggressive prices than HFTs. This result is surprising 

because Han, Khapko, and Kyle (2014), Hoffmann (2014), Bernales (2016), and Bongaerts and 

Van Achter (2016) maintain that HFTs cancel stale quotes faster, incur lower adverse selection 

cost, and quote more aggressive prices than other traders. Brogaard et al. (2015), however, show 

that non-HFTs quote tighter bid-ask spreads than HFTs. Our model reconciles the contraction 

between previous channels of speed competition and the empirical results by including the 

opportunity cost of liquidity supply. BATs have to trade in our model. The outside option for BATs 

is to demand liquidity and pay the bid-ask spread. For BATs, supplying liquidity at a tighter bid-

ask spread strictly dominate demanding liquidity from HFTs.  

 To show why BATs choose to supply liquidity, we develop a new concept: the make-take 

spread. Without loss of generality, consider the BATs’ decision to buy and HFTs’ decision to sell. 

HFTs quote an ask price above the fundamental value, and their difference, or the half bid-ask 

spread, reflects the compensation for adverse selection costs during value jumps. BATs pay the 

half bid-ask spread if they demand liquidity. BATs can reduce transaction costs by supplying 

liquidity slightly above the fundamental value. We call this type of limit order a flash limit order, 

because it immediately triggers HFTs to demand liquidity. Flash limit orders execute immediately 

like market orders, but with a lower transaction cost. Flash limit orders exploit the make-take 

spread, the price difference between HFTs’ willingness to make an offer and their willingness to 

accept one. HFTs accept a lower sell price when they demand liquidity, because when they 

immediately accept an order, they do not incur adverse selection costs during a value jump.  

When the tick size does not impose a constraint for BATs to quote more aggressive prices 
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than HFTs, our model has two types of equilibria: flash and undercutting. In the flash equilibrium, 

BATs use flash limit orders to supply liquidity to HFTs. In the undercutting equilibrium, BATs 

quote a buy limit order price below the fundamental value or a sell limit order price above the 

fundamental value. These regular limit orders stay in the LOB to supply liquidity to non-algos or 

other BATs. We find that undercutting equilibrium are more likely to occur when the adverse 

selection risk is low, because flash limit orders incur no adverse selection cost, whereas the cost 

of  regular limit orders increases with the adverse selection risk. 

We also examine mini-flash crashes, which are sharp price movements in one direction 

followed by quick reversion (Biais and Foucault, 2014), and predict their cross-sectional and time 

series patterns. In the cross-section, mini-flash crashes are more likely to occur for stocks with a 

smaller tick size or higher adverse selection risk. Because BATs can undercut HFTs for these 

stocks, HFTs’ limit orders face lower execution probability before value jumps. When the fraction 

of BATs is large enough, HFTs have to quote stub quotes, a bid-ask spread wider than the 

maximum value of the jump, to protect against sniping. Yet BATs do not always supply liquidity 

on both sides of the market. Thus, an incoming market orders can hit HFTs’ stub quotes, causing 

a mini-flash crash. In time series, a downward (upward) mini-flash crash is more likely to occur 

immediately after a downward (upward) price jump, because such jumps can snipe all BATs’ limit 

orders on the bid (ask) side raising the probability that market orders hit stub quotes before BATs 

refill the limit order book (LOB).  

Existing literature on HFTs focuses on the role of adverse selection. On the one hand, speed 

can allow HFTs to adversely select other traders, which harms liquidity; on the other hand, speed 

can reduce adverse selection costs for liquidity suppliers and improve liquidity [see Jones (2013), 

Biais and Foucault (2014), and Menkveld (2016) for surveys]. We contribute to the literature by 
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identifying two new channels of speed competition, both of which are unrelated to adverse 

selection. For liquidity demand, we find that HFTs race to demand liquidity when BATs post flash 

limit orders, but HFTs impose no adverse selection cost on BATs. Instead, BATs prompt HFTs to 

demand liquidity to reduce their transaction costs. Thus, liquidity demand from HFTs need not be 

bad. Indeed, transactions costs are lower when HFTs demand liquidity than when they supply 

liquidity.  

For liquidity supply, our queuing channel of speed competition rationalizes three 

contradictions between empirical evidence and existing theoretical channels that focus on adverse 

selection. If an HFT’s speed advantage primarily helps it to reduce adverse selection costs, HFTs 

should realize a comparative advantage in providing liquidity for stocks with higher adverse 

selection costs (Han, Khapko, and Kyle, 2014; Hoffmann, 2014; Bernales, 2016; Bongaerts and 

Van Achter, 2016). HFTs should also crowd out slow liquidity suppliers when the tick size is 

smaller, because a smaller tick size reduces the constraints to offer better prices (Chordia et al., 

2013). In addition, a higher cancellation-to-trade ratio likely indicates more liquidity supply from 

HFTs, because HFTs need to cancel many orders to avoid adverse selection risk [see Biais and 

Foucault (2014) and Menkveld (2016) for a survey]. Yet Jiang, Lo, and Valente (2014) and Yao 

and Ye (2017) show that non-HFTs dominate liquidity supply when adverse selection risk is high. 

O’Hara, Saar and Zhong and Yao and Ye (2017) show that a smaller tick size crowds out HFTs’ 

liquidity supply.  Yao and Ye (2017) show stocks with higher fractions of liquidity provided by 

HFTs have lower cancellation-to-trade ratios. The queuing channel of speed competition 

reconciles these three contradictions. The tick size is more likely to be bind when adverse selection 

risk is low or the tick size is large. A binding tick size helps HFTs to establish time priority. HFTs 

dominate liquidity supply for stocks with larger tick sizes, but they also have less incentive to 
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cancel orders. A smaller tick size or higher adverse selection risk allows BATs to increase liquidity 

provision by establishing price priority, but smaller tick size or higher adverse selection risk also 

leads to more frequent order cancellations. This theoretical intuition, along with the empirical 

evidence in Yao and Ye (2017), suggests that the cancellation-to-trade ratio should not be used as 

a cross-sectional proxy for HFT activities.3 

Our model casts doubt on the recent policy proposal in the U.S. to increase the tick size, 

initiated by the 2012 Jumpstart Our Business Startups Act (the JOBS Act). In October 2016, the 

SEC started a two-year pilot program to increase the tick size from one cent to five cents for 1,200 

less liquid stocks. Proponents to increase the tick size assert that a larger tick size should control 

the growth of HFTs and increase liquidity (Weild, Kim, and Newport, 2012). We find that an 

increase in tick size would encourage HFTs. We also find that an increase in tick size constrains 

price competition and reduces liquidity. A larger tick size may reduce mini-flash crashes, or very 

high volatility in liquidity, but such a reduction decreases liquidity in normal times. We argue that 

a more effective way to reduce a mini-flash crash is a trading halt after value jumps so that liquidity 

supply from BATs can resume.  

 

1. Model 

In our model, the stock exchange operates as a continuous limit order book (LOB). Each 

trade in the LOB requires a liquidity supplier and a liquidity demander. The liquidity supplier 

submits a limit order, which is an offer to buy or sell at a specified price and quality. The liquidity 

demander accepts the conditions of a limit order. Execution precedence for liquidity suppliers 

follows the price-time priority rule. Limit orders with higher buy or lower sell prices execute before 

                                                           
3 The cancellation-to-trade ratio can still be a good time series proxy for HFTs’ activity (Hendershott, Jones, and 
Menkveld, 2011; Angel, Harris, and Spatt, 2015; Boehmer, Fong, and Wu, 2015).  
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less aggressive limit orders. For limit orders queuing at the same price, orders arriving earlier 

execute before later orders. The LOB contains all outstanding limit orders. Outstanding orders to 

buy are called “bids” and outstanding orders to sell are called “asks.” The highest bid and lowest 

ask are called the “best bid and ask (offer)” (BBO), and the difference between them is the bid-ask 

spread. 

Our model has one security, 𝑥𝑥 , whose fundamental value, 𝑣𝑣𝑡𝑡 , evolves as a compound 

Poisson jump process with arrival rate 𝜆𝜆𝐽𝐽. 𝑣𝑣𝑡𝑡 starts from 0, and changes by a size of 𝑑𝑑 or –𝑑𝑑 in 

each jump with equal probability. As in BCS, 𝑣𝑣𝑡𝑡 is common knowledge, but liquidity suppliers are 

subject to adverse selection risk when they fail to update stale quotes after value jumps. Traders 

start with a small latency to observe the common value jump, 4 but can reduce the latency to 0 by 

investing in a speed technology with cost 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 per unit of time. 

Our model includes HFTs and two types of non-HFTs: BATs and non-algo traders. HFTs 

place no private value on trading. They supply or demand liquidity as long as the expected profit 

is above 0. They submit a market order to buy (sell) 𝑥𝑥 when its price is below (above) 𝑣𝑣𝑡𝑡. HFTs 

supply liquidity as long as the expected profit from the bid-ask spread is above 0. Non-HFTs, who 

arrive with a compound Poisson jump process with intensity 𝜆𝜆𝐼𝐼, have to buy or sell one unit of 𝑥𝑥, 

each with probability 1
2
. Non-HFTs do not invest in speed technology because they only arrive at 

the market once.  

Our model extends BCS along two dimensions. First, non-HFTs in the BCS model submit 

only market orders. In our model, we allow a proportion 𝛽𝛽 of non-HFTs, BATs, to choose between 

limit and market orders to minimize transaction costs. The rest of the non-HFTs, non-algo traders, 

use only market orders. Second, BCS assume continuous pricing in their model, whereas we 

                                                           
4 By small, we mean that no additional events, such as a trader arrival or a value jump, take place during the delay.  
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consider discrete pricing grids. The benchmark pricing grid in Section 2 �…− 3𝑑𝑑
2

,−𝑑𝑑
2

, 𝑑𝑑
2

, 3𝑑𝑑
2

… � 

has a tick size of  𝛥𝛥0 = 𝑑𝑑. This choice ensures that 𝑣𝑣𝑡𝑡 is always at the midpoint of two price levels 

at any time. In Sections 3-6, we reduce the tick size to 𝛥𝛥1 = 𝑑𝑑
3
, which creates additional price levels, 

such as 𝑑𝑑
6
 and−𝑑𝑑

6
. Figure 1 shows the pricing grids with large and small tick sizes.  

Following the dynamic LOB literature (e.g., Goettler, Parlour, and Rajan, 2005, 2009; Rosu, 

2009; Colliard and Foucault, 2012), we examine the Markov perfect equilibrium, in which traders’ 

actions condition only on state of the LOB and events at 𝑡𝑡. We assume that HFTs instantaneously 

build up the equilibrium LOB after any event. Under this simplification, six types of events trigger 

the transition of the LOB across states: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

   

1
2
𝛽𝛽𝛽𝛽𝐼𝐼  BAT sells (BS)

1
2
𝛽𝛽𝛽𝛽𝐼𝐼 BAT buys (BB)

1
2

(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼 Non-algo sells (NS)
1
2

(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼 Non-algo buys (NB)
1
2
𝜆𝜆𝐽𝐽 Price jumps up (UJ)

1
2
𝜆𝜆𝐽𝐽 Price jumps down (DJ).

                           (1) 

 

BCS do not allow non-HFTs to supply liquidity. We extend their model by allowing BATs 

to submit limit orders. To convey the economic intuition in the most parsimonious way, we make 

a technical assumption that BATs can only submit limit orders when the price level contains no 

other limit orders. This assumption reduces the number of states of the LOB that we need to track. 

We can further relax the assumption in BCS by allowing BATs to queue for 𝑛𝑛 > 1 shares, but such 

an extension only increases the number of LOB states without conveying new intuition. Non-HFTs 

in the BCS model never use limit orders, which can be justified by an infinitely large delay cost 
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(Menkveld and Zoican, 2017). Our extension effectively reduces the delay cost to allow BATs to 

submit limit orders.5 The main intuition of our model stays the same as long as BATs do not queue 

for infinite length.  

 

2. Benchmark: Binding at one tick under a large tick size 

Our analysis starts from ∆0 = 𝑑𝑑. As in BCS, HFTs can choose to be liquidity suppliers, 

who profit from the bid-ask spread, or to be stale-quote snipers, who profit by demanding liquidity 

from stale quotes after a value jump. In BCS, the equilibrium bid-ask spread equalizes the HFTs’ 

expected profits from these two strategies, which are both zero after speed investment. Lemma 1 

shows that this break-even bid-ask spread is smaller than the tick size when adverse selection risk 

is low. 

 

Lemma 1 (Binding Tick Size). When ∆0 = 𝑑𝑑 and 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1, HFTs’ profit from providing the first 

share at the ask price of 𝑎𝑎𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and the bid price of  𝑏𝑏𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
 is higher than HFTs’ profit 

from stale-quote sniping.  

 

 Because non-HFTs trade for liquidity reasons and value jumps lead to sniping cost for stale 

quotes,  𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

 measures adverse selection risk in our model. As in BCS and Menkveld and Zoican 

(2017), this adverse selection risk comes from the speed of the response to public information, not 

from exogenous information asymmetry (e.g., Glosten and Milgrom, 1985; Kyle, 1985). As the 

                                                           
5 We can assume a finite delay cost so that BATs only queue for one share, and the results are available upon request. 
The value of the delay cost, however, conveys no intuition and only leads to a more complicated proof. In Section 4, 
we show that the exact size of the delay cost has little impact for BATs’ choice between limit orders and market orders. 
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arrival rate of non-HFTs increases or the intensity of value jumps decreases, the adverse selection 

risk decreases and so does the break-even bid-ask spread. The break-even bid-ask spread drops 

below one tick when 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1, making liquidity supply for the first share more profitable than stale-

quote sniping.6 The rents for liquidity supply then trigger the race to win time priority in the queue. 

As BATs do not have a speed advantage to win the race, they demand liquidity in the same manner 

as non-algo traders. As a result, Lemma 1 does not depend on 𝛽𝛽.7  

 Under a binding tick size, price competition cannot lead to economic equilibrium. It is the 

queue that restores the economic equilibrium. Next, we derive the equilibrium queue length for 

the ask side of the LOB, and the bid side follows symmetrically. 

We evaluate HFTs’ value of liquidity supply and stale-quote sniping for each queue 

position, though we allow an HFT to supply liquidity at multiple positions and to snipe shares in 

other positions where she is not a liquidity supplier. We denote the value of liquidity supply for 

the 𝑄𝑄𝑡𝑡ℎ
P

 share as 𝐿𝐿𝐿𝐿(𝑄𝑄). A market sell order does not affect 𝐿𝐿𝐿𝐿(𝑄𝑄) on the ask side, because HFTs 

immediately restore the previous state of the LOB by refilling the bid side. A market buy order 

moves the queue forward by one unit, thereby changing the value to 𝐿𝐿𝐿𝐿(𝑄𝑄 − 1). A limit order 

execution leads to a profit of 𝑑𝑑
2
 to the liquidity supplier, 𝐿𝐿𝐿𝐿(0) = 𝑑𝑑

2
. When 𝑣𝑣𝑡𝑡   jumps upward, the 

liquidity providing HFT of the 𝑄𝑄𝑡𝑡ℎ share races to cancel the stale quote, whereas the other 𝑁𝑁 − 1 

HFTs (with 𝑁𝑁 determined in equilibrium) race to snipe the stale quote. The loss from being sniped 

                                                           
6 Throughout this paper, we consider 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 1 for expositional simplicity. When 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
≤ 1, ∆0 is no longer binding, and 

the equilibrium structure is similar to that in Sections 3-6, where we reduce the tick size to ∆1= 𝑑𝑑
3
. 

7 An order with less time priority has lower probability of execution and higher probability of being sniped, both of 
which reduce BATs’ incentives to queue. In addition, BATs have incentives to implement trades, and a positive delay 
cost would compel them to use market orders when the queue is long. We assume that BATs never queue after the 
first position to reflect these intuitions in a parsimonious way.  
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is 𝑑𝑑
2
, while the probability of being sniped is 𝑁𝑁−1

𝑁𝑁
. When 𝑣𝑣𝑡𝑡  jumps downward, the liquidity supplier 

cancels the order and joins the race to supply liquidity at a new BBO.8 𝐿𝐿𝐿𝐿(𝑄𝑄) then becomes 0. 

Equation (2) presents 𝐿𝐿𝐿𝐿(𝑄𝑄) in recursive form and Lemma 2 presents the solution for equation (2).  

𝐿𝐿𝐿𝐿(𝑄𝑄) =
1
2 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

𝐿𝐿𝐿𝐿(𝑄𝑄) +
1
2 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

𝐿𝐿𝐿𝐿(𝑄𝑄 − 1) − 𝑁𝑁−1
𝑁𝑁

1
2 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

× 𝑑𝑑
2

+
1
2 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

× 0.     (2) 

  

Lemma 2 (Value of Liquidity Supply). The value of liquidity supply for the 𝑄𝑄𝑡𝑡ℎ position is: 

𝐿𝐿𝐿𝐿(𝑄𝑄) = � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄 𝑑𝑑
2
− 𝑁𝑁−1

𝑁𝑁
1
2
�1 − � 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄
� 𝑑𝑑
2

.   (3) 

𝐿𝐿𝐿𝐿(𝑄𝑄) decreases in 𝑄𝑄. 

 

Intuitively, Lemma 2 reflects the conditional probability of value-change events for 𝐿𝐿𝐿𝐿(𝑄𝑄) 

and their payoffs. Since 𝐿𝐿𝐿𝐿(𝑄𝑄)  stays the same after a market sell order, the conditional 

probabilities of value-changing events are 𝜆𝜆𝐼𝐼 
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

 for a market buy, 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

 for an upward value 

jump, and 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

 for a downward value jump. The 𝑄𝑄𝑡𝑡ℎ share executes when 𝑄𝑄 non-HFTs arrive in 

a row to buy, which has a probability of � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

, and the revenue conditional on execution is 𝑑𝑑
2
. 

Their product, the first term in equation (3), reflects the expected revenue for liquidity suppliers. 

The 𝑄𝑄𝑡𝑡ℎ share on the ask side fails to execute with non-HFTs when an upward or downward value 

jump occurs, each with probability 1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

]. After an upward value jump, the liquidity 

supplier has a probability of 1
𝑁𝑁

 to cancel the stale quote, but failure to cancel the stale quote before 

                                                           
8 We assume that the HFT liquidity supplier cancels the limit order to avoid the complexity of tracking infinite many 
price levels in the LOB.  
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sniping leads to a loss of  𝑑𝑑
2
. The expected loss is 𝑁𝑁−1

𝑁𝑁
1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

] 𝑑𝑑
2
, the second term in 

equation (3). A downward value jump before the order being snipped or executed leads to a zero 

payoff for the liquidity supplier. 𝐿𝐿𝐿𝐿(𝑄𝑄) decreases in 𝑄𝑄, because an increase in a queue position 

reduces execution probability and increases the cost of being sniped.  

The outside option for supplying liquidity for the 𝑄𝑄𝑡𝑡ℎ share is to be the sniper of the share 

during the value jump. HFTs’ liquidity supply decision for the 𝑄𝑄𝑡𝑡ℎ share also needs to include this 

opportunity cost. With a probability of  1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

], the 𝑄𝑄𝑡𝑡ℎ share becomes stale before it 

gets executed, and each sniper has a probability of 1
𝑁𝑁

 to profit from the stale quote. The value for 

each sniper of the 𝑄𝑄𝑡𝑡ℎ share is: 

 

𝑆𝑆𝑆𝑆(𝑄𝑄) =  1
𝑁𝑁
1
2

[1 − � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄

] 𝑑𝑑
2

.                   (4) 

𝑆𝑆𝑁𝑁(𝑄𝑄) increases with 𝑄𝑄, because shares in a later queue position offer more opportunities for 

snipers.  

 HFTs race to supply liquidity for the 𝑄𝑄𝑡𝑡ℎ position as long as 𝐿𝐿𝐿𝐿(𝑄𝑄) > 𝑆𝑆𝑆𝑆(𝑄𝑄), because the 

winner’s payoff is higher than that of the losers. Equation (5) determines the equilibrium length:  

� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄 𝑑𝑑
2
− 1

2
[1 − � 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄

] 𝑑𝑑
2

> 0.                        (5) 

The solution for equation (5) is:  

𝑄𝑄∗ = max �𝑄𝑄 ∈ ℕ+ s. t.�
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄 𝑑𝑑

2
−

1
2
�1 − �

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

�
𝑄𝑄

�
𝑑𝑑
2

> 0� 

= max �𝑄𝑄 ∈ ℕ+ s. t.�
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄

>
1
3
� 
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= �log
� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
1
3
�,                                                                                                      (6) 

where ⌊𝑥𝑥⌋ denotes the largest integer smaller than or equal to 𝑥𝑥. 

 

Figure 2 shows the comparative statics for equilibrium queue length. The queue length at 

BBO decreases with 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, which indicates that, for stocks with a bid-ask spread binding at one tick, 

the depth at the BBO may serve as a proxy for adverse selection risk. Traditionally, bid-ask spreads 

serve as a proxy for adverse selection risk (Glosten and Milgrom, 1985; Stoll, 2000). Yet Yao and 

Ye (2017) find that bid-ask spread is one-tick wide 41% of time for their stratified sample of 

Russell 3000 stocks in 2010. Depth at the BBO then serves as an ideal proxy to differentiate the 

level of adverse selection for these stocks.9  

To derive 𝑁𝑁, note that HFTs’ total rents come from the bid-ask spread paid by non-HFTs, 

because sniping only redistributes the rents among HFTs. Ex ante, each HFT obtains 1
𝑁𝑁

 of the rents 

per unit of time. New HFTs continue to enter the market until:  

𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 0.                                     (7) 

In Proposition 1, we summarize the equilibrium under a large binding tick size. 

 

Proposition 1. (Large Binding Tick Size): When ∆0= 𝑑𝑑 and 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1, 𝑁𝑁∗ HFTs jointly supply 𝑄𝑄∗ 

units of sell limit orders at 𝑎𝑎𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and 𝑄𝑄∗ units of buy limit orders at 𝑏𝑏𝑡𝑡∗ = 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
, where:  

𝑄𝑄∗ = �log
� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
1
3
�, and 

                                                           
9 Certainly, the comparison also needs to control for price, because stocks with the same nominal bid-ask spread may 
have a different proportional bid-ask spread. 
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𝑁𝑁∗ = max �𝑁𝑁 ∈ ℕ+ s. t. 𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0�.  (8) 

 
BATs and non-algo traders demand liquidity when there is a large binding tick size. 

 

In BCS, the depth at the BBO is one share, because the first share has a competitive price. 

The second share at that price, which faces lower execution probability and higher adverse 

selection costs, is not profitable. The discrete tick size in our model raises the profit of liquidity 

supply above the profit of stale-quote sniping for the first share, and generates a depth of multiple 

shares.  

In BCS, the number of HFTs is determined by 𝜆𝜆𝐼𝐼
𝑠𝑠∗

2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0, where 𝑠𝑠∗ is the break-

even bid-ask spread. In our model, 𝑁𝑁 is determined by 𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0. When tick size is 

binding, 𝑑𝑑 > 𝑠𝑠∗, so tick size leads to more entries of HFTs. Taken together, our model contributes 

to the literature by identifying a queuing channel of speed competition, in which HFTs race for top 

queue positions to capture the rents created by tick size.  

We assume that BATs do not queue after the first share to get the analytical solution of the 

queuing equilibrium. The intuition when BATs can queue more than one share, however, remains 

the same. As long as we do not allow BATs to queue for an infinitely long time, BATs will demand 

liquidity with positive probability. In Section 4, we show that BATs always supply liquidity when 

tick size is small.    

 

3. Equilibrium types under a small tick size 

Starting from this section, we reduce the tick size to 𝑑𝑑
3
. BATs then always choose to supply liquidity 

by establishing price priority over HFTs, except when the adverse selection risk is very low. 
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Corollary 1 shows that a small tick size of 𝑑𝑑
3
 is still binding when 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 5.  

 

Corollary 1. (Small Binding Tick Size) If ∆1= 𝑑𝑑
3
 and 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 5, the bid-ask spread equals the tick 

size. 𝑁𝑁𝑠𝑠∗ HFTs jointly post 𝑄𝑄𝑠𝑠∗ units of sell limit orders at 𝑎𝑎𝑠𝑠,𝑡𝑡
∗ = 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
 and 𝑄𝑄𝑠𝑠∗ units of buy limit 

orders at 𝑏𝑏𝑠𝑠,𝑡𝑡
∗ = 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
, where: 

𝑄𝑄𝑠𝑠∗ = max �𝑄𝑄 ∈ ℕ+ s. t.�
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
�
𝑄𝑄 𝑑𝑑

6
−

1
2
�1 − �

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

�
𝑄𝑄

�  
5𝑑𝑑
6

> 0 � 

= �log
� 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
5
7
� < 𝑄𝑄∗, and       (9) 

𝑁𝑁𝑠𝑠∗ = max �𝑁𝑁 ∈ ℕ+ s. t. 𝜆𝜆𝐼𝐼
𝑑𝑑
6
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0� < 𝑁𝑁∗.        (10) 

 

 Compared with Proposition 1, a small tick size reduces revenue from liquidity supply from 

𝑑𝑑
2
 to 𝑑𝑑

6
, increases the cost of being sniped from 𝑑𝑑

2
 to 5𝑑𝑑

6
, and reduces the queue length from 𝑄𝑄∗ to 𝑄𝑄𝑠𝑠∗. 

Figure 2 shows that 𝑄𝑄𝑠𝑠∗ is approximately 1
3
 of 𝑄𝑄∗. A small tick size also discourages the entry of 

HFTs. 𝑁𝑁𝑠𝑠∗ is approximately 1
3
 of 𝑁𝑁∗, because HFTs’ expected profit per unit of time decreases from 

𝜆𝜆𝐼𝐼
𝑑𝑑
2
 to 𝜆𝜆𝐼𝐼

𝑑𝑑
6
. 

When 1 < 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 5, the break-even bid-ask spread is larger than one tick. To profit from the 

bid-ask spread, HFTs have to quote the following bid-ask spread:10  

                                                           
10 We defer the derivation of the boundary condition for HFTs’ bid-ask spread to Sections 4-6. Another way to bypass 
tick size constraints is to randomize quotes immediately above and below the break-even bid–ask spread. In this paper, 
we consider only stationary HFT quotes. 
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⎩
⎪
⎨

⎪
⎧ 𝑑𝑑

2
 1

1−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5

5𝑑𝑑
6

1
5(1−𝛽𝛽)

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
1−𝛽𝛽

7𝑑𝑑
6

1 < 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
5(1−𝛽𝛽)

P

                                  (11) 

Figure 3 shows that the bid-ask spread quoted by HFTs weakly decreases with 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, because 

an increase in 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

 decreases adverse selection risk. The bid-ask spread quoted by HFTs increases 

weakly with the fraction of BATs, because BATs’ strategies for minimizing transaction costs 

reduce HFTs’ expected profit from liquidity supply. Interestingly, when the adverse section risk 

or the fraction of BATs is high, HFTs effectively cease supplying liquidity by quoting a bid-ask 

spread that is wider than the size of a jump. In the following sections, we elaborate the equilibrium 

types when tick size is not binding. 

 

Insert Figure 3 about Here 

 

4. Make-take spread 

In this section, we develop a new concept make-take spread, and we use the concept to explain 

why BATs never demand liquidity from HFTs when the tick size is not binding. Without loss of 

generality, we consider the decision for a BAT who wants to buy. We start from the case when 

1
1−𝛽𝛽

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 5, for which HFTs need to quote an ask price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and a bid price of 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
 to 

profit from the bid-ask spread. 

A BAT can choose to accept the ask price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
, but submitting a limit order to buy at 

𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 is always less costly, because a buy limit order above fundamental value immediately 

attracts HFTs to submit market orders to sell. This flash limit order immediately executes like a 
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market order, but with lower cost.  

 Why do HFTs quote a sell price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
, but are willing to sell at 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
 using market 

orders? It is because HFTs’ limit price to sell includes the costs of adverse selection risk. An offer 

to sell is more likely to be executed when 𝑣𝑣𝑡𝑡 jumps up. HFTs would accept a lower sell price when 

they demand liquidity, because immediate execution reduces adverse selection risk.  

Flash limit orders exploit the make-take spread, which measures the price difference 

between the traders’ willingness to list an offer and their willingness to accept an offer conditional 

on the trade direction (e.g., sell). We discover make-take spread because liquidity suppliers can 

demand liquidity. This new feature reflects reality in contemporary electronic platforms. In most 

exchanges, every trader can supply liquidity and encounter very limited, if any restrictions when 

demanding liquidity (Clark-Joseph, Ye, and Zi, Forthcoming) 

BATs are able to quote more aggressive prices than HFTs because they have lower 

opportunity costs for supplying liquidity. BATs have to buy or sell, and they supply liquidity as 

long as its cost is less than demanding liquidity. BATs lose 𝑑𝑑
6
 by using flash limit orders, but the 

cost of flash limit orders is lower than paying a half bid-ask spread  𝑑𝑑
2
. O’Hara (2015) finds that 

sophisticated non-HFTs cross the spread only when it is absolutely necessary. The make-take 

spread provides one interpretation for why sophisticated non-HFTs seldom cross the bid-ask 

spread. 

When 1 < 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
1−𝛽𝛽

, the half bid-ask spread quoted by HFTs are higher than 𝑑𝑑
2
, leaving 

more price levels for BATs to use flash limit orders. Therefore, BATs never demand liquidity as 

long as HFTs quote a bid-ask spread that is wider than one tick.  
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5. Flash equilibrium versus undercutting equilibrium  

In the previous section, we show that flash orders strictly dominate market orders. In this section, 

we show that, under some conditions, BATs can further reduce their transaction costs by 

submitting limit orders that do not cross the midpoint. These regular limit orders do not get 

immediate execution but stay in the LOB to wait for market orders.  

We consider BATs’ choice between flash and regular limit orders. In the flash equilibrium, 

BATs use flash limit orders to supply liquidity to HFTs, and HFTs supply liquidity to non-algos. 

In the undercutting equilibrium, BATs use regular limit orders to supply liquidity to non-algos and 

other BATs, whereas HFTs follow complex strategies with frequent order additions and 

cancellations. For simplicity, we focus on the case when 1
1−𝛽𝛽

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 5, for which HFTs need to 

quote an ask price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and a bid price of 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
 to profit from the bid-ask spread. In this case, 

BATs only need to consider two price levels: a flash limit order (e.g., 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 to buy) or a regular 

limit order (e.g., 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
 to buy).  

 

5.1 Flash equilibrium    

In Proposition 2, we characterize the flash equilibrium.  Starting from now, we only characterize 

the equilibrium outcome. BATs’ response to off-equilibrium paths are defined in the proofs.  

Proposition 2. (Flash Equilibrium): When ∆1= 𝑑𝑑
3
 and 1

1−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 1+2β+�4β2+9

2−β
, the equilibrium is 

characterized as follows: 

1. BAT buyers submit limit orders at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 and BAT sellers submit limit orders at price 

𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
. 
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2. 𝑁𝑁𝑓𝑓∗ HFTs jointly supply 𝑄𝑄𝑓𝑓∗  units of sell limit orders at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and 𝑄𝑄𝑓𝑓∗  units of buy limit 

orders at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
2
, where: 

𝑄𝑄𝑓𝑓∗ = max �𝑄𝑄 ∈ ℕ+ s. t. � (1−𝛽𝛽)𝜆𝜆𝐼𝐼
(1−𝛽𝛽)𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄 𝑑𝑑
2
− 1

2
 (1 − � (1−𝛽𝛽)𝜆𝜆𝐼𝐼

(1−𝛽𝛽)𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄

) 𝑑𝑑
2

> 0 �  

= �log
� (1−𝛽𝛽)𝜆𝜆𝐼𝐼

(1−𝛽𝛽)𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
1
3
� < 𝑄𝑄∗   (12) 

𝑁𝑁𝑓𝑓∗ = max �𝑁𝑁 ∈ ℕ+ s. t.𝛽𝛽𝛽𝛽𝐼𝐼
𝑑𝑑
6

+ (1 − 𝛽𝛽)𝜆𝜆𝐼𝐼
𝑑𝑑
2
− 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 0� < 𝑁𝑁∗.  (13) 

3. HFTs participate in three races: (1) HFTs race to fill the queue when the depth at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 

or 𝑣𝑣𝑡𝑡 −
𝑑𝑑
2
 becomes less than 𝑄𝑄𝑓𝑓∗ . (2) HFTs race to take the liquidity offered by flash limit 

orders. (3) After a value jump, HFTs who supply liquidity race to cancel the stale quotes, 

whereas stale-quote snipers race to pick off the stale quotes. 

 

In Proposition 2, we first derive the boundary between the flash equilibrium and the 

undercutting equilibrium. Figure 4 illustrates the boundary in. BATs choose flash limit orders over 

regular limit orders when adverse selection risk is high. Intuitively, flash limit orders execute 

immediately, but it costs 𝑑𝑑
6
 relative to the midpoint; regular limit orders capture a half bid-ask 

spread of 𝑑𝑑
6
 if executed against a non-HFT, but it is also subject to adverse selection risk. BATs 

tend to choose flash limit orders when the adverse selection risk is high. Figure 4 also shows BATs 

tend to choose regular limit orders when 𝛽𝛽 decreases. Intuitively, because non-algo traders use 

only market orders, a regular limit order on the book would have higher execution probability 

before a value jump as the fraction of non-algo traders increases.  

Insert Figure 4 about Here 
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Proposition 2 identifies a unique type of speed competition led by tick size: racing to be 

the first to take the liquidity offered by flash limit orders. If price is continuous, any buy limit order 

price above fundamental value would prompt HFTs to sell. In our model with discrete tick size, a 

BAT needs to place the buy limit order at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
, which drives the speed race to capture the rent 

of 𝑑𝑑
6
 through demanding liquidity.  

In the literature, HFTs demand liquidity when they have advance information to adversely 

select other traders (BCS; Foucault, Kozhan, and Tham, Forthcoming; Menkveld and Zoican, 

2017). Consequently, HFTs’ liquidity demand often has negative connotations. Our model shows 

that HFTs can demand liquidity without adversely selecting other traders. Instead, the transaction 

cost is lower for BATs when HFTs demand liquidity than when HFTs supply liquidity. Therefore, 

researchers and policy makers should not evaluate the welfare impact of HFTs simply based on 

liquidity supply versus liquidity demand.  

As BATs no longer demand liquidity from HFTs, HFTs respond to the reduced liquidity 

demand and higher adverse selection cost by decreasing their depth to 𝑄𝑄𝑓𝑓∗ . The profit to take 

liquidity from BATs, 𝑑𝑑
6
, is less than the profit to supply liquidity to BATs at 𝑑𝑑

2
 when the tick size 

is ∆0. A smaller tick size, ∆1, reduces the profit for HFTs, thereby reducing the number of HFTs.  

 

5.2 Undercutting equilibrium  

In flash equilibrium, the LOB only has one stable state. In the undercutting equilibrium, 

the LOB transits across different states. As indicated in Proposition 2, BATs choose regular limit 

orders over flash limit orders when adverse selection risk or 𝛽𝛽  is low. In the undercutting 

equilibrium, their limit orders stay in the LOB, and their decisions, as well as those of HFTs, 
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depend on the state of the LOB. Our technical assumption that BATs never queue at the second 

position reduces the number of states. Still, the solution is complicated. We focus on deriving the 

equilibrium strategies of HFTs, as Proposition 2 and its proof in the Appendix demonstrate the 

strategy of BATs in undercutting equilibrium. BATs choose regular limit orders over flash limit 

orders when 1+2𝛽𝛽+�4𝛽𝛽
2+9

2−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5.  

To show the equilibrium strategy of HFTs, we first define the state of the LOB as (𝑖𝑖, 𝑗𝑗). 

Here 𝑖𝑖 represents the number of BATs’ limit orders on the same side of the LOB, and 𝑗𝑗 denotes 

the number of BATs’ limit orders on the opposite side of the LOB. For example, for a HFT who 

wants to buy, 𝑖𝑖 represents the number of BATs’ limit orders on the bid side, and 𝑗𝑗 represents the 

number of BATs’ limit orders on the ask side. The LOB then has four states:  
 

(0,0) No limit order from BATs
(1,0) A BAT limit order on the same side
(0,1) A BAT limit order on the opposite side
(1,1) BAT limit orders on both sides

 

 

When 1+2𝛽𝛽+�4𝛽𝛽
2+9

2−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5, HFTs quote a half bid-ask spread of 𝑑𝑑

2
, as a half bid-ask 

spread of 𝑑𝑑
6
 loses money. Similar to the queuing equilibrium and the flash equilibrium, HFTs’ 

decision to supply liquidity depends on the payoff of the liquidity supply relative to the outside 

option of sniping. The new feature of the undercutting equilibrium is that HFTs’ decision also 

depends on the status of the LOB. We denote the payoff of the 𝑄𝑄𝑡𝑡ℎ
P

 share to supply liquidity at half 

the bid-ask spread 𝑑𝑑
2
 as 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄), and the payoff to the snipers of the 𝑄𝑄𝑡𝑡ℎ

P

 share as 𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄). The 

HFT’s strategy depends on 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) ≡ 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄) − 𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄).  

Figure 5 illustrates how 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) changes with the six types of events defined in equation 
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(1). For example, consider 𝐷𝐷(0,0)(𝑄𝑄) for an HFT on the ask side of the LOB.  

1) A BAT buyer submits a limit order at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
, which changes 𝐷𝐷(0,0)(𝑄𝑄) to 𝐷𝐷(0,1)(𝑄𝑄).  

2) A BAT seller undercuts the ask side at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
, which changes 𝐷𝐷(0,0)(𝑄𝑄) to 𝐷𝐷(1,0)(𝑄𝑄). 

3) A non-algo buyer submits a market buy order, which moves the queue position forward 

by one unit. 𝐷𝐷(0,0)(𝑄𝑄) changes to 𝐷𝐷(0,0)(𝑄𝑄 − 1). 

4) A non-algo seller submits a market sell order, which does not affect 𝐷𝐷(0,0)(𝑄𝑄) as the 

LOB on the bid side is refilled immediately by HFTs.  

5) In an upward value jump, a liquidity providing HFT on the ask side gains – 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

, a 

stale-quote sniper gains 𝑑𝑑
2
1
𝑁𝑁

, and the difference between them is −𝑑𝑑
2
.  

6) In a downward value jump, the liquidity supplier cancels the limit order, thereby 

changing the value of both the liquidity supply and stale-quote snipping to zero. 

Insert Figure 5 about Here 

These six types of events and the four states of the LOB are the key features of the 

undercutting equilibrium, which we summarize in Proposition 3. To simplify the notation, we use 

𝑝𝑝1 ≡
1
2
∙ 𝜆𝜆𝐼𝐼𝛽𝛽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 to denote the arrival probability of a BAT buyer or seller, 𝑝𝑝2 ≡
1
2
∙ 𝜆𝜆𝐼𝐼(1−𝛽𝛽)
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 to denote 

the arrival probability of a non-algo trader to buy or sell, and 𝑝𝑝3 ≡
1
2
∙ 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 to denote the 

probability of an upward or downward value jump.  

 

Proposition 3. (Undercutting Equilibrium): When ∆1= 𝑑𝑑
3

 and  1+2𝛽𝛽+�4𝛽𝛽
2+9

2−𝛽𝛽
< 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
< 5 , the 

equilibrium is characterized as follows: 

1. HFTs’ strategy: 
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a. Spread: HFTs quote ask price at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 and bid price at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
.  

b. Depth: The following system of equations determines the equilibrium depth in 

each state. 

i. Difference in value between the liquidity supplier and the stale-queue sniper 

in each state: 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐷𝐷(0,0)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑝𝑝1𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,0)(𝑄𝑄)+𝑝𝑝2𝐷𝐷(0,0)(𝑄𝑄 − 1) + 𝑝𝑝2𝐷𝐷(0,0)(𝑄𝑄) + 𝑝𝑝3 �−

𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

𝐷𝐷(1,0)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑝𝑝1𝐷𝐷(1,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,0)(𝑄𝑄)+𝑝𝑝2𝐷𝐷0,0(𝑄𝑄) + 𝑝𝑝2𝐷𝐷(1,0)(𝑄𝑄) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

𝐷𝐷(0,1)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚{0,𝑝𝑝1𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,1)(𝑄𝑄)+𝑝𝑝2𝐷𝐷(0,1)(𝑄𝑄 − 1) + 𝑝𝑝2𝐷𝐷(0,0)(𝑄𝑄) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

𝐷𝐷(1,1)(𝑄𝑄) = 𝑚𝑚𝑚𝑚𝑚𝑚 {0,𝑝𝑝1𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝1𝐷𝐷(1,0)(𝑄𝑄)+𝑝𝑝2𝐷𝐷(0,1)(𝑄𝑄) + 𝑝𝑝2𝐷𝐷(1,0)(𝑄𝑄) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0}

. (14) 

ii. Difference in value for immediate execution: 𝐷𝐷(0,0)(0) = 𝐷𝐷(0,1)(0) = 𝑑𝑑
2
. 

iii. Equilibrium depth as a function of the difference in value:  

𝑄𝑄(𝑖𝑖,𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑄𝑄𝑄𝑄ℕ+�𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) > 0�    𝑖𝑖 = 0,1; 𝑗𝑗 = 0,1. 

c. In equilibrium there are 𝑁𝑁𝑢𝑢∗ < 𝑁𝑁∗ HFTs. 

2. BATs who intend to buy (sell) submit limit orders at price 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 + 𝑑𝑑
6

 ) if no existing 

limit orders sit at the price level, or buy (sell) limit orders at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 −
𝑑𝑑
6

 ) 

otherwise11.  

 

The depth from HFTs depends on 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄). 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄), is defined using the equation system 

in (14), because the value difference in each state also depends on the value differences in other 

                                                           
11 After an upward (downward) jump with size 𝑑𝑑, we assume BATs buy (sell) undercutting orders at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
 (𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
) 

will be cancelled and resubmitted at price 𝑣𝑣𝑡𝑡 + 5𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

) to follow the value jump. Alternative BATs strategy 
does not change the equilibrium. 
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states. The equations in (14) contain the 𝑚𝑚𝑚𝑚𝑚𝑚{0, . } as HFTs do not queue at the 𝑄𝑄𝑡𝑡ℎ position once 

the expected payoff is below 0.  

We present the solution for 𝐷𝐷(𝑖𝑖,𝑗𝑗)(𝑄𝑄) for any 𝑖𝑖, 𝑗𝑗, and 𝑄𝑄 in the Appendix. Here we use a 

numerical example to present the main intuition of the undercutting equilibrium. Figure 6 shows 

that the value of the liquidity supply decreases in 𝑄𝑄 , while the value of stale-quote sniping 

increases in 𝑄𝑄 . HFTs supply liquidity as long as 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄) >  𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄) . For example, in 

state(0,0), the LOB has a depth of two shares. 

Figure 6 also shows that 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑗𝑗)(𝑄𝑄) and 𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗)(𝑄𝑄) also depend on the state of the LOB. As 

the undercutting limit orders from BATs can change the states of the LOB, HFTs can add or cancel 

their limit orders even when the fundamental value stays the same. A comparison between Panel 

A and Panel B and between Panel C and Panel D of Figure 6 shows that an undercutting order 

reduces HFTs’ depth on the same side of the LOB by approximately one share. Intuitively, when 

a BAT submits an undercutting order, the execution priority for all HFTs on the same side of the 

book decreases by one share.12 An HFT who used to quote the last share at the half bid-ask spread 

𝑑𝑑
2
 has to cancel, because the share become unprofitable after the arrival of the undercutting order. 

For the same reason, once an undercutting order from a BAT executes, HFTs race to submit one 

more share at the half bid-ask spread 𝑑𝑑
2
, because the execution priority in the LOB increases by 

                                                           
12 An undercutting BAT order on the opposite side of the LOB has an indirect effect. For example, in state (1, 1), a 
BAT buyer takes liquidity at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
 and changes the state to (0, 1), which enables an HFT limit sell order at price 

𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
 to trade with the next buy market order from a non-algo trader. In state (1, 0), a BAT buyer chooses to submit 

a limit order at price 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
, which changes the state to (1, 1). An HFT limit sell order at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑

2
 then needs to 

wait at least one more period for execution. More generally, an undercutting BAT limit buy (sell) order may attract 
future BAT sellers (buyers) to demand liquidity, making future BATs less likely to undercut HFTs. In turn, the value 
of liquidity supply increases relative to sniping, thereby incentivizing HFTs to supply larger depth. This indirect effect 
is so small that it does not affect depth in our numerical example, because the number of shares is an integer. It is 
possible for a depth of (1, 1) to be higher than (1, 0) for numerical values such as 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
= 4.9 and 𝛽𝛽 = 0.06, and the 

results are available upon request. 
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one. One new feature of the undercutting equilibrium is the frequent order addition or cancellation 

of HFTs’ limit orders in the absence of a change in fundamental value.  

One driver of HFTs’ frequent additions and cancellations is small tick size. When tick size 

is binding, BATs cannot achieve execution priority over HFTs who are already in the queue. When 

tick size is small, BATs can achieve price priority over HFTs, which induces HFTs to cancel their 

earlier orders and to add new ones in response to the undercutting orders from BATs.  

 When 1
5(1−𝛽𝛽)

< 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
1−𝛽𝛽

, HFTs quote 5𝑑𝑑
6

, and BATs’ strategies follow the intuition 

outlined above, where they choose between flash limit orders and regular limit orders. The only 

main difference is that the four price levels between 𝑣𝑣𝑡𝑡 + 5𝑑𝑑
6

 and 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 increase the states to 

24 = 16. We do not report the results for brevity but they are available upon request. In Section 6, 

we discuss the case when the break-even spread equals 7𝑑𝑑
6

.  

 

6. Stub quotes and mini-flash  

 In Proposition 4, we show that HFTs quote a bid-ask spread wider than the size of the jump 

when adverse selection risk is high or the fraction of BATs is large. We call such quotes stub 

quotes. A mini-flash crash occurs when a market order hits a stub quote. In our model, the size of 

the mini-flash crash is 7𝑑𝑑
6

, because the size of a value jump is 𝑑𝑑. An increase in the support of jump 

size can lead to stub quotes further away from the midpoint, thereby creating mini-flash crashes of 

larger size. Such an extension adds mathematical complexity without conveying new intuition. 

 

Proposition 4 (Stub Quotes and Mini-Flash Crash). When ∆1= 𝑑𝑑
3

 and 1 < 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

< 1
5(1−𝛽𝛽)

, the 

equilibrium is characterized as follows.  
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1. HFTs quote a half bid-ask spread of 7𝑑𝑑
6

. 

2. A BAT buyer (seller) quotes 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 (𝑣𝑣𝑡𝑡 + 5𝑑𝑑
6

) if the price level has no limit orders. 

Otherwise, the BAT buyer (seller) submits a flash limit order at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 (𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
) to 

provide liquidity.  

3. Compared with the case when ∆0= 𝑑𝑑, the transaction cost for non-algo traders increases, 

but the average transaction cost for non-HFTs decreases.  

4. The probability of mini-flash crashes decreases in  𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

. The probability of mini-flash crashes 

first increases in 𝛽𝛽 and then decreases in 𝛽𝛽.  

 

Proposition 4 shows that HFTs are more likely to quote stub quotes when adverse selection 

risk is high. A higher adverse selection risk prompts HFTs to quote stub quotes through two 

channels. First, HFTs have to quote a wider bid-ask spread to reach the break even point. Second, 

when HFTs’ quotes are wider than one tick, BATs are able to quote more aggressive prices than 

HFTs. HFTs then need to further widen the bid-ask spread due to reduced liquidity demand.  

 When HFTs quote stub quotes, BATs have six price levels to choose from. Fortunately, we 

are able to obtain analytical solutions for the BATs’ strategy. Consider the decision for a BAT 

buyer. We find that the buyer chooses to queue at 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 if the price level contains no limit orders. 

The sniping cost is as low as 𝑑𝑑
6
, and the BAT buyer can earn a half bid-ask spread of 5𝑑𝑑

6
 if a non-

algo trader arrives. When 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 contains a limit order, the BAT buyer will use a flash limit order 
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at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 to obtain immediate execution with a transaction cost of 𝑑𝑑

6
.13 We show in the proof that 

BATs never quote at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
2
 and 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
 as the execution cost is always higher than 𝑑𝑑

6
. Flash buy 

limit orders at price 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 also strictly dominate more aggressive flash limit orders of 𝑣𝑣𝑡𝑡 + 𝑑𝑑

2
 and 

𝑣𝑣𝑡𝑡 + 5𝑑𝑑
6

, because a limit order price of 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 is aggressive enough to trigger immediate execution.  

In Section 3, we find that the transaction costs for both BATs and non-algo traders are 𝑑𝑑
2
 

when tick size is d. A decrease in tick size to 𝑑𝑑
3
 increases the transaction cost for non-algo traders. 

A non-algo trader pays 5𝑑𝑑
6

 when an order is she executed against a BAT and pays 7𝑑𝑑
6

 if a stub quote 

is encountered. Meanwhile, a decrease in tick size to 𝑑𝑑
3
 decreases the transaction cost for BATs. 

BATs’ maximum transaction cost is 𝑑𝑑
6
 if they use flash limit orders, although the cost is lower if 

they quote a half bid-ask spread of 5𝑑𝑑
6

. Overall, we find that the average transaction cost decreases 

with tick size. Figure 3 shows that the proportion of BATs needs to be at least 4
5
 for stub quotes to 

occur. Non-algo traders’ maximum transaction cost is 7𝑑𝑑
6

 if they hit stub quotes. The average 

transaction cost for non-HFTs is then at most 11𝑑𝑑
30

 ( 4
5

× 𝑑𝑑
6

+ 1
5

× 7𝑑𝑑
6

) , which is lower than 𝑑𝑑
2

. 

Therefore, a reduction in tick size reduces non-HFTs’ average transaction costs, but increase the 

dispersion and volatility of their transaction costs.    

An increase in adverse selection risk unambiguously increases the probability of mini-flash 

crashes. Figure 3 in Section 3 show that stub quotes are more likely to occur when there higher 

                                                           
13 This result is certainly a consequence of our simplifying assumption that BATS cannot queue for a second share. 

However, BATs should always have higher incentives to use flash limit orders when 𝑣𝑣𝑡𝑡 −
5𝑑𝑑
6

 contains a limit order, 
because the second share has a lower probability of executing against a non-algo trader and a higher probability of 

executing against a sniper, whereas a flash limit order always incurs a constant cost of 
𝑑𝑑
6
.  
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adverse selection risk. Conditional on stub quotes occurring, Figure 6 reveals another channel for 

adverse selection risk to increase the number of mini-flash crashes. An increase in adverse 

selection risk implies more value jumps relative to the arrival rate of non-algo traders. During an 

upward (downward) value jump, BATs’ limit orders on the bid (ask) side are all sniped and only 

stub quotes remain. If the limit orders from BATs fail to reconvene before a non-algo trader arrives, 

the market order from the non-algo trader hits the stub quote and causes a mini-flash crash.  

The proportion of BATs, 𝛽𝛽, have an ambiguous effect on the probability of flash crashes 

because of two competing effects. On the one hand, Figure 3 in Section 3 shows that a larger 𝛽𝛽 

increases the probability for stub quotes as HFTs face less liquidity demand. On the other hand, a 

larger 𝛽𝛽 decreases the probability of hitting stub quotes, because BATs never demand liquidity 

from HFTs. For example, mini-flash crashes never occur when 𝛽𝛽 = 0 or 𝛽𝛽 = 1. Therefore, mini-

flash crashes need both BATs and non-algo traders. Figure 6 shows the simulated intensity of mini-

flash crashes with respect to 𝛽𝛽. For each 𝛽𝛽, we first uniformly draw 100 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

 from [1, 5], the support 

of the adverse selection risk in our paper. For each 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, we simulate the first 100,000 trades. For all 

10 million simulations, we count the number of trades that hit the stub quotes relative to the total 

number of trades.  

Figure 7 shows that mini-flash crashes are most likely to occur when 𝛽𝛽 is approximately 

0.95, and we normalize this crash intensity to 1. The black square line shows that the intensity is 

hump-shaped with respect to 𝛽𝛽. The circle line shows that majority of mini-flash crashes occur 

after a value jump. An upward value jump removes BATs’ limit orders from the ask side and a 

downward jump removes BATs’ limit orders from the bid side. If BATs’ limit orders do not 

reconvene in the LOB, a market buy (sell) order from non-algo trader would hit stub quotes. 

Therefore, most of the upward (downward) mini-flash crashes occur after an upward (downward) 
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value jump. Only a small amount of crashes are due to BATs’ liquidity being used up by non-algo 

traders. 

An effective way to prevent a mini-flash crash is a trading halt to let the trading interest of 

BATs reconvene. The triangle line in Figure 7 shows the intensity of mini-flash crashes with 

trading halts. We impose the trading halt after a value jump, and the market reopens after 10 orders 

arrive at the market. We find that such a trading halt reduces mini-flash crashes by about 90%.  

Insert Figure 7 About Here 

 

6. Predictions and policy implications  

Our model rationalizes a number of puzzles in the literature on HFTs and generates new empirical 

predictions that can be tested. In Subsection 6.1, we summarize the predictions on who supplies 

liquidity and when. In Subsection 6.2, we examine the predictions on liquidity demand. In 

Subsection 6.3, we evaluate the predictions on liquidity. In Subsection 6.4, we discuss the use of 

the cancellation ratio as the cross-sectional proxy for HFTs’ activity.   

 

6.1 Liquidity supply    

Our model shows that who provides liquidity depends on the tick size, adverse selection risk, the 

motivation of the trade, and the speed of the trade. In Prediction 1, we posit that BATs dominate 

liquidity supply when tick size is not binding.  

 

Prediction 1 (Price Priority): When tick size is not binding, Non-HFTs are more likely to 

establish price priority in liquidity supply.  
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Speed advantages in the LOB reduce HFTs’ adverse selection costs (see Jones (2013) and 

Menkveld (2016) surveys), inventory costs (Brogaard et al., 2015), and operational costs (Carrion, 

2013). These reduced costs of intermediation raise the concern that “HFTs use their speed 

advantage to crowd out liquidity supply when the tick size is small and stepping in front of standing 

limit orders is inexpensive” (Chordia et al., 2013, p. 644). However, Brogaard et al. (2015) find 

that non-HFTs quote a tighter bid-ask spread than HFTs, and Yao and Ye (2017) find that non-

HFTs are more likely to establish price priority over HFTs as the tick size decreases. We find that 

the opportunity cost of supplying liquidity can reconcile the contradiction between the empirical 

results and the channels of speed competition. BATs incur lower opportunity costs when supplying 

liquidity. When they implement a trade, they supply liquidity as long as it is less costly to demand 

liquidity. The make-take spread that we introduce in Section 4 indicates that BATs never demand 

liquidity from HFTs when tick size is not binding.  

 

Prediction 2 (Queuing): HFTs crowd out non-HFTs’ liquidity supply when tick size is binding, 

that is, when the tick size is large or adverse selection risk is low.  

 

When tick size is binding, HFTs’ speed advantage allows them to establish time priority at 

the same price. Yao and Ye (2017) find that tick size is more likely to be binding when tick size 

increases. They also find that a large tick size crowds out non-HFTs’ liquidity supply. Both results 

provide evidence to support Prediction 2. 

Hoffmann (2014), Han, Khapko, and Kyle (2014), Bernales (2016), and Bongaerts and 

Van Achter (2016) find that HFTs have lower adverse selection costs than non-HFTs. Yao and Ye 

(2017), however, find that HFTs do not have a comparative advantage in providing liquidity for 
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stocks with higher adverse selection risk. In Prediction 2, we provide the economic mechanism to 

reconcile this inconsistency. Comparing Corollary 1 with Proposition 2 and 3, we find that the tick 

size is more likely to be binding when adverse selection risk is low. A binding tick size helps HFTs 

to supply liquidity through time priority. An increase in adverse selection risk raises the break-

even bid-ask spread above one tick, allows non-HFTs to undercut HFTs, and decreases HFTs’ 

liquidity supply. 

In Prediction 3, we address who provides liquidity during a mini-flash crash. 

 

Prediction 3. (Stub Quotes and Mini-Flash Crashes): A mini-flash crash is more likely to occur 

when the adverse selection risk is high or when the tick size is small. During a mini-flash crash, 

HFTs supply liquidity and non-HFTs demand liquidity. A downward (upward) mini-flash crash is 

more likely to follow a downward (upward) value jump.  

 

A comparison of Propositions 1 and 4 shows that stub quotes are more likely to occur when 

the tick size is small. When the tick size is large, BATs cannot establish execution priority over 

HFTs. When the tick size is small, BATs can establish price priority over HFTs, which increases 

the adverse selection costs for HFTs through two channels. First, when BATs can undercut HFTs, 

they no longer demand liquidity from HFTs. HFTs then face reduced liquidity demand but the risk 

of value jump stay the same. Second, the undercutting orders by BATs reduce the execution 

priority of HFTs. In turn, HFTs’ limit orders face lower execution probability and higher sniping 

cost. When the adverse selection cost is high enough, HFTs effectively quit liquidity supply by 

quoting stub quotes. HFTs are more likely to quote stub quotes when adverse selection risk is high 

as higher adverse selection risk widens the break-even bid-ask spread; a wider break-even bid-ask 
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spread also allows BATs to undercut HFTs, which further increases the adverse selection costs for 

HFTs. Because BATs do not continuously supply liquidity in the market, non-algo traders’ market 

orders can hit stub quotes and cause mini-flash crashes. A high adverse selection risk also implies 

more value jumps relative to the arrival rate of non-HFTs. Non-algo traders’ market orders are 

more likely to hit stub quotes after value jumps, because value jumps clear BATs’ limit orders on 

the side of the jump.  

In cross-section, our model predicts that stocks with smaller tick sizes or higher adverse 

selection risk are more likely to incur mini-flash crashes. This cross-sectional pattern has not been 

tested. In time series, our model predicts that an initial downward (upward) jump increases the 

probability of a downward (upward) mini-flash crash. The downward (upward) jump clears the 

LOB on the bid (ask) side, making the market orders from non-algo traders more likely to hit stub 

quotes.  

Brogaard et al. (Forthcoming) analyze the time series pattern of mini-flash crashes. They 

show that, 20 seconds before a mini-flash crash, HFTs neither demand nor supply liquidity, 

whereas non-HFTs demand and supply the same amount of liquidity; 10 seconds before a mini-

flash crash, HFTs demand liquidity from non-HFTs; at the time of a mini-flash crash, HFTs supply 

liquidity to non-HFTs, but at a much wider bid-ask spread. The authors also find that the liquidity 

supply from the mini-flash crash is profitable. This evidence is consistent with the theoretical 

mechanism for mini-flashes crash that we document. (1) In normal times, non-HFTs dominate 

both liquidity supply and liquidity demand; (2) slightly before a mini-flash crash, HFTs demand 

liquidity and remove limit orders from BATs; (3) a mini-flash crash occurs when a non-algo 

trader’s market order hits HFTs’ stub quotes, thus HFTs profit when a mini-flash crash occurs.   

Our interpretations of mini-flash crashes are consistent with both negative and positive 
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framing of the role of HFTs in a mini-flash crash. Brogaard et al. (2017) suggest that HFTs supply 

liquidity in extreme price movements, while Ait-Sahalia and Sağlam (2017) suggest that HFTs 

withdraw liquidity supply when it is most needed. Both views, however, suggest that mini-flash 

crashes occur when the market orders of non-HFTs hit the stub quotes from HFTs. 

Our interpretation of mini-flash crashes has two additional features that are consistent with 

economic reality. First, markets recover quite quickly from mini-flash crashes. In our model, mini-

flash crashes disappear when the limit orders from BATs replenish the LOB. Second, Nanex, the 

firm that invented the concept of mini-flash crash, finds that mini-flash crashes are equally likely 

to be upward as downward. Indeed, even during the famous Flash Crash on May 6, 2010, in which 

the Dow Jones plunged 998.5 points, some stocks, including Sotheby's, Apple Inc., and Hewlett-

Packard, increased in value to over $100,000 in price (SEC, 2010). In our model, upward and 

downward mini-flash crashes are equally likely, even though downward mini-flash crashes are 

more likely to occur conditional on an initial downward value jump.   

 

6.2 Liquidity demanding   

Our model discoveries a new channel of speed competition to demand liquidity. In 

Prediction 4, we summarize the empirical implications of this new channel.  

 

Prediction 4. (Speed Competition of Taking Liquidity): Non-HFTs are more likely than HFTs 

to supply liquidity at price levels that cross the midpoint (flash limit orders). HFTs are also more 

likely to demand liquidity from flash limit orders, but they do not adversely select these orders.  

 

Latza, Marsh, and Payne (2014) find evidence consistent with Prediction 4. They classify 

https://en.wikipedia.org/wiki/Sotheby%27s
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/Hewlett-Packard
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a market order as “fast” if it executes against a standing limit order that is less than 50 milliseconds 

old. Because of the speed of taking liquidity, it is natural to expect that fast market orders are from 

HFTs. These authors also find that fast market orders often execute against limit orders that cross 

the midpoint, and they lead to virtually no permanent price impact.  

In Prediction 4, we offer fresh perspectives on the liquidity demand from HFTs. Typically, 

HFTs demand liquidity when they employ a speed advantage to adversely select liquidity suppliers 

(BCS; Foucault, Kozhan, and Tham, 2017; Menkveld and Zoican, 2017). Therefore, liquidity 

demand from HFTs generally has negative connotations of reducing liquidity (Jones, 2013; Biais 

and Foucault, 2014). We find that HFTs’ liquidity demand does not necessarily adversely select 

slow traders. Instead, the liquidity demand from HFTs can reduce the transaction costs of non-

HFTs. In the flash equilibrium, BATs pay 𝑑𝑑
2
 when HFTs supply liquidity, while BATs only pay 𝑑𝑑

6
 

when HFTs demand liquidity.  

 

6.3 Liquidity  

On April 5, 2012, President Barack Obama signed into law the Jumpstart Our Business Startups 

(JOBS) Act. Section 106 (b) of the Act requires the SEC to examine the effect of tick size on initial 

public offerings (IPOs). On October 3, 2016, the SEC implemented a pilot program to increase the 

tick size from one cent to five cents for 1,200 small- and mid-cap stocks. Proponents of the 

proposal argue that a larger tick size can improve liquidity (Weild, Kim, and Newport, 2012). In 

Prediction 5, however, we posit that an increase in tick size decreases liquidity.   

 

Prediction 5. A larger tick size increases the depth at the BBO, but it also increases the effective 

bid-ask spread, the transaction costs paid by liquidity demanders.  
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Yao and Ye (2017) find evidence consistent with Prediction 5. Holding the BBO constant, 

an increase in depth at the BBO implies an increase in liquidity. Yet these authors also find that 

the quoted bid-ask spread increases after an increase in tick size. When both quoted bid-ask spread 

and depth increase, the most relevant liquidity measure becomes the effective bid-ask spread, the 

transaction cost paid by liquidity demanders (Bessembinder, 2003). Our model shows that 

constrained price competition increases the effective bid-ask spread, which is consistent with Yao 

and Ye’s (2017) findings. Our model prediction, along with the evidence in Yao and Ye (2017), 

shows that an increase in tick size would not improve liquidity.   

Advocates for an increase in tick size also argue that a wider tick size increases market-

making profits, supports sell-side equity research and, eventually, increases the number of IPOs 

(Weild, Kim, and Newport, 2012). We find that a wider tick size increases market-making profits, 

but the profit belongs to traders with higher transaction speeds. Therefore, a wider tick size is more 

likely to result in an arms race in latency reduction than in sell-side equity research.  

We also find that an increase in tick size harms non-HFTs. An increase in tick size also 

does not benefit HFTs as the cost of the speed investment dissipates when larger tick size generates 

higher rents. In our model, non-HFTs trade no matter how large the bid-ask spread may be. In 

reality, a wider spread may prevent investors with low gains from trading, leading to a further 

reduction in welfare.  

An increase in tick size reduces mini-flash crashes, but it also increases the transaction 

costs for average trades. A more effective solution to prevent mini-flash crashes would be to slow 

down the market, particularly during periods of market stress. In a standard Walrasian equilibrium, 

price is continuous and time is discrete. Modern financial markets exhibit exactly the opposite 
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structure: price competition is constrained by the tick size, whereas time is divisible at the 

nanosecond level in electronic trading platforms (Gao, Yao, and Ye, 2013). Making price more 

continuous and time more discrete would improve liquidity and also prevent mini-flash crashes at 

the same time.  

 

6.4 Cancellation-to-trade ratio as a cross-sectional proxy for HFT activity  

The cancellation-to-trade ratio is widely used as a proxy for HFTs’ activities, particularly 

for HFTs’ liquidity supplying activities (Biais and Foucault, 2014). Yet Yao and Ye (2017) find 

that stocks with a higher proportion of liquidity provided by HFTs have a lower cancellation-to-

trade ratio. In Prediction 6, we offer one interpretation for this surprising negative correlation.  

 

Prediction 6. (Cancellation-to-trade Ratio). Stocks with a smaller tick size and higher adverse 

selection risk have a lower proportion of liquidity provided by HFTs relative to non-HFTs but a 

higher cancellation-to-trade ratio. 

 

A decrease in tick size decreases the proportion of liquidity provided by HFTs (Prediction 

2), but it leads to more order cancellations. Under a large tick size in our model, HFTs do not need 

to cancel their orders when non-HFTs arrive, because non-HFTs cannot establish time priority 

over HFTs. A decrease in tick size increases the potential for non-HFTs to undercut HFTs. If non-

HFTs submit flash limit orders, HFTs race to take liquidity, and the losers of the race cancel their 

orders. If non-HFTs submit regular limit orders, HFTs reduce their depth once non-HFTs undercut, 

and HFTs increase their depth once an undercutting order gets executed. These changes in depth 

lead to frequent order cancellations. We offer a new interpretation of flickering quotes. Yueshen 
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(2014) shows that flickering quotes occur when new information causes the price to move to a new 

level. We show that HFTs can cancel orders in the absence of information. Periodic order additions 

and cancellations also differ from Baruch and Glosten (2013), who rationalize flicking quotes 

using a mixed-strategy equilibrium. An increase in adverse selection risk, defined as the intensity 

of value jumps relative to the arrival rate of non-HFTs, also lead to more order cancellations, but 

HFTs also provide less liquidity for these stocks.  Taken together, we suggest that the cancellation-

to-trade ratio should not be used as a cross-sectional measure of HFTs’ activity.   

 

7. Conclusion 

In this paper, we extend BCS by adding two unique characteristics in financial markets: 

discrete tick size and algorithmic traders who are not HFTs. We discover a queuing channel of 

speed competition for liquidity supply. BATs are more likely to supply liquidity when tick size is 

small, because supplying liquidity is less costly than demanding liquidity from HFTs. A large tick 

size constrains price competition, creates rents for liquidity supply, and encourages speed 

competition to capture such rents through the time priority rule. Higher adverse selection risk 

increases the break-even bid-ask spread relative to tick size, which allows BATs to establish price 

priority over HFTs and reduces the fraction of liquidity provided by HFTs.  

We also discover a new channel of speed competition in liquidity demand.  HFTs race to 

demand liquidity from BATs when BATs post flash limit orders to buy above the fundamental 

value or to sell below the fundamental value. BATs incur lower transaction cost when HFTs 

demand liquidity than when HFTs supply liquidity. Thus, an evaluation of the welfare impact of 

HFTs should not be based solely on demand versus supply liquidity. Our results also indicate that 

the definition of providing versus demanding liquidity blurs in model electronic markets.  
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Yao and Ye (2017) find that the cancellation ratio, a widely used empirical proxy for HFTs’ 

activity, has a negative cross-sectional correlation with HFT liquidity supply. We provide a 

theoretical foundation for their surprising negative correlation. A large tick sizes induces HFTs to 

race for the top queue position, and HFTs are less likely to cancel orders once they secure this spot. 

HFTs cancel orders more frequently for stocks with smaller tick sizes, but they also supply less 

liquidity. Both theoretical and empirical evidence suggests that researchers should not apply the 

cancellation ratio as a cross-sectional proxy for HFT activity. 

We also provide new predictions to be tested. We predict that 1) non-HFTs are more likely 

than HFTs to supply liquidity at price levels that cross the midpoint, and these limit orders are 

more likely to be taken by HFTs; 2) a mini-flash crash is more likely to occur for stocks with 

smaller tick sizes and higher adverse selection risk; 3) an upward (downward) mini-flash crash is 

more likely to follow an initial price jump in the same direction.  

Our model shows that a larger tick size increases transaction cost and negatively affects 

non-HFTs. Yet HFTs do not benefit from a larger tick size as an investment in high-speed 

technology dissipates the rents created by tick size. We challenge the rationale for increasing the 

tick size to five cents, and we encourage regulators to consider decreasing tick size, particularly 

for liquid stocks.   

Our model is parsimonious. For example, BATs in our model do not have private 

information and they choose order types only upon arrival. It will be interesting to extending our 

model toward more realistic setups.  Most studies in the finance literature ignore diversity among 

algorithms traders. We take the initial step to examine algorithmic traders who are not HFTs, and 

we believe that further examination on the relationship between HFTs and other algorithmic 

traders would prove to be fruitful. 
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Appendix 

Proof for Lemma 1  

For the 𝑄𝑄𝑡𝑡ℎ share in the queue at the half bid-ask spread 𝑠𝑠
2
, we define its value for the liquidity 

supplier as 𝐿𝐿𝐿𝐿𝑠𝑠/2(𝑄𝑄) and its value for each sniper as 𝑆𝑆𝑆𝑆𝑠𝑠/2(𝑄𝑄). In all proofs, we drop the subscript 

if 𝑠𝑠
2

= 𝑑𝑑
2
. HFTs race to supply liquidity for the first share at ± 𝑑𝑑

2
 iff 𝐿𝐿𝐿𝐿(1) > 𝑆𝑆𝑆𝑆(1).  

We consider the first share on the ask side in the proof, and the race on the bid side follows 

symmetrically. When tick size in binding, both BATs and non-algo traders demand liquidity, so we 

use non-HFTs to refer to both in the proofs of Lemma 1 and Proposition 1. A non-HFT seller does 

not change the state of the LOB; an non-HFT buyer, who arrives with probability 
1
2𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽
 provides a 

profit of 𝑑𝑑
2
 to HFT liquidity supplier; fundamental value jumps up with probability 

1
2𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

 and costs 

an HFT firm 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

; fundamental value jumps down with probability 
1
2𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+𝜆𝜆𝐽𝐽

, which reduces the value 

of the current queue position to 0. Therefore:  

𝐿𝐿𝐿𝐿(1) =
1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝑑𝑑
2

+
1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(1) −

1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

+
1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
∙ 0 

𝐿𝐿𝐿𝐿(1) = 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝑑𝑑
2
− 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

. 

Each sniper has a probability of 1
𝑁𝑁

 to snipe the stale quote after an upward value jump. A successful 

sniping leads to a profit of 𝑑𝑑
2
, so:  

𝑆𝑆𝑆𝑆(1) =
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2

1
𝑁𝑁

 

𝐿𝐿𝐿𝐿(1) > 𝑆𝑆𝑆𝑆(1)
 
⇔

𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
2
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

>  
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2

1
𝑁𝑁
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𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

> 1 

Therefore, the tick size is binding at 𝑑𝑑
2
 if 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
> 1. ■ 

Proof for Lemma 2 

We prove Lemma 2 using mathematical induction. 

1. From the proof for Lemma 1, 

𝐿𝐿𝐿𝐿(1) =
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
2
−

1
2

[1 −
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
]
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

, 

which satisfies equation (3). 

2. Suppose that equation (3) holds for some 𝑄𝑄 ∈ ℕ+. The following proof shows that it holds for 

𝑄𝑄 + 1 ∈ ℕ+ as well. 

𝐿𝐿𝐿𝐿(𝑄𝑄 + 1) =
1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(Q) +

1
2 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝐿𝐿𝐿𝐿(𝑄𝑄 + 1) −

1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
𝑑𝑑
2
𝑁𝑁 − 1
𝑁𝑁

+
1
2 𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐽𝐽
∙ 0 

 𝐿𝐿𝐿𝐿(Q + 1)  =  𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝐿𝐿𝐿𝐿(Q)− 𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

= � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄+1 𝑑𝑑

2
− 1

2 �
𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
− � 𝜆𝜆𝐼𝐼

𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽
�
𝑄𝑄+1

� 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

= � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄+1 𝑑𝑑

2
− 1

2 [1− � 𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼+2𝜆𝜆𝐽𝐽

�
𝑄𝑄+1

] 𝑑𝑑
2
𝑁𝑁−1
𝑁𝑁

. 

Thus, equation (3) holds with 𝑄𝑄 replaced by 𝑄𝑄 + 1. Hence equation (3) holds for all Q ∈

ℕ+. ■ 

 

Proof of Proposition 2 

BATs use flash limit orders when regular limit orders are more costly. We start the proof by finding 

the boundary between the flash equilibrium and the undercutting equilibrium. 
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In an undercutting equilibrium, a BAT submits a limit order to an empty LOB (0,0) and 

changes the state to (1,0); a BAT submits a limit order to (0,1) and changes the state to (1,1). We 

denote the cost for the first case as 𝐶𝐶(1,0) and the cost for the second case as 𝐶𝐶(1,1). Then  

�
𝐶𝐶(1,0) = 𝑝𝑝1 ∙ 𝐶𝐶(1,1) + 𝑝𝑝1 ∙ 𝐶𝐶(1,0) + 𝑝𝑝2 �−

𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶(1,0) + 𝑝𝑝3

5𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶(1,0)

𝐶𝐶(1,1) = 𝑝𝑝1(−𝑑𝑑
6

) + 𝑝𝑝1 ∙ 𝐶𝐶(1,0) + 𝑝𝑝2 �−
𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶(1,0) + 𝑝𝑝3

5𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶(1,0)
         (A.1) 

Insert Figure A.1 about Here 

In equation (A.1) and Figure A.1, we describe six event types that can change the LOB in 

an undercutting equilibrium. Consider 𝐶𝐶(1,0) on the ask side. A BAT buyer and a BAT seller each 

arrive each with probability 𝑝𝑝1. A BAT buyer posts a limit order on the bid side and changes the 

state to 𝐶𝐶(1,1); a BAT seller uses a flash limit order so the state remains at 𝐶𝐶(1,0). A non-algo 

buyer and a non-algo seller arrive each with probability 𝑝𝑝2. The BAT seller enjoys a negative 

transaction cost of −𝑑𝑑
6
 when the non-algo buyer takes his liquidity; the non-algo seller hits a HFT’s 

quote on the bid side and does not change the state on the ask side. Upward and downward value 

jumps occur with probability  𝑝𝑝3 . An upward jump leads to a sniping cost of 5𝑑𝑑
6

, whereas a 

downward jump does not change the state of the LOB.14 𝐶𝐶(1,1) differs in two ways from 𝐶𝐶(1,0). 

First, the arrival of a BAT buyer leads to execution of a sell limit order from a BAT.15 Second, a 

downward jump under 𝐶𝐶(1,1) leads to sniping on the opposite side of the LOB and changes the 

state to 𝐶𝐶(1,0). 

If an undercutting order gets immediate execution, the cost −𝑑𝑑
6
. 𝐶𝐶(1,1) must be greater 

                                                           
14 Here we assume that BATs position their order one tick above the new fundamental value. BATs are able to 
reposition their orders because they face no competition from other BATs in a short time period. 
15 The execution of this order results from our assumption that BATs do not queue after another limit order at the same 
price, but the intuition that a longer queue on the bid side increases the execution probability on the ask side holds 
true generally (Parlour, 1998). 
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than −𝑑𝑑
6
 because of the cost of being sniped. Therefore, 𝐶𝐶(1,0) − 𝐶𝐶(1,1) = 𝑝𝑝1 �𝐶𝐶(1,1) + 𝑑𝑑

6
� > 0. 

Intuitively, if a BAT chooses to post a sell limit order at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 on an empty LOB, he must post a 

sell limit order when the bid side has a limit order posed by a BAT, because the existence of a 

limit order on the bid side increases the execution probability for a limit order on the ask side. Note 

that our model starts with no limit orders from BATs, so 𝐶𝐶(1,0) < 𝑑𝑑
6
 is needed to jumpstart the 

undercutting equilibrium.  

The solution for equation (A.1) is:  

𝐶𝐶(1,1) =  
(−2 + 𝛽𝛽)𝜆𝜆𝐼𝐼 + 10𝜆𝜆𝐽𝐽

(2 − 𝛽𝛽)𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
6

=
(−2 + 𝛽𝛽)𝑅𝑅 + 10

(2 − 𝛽𝛽)𝑅𝑅 + 2
d
6

 

𝐶𝐶(1,0) =
𝑑𝑑
6

[ 
𝛽𝛽𝛽𝛽
𝑅𝑅 + 1

∙
(−2 + 𝛽𝛽)𝑅𝑅 + 10

(2− 𝛽𝛽)𝑅𝑅 + 2
+

5 − (1 − 𝛽𝛽)𝑅𝑅
𝑅𝑅 + 1

] 

𝐶𝐶(1,0) < 𝑑𝑑
6
 iff 𝛽𝛽𝛽𝛽

𝑅𝑅+1
∙ (−2+𝛽𝛽)𝑅𝑅+10

(2−𝛽𝛽)𝑅𝑅+2
+ 5−(1−𝛽𝛽)𝑅𝑅

𝑅𝑅+1
< 1, i.e.,  

(2 − β)R2 + (−2− 4β)𝑅𝑅 − 4 > 0. 

Equation (2 − β)𝑅𝑅2 + (−2 − 4β)𝑅𝑅 − 4 = 0 has two roots: 𝑅𝑅1,2 = 1+2β±�4β2+9
2−β

,  

𝑅𝑅2 < 0, R1 = 1+2β+�4β2+9
2−β

. 

So BATs choose to undercut when 𝑅𝑅 > 𝑅𝑅1, because 𝐶𝐶(1,0) < d
6
; BATs choose to flash 

when 𝑅𝑅 < 𝑅𝑅1. 

Above is the boundary between undercutting equilibrium and flash equilibrium. On both 

sides of the boundary, we let a BAT buyer (seller) use limit order to respond to the other side’s 

limit order. Such a response is both rational and necessary. It is rational because 𝐶𝐶(1,1) <

𝐶𝐶(1,0) = 𝑑𝑑
6
, thus a limit order response, which costs 𝐶𝐶(1,1), is strictly better than flash order. It is 

necessary because otherwise all BATs buyers (sellers) will still use flash orders when off-
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equilibrium sell (buy) order is present 16 . The off-equilibrium sell (buy) order will have an 

execution cost as follows: 

𝐶𝐶(1,0) = 𝑝𝑝1 �−
𝑑𝑑
6
� + 𝑝𝑝1 ∙ 𝐶𝐶(1,0) + 𝑝𝑝2 �−

𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶(1,0) + 𝑝𝑝3

5𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶(1,0) 

𝐶𝐶(1,0) =
𝑑𝑑
6

5 − 𝑅𝑅
1 + 𝑅𝑅

 

𝐶𝐶(1,0) <
𝑑𝑑
6

  
 
⇔   𝑅𝑅 > 2 

Thus, undercutting is an optimal deviation when 1+2β+�4β
2+9

2−β
> 𝑅𝑅 > 2. The existence of 

deviation proves that, in the 𝑅𝑅 > 2 region of flash equilibrium, BATs should use limit orders to 

respond to the other side’s off-equilibrium undercutting order, otherwise the off-equilibrium 

undercutting order will become a profitable deviation. 

However, in the 𝑅𝑅 < 2  region of flash equilibrium, BATs should use flash orders to 

respond to the other side’s off-equilibrium undercutting order, because the cost of limit order 

response, 𝐶𝐶(1,1), is larger than 𝑑𝑑
6
. On the other hand, even if other BATs use flash orders, the 

deviator is still not profiting.  

In other words, regardless of whether 𝑅𝑅 > 2 or 𝑅𝑅 < 2, the equilibrium outcome is the same, 

but BATs need to use different rational strategies in off-equilibrium paths to eliminate profitable 

deviations, thus these deviations will never appear under equilibrium.  

                                                           
16 In flash equilibrium, any BAT’s undercutting limit order is off-equilibrium. 
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To sum up, the complete strategy (including the optimal response to off-equilibrium paths) of a 

BATs seller under flash equilibrium is: 

1. If 2 < 𝑅𝑅 < 1+2β+�4β2+9
2−β

, use limit order under off-equilibrium path: 

i> If there is no order at −𝑑𝑑
6
, submit a limit sell order at −𝑑𝑑

6
. 

ii> Else, submit a limit sell order at 𝑑𝑑
6
. 

2. If 𝑅𝑅 < 2, use flash order under off-equilibrium path: 

i> Submit a limit sell order at −𝑑𝑑
6
 regardless of state of the book. 

BATs buyer’s strategy is symmetric. These strategies will generate the equilibrium outcome 

sketched in proposition 2.  

Predictions on depth and HFT participation follow the proof of Proposition 1. ■ 

 

Proof of Proposition 3 

1. In Proposition 2, we address the boundary between the flash equilibrium and the undercutting 

equilibrium. 

2. The solution for HFT depth follows from Figure 5 and equation (14). The depth decreases 

because the revenue from liquidity supply for HFTs decreases. BATs never take HFTs’ 

liquidity at 𝑑𝑑
2
, and BATs can also supply liquidity to non-algo traders. The decreased revenue 

for HFTs also reduces their entry.  

3. Equation (14) can be solved for any 𝑅𝑅 and 𝛽𝛽. Here we give an example for 𝑅𝑅 = 4 and 𝛽𝛽 = 0.1. 

First, we assume that all 𝐷𝐷(𝑖𝑖,𝑗𝑗)(1) > 0. Thus we solve: 
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𝐷𝐷(0,0)(1) = 𝑝𝑝1𝐷𝐷(0,1)(1) + 𝑝𝑝1𝐷𝐷(1,0)(1)+𝑝𝑝2 ∙
𝑑𝑑
2

+ 𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,0)(1) = 𝑝𝑝1𝐷𝐷(1,1)(1) + 𝑝𝑝1𝐷𝐷(1,0)(1)+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(1,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(0,1)(1) = 𝑝𝑝1𝐷𝐷(0,1)(1) + 𝑝𝑝1𝐷𝐷(1,1)(1)+𝑝𝑝2 ∙
𝑑𝑑
2

+ 𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,1)(1) = 𝑝𝑝1𝐷𝐷(0,1)(1) + 𝑝𝑝1𝐷𝐷(1,0)(1)+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(1,0)(1) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

 

We then obtain: 

𝐷𝐷(0,0)(1)

=
8 + 12𝑅𝑅 + 12β𝑅𝑅 − 4𝑅𝑅2 + 24β𝑅𝑅2 + 2β2𝑅𝑅2 − 12𝑅𝑅3 + 21β𝑅𝑅3 − 2β2𝑅𝑅3 − β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4

2(−16− 48𝑅𝑅 − 52𝑅𝑅2 + 12β𝑅𝑅2 − 4β2𝑅𝑅2 − 24𝑅𝑅3 + 18β𝑅𝑅3 − 8β2𝑅𝑅3 + 2β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4)

= 0.2202, 

𝐷𝐷(1,0)(1)

=
8 + 24𝑅𝑅 + 20𝑅𝑅2 + 6β𝑅𝑅2 − 4β2𝑅𝑅2 + 12β𝑅𝑅3 − 5β2𝑅𝑅3 − β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4

2(−16− 48𝑅𝑅 − 52𝑅𝑅2 + 12β𝑅𝑅2 − 4β2𝑅𝑅2 − 24𝑅𝑅3 + 18β𝑅𝑅3 − 8β2𝑅𝑅3 + 2β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4)

= 0.0527, 

𝐷𝐷(0,1)(1) = 8+12𝑅𝑅+12β𝑅𝑅−4𝑅𝑅2+24β𝑅𝑅2+2β2𝑅𝑅2−12𝑅𝑅3+21β𝑅𝑅3−5β2𝑅𝑅3+2β3𝑅𝑅3−4𝑅𝑅4+7β𝑅𝑅4−4β2𝑅𝑅4+β3𝑅𝑅4

2(−16−48𝑅𝑅−52𝑅𝑅2+12β𝑅𝑅2−4β2𝑅𝑅2−24𝑅𝑅3+18β𝑅𝑅3−8β2𝑅𝑅3+2β3𝑅𝑅3−4𝑅𝑅4+7β𝑅𝑅4−4β2𝑅𝑅4+β3𝑅𝑅4) = 0.2205,  

𝐷𝐷(1,1)(1)

=
8 + 24𝑅𝑅 + 20𝑅𝑅2 + 2β2𝑅𝑅2 + 6β𝑅𝑅3 + β2𝑅𝑅3 − β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4

2(−16− 48𝑅𝑅 − 52𝑅𝑅2 + 12β𝑅𝑅2 − 4β2𝑅𝑅2 − 24𝑅𝑅3 + 18β𝑅𝑅3 − 8β2𝑅𝑅3 + 2β3𝑅𝑅3 − 4𝑅𝑅4 + 7β𝑅𝑅4 − 4β2𝑅𝑅4 + β3𝑅𝑅4)

= 0.0593. 

𝐷𝐷(𝑖𝑖,𝑗𝑗)(1) > 0 is satisfied. Therefore, the depth is at least one share in any state of the LOB.  

  Then we assume all 𝐷𝐷(𝑖𝑖,𝑗𝑗)(2) > 0. Thus, we solve: 
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𝐷𝐷(0,0)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,0)(2)+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,0)(2) = 𝑝𝑝1𝐷𝐷(1,1)(2) + 𝑝𝑝1𝐷𝐷(1,0)(2)+𝑝𝑝2𝐷𝐷0,0(2) + 𝑝𝑝2𝐷𝐷(1,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(0,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,1)(2)+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

𝐷𝐷(1,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,0)(2)+𝑝𝑝2𝐷𝐷(0,1)(2) + 𝑝𝑝2𝐷𝐷(1,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0

 

We get:  

𝐷𝐷(0,0)(2) = 0.0448, 

𝐷𝐷(1,0)(2) = −0.0602 < 0, 

𝐷𝐷(0,1)(2) =  0.0451, 

𝐷𝐷(1,1)(2) = −0.0561 < 0.17 

We reject the assumption that all 𝐷𝐷(2) > 0. Therefore, under certain states of the LOB, 

HFTs would not supply the second share of liquidity. We start from the worst state for liquidity 

suppliers, (1,0), in which a BAT undercuts HFTs on the same side of the LOB, but no BAT 

undercuts HFTs on the other side of LOB.18 Therefore, 𝐷𝐷(1,0)(2) = 0 and all other 𝐷𝐷(𝑖𝑖,𝑗𝑗)(2) > 0. 

Thus we solve: 

𝐷𝐷(0,0)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2)+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

𝐷𝐷(0,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1𝐷𝐷(1,1)(2)+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

𝐷𝐷(1,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2)+𝑝𝑝2𝐷𝐷(0,1)(2) + 𝑝𝑝2𝐷𝐷(1,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

                                                           
17 For briefness, the closed-form solution is not presented, but it is available upon request.  
18 In this state, an HFT liquidity supplier on the ask side cannot trade with the next non-HFT buyer, because a BAT 
buyer chooses to supply liquidity and changes the state to (1,1), and a non-algo buyer chooses to take the BAT 
seller’s liquidity and changes the state to (0,0). 
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We obtain: 

𝐷𝐷(0,0)(2) = 0.0475 

𝐷𝐷(0,1)(2) = 0.0487 

𝐷𝐷(1,1)(2) = −0.0310. 

However, 𝐷𝐷(1,1)(2) is still smaller than 0. We further assume that 𝐷𝐷(1,1)(2) is also 0, i.e., 

HFTs cancel the second order when BATs submit limit orders on both sides. Therefore,  

𝐷𝐷(0,0)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1 ∙ 0+𝑝𝑝2𝐷𝐷(0,0)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

𝐷𝐷(0,1)(2) = 𝑝𝑝1𝐷𝐷(0,1)(2) + 𝑝𝑝1 ∙ 0+𝑝𝑝2𝐷𝐷(0,1)(1) + 𝑝𝑝2𝐷𝐷(0,0)(2) + 𝑝𝑝3 �−
𝑑𝑑
2
� + 𝑝𝑝3 ∙ 0 

We obtain: 

𝐷𝐷(0,0)(2) = 0.0488 

𝐷𝐷(0,1)(2) = 0.0489. 

Further calculation shows 𝐷𝐷(0,0)(3) = 0,𝐷𝐷(0,1)(3) = 0. We then conclude that 𝑄𝑄(0,0) =

𝑄𝑄(0,1) = 2 and 𝑄𝑄(1,0) = 𝑄𝑄(1,1) = 1 is the solution for equation (14) under R=4 and β=0.1. ■ 

 

Proof of Proposition 4 

HFTs do not compete to supply liquidity at 5𝑑𝑑
6

 when:  

𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) < 𝑆𝑆𝑆𝑆5𝑑𝑑
6

(1) 

𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) = 𝑝𝑝1 ∙ 𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) + 𝑝𝑝1 ∙ 0 + 𝑝𝑝2 ∙
5𝑑𝑑
6

+ 𝑝𝑝2 ∙ 𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) − 𝑝𝑝3
𝑑𝑑
6
𝑁𝑁 − 1
𝑁𝑁

+ 𝑝𝑝3 ∙ 0 

𝐿𝐿𝐿𝐿5𝑑𝑑
6

(1) =
(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

5𝑑𝑑
6
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
6
𝑁𝑁 − 1
𝑁𝑁

 

𝑆𝑆𝑃𝑃5𝑑𝑑
6

(1) =
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
6

1
𝑁𝑁
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∴  
(1 − 𝛽𝛽)𝜆𝜆𝐼𝐼
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

5𝑑𝑑
6
−

𝜆𝜆𝐽𝐽
𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽

𝑑𝑑
6
𝑁𝑁 − 1
𝑁𝑁

<  
𝜆𝜆𝐽𝐽

𝜆𝜆𝐼𝐼 + 2𝜆𝜆𝐽𝐽
𝑑𝑑
6

1
𝑁𝑁

 

𝑅𝑅 <  
1

5(1 − 𝛽𝛽).  

Thus, HFTs supply liquidity at 7𝑑𝑑
6

. WOLOG, we consider a BATs seller’s strategy. The 

complete strategy (including the optimal response to off-equilibrium paths, see proof of 

proposition 2) of a BAT seller is: 

1. If there is no limit sell order on 𝑑𝑑
6

, 𝑑𝑑
2

, 𝑎𝑎𝑎𝑎𝑎𝑎 5𝑑𝑑
6

, submit a limit sell order at 5𝑑𝑑
6

. 

2. Else, if there is no limit buy order on −𝑑𝑑
6
, submit a limit sell order at −𝑑𝑑

6
. 

3. Else, there is a limit buy order on −𝑑𝑑
6
 (this is an off-equilibrium path, there are two possible 

responses, same intuition as the proof of proposition 2) 

i> If 𝑅𝑅 > 2, submit a limit sell order at 𝑑𝑑
6
, costs 𝐶𝐶(1,1). 

ii> Else, submit a limit sell order at −𝑑𝑑
6
, costs 𝑑𝑑

6
. 

If all BATs follow this strategy, no limit sell (buy) order will be present at 𝑑𝑑
2
 (−𝑑𝑑

2
) or 𝑑𝑑

6
 

(−𝑑𝑑
6
). We show that a deviator will suffer a higher execution cost. 

Firstly, a BAT seller will not post a limit sell order at 𝑑𝑑
2
, because only a non-algo buy order 

will trade with this seller. The seller’s execution cost is: 

𝐶𝐶 = 𝑝𝑝1 ∙ 𝐶𝐶 + 𝑝𝑝1 ∙ 𝐶𝐶 + 𝑝𝑝2 �−
𝑑𝑑
2
� + 𝑝𝑝2 ∙ 𝐶𝐶 + 𝑝𝑝3 ∙

𝑑𝑑
2

+ 𝑝𝑝3 ∙ 𝐶𝐶 

𝐶𝐶 = 𝑑𝑑
2
∙ −(1−𝛽𝛽)𝑅𝑅+1

(1−𝛽𝛽)𝑅𝑅+1
. 
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Since in flash crash equilibrium 𝑅𝑅(1 − 𝛽𝛽) < 1
5
, the BAT’s cost is at least 𝑑𝑑

2
∙ 4/5
6/5

= 𝑑𝑑
3

> 𝑑𝑑
6

=

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. Thus, it is never optimal to submit a limit order at 𝑑𝑑
2
. 

Secondly, the BAT seller will not post a limit sell order at 𝑑𝑑
6
. In this case, non-algo traders 

and other BAT buyers might trade with the seller: the non-algo trader will execute a buy order and 

a BAT will execute a flash buy order (when he cannot or finds not optimal to post a limit buy order 

at −𝑑𝑑
6

). The intuition is similar with formula (A.1) and Figure. A.1, but in the flash crash 

equilibrium, the BAT seller faces equal or higher costs than in an undercutting equilibrium: The 

BATs buyer does not have to post a limit buy order in a flash crash equilibrium. The solution of 

formula (A.1) is:  

𝑅𝑅1 = 1+2𝛽𝛽+�4𝛽𝛽2+9
2−𝛽𝛽

. 

However, there is no combination of (𝑅𝑅,𝛽𝛽) in the flash crash equilibrium that satisfies 𝑅𝑅 >

𝑅𝑅1. 

Finally, the BAT seller will post a sell limit order at 5𝑑𝑑
6

. Her cost is: 

𝐶𝐶 = 𝑝𝑝1 ∙ 𝐶𝐶 + 𝑝𝑝1 ∙ 𝐶𝐶 + 𝑝𝑝2 �−
5𝑑𝑑
6
� + 𝑝𝑝2 ∙ 𝐶𝐶 + 𝑝𝑝3 ∙

𝑑𝑑
6

+ 𝑝𝑝3 ∙ 𝐶𝐶 

𝐶𝐶 = 𝑑𝑑
6
−5(1−𝛽𝛽)𝑅𝑅+1
5(1−𝛽𝛽)𝑅𝑅+1

< 𝑑𝑑
6

. ■ 
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Figure 1: Pricing Grid under Large vs. Small Tick Sizes  
This figure demonstrates the pricing grids under a large tick size 𝑑𝑑 and a small tick size 𝑑𝑑

3
. The fundamental 

value of the asset is 𝑣𝑣𝑡𝑡.  
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Figure 2: Depth and the Adverse Selection Risk under a Binding Tick Size  
This figure demonstrates the relation between 𝑄𝑄, the depth at the BBO, and 𝑅𝑅 = 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
 under a binding tick 

size. An increase in the investor arrival rate (𝜆𝜆𝐼𝐼), or a decrease in intensity of jumps (𝜆𝜆𝐽𝐽), decreases the 
adverse selection risk and increases the depth. The solid line represents the depth under tick size 𝑑𝑑 and the 
dashed line represents the depth under tick size 𝑑𝑑

3
.  
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Figure 3: Bid-ask Spread Quoted by HFTs under a Small Tick Size    
This figure demonstrates the half bid-ask spread quoted by HFTs as a function of 𝛽𝛽 (the fraction of BATs) 
and 𝑅𝑅 ≡ 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
 (the arrival intensity of non-HFTs relative to the value jump, a measure of adverse selection 

risk). When 𝑅𝑅 ≥ 5, adverse selection risk is low and the tick size is binding. HFTs quote a half bid-ask 
spread 𝑑𝑑

6
 and the spread is independent of the fraction of BATs. When 𝑅𝑅 < 5, HFTs’ quoted bid-ask spreads 

weakly increase with the fraction of BATs and adverse selection risk. 
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Figure 4: The Undercutting and the Flash Trading Equilibrium 

This figure demonstrates two types of equilibrium, undercutting equilibrium and flash equilibrium, when 
HFTs’ ask price is at 𝑣𝑣𝑡𝑡 + 𝑑𝑑

2
 and their bid price is at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
2
. In the undercutting equilibrium, BATs place 

limit buys at 𝑣𝑣𝑡𝑡 −
𝑑𝑑
6
 and limit sells at 𝑣𝑣𝑡𝑡 + 𝑑𝑑

6
. These limit orders undercut the BBO by one tick and establish 

price priority in the LOB. In the flash equilibrium, BATs place limit buys at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
 and limit sells at 𝑣𝑣𝑡𝑡 −

𝑑𝑑
6
. 

These orders cross the midpoint and immediately attract market orders from HFTs. BATs are more likely 
to cross the midpoint when the fraction of BATs (𝛽𝛽) is high or when the arrival intensity of non-HFTs 
relative to a value jump (𝑅𝑅 ≡ 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
) is low, because a high 𝛽𝛽 and a low 𝑅𝑅 reduce the potential for a limit order 

executing with non-HFTs before a value jump. To jumpstart an undercutting equilibrium, the expected 
transaction cost for a limit order that undercuts one tick must be lower than 𝑑𝑑

6
. The short-dashed line, 

𝐶𝐶(1,0) = 𝑑𝑑
6
, illustrates the boundary for such a condition. 
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Figure 5: States and Profits for HFT Liquidity Suppliers with the 𝑸𝑸𝒕𝒕𝒕𝒕 Position on the Ask Side 

This figure illustrates the dynamics of HFT queuing on 𝑣𝑣𝑡𝑡 + 𝑑𝑑
2
. In state (i, j), the number of undercutting 

BAT orders on the ask side is i, while the number on the bid side is j. BB and BS represent the arrival of 
BATs’ buy and sell limit orders, NB and NS represent the arrival of non-algo traders’ buy and sell market 
orders, and UJ and DJ denote the upward and downward value jumps. The number next to the event is the 
immediate payoff of the event.  
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Figure 6: Value of Liquidity Supply and Stale-Queue Sniping and Queue Length 

The x-axis is the value of HFT liquidity supply (LP) and stale-queue sniping (SN) for the four states of the 
LOB. In 𝑄𝑄(0,0), no BATs undercut HFTs in the LOB. In 𝑄𝑄(1,0), BATs undercut HFTs on the same side 
of the book. In 𝑄𝑄(0,1), BATs undercut HFTs on the opposite side of the book. In 𝑄𝑄(1,1), BATs undercut 
both sides of the book. LP decreases in the queue position, while SN increases in the queue position. HFTs 
supply liquidity as long as LP > SN. 
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Figure 7. Flash Crash Intensity 

This figure shows the intensity of mini-flash crashes with respect to the fraction of BATs. We normalize 
the highest intensity as 1. For each 𝛽𝛽, we uniformly draw 100 samples from [1,5] as 𝜆𝜆𝐼𝐼

𝜆𝜆𝐽𝐽
, which is the support 

of the adverse selection risk in our paper. For each 𝜆𝜆𝐼𝐼
𝜆𝜆𝐽𝐽

, we simulate 100,000 trades. For all these 10 million 

simulations, we count the number of trades hitting the stub quotes relative to the total number of trades. 
The line with squares shows the intensity for total crashes. The line with circles shows that the majority of 
mini-flash crashes occur after a value jump (and a small fraction of crashes occur after BATs’ liquidity 
being consumed by non-algos). The line with triangles shows that trading halts reduce the number of mini-
flash crashes. We impose trading halts after each value jump, and the market reopens when the market 
receives 10 orders.   
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Figure A.1: States and Profits for BATs on the Ask Side  

This figure illustrates the dynamics of the BAT seller who posts a limit order at 𝑣𝑣𝑡𝑡 + 𝑑𝑑
6
. State (i, j) implies 

the number of BAT orders on the ask and bid sides if the BAT seller add a regular limit order. BB and BS 
imply the arrival of BAT buy and sell orders, respectively. NB and NS are arrivals of non-algo buy and sell 
orders, respectively, while UJ and DJ are upward and downward jumps, respectively. For example, 
submitting a sell limit order to an empty LOB leads to state (1,0), and the exepceted cost for the limit order 
is 𝐶𝐶(1,0). If a BAT submits a limit order when a limit order already exists on the opposite side of the LOB, 
the state after submission is (1,1) and the cost is 𝐶𝐶(1,1).  
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