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Stablecoin Runs and the Centralization of Arbitrage

Click here for the latest version

Abstract

We analyze the run risk of USD-backed stablecoins and uncover a dilemma between stablecoins’

price stability and financial stability. Stablecoin runs bear important financial stability implications

through the fire sale of US dollar assets like bank deposits, Treasuries, and corporate bonds. We show

that panic runs exist even though general investors only trade stablecoins in secondary markets with

flexible prices. Run incentives are reinstated by stablecoin issuers’ liquidity transformation and the

fixed $1 at which arbitrageurs redeem stablecoins for cash in the primary market. We discover that

more efficient arbitrage amplifies run risk. This explains why stablecoin issuers only authorize a small

set of arbitragers even though it comes at the expense of maintaining a stable secondary price. In other

words, the centralization of arbitrage embeds an inherent tradeoff between run risk and price stability.

Our findings are based on a model and a novel dataset on stablecoin redemptions, trading, and reserve

assets. Calibrating our model, we find a higher run risk for USDT, the largest stablecoin, compared to

USDC, the second-largest stablecoin. However, even USDC bears significant run risk due to its less

concentrated arbitrage and more concentrated deposit holdings.

https://drive.google.com/file/d/1LSxRpBKaouhu1FQVMtCwPEDRi-m_Tbpw/view


1 Introduction

Stablecoins are blockchain assets whose value is claimed to be stable at $1. The main type of stable-

coins, fiat-backed stablecoins, attempt to achieve price stability by promising to back each stablecoin

token with at least $1 in US dollar-denominated assets, which range from bank deposits and Treasuries

to corporate bonds and loans. The potential for stablecoins to become the safe asset for the blockchain

ecosystem as well as a means of payment for real purchases has contributed to their meteoric rise. The

six largest US dollar-backed stablecoins have grown from $5.6 billion in asset size at the beginning of

2020 to exceed $130 billion at the beginning of 2022.

The rapid expansion of stablecoins has also raised financial stability concerns.1 Terra USD, one

of the largest algorithmic stablecoins, experienced a sharp run in May 2022, which led to its collapse

in a week (Liu, Makarov and Schoar, 2023).2 In March 2023, Circle’s USDC, the second largest

fiat-backed stablecoin, also experienced a run amid the collapse of Silicon Valley Bank with its price

plummeting by more than 15% within a few hours. These financial stability concerns have also been

a major driving force behind efforts to introduce central bank digital currencies (Brunnermeier, James

and Landau, 2019, Duffie, 2019, Auer, Frost, Gambacorta, Monnet, Rice and Shin, 2022, Makarov and

Schoar, 2022).

Unlike other crypto assets, fiat-backed stablecoins are directly connected to the traditional finan-

cial system through their US dollar asset holdings. A run on them would not only lead to losses for

stablecoin investors but could also contract bank deposit funding, strain US Treasury markets, and in-

duce the fire sales of illiquid assets like corporate bonds. These ramifications may become even more

pronounced going forward as stablecoins potentially become a more widely adopted means of payment

and an increasingly important holder of financial assets. Thus, it is essential to understand whether runs

could materialize in the future and what design features of stablecoins could affect their occurrence.

1For example, see, G7 Working Group and others, 2019, “Investigating the Impact of Global Stablecoins”; ECB, 2020,
“Stablecoins: Implications for monetary policy, financial stability, market infrastructure and payments, and banking super-
vision in the euro area”; BIS, 2020, “Stablecoins: potential, risks and regulation”; and IMF, 2021, “The Crypto Ecosystem
and Financial Stability Challenges”.

2Different from fiat-backed stablecoins, algorithmic stablecoins use a different pegging mechanism without physically
holding a pool of reserve assets.
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In this paper, we analyze the economics of US dollar fiat-backed stablecoins and shed light on

the possibility and probability of stablecoin runs. Stablecoins are uniquely designed with features

of both exchange-traded funds (ETFs) and money market funds (MMFs). The majority of investors

trade stablecoins in competitive secondary markets. Fluctuations in the secondary market price reflect

changes in demand and supply but do not involve any direct fire sale of assets similar to fluctuations in

the price of ETF shares. Asset sales only occur when the stablecoin issuer meets redemption requests

in the primary market. The issuer liquidates some of its assets to pay $1 in cash for each stablecoin

redeemed similar to MMFs, but redemption requests can only be submitted by a limited number of

arbitrageurs approved by the stablecoin issuer. These arbitrageurs buy stablecoins trading below $1 in

secondary markets to redeem them for $1 in primary markets, which allows them to pocket arbitrage

profits while providing liquidity to investors.

Despite stablecoins’ unique design and their tradability in competitive secondary markets, we show

that they remain vulnerable to panic runs by investors in the spirit of Diamond and Dybvig (1983).

This is because the fixed $1 redemption price in the primary market reinstates run incentives among

secondary market investors, who fear that APs will retract from providing liquidity to them if the

stablecoin issuer can no longer honor the $1 redemption value.

Interestingly, the concentration of arbitrageurs embeds an inherent tradeoff between run risk and

price stability. If issuers only approve a small number of arbitrageurs to redeem tokens for cash in pri-

mary markets, arbitrage is less efficient and the same selling pressure would depress prices more in sec-

ondary markets. However, precisely because sellers in secondary markets would receive lower prices,

their “first-mover advantage” from selling stablecoins in a run decreases. In other words, approving

more arbitrageurs for more efficient arbitrage would exacerbate run risk and be counterproductive for

financial stability.

More specifically, our dataset of fiat-backed stablecoins is constructed as follows. We collect

transaction-level data on each stablecoin creation and redemption event for the 6 largest fiat-backed sta-

blecoins: Tether (USDT), Circle USD Coin (USDC), Binance USD (BUSD), Paxos (USDP), TrueUSD

(TUSD), and Gemini dollar (GUSD), on the Ethereum, Avalanche, and Tron blockchains. We obtain

this data from each blockchain by converting transaction-level blockchain data into a usable format.
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For each stablecoin, we also extract average trading prices in secondary markets from the main ex-

changes. Further, we obtain the composition of reserve assets for USDT and USDC, which reported

these breakdowns at various points in 2021 and 2022.

From our novel data, we observe that the concentration of arbitrageurs in the primary market, where

stablecoins are directly redeemed for cash with issuers, varies across stablecoins. For example, USDT

only has 6 arbitrageurs redeeming shares during the average month and the largest arbitrageur accounts

for 64% of the total redemption activity. In contrast, the arbitrage market at USDC is more competitive

with 521 active arbitrageurs in an average month. We also find that trading prices in the secondary

market for stablecoins frequently deviate from zero with discounts occurring 27.2% to 41.6% of the

time and premia occurring 57.3% to 72.8% of the time. We note that these price deviations are not

analogous to money market funds “breaking the buck” nor are they an indicator of runs. Rather, stable-

coin prices fall below $1 when secondary market investors’ selling pressure is not fully absorbed by the

arbitrageurs, who purchase stablecoins in secondary markets and redeem them for $1 each in primary

markets. In this sense, stablecoins trading below $1 is similar to ETF shares trading at a discount to

their NAVs.3

We further observe that stablecoins with fewer arbitrageurs have higher average discounts in sec-

ondary markets. For example, the average discount at USDT is 55bps, while the average discount at

USDC is only 1bps. At the same time, USDT also has more illiquid assets, like corporate bonds and

loans, as part of their reserve assets than USDC. These observations leave open the question of how

stablecoins choose the concentration of their arbitrageurs and how the choice relates to their asset illiq-

uidity. After all, if approving more arbitrageurs can minimize secondary price deviations, then why

wouldn’t all stablecoin issuers simply allow for a competitive arbitrage market?

We develop a model to rationalize our empirical observations, assess the potential for stablecoin

runs, and analyze the effect of market structure. Our theory applies a Diamond-Dybvig-style model to

stablecoins and characterizes its unique design with features of both ETFs and MMFs. There are three

types of agents: investors, arbitrageurs, and a stablecoin issuer. Specifically, investors are endowed

3The parallel to “breaking the buck” at money market funds would be a failure by stablecoin issuers to honor the $1
redemption value in primary markets, which has not yet materialized thus far.
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with stablecoins that are aimed at providing a fixed value and backed by an illiquid reserve asset. They

may sell stablecoins to arbitrageurs in the secondary market but they cannot directly redeem them from

the issuer, similar to the case of ETFs. Arbitrageurs bid in a double auction to absorb any residual

selling pressure from investors, and can then redeem stablecoins with the issuer in the primary market

for one dollar, which resembles the redemption of MMFs shares. To honor the fixed redemption price

of one dollar, the issuer liquidates its illiquid reserve asset pre-maturely until it defaults, after which

only the liquidation value will be paid to redeeming arbitrageurs.

Our model shows that panic runs by investors on stablecoins can happen despite investors only

being able to sell stablecoins in the secondary exchange at the market price. The conventional view

is that exchange-traded claims like stocks and ETF shares are less runnable than bank deposits be-

cause the trading price falls as more investors sell, which creates a natural strategic substitutability. In

the context of stablecoins, however, arbitrageurs are promised a fixed redemption price by the issuer.

Hence, investors who choose to hold stablecoins may end up getting a less valuable stablecoin in the

future because they bear the costs induced by the issuer’s firesales of illiquid assets while meeting arbi-

trageurs’ redemptions at $1. In this way, stablecoins’ fixed primary market price re-introduces strategic

complementarity among secondary market investors.

We endogenize the run probability using global games to evaluate the effect of arbitrage efficiency.

Surprisingly, we find that the run risk of stablecoins decreases in the concentration and increases in the

balance sheet capacity of the arbitrage market. To understand this result, note that investors compare

the benefit of selling their shares in the secondary market, i.e., the secondary market price, to the benefit

of remaining invested in the stablecoin in the long run. When arbitrage is more efficient, price stabil-

ity in the secondary market is higher because arbitrageurs are more willing to absorb selling pressure

from investors. This higher trading price increases the benefit of selling stablecoins for investors and

thereby amplifies their first-mover advantage when they expect other investors to sell. In contrast, when

arbitrage is less efficient, small quantities of investor sales can have a substantial impact on stablecoin

prices so the risk of secondary price discounts is higher. This price impact of stablecoin sales discour-

ages panic selling and thereby mitigates run risk. Therefore, arbitrageurs act as a firewall between the
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primary and secondary markets for stablecoins, which induces a trade-off between stablecoins’ price

stability and run risk.

Stablecoin issuers optimally design the structure of their arbitrage sectors to trade off price stability

and run risk. Recall that USDT holds more illiquid assets than USDC while also approving fewer

arbitrageurs than USDC. This is consistent with USDT restricting entry into their arbitrage market to

partially offset the increased run-risk from holding more illiquid reserve assets.

Our model further provides an analytical solution for stablecoins’ run probability, which we cali-

brate to quantify the run risk of the two largest stablecoins, Tether (USDT) and USD Coin (USDC).

Our first input is the elasticity of redemptions in the primary market. Based on the model, redemption

volumes should be more responsive to deviations in the secondary market price when there is a larger

number of arbitrageurs. Empirically, we regress daily discounts against daily redemption volumes nor-

malized by the total outstanding volume for each stablecoin. We find that the coefficient for USDT is

larger in absolute magnitude than for USDC, which is consistent with the higher AP concentration of

USDT constraining redemption volume to be less sensitive to price dislocations. Magnitude-wise, a 10

percentage point higher redemption volume corresponds to a 3.0 cent larger discount at USDT and a

1.3 cent larger discount at USDC.

To measure the overall illiquidity of USDT and USDC’s reserve portfolios, we calculate the average

discounts of their reserve assets weighted by their portfolio weights. We follow Bai, Krishnamurthy

and Weymuller (2018) to proxy asset discounts with collateral haircuts by asset class. Intuitively, more

liquid assets are more readily pledged to obtain cash at short notice while more illiquid assets incur a

higher discount. On average, the reserve assets of USDT are more illiquid than those of USDC, but

both of them shift towards holding more liquid assets over the sample period.

We estimate the distribution of the probability at which the risky asset payoff does not materialize.

We use CDS spreads to evaluate the expected recovery value of each portfolio component and then

calculate how the expected recovery value of the stablecoin issuer’s overall reserve portfolio varies over

time using historical data. The resulting empirical distribution is close to but not only concentrated at

1, consistent with USDT and USDC holding mostly but not exclusively safe assets.
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Finally, we use our model to quantify the run risk at the two largest US dollar stablecoins. Tether

and Circle, which make up the bulk of the market at $76.4 billion and $37.7 billion in January 2022. To

calibrate our model parameters, we construct a novel dataset comprising of stablecoins’ primary market

transactions, secondary market trades, and reserve asset composition. Our estimates imply a higher run

risk for USDT, the largest stablecoin, compared to USDC, the second-largest stablecoin, due to higher

liquidity transformation. However, USDC also processes significant run risk due to less concentrated

arbitrage and more concentrated deposit holdings.

Our paper contributes to a large literature on runs and liquidity transformation (e.g, Diamond and

Dybvig, 1983, Allen and Gale, 1998, Bernardo and Welch, 2004, Goldstein and Pauzner, 2005). It has

also been shown that MMFs are subject to panic runs because their shares are redeemed by investors

at a fixed price (Kacperczyk and Schnabl, 2013, Parlatore, 2016, Schmidt, Timmermann and Wermers,

2016), while closed-end funds and ETFs are typically viewed as less runnable because their shares are

tradable at market prices without direct liquidation of the underlying assets (Jacklin, 1987, Allen and

Gale, 2004, Koont, Ma, Pastor and Zeng, 2021). By carefully modeling the unique combination of

ETFs and MMFs in the design of stablecoins, we show that panic runs may still happen despite their

trading on competitive secondary markets and investors’ inability to access primary markets.

Methodologically, our estimation of run risks is enabled by the use of the global games approach

to derive a unique run threshold. Goldstein and Pauzner (2005) shows that in the classic Diamond

and Dybvig (1983) bank setting global strategic complementarity fails and thus the standard global

games approach (e.g., Morris and Shin, 1998) does not directly apply, but a unique threshold run equi-

librium exists as long as there is one-sided strategic complementary. In the stablecoin setting where

the secondary and primary markets are separated, even one-sided strategic complementarity may not

hold because selling the first unit of stablecoin in the secondary market generates a first-order price

impact. However, we are able to show that a unique threshold run equilibrium still exists, which pro-

vides a foundation for our calibration to quantify stablecoin run risks. Relatedly, Egan, Hortacsu and

Matvos (2017) build a structural model to quantify bank instability, highlighting the feedback between

endogenous bank default and deposit withdrawals.
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We also contribute to the emerging stablecoin literature by analyzing and quantifying the run risk

of US dollar stablecoins. Several recent papers explore runs on algorithmic stablecoins (e.g., Adams

and Ibert, 2022, Uhlig, 2022) after the Terra-Luna crash in 2022. Closely related to our work is Liu,

Makarov and Schoar (2023), who examine the dynamics of the Terra USD run, focusing on how in-

vestor characteristics affect run behavior and the financial inclusion implications. On fiat-backed stable-

coins, Barthelemy, Gardin and Nguyen (2021) and Liao and Caramichael (2022) analyze the potential

impact of fiat-backed stablecoin activities on the real economy. Frost, Shin, Wierts (2020), Gorton

and Zhang (2021), and Gorton, Ross and Ross (2022) compare stablecoins to the banking sector pre-

deposit-insurance. Griffin and Shams (2020) suggest that, prior to 2020, Tether was used to manipulate

Bitcoin prices. Lyons and Viswanath-Natraj (2021) show that USDT’s creation and redemption re-

spond to price deviations and who relate stablecoin price stability to defending exchange rate pegs.

Kim (2022) finds that increases in the issuance of USDT and USDC lead to decreases in Treasury

and commercial paper yields. Kozhan and Viswanath-Natraj (2021) analyze DAI, which is a stablecoin

overcollateralized by risky non-USD assets. Li and Mayer (2021), d’Avernas, Maurin, and Vandeweyer

(2022) and Routledge and Zetlin-Jones (2022) are theoretical papers on the mechanisms stablecoins

use to maintain peg stability, encompassing algorithmic and collateral-backed stablecoins as well as

fiat-backed stables. We provide a complementary yet distinct perspective of stablecoins as financial

intermediaries engaged in liquidity transformation. Through this lens, we highlight the possibility of

panic runs and relate run risk to the design of the primary market.

Our paper also fits more broadly into the literature on cryptocurrencies and decentralized finance,

discussed and surveyed in Harvey, Ramachandran and Santoro (2021), John, Kogan and Saleh (2022),

and Makarov and Schoar (2022).

The rest of the paper proceeds as follows. Section 2 describes institutional details of the stablecoin

market and Section 3 explains the data we use. Section 4 documents several empirical facts that mo-

tivate our model in Section 5. Section 6 explains the model calibration and results. Finally, Section 7

concludes.
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2 Institutional Details

Stablecoins are blockchain assets whose value is claimed to be stable at $1. Blockchain assets can be

self-custodial: a user can use crypto wallet software, such as Metamask, to hold, send, and receive

stablecoins directly. These tokens are not stored with any trusted intermediary: rather, a “private key”

– a long numeric code, kept only on the user’s hardware device – is used to prove to the blockchain

network that the user owns her tokens and to direct the network to take actions such as transfer tokens

to other wallets. Others have no access to individuals’ private keys so they have no ability to take funds

from individuals’ wallets. Stablecoins are thus a useful way to hold US dollar assets in settings where

there is a lack of trusted financial intermediaries that can be relied on to custody US dollar assets on

behalf of market participants.

Relative to other blockchain assets like bitcoins, the defining feature of stablecoins is (relative)

price stability. The largest stablecoin issuers attempt to achieve price stability by promising to back

each stablecoin token by at least $1 in off-blockchain US dollar assets. These fiat-backed stablecoins

have experienced a rapid expansion over the last few years. Within two years’ time, the total asset size

of the six largest fiat-biased stablecoins has grown from $5.6 billion at the beginning of 2020 to exceed

$130 billion at the beginning of 2022 (Figure 2). The largest stablecoin is Tether (USDT), which made

up more than 50% of the total market size at $76.4 billion in January 2022. Circle USD Coin (USDC)

and Binance USD (BUSD) are second and third at $37.7 and $14.4 billion. Paxos, (PUSD), TrueUSD

(TUSD), and Gemini dollar (GUSD) are significantly smaller with a market size of around or below $1

billion. The asset size of fiat-backed stablecoins has experienced ups and downs in 2022 but remains

high at $136 billion in June 2022.

We proceed to explain the design of stablecoins and how they attempt to achieve price stability. A

diagram illustrating the primary and secondary market for stablecoins is shown in Figure 1.
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2.1 The Primary Market

Stablecoin tokens are created/minted and redeemed/destroyed in the primary market with US dollar

cash as shown on the left-hand side of Figure 1. To create a stablecoin token, an arbitrageur sends

$1 US dollar to the issuer, through a bank transfer or other means; the issuer then sends a stablecoin

token into the market participant’s crypto wallet. Analogously, to redeem a stablecoin token, for each

stablecoin token that the market participant sends to the issuer’s crypto wallet, the issuer sends $1 US

dollar, for example through a bank transfer, into the market participant’s bank account. The primary

market for stablecoins resembles a money market fund in the traditional financial system. Please see

Appendix A for further details.

Importantly, not all market participants can freely become arbitrageurs to participate in the redemp-

tion and creation of stablecoin tokens in the primary market. Stablecoin issuers differ in how easily

and costly market participants can access primary markets. For example, while USDC allows general

businesses to register as arbitrageurs and charges no fees for redemptions and creations, USDT restricts

AP registration, imposes a minimum transaction size of $100,000, and charges the greater of 0.1% and

$1000 per redemption. USDT also requires a lengthy due-diligence process and imposes restrictions

on where arbitrageurs can be domiciled.

2.2 The Secondary Market

The majority of market participants trade existing stablecoins for fiat currencies in secondary markets,

as shown on the right-hand side of Figure 1. Crypto-exchanges like Binance allows customers to

make US dollar deposits, and then trade US dollars for USDT, USDC, or BUSD with other market

participants.4 The price of stablecoin tokens in the secondary market is thus driven by the demand from

stablecoin buyers and the supply from stablecoin sellers. When there is a surge in stablecoin sellers on

the secondary market, the secondary market price would drop but the closed-end nature implies that

there are no direct liquidations of any reserve assets involved. In this way, the buying and selling of

stablecoins on secondary markets resemble the trading of ETF shares on the exchange.

4Please see Appendix A for details regarding the use of different crypto exchanges.
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2.3 Shock Transmission from the Secondary to the Primary Market

Nevertheless, selling pressure in the secondary market for stablecoins can spill over to affect the pri-

mary market through arbitrageurs. When investor selling pressure in the secondary market depresses

stablecoin prices to be below $1, arbitrageurs can profit from purchasing stablecoin tokens for below

$1 in secondary markets, and redeeming them one-for-one for $1 with the stablecoin issuer in primary

markets as long as the issuer does not default. Analogously, if positive demand shocks in secondary

markets caused stablecoins to trade above $1, arbitrageurs could profit from creating stablecoin tokens

one-for-one for dollars in primary markets and then selling them at higher prices in secondary markets.

Thus, the $1 redemption value of stablecoins in primary markets pulls the trading price of stablecoins

towards $1 in secondary markets through the trading incentive of arbitrageurs.

At the same time, this arbitrage process implies that investor selling pressure in secondary markets

can eventually trigger fire sales of assets when stablecoin issuers liquidate reserves to meet arbitrageurs’

$1 redemption in cash. These fire sales can become especially costly if large amounts of redemptions

occur in a short period of time and if illiquid reserve assets can only be converted to cash at a discount.

If redemptions and discounts are large enough, the issuer may fail to pay the promised $1 for each

stablecoin token redeemed, and the stablecoin defaults.

2.4 Uses of Stablecoins

Stablecoins have a number of uses. First, they are a fairly low-cost way to transact in US-dollar assets.

As of January 2023, sending tokens on the Ethereum costs around $1 per transaction, and transactions

finalize in under a minute.

Stablecoins are also being used as a store of value and medium of exchange in settings where

inflation is high, capital controls and financial repression are prevalent, and trust in intermediaries is

low. For example, humanitarian organizations have used stablecoins to circumvent banking fees and

regulatory frictions.5 Some firms in Africa have begun using stablecoins for international payments to

5See Fortune.com and Rest Of World.
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suppliers in Asia.6 In settings with high inflation, such as Lebanon and Argentina, individuals have

begun storing value and transacting using stablecoins.7 Some merchants in these areas have begun

accepting stablecoins as a form of payment.8

Finally, stablecoins are used with other smart contracts within the space of “decentralized finance.”

For example, market participants can use stablecoin tokens to purchase other blockchain tokens, such as

ETH, MKR, or UNI, using an automated market maker protocol such as Uniswap. Market participants

can also lend stablecoin tokens on lending and borrowing protocols, such as Aave and Maker, allowing

them to receive positive interest rates, and also to use these assets as collateral to borrow other assets. In

a way, stablecoins provide a safe store of value and medium of exchange resemble for the blockchain

ecosystem similar to the role of deposits and money market fund shares in the traditional financial

system.

3 Data

We compile a novel and comprehensive dataset that sheds light on stablecoins’ on-chain primary market

activity, secondary market prices, and reserve assets.

3.1 Primary Market Data

The core dataset used in our analysis is data on each stablecoin creation and redemption event for the

6 largest fiat-backed stablecoins: Tether (USDT), Circle USD Coin (USDC), Binance USD (BUSD),

Paxos (USDP), TrueUSD (TUSD), and Gemini dollar (GUSD), on the Ethereum, Avalanche, and Tron

blockchains. We obtain this data from each blockchain based on “chain explorer” websites, which pro-

cess transaction-level blockchain data into a usable format. We use Etherscan for Ethereum, Snowtrace

for Avalanche, and Tronscan for Tron.
6See Rest Of World.
7See CNBC and Rest Of World for a discussion of the Lebanon case, and Coindesk and EconTalk for a discussion of

Argentina.
8For example, the Unicorn Coffee House in Beirut, Lebanon accepts USDT (Tether) as a form of payment.
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As described in Section 2, there are two ways that stablecoin tokens can be minted or redeemed.

First, the stablecoin’s “mint” or “burn” functions can be called directly to the primary market partici-

pant’s wallet. To capture this category of actions, we query Etherscan for all cases in which the “mint”

and “burn” functions are called for each stablecoin. Second, the stablecoin issuer can send or receive

stablecoins from their “treasury” address. To capture this category, we identify the treasury address or

addresses for each stablecoin, and then query Etherscan for every send or receive transaction involving

the treasury address. Logistically, some issuers, such as Tether, tend to mint a large quantity of sta-

blecoin tokens into “treasury” addresses they control, then issue tokens to market participants simply

by transferring tokens out of their treasury wallet; whereas other issuers, such as TrueUSD, occasion-

ally directly mint stablecoin tokens into the wallet addresses of market participants. On the other hand,

most issuers handle redemptions by having market participants send tokens to a treasury wallet address.

If the treasury wallet has a large balance of redeemed stablecoins, the issuer will occasionally “burn”

quantities of the stablecoin, removing them from the technical outstanding balance of the token.9

Using our data extraction process, we see, for each stablecoin creation and redemption event, the

precise timestamp of the event; the amount of the stablecoin redeemed or created; and the wallet address

of the entity involved in stablecoin creation or redemptions. We also observe the “gas” fee – that is,

the transaction fee paid to Ethereum miners for including the transaction in the blockchain – paid for

each transaction. Some wallet addresses are tagged on Etherscan, as they are known to belong to large

entities such as crypto exchanges. Using Etherscan wallet tags, we are able to group some wallets that

are known to belong to the same economic entity.

We calculate the total issued market capitalization of a given stablecoin at any point in time, as

the total technical market capitalization of the stablecoin, minus the amount of the stablecoin held in

“treasury” addresses. This is because tokens held in treasury wallets need not be backed one-to-one

by US dollars, and thus should not count as part of the total market capitalization of stablecoins in

circulation.
9The exception to this rule is that TrueUSD occasionally handles redemptions by “burning” tokens directly from market

participants’ wallets, rather than the treasury.
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3.2 Secondary Market Data

For each of the 6 stablecoins in our data, we extract the hourly closing prices for trades from the

main exchanges, including Binance, Bitfinex, Bitstamp, Bittrex, Gemini, Kraken, Coinbase, Alterdice,

Bequant, and Cexio. In our main analysis, we calculate daily prices for each stablecoin as the weighted

average of hourly closing prices across these exchanges, where the weights are by trading volume.

Differences in stablecoin prices across the main exchanges are generally negligible, hence the price

series are not substantially affected by the weights we put on different exchanges.

3.3 Reserves

Stablecoins’ reserve assets are not recorded on the blockchain. However, USDT and USDC reported

breakdowns of their reserve assets at various points in 2021 and 2022 as part of their balance sheets.

We obtain these breakdowns for USDT and USDC. The other four stablecoins have not released break-

downs of their reserve asset composition but state the broad categories of their reserves. We obtain and

discuss these asset types in the next section.

4 Stylized Facts

In this section, we present a set of new stylized facts about stablecoins, which informs our model and

calibration to quantify the run risk of stablecoins.

4.1 Secondary Market Price

Fact 1. The trading price of stablecoins in the secondary market commonly deviates from $1. This

price deviation per se does not constitute a run by investors.

Figure 3 shows the price at which different stablecoins trade on the secondary market over time. We

observe that the secondary market price rarely stays fixed at $1. Rather, stablecoins trade at a discount
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to $1 27.2% to 41.6% of the time and trade at a premium to $1 57.3% to 72.8% of the time for our

sample of stablecoins (see Table 2).

The extent of these price deviations varies by stablecoin. While the average discount at USDT is

55bps, the average discount at USDC is only 1bps. The average discount of BUSD, TUSD, and USDP

are also below that of USDT at 1bps, 11bps, and 18bps, respectively, while that of GUSD is the highest

at 78bps. The median discounts are generally smaller in magnitude than the average discounts, but the

variation in the cross-section remains similar. The average and median premia also show significant

variation in the cross-section.

The trading of stablecoins at a discount to $1 has been commonly associated with “breaking the

buck” as in the case of money market funds and even as evidence for panic runs.10 We note that these

are misconceptions. Stablecoins maintaining a “stable value” of $1 refers to the amount that primary

market participants receive or pay when they redeem existing stablecoins or create new stablecoins

with the stablecoin issuer. The notion of “breaking the buck” thus corresponds to primary market

participants not receiving a full $1. This scenario has not yet occurred at any of the stablecoins in

our sample despite their secondary market price frequently deviating below $1. The secondary market

price is the trading price of stablecoins on exchanges. It is essentially the share price of a closed-end

fund and analogous to the share price of an ETF. Just like ETF prices can deviate from the NAV of

the underlying portfolio, stablecoin prices can deviate from $1. This stablecoin price falling below $1

simply captures the selling pressure of stablecoins in the secondary market and is not a direct indicator

of “breaking the buck” or panic runs.

4.2 Primary Market Concentration

Fact 2. The redemption of stablecoins in the primary market is performed by a set of arbitrageurs,

whose concentration varies by stablecoin.

10For example, see https://www.nytimes.com/2022/06/17/technology/tether-stablecoin-cryptocurrency.html and
https://www.cnbc.com/2022/05/17/tether-usdt-redemptions-fuel-fears-about-stablecoins-backing.html
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Table 3 shows the characteristics of daily primary market redemption activity on the Ethereum

blockchain for different stablecoins. We observe that on an average day, USDT only has 2 APs engaged

in redemptions, whereas USDC has 33. The concentration of APs’ market shares also varies. The

largest AP at USDT performs 93% of all redemption activity, while the largest AP at USDC performs

54%. BUSD, USDP, and TUSD lie in between USDT and USDC in terms of the number of redeeming

APs and AP concentration. GUSD has the most concentrated AP market with one AP essentially being

in charge of all redemptions.

We repeat the analysis at the monthly level in Table 4. The monthly snapshot may better capture

the market structure of the primary market than the daily snapshot if not all APs are active every

day. Indeed, we observe that the number of APs redeeming stablecoins is larger at the monthly level.

However, the AP market remains highly concentrated for USDT, with only 6 APs redeeming shares

during the average month and the largest AP accounting for 64% of the total redemption activity. In

contrast, USDC has 521 active APs in an average month but the top 1 and top 5 APs make up 45% and

85% of all redemption activity. As before, USDP, and TUSD lie in between USDT and USDC in terms

of the number of redeeming APs and AP concentration. GUSD has the most concentrated AP market

at the monthly level as well.

Further, notice that in the average month, the volume of redemptions at USDT is $615 million,

while that at USDC is $2976 million. In comparison, the total volume of outstanding tokens at USDT

was 1.5 to 2 times of that of USDC. Thus, the larger number and lower concentration of APs at USDC

is correlated with a higher volume of redemptions relative to the total asset size as well.

In the appendix, we repeat Tables 3 and 4 for the Tron and Avalanche blockchains and obtain similar

variations in AP concentration across stablecoins.

4.3 Secondary Market Price and Primary Market Concentration

Fact 3. Stablecoins with a more concentrated set of arbitrageurs experience more pronounced dis-

counts in the secondary market.
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We proceed to analyze the potential effects of AP concentration. We calculate the average monthly

discount and the average number of redeeming APs for each stablecoin and plot them in Figure 4a. A

clear negative trend emerges: stablecoins with fewer APs, like USDT and GUSD, have higher average

discounts in their secondary market prices than stablecoins with more APs, like USDC and BUSD.

Another way to capture AP concentration is through the market share of the largest APs. In Figure 4b,

we repeat the analysis with the market share of the top 5 APs. The relationship is positive. Stablecoins

whose top 5 APs consistently perform a larger share of total redemptions, like USDT and GUSD, have

higher average discounts than other stablecoins with lower AP concentration. In other words, it seems

that higher AP competition is associated with reduced price dislocations in secondary markets.

One question arising from this trend is why some stablecoins choose to have a more concentrated

AP sector. If AP competition can indeed stabilize secondary market prices, all stablecoins should be

incentivized to open up AP access and encourage the entry of new APs. In our model, we show that

a counteracting force is the presence of panic runs by investors, which are more likely with a more

competitive AP sector. We show that the probability of panic runs is especially pronounced if the

reserve assets are more illiquid, which makes AP concentration even costlier. In the next subsection,

we illustrate that USDT indeed also has more illiquid reserve assets.

4.4 Liquidity Transformation

Fact 4. Stablecoins engage in varying degrees of liquidity transformation by investing in illiquid assets.

Stablecoins are not literally backed by US dollars in the form of cash. Rather, they hold USD-

denominated assets with varying degrees of illiquidity as reserves. Table 1 shows the composition of

reserve assets for USDT and USDC on reporting dates. Overall, reserve assets of both USDT and

USDC are far from being fully liquid, with those of USDT being more illiquid.

A significant portion of reserve assets is in the form of deposits and money market instruments. In

June 2021, these two asset classes took up 60.7% and 59.5% of reserve assets at USDT and USDC,

respectively. Money market instruments include commercial paper and certificates of deposits. For

USDT, deposits include “cash deposits at financial institutions and call deposits, i.e., deposits that may
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be withdrawn with two days’ notice or less; fiduciary deposits, i.e., deposits made by banks on behalf

of and for the benefit of members of the consolidated group; and, term deposits, i.e., deposits placed

by members of the consolidated group at its banks for a fixed term.” For USDC, deposits include “US

dollar deposits at banks and short-term, highly liquid investments that are readily convertible to known

amounts of cash and have a maturity of less than or equal to 90 days from purchase.” Thus, except

for deposits in checking accounts, money market instruments and other types of deposits are not fully

liquid, i.e., they can not be freely converted to cash at short notice. For example, time deposits and

certificates of deposit experience a discount when demanded before their maturity date.

USDT also holds a significant portion of reserves in the form of Treasury bills, which increased

from 24.3% in June to 47.6% in March 2022. In contrast, USDC reduced its Treasury holdings from

15.0% in July 2021 to 0% in August 2021. USDC states that their Treasuries include “US government

treasury bills, notes and bonds with a maximum maturity of 3 years”. While Treasuries are generally

liquid and safe security, the extent of their liquidity varies by type and over time. For example, on-the-

run Treasuries and Treasury bills are much more liquid than off-the-run Treasuries and non-bills.

The remaining reserve assets are comprised of more illiquid assets, including municipal and agency

securities, foreign securities, corporate bonds, corporate loans, and other securities. USDT still held a

sizable amount of these illiquid assets in March 2022, with 4.5%, 3.8%, and 6.0% in corporate bonds,

corporate loans, and other assets, respectively. While the exact identity of other assets is not disclosed,

it is mentioned that they do include crypto investments. In June 2021, USDC held 0.4%, 15.9%, and

9.5% in municipal and agency securities, foreign securities, and corporate bonds respectively. USDC’s

holding of these assets is reported to have dropped to zero starting in September 2021, with all assets

held in the form of the deposits described above.

The other four stablecoins do not publish reserve breakdowns, but they report that their assets are

limited to deposits, Treasuries, and money market instruments. For example, a statement issued by

BUSD and USDP in July 2021 claims that they hold 96% of cash equivalents and 4% of Treasury bills.

GUSD states that their reserves are “held and maintained at State Street Bank and Trust Company,

Signature Bank, and within a money market fund managed by Goldman Sachs Asset Management,

invested only in U.S. Treasury Obligations.” TUSD also claims that their US dollar balance is held by
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“U.S. depository institutions and Hong Kong depository institutions” and that they “include US dollar

cash and cash equivalents that include short-term, highly liquid investments of sufficient credit quality

that are readily convertible to know amounts of cash.”

5 Model

In this section, we build a model to analyze the potential for stablecoin runs. The model aims for achiev-

ing three goals. First, the model formulates the notion of runs on the primary market of stablecoins and

explicitly derives the run probability, linking it to the level of stablecoin liquidity transformation and

the concentration of arbitragers. Second, the model formulates the stablecoin issuer’s optimal design

of its primary market structure. Finally, the model allows us to quantify the run risks for a number of

major stablecoins.

5.1 Setting

The economy has three dates, t = 0, 1, 2, with no time discount. There are three groups of risk-neutral

players, 1) a competitive fringe of identical, infinitesimal investors indexed by i, 2) a sector of n ≥ 3

arbitrageurs or APs, and 3) a stablecoin issuer.

At t = 0, investors are born; each investor would incur a cost of ci, which follows a distribution

function G(c), to participate in the stablecoin market. Once participated, each investor is endowed with

one stablecoin. An investor participates only when its participation cost is smaller than its expected

utility from participation, which will be determined in equilibrium. There are two types of assets: the

dollar, which is also the consumption good and serves as the numeraire, and an illiquid and potentially

productive reserve asset. The stablecoin is initially backed by the reserve asset held by the issuer. The

initial value of the reserve asset is normalized to one dollar. We introduce the features of the two assets

shortly below. The stablecoin issuer may also choose n at t = 0, that is, design the structure of its

primary market, to maximize its expected profit, which we introduce in Section 5.4. Before that, we
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take n as exogenous and focus on investors’ equilibrium behaviors after they have participated, and as

such, we also normalize the population of participating investors to one.

Participating investors are subject to idiosyncratic liquidity shocks at t = 1 as in Diamond and

Dybvig (1983). Each investor is uncertain about her preferences over consumption at t = 1 and t = 2.

At the beginning of t = 1, an investor learns her preferences privately: with probability π > 0 she is an

early-type and gets utility from date-1 consumption only, while with probability 1−π she is a late-type

and gets utility from consumption from both dates.

At t = 1, a total of λ ≥ π investors decide to sell stablecoins to APs in a secondary market at the

market price p in exchange for a consumption good called dollar, where both λ and pwill be determined

in equilibrium. Dollar is riskless, liquid, and it serves as the numeraire. Households cannot directly

redeem the stablecoin for dollar from the issuer, but APs are able to redeem the stablecoins from the

issuer in a primary market, getting a fixed price of one dollar per stablecoin if the issuer is solvent. To

raise dollars to meet AP redemptions at t = 1, the issuer has to liquidate the illiquid reserve asset pre-

maturely at a liquidation cost of φ ∈ (0, 1], that is, liquidating one unit of asset yields 1−φ dollar only.

Hence, the issuer is solvent if and only if λ < 1 − φ. We assume π < 1 − φ to rule the uninteresting

case that early investors alone render the issuer default. When λ ≥ 1 − φ, the issuer defaults, and

the redeeming APs will get the liquidation value per total stablecoins redeemed, that is (1 − φ)/λ.

Expecting the amount of dollars to be redeemed from the issuer, APs bid in a double auction (e.g., in

the manner of Kyle (1989) and Du and Zhu (2017)) to buy the stablecoins from λ selling investors.

Denote the AP sector’s total balance sheet capacity in the auction by S. The auction determines the

secondary-market price p, the magnitude of which reflects the de-pegging risk of the stablecoin.

At t = 2, the economy entails aggregate risk. With probability p(θ), the economy enters a good

state: the reserve asset matures and yields a value of R(φ) ≥ 1 dollar. With probability 1 − p(θ), the

economy enters a bad state: the reserve asset fails and yields zero. Here, R(φ) is decreasing in φ and

p(θ) is increasing in θ ∈ Θ. We call θ the fundamentals of the economy which captures the level of

aggregate risk, which is unknown to investors, APs, or the stablecoin issuer before t = 2. Intuitively,

the reserve asset is more likely to profit as the fundamentals are better, and its long-term maturing value

R(φ) increases in its illiquidity, capturing a notion of liquidity risk premium.
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In the good state of the economy, participating investors and the stablecoin issuer share the value

of the reserve asset based on the following rule. Unlike a security, a stablecoin never pays dividends.

Thus, the net maturing gain of the reserve asset, that is, R(φ) − 1, only gets accrued to the stablecoin

issuer but not the investors. Rather, the remaining 1 − λ investors consume the initial value 1 per unit

of the remaining reserve asset, plus a convenience value η > 0 per stablecoin at t = 2. Beyond the

stablecoin, investors cannot access the underlying asset market or any other investment technology to

transfer wealth across time.

To endogenize investors’ stablecoin selling decisions and hence the stablecoin’s run risk, we follow

the global games literature to assume that each investor i obtains a private signal θi = θ + εi at t = 1,

where the noise term εi are independently and uniformly distributed over [−ε, ε]. As usual in the

literature (e.g., as in Goldstein and Pauzner (2005)), we focus on arbitrarily small noise in the sense

that ε→ 0, but the model results also hold beyond the limit case. An investor’s selling decision depends

on the signal that she obtains. Note that we do not impose any restrictions on the distributions of p, θ,

or the increasing function p(θ), which would conveniently allow us to map the model to any empirical

distribution of fundamentals.

5.2 Discussion of Model Specification

Before proceeding, it is useful to discuss several important modeling choices to highlight the economics

underlying the model. The discussion also highlights in what sense our model parsimoniously captures

the most important features of the stablecoin markets.

First, our model purposefully features the separate but connected primary and secondary markets

of stablecoins, as discussed in Section 2 and observed in Section 4. This separation is important for us

to separately define the de-pegging and run risks of stablecoins and to analyze the relationship between

these two types of risks. In reality, most retail investors of stablecoins cannot directly participate in

the stablecoin creation and redemption process with the issuers, which is captured by investors only

being accessible to the secondary market. Given our focus on stablecoin selling and redemptions, any

excess supply for stablecoins by investors in the secondary market then must be met by AP redemptions
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with the issuer in the primary market. Our modeling of the AP’s activity as a double auction with a

fixed redemption price from the issuer closely mirrors the real-world redemption and destroy process

of stablecoins, which is only available to the small set of APs.

It is also instructive to draw connections to ETFs and MMFs to further highlight the uniqueness

of the stablecoin market and how our model captures this uniqueness. Like stablecoins, ETFs also

feature the separation of the primary and secondary markets in that only APs can access the primary

market and any excess demand or supply of ETF shares from investors in the secondary market must

be met by APs (e.g., see Koont, Ma, Pastor and Zeng (2021) for a model of ETFs highlighting these

features). However, ETFs notably differ from stablecoins in that AP creations and redemptions are

predominantly performed in-kind with the issuer, that is, APs are delivered the underlying assets rather

than cash when redeeming ETF shares. In contrast, a stablecoin AP gets a fixed amount of one dollar

when redeeming one unit of stablecoin with the issuer provided the stablecoin issuer is solvent. This

key difference thus resembles MMFs before the 2016 Money Market Reform in that MMF investors

also get a fixed amount of one dollar in redemption provided the issuer is solvent (e.g., see Parlatore

(2016) for a model of MMFs). Note that, however, MMF shares are not tradable in any secondary

markets. Hence, stablecoins uniquely combine the two-layer market structure of ETFs and the fixed-

value in-cash redemption feature of MMFs, and our model parsimoniously captures this combination.

Our model captures liquidity transformation and concentration of APs as the two most important

economic sources of variation across different stablecoins, as documented in Section 4. Liquidity

transformation is captured by the illiquidity cost parameter φ. Below, we call φ as either liquidation

cost or haircut. Economically, φ captures that the liquidation of loans and bonds in secondary markets

can depress their prices (see Duffie, 2010, for a review). It may also capture negative real impacts when

liquidations of loans and bonds affect the capacity of governments and corporates rolling over their

debt (e.g. He and Xiong, 2012). The concentration of APs is captured by the parameter n, holding the

AP sector’s total balance sheet capacity in bidding fixed. This specification helps us separately consider

the effects of AP concentration and AP balance sheet costs on de-pegging and run risks.

The model also parsimoniously captures how the stablecoin issuer and coin-holding investors share

the long-term value of the stablecoin. As of now, stablecoins do not pay any dividends to investors and
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thus are not regulated as securities by the U.S. SEC. Hence, the net return of the underlying reserve

assets is only accrued to the issuer. However, by holding stablecoins in the long term (rather than

selling them to meet immediate liquidity demand), participating investors enjoy a convenience yield

that is currently specific to the use of stablecoins as a payment method in crypto investments and

decentralized finance contexts, and potentially beyond as a widely adopted means of payment going

forward. As we further specify in Section 5.4, the expected revenue of the stablecoin issuer hinges on

this specific form of value sharing between the issuer and investors.

Finally, our model follows the global games approach to endogenize the run risk of stablecoins,

which is the focus of this paper. One key assumption of the global games approach is the information

structure: the fundamentals are unobservable but each agent obtains a private signal about them. We

view this assumption to be plausible for the stablecoin market because of its opacity: essentially no

stablecoin issuers disclose asset-level information about their reserves. On the other hand, investors

in the stablecoin market are likely to be more sophisticated than those in more traditional financial

markets, justifying their ability to obtain private and heterogeneous signals about the fundamentals.

5.3 Equilibrium Analysis

We first solve for the equilibrium secondary-market stablecoin price at t = 1, p, when λ investors

choose to sell. Define

K =
1

S

n− 1

n− 2
, (5.1)

and impose the following parametric assumption to ensure that the secondary-market price is positive:

1− φ−K > 0 . (5.2)

We have the following result:
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Proposition 1. The stablecoin’s secondary-market price at t = 1 is given by

q(λ) =


1−Kλ λ ≤ 1− φ ,
1− φ
λ
−Kλ λ > 1− φ .

(5.3)

Proposition 1 shows that the stablecoin’s secondary-market price depends on selling pressure λ,

and further, the level of liquidity transformation φ, AP balance sheet capacity S, and AP concentration

n. Specifically, q is decreasing in λ and φ while increasing in S and n. All these comparative statics

are intuitive. A higher selling pressure λ depresses stablecoin price due to the standard excess supply

effect, leading to higher de-pegging. A higher level of liquidity transformation φ does not affect the

stablecoin price when the issuer is solvent but translates to a lower stablecoin price when the issuer

defaults because of the lower liquidation value. Indeed, a higher φ also makes the issuer more likely

to default. A higher AP balance sheet capacity implies that APs are more willing to bid to absorb the

selling pressure, supporting a higher secondary-market price. Finally, a less concentrated AP sector,

that is, a higher n implies that APs bid more competitively, also leading to a higher secondary-market

price. Looking forward, we will show that these features play an important role in determining the

relationship between secondary-market de-pegging risk and primary-market run risk of stablecoins.

Viewing the stablecoin’s secondary-market price q as a function of λ specifically, we highlight two

important features of q(λ). First, it is strictly decreasing in λ everywhere. Second, it features a kink

at λ = 1 − φ, that is, when the stablecoin issuer just defaults. The first feature points to the standard

notion of strategic substitutability usually present in many financial markets including the ETF market:

the more investors sell, the lower the price is, making an investor less likely to sell. However, we

show that the second feature, that is, the jump in price due to the issuer’s inability to keep the fixed

redemption price as it defaults, which resembles MMFs, may eventually give rise to a strong enough

first-mover advantage in selling, as we analyze later.

Now we consider the late investors’ decision of selling the stablecoin at t = 1 or not (recall that

early investors always sell). In making this decision, a late investor compares the secondary-market

price q(λ) she may get by selling the stablecoin at t = 1 to the return she may get at t = 2 if she does
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not sell, which is given by

v(λ) =


p(θ)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
λ ≤ 1− φ ,

0 λ > 1− φ .
(5.4)

To see why it is this case, notice that the issuer needs to liquidate

l(λ) =


λ

1− φ
λ ≤ 1− φ ,

1 λ > 1− φ .

unit of the reserve asset to meet AP redemptions at t = 1, and only 1 − l(λ) unit remains at t = 2,

whose value will be shared by the remaining 1− λ late investors.

It is useful to compare the date-2 stablecoin value (5.4) to the date-1 secondary-market stablecoin

price (5.3) and define a late investor’s payoff gain of waiting until t = 2 versus selling at t = 1:

h(λ) = v(λ)− q(λ) =


p(θ)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
− 1 +Kλ λ ≤ 1− φ ,

−1− φ
λ

+Kλ λ > 1− φ .
(5.5)

It is easy to see that h(0) ≥ 0 when p(θ) is sufficiently large while h(1) < 0, implying that the model

has multiple equilibria when θ is sufficiently large and if θ is common knowledge.

The intuition behind a stablecoin run can be further illustrated by Figure 5, which plots the function

h(λ). It is clear from Figure 5 that h(λ) first increases in λ, then decreases, and then increases in λ

again. The first region where h(λ) increases reflects strategic substitutability arising from the secondary

market of stablecoins. Because selling investors generate a price impact on the secondary market and

depress the secondary-market stablecoin price, a late investor may find it less appealing to sell if other

late investors sell if the price impact is sufficiently large. This force works against the standard first-

mover advantage that is typically present in a bank run model like Diamond and Dybvig (1983) and

acts to prevent a run from happening. However, because APs redeem stablecoins from the issuer at
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a fixed price of $1, the cost that waiting investors have to bear will increase as more and more late

investors choose to sell. This force will ultimately dominate, offsetting the secondary-market strategic

substitutability and leading to a decreasing h(λ) in the second region. Eventually, the second force

dominates as λ becomes sufficiently large, pushing h(λ) to be negative, which reinstalls the first-mover

advantage and leads to runs in equilibrium.

Under the global games framework, we have the following result:

Proposition 2. There exists a unique threshold equilibrium in which late investors sell the stablecoins

if they obtain a signal below threshold θ∗ and do not sell otherwise.

Proposition 2 implies that the model with investors’ private and noisy signals has a unique threshold

equilibrium. A late investor’s selling decision is uniquely determined by her signal: she sells the

stablecoin at t = 1 if and only if her signal is below a certain threshold. Given the existence of the

unique run threshold, we can show that it satisfies the following Laplace equation:

∫ 1−φ

π

(1−Kλ) dλ+

∫ 1

1−φ

(
1− φ
λ
−Kλ

)
dλ =

∫ 1−φ

π

p(θ∗)

(
1− φ− λ

(1− φ)(1− λ)
+ η

)
dλ . (5.6)

Solving the Laplace equation gives the following result:

Proposition 3. The run threshold is given by

p(θ∗) =
(1− φ)(2− 2φ− 2π − 2(1− φ) ln(1− φ)− (1− π2)K)

2 ((1 + η(1− φ))(1− φ− π) + φ lnφ− φ ln(1− π))
. (5.7)

which satisfies the following properties:

i). The run threshold, that is, run risk, is increasing in φ if and only if g(φ) > K,11 where g(φ) is

continuous and strictly decreasing in φ over (0, 1− π), and satisfies limφ→0 g(φ) > 0.

11The explicit form of g(φ) is given by

g(φ) =
2
(
(π + φ− 1)((φ− 1)(η(φ− 1) + 1) + π − lnφ) + (φ− 1) ln(1 − φ)(π(η(φ− 1) − 2) − 2φ + (φ + 1) lnφ + 2) + ln(1 − π)

(
π −

(
φ2 − 1

)
ln(1 − φ) + φ− 1

))
(
1 − π2

)
((1 − φ)(1 − η(1 − φ)) − π + lnφ− ln(1 − π))

.
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ii). The run threshold, that is, run risk, is decreasing in K (that is, increasing in n and increasing

in S).

Proposition 3 gives an analytical solution of the run threshold and presents intuitive comparative

statics about the stablecoin’s run risk with respect to the level of liquidity transformation and the orga-

nization of the AP sector.

Part i) of Proposition 3 shows that a higher level of stablecoin liquidity transformation leads to a

higher run risk when g(φ) > K. This condition may be satisfied when φ is not too large for a given K.

Intuitively, when the stablecoin engages in a higher level of liquidity transformation in the sense that

it holds less liquid reserve asset, the first-mover advantage among investors becomes larger because an

investor who chooses not to sell would have to involuntarily bear a higher cost of liquidation induced

by selling investors. This leads to a higher run risk. However, when the reserve asset is too illiquid, the

first-mover advantage could be dampened because too few investors can enjoy it. This intuition can be

understood from equation (5.5): investors enjoy the first-mover advantage only when λ ≤ 1 − φ, that

is, h(λ) takes the value in the first line of (5.5); too high a φ shrinks the region in which the first-mover

advantage can be realized. Thus, further increasing the level of liquidity transformation when g(φ) < K

will reduce the run risk. Looking forward, we confirm empirically in Section 6 that g(φ) > K indeed

holds for the major stablecoins, suggesting that further increasing liquidity transformation will likely

increase their run risks.

Part ii) of Proposition 3 shows that a more efficient AP sector in terms of less AP concentration

and higher AP balance sheet capacity leads to higher run risk. To understand this more surprising

result, note that the connection between stablecoins’ secondary and primary markets implies a trade-off

between de-pegging and run risks. A more efficient AP sector implies a lower de-pegging risk because

the APs are more willing to absorb selling pressure from investors and thus more able to support a

stable secondary market trading price. However, this means that APs will support a higher trading

price to selling investors and subsequently redeem more stablecoins in the primary market, leading to

a larger first-mover advantage and higher run risk. In contrast, to reduce run risk, the stablecoin issuer

has to bear a higher de-pegging risk with a less stable secondary market price. In other words, when

the AP sector is more efficient, the de-pegging risk is lower, because APs are more willing to absorb
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selling pressure from investors and thus more able to support a stable secondary market trading price.

However, run risk actually increases, because APs support a higher trading price to selling investors,

increasing the first-mover advantage for stablecoin sellers. When the AP sector is less efficient, the

de-pegging risk is higher, since small quantities of stablecoin sales can have a substantial impact on

stablecoin prices. However, the price impact of stablecoin sales in fact decreases first-mover advantage

and discourages “panic selling”, contributing to decreasing run risk. In this sense, the AP sector acts

as a firewall between stablecoins’ secondary and primary markets, and the stablecoin issuer optimally

designs the structure of its AP sector to trade off between these two risks.

The analytical solution given in Proposition 3 allows us to calibrate the model and quantify the run

risks of the stablecoins in reality. To this end, we can easily translate the run threshold into an ex-ante

run probability, with the additional input of the fundamental distribution F (θ). The following definition

gives us a formal notion of run risk, which we use in the calibration exercise in Section 6.

Definition 1. The ex-ante run probability of a stablecoin is given by

ρ =

∫
p(θ)<p(θ∗)

dF (θ) , (5.8)

where p(θ∗) is given by (5.7) and F (θ) is the prior distribution of the fundamentals.

5.4 Optimal Design of the Stablecoin Primary Market

To further illustrate the idea of APs act as a firewall between stablecoins’ secondary and primary mar-

kets and the trade-off between de-pegging and run risks, we further study the optimal design of the

stablecoin primary market. Specifically, we focus on the optimal concentration of APs.

Given the potential for a panic run, the stablecoin issuer’s design decision at t = 0 involves one

key choice variable: n, that is, how many APs are allowed to perform primary-market redemptions.

As described in Section 2, stablecoin issuers indeed consider the number of APs as one of the most

important market design choices. We suppose that the stablecoin issuer chooses n to maximize its

expected revenues at t = 0, which in turn depends on how many investors participate at t = 0. The
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issuer’s objective function is given by

max
n

E[Π] = G(E[W ])︸ ︷︷ ︸
population of

participating investors

∫
p(θ)≥p(θ∗)

(
p(θ)(R(φ)− 1)

1− φ− π
1− φ

)
dF (θ)︸ ︷︷ ︸

expected issuer revenue per
participating investor

, (5.9)

where each investor’s expected utility of participation is given by

E[W ] =

∫
p(θ)<p(θ∗)

q(1)dF (θ) +

∫
p(θ)≥p(θ∗)

(πq(π) + (1− π)v(π)) dF (θ) , (5.10)

in which q(·) and v(·) are given by (5.3) and (5.4), which is in turn a function of θ, and p(θ∗) is given

by (5.7) in Proposition 3.

The stablecoin issuer’s objective function (5.9) intuitively captures its revenue base: it enjoys the

net long-term return of the remaining reserve asset if no panic run happens (after possible liquidation to

meet redemptions driven by early investors), and more participating investors allow the issuer to start

with investing in more reserve assets. Turning to participating investors’ expected utility E[W ], the

first term in (5.10) denotes the expected welfare of all investors when a panic run happens, while the

second term corresponds to the expected investor welfare when a run does not happen.

Solving the stablecoin issuer’s problem (5.9), we have the following result about the stablecoin

issuer’s optimal choice of AP concentration:

Proposition 4. When the stablecoin engages in a higher level of liquidity transformation, the stablecoin

issuer optimally designs a more concentrated AP sector, that is, n∗ decreases in φ when φ is not too

large.

Proposition 4 stems fundamentally from the trade-off between the de-pegging and run risks of

stablecoins. Intuitively, when investors are subject to idiosyncratic liquidity risks, they do not know ex-

ante whether they have to consume early or late. To attract more investor participation, the stablecoin

allows investors to share their idiosyncratic risks by them jointly holding a pool of reserve assets and

offering the ability to sell the stablecoin in the secondary market at a price potentially higher than

what an investor would have gotten by holding the reserve assets herself. However, because of the run
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risks, risk sharing may not always be achieved because everyone would just get the autarky outcome

in a run scenario, hurting investors’ expected utility and thus their participation as captured by the first

term in (5.9). Further, a higher run risk also directly hurt the stablecoin issuer’s expected revenue per

participating investor as captured by the second term in (5.9), because the issuer would only enjoy

the net long-term return of the reserve asset when no run happens. Thus, the issuer optimally accepts

some level of de-pegging risk, that is, some deviation of the secondary-market price from its peg to

avoid runs. This limits the ability of the stablecoin to provide immediate liquidity to early investors but

would avoid a run. To achieve so, the issuer optimally chooses a concentrated AP sector to reduce the

first-mover advantage among investors.

6 Model Calibration and Results

In this section, we calibrate our model to estimate run probability as defined in Definition 1. We start

with a simple benchmark case of π = 0, which implies that the idiosyncratic shock of buying and

selling stablecoins is mean zero and thus does not directly drive runs. This benchmark allows us to

focus on panic runs and relate the run risk to the key stablecoin design features that we highlight.

We focus our analysis on the largest two fiat-backed stablecoins, USDT and USDC, because of the

availability of their reserve asset breakdowns.

We first explain our estimation of redemption elasticity, K, asset liquidity, φ, and the distribution

of p(θ), before reporting the estimation results.

6.1 Elasticity of Redemptions in the Primary Market K

To estimate how responsive the volume of redemptions is to price discounts, we regress daily discounts

against daily redemption volume for each stablecoin:

Discountt = βRedemptionst + FEy, (6.1)
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where Discountt is the lowest observed secondary market price minus 1 on day t and Redemptionst

is the volume of redemptions divided by the total outstanding volume of tokens on day t. We use

the lowest secondary market price to better capture the extent of price dislocations that demand AP

arbitrage rather than the price dislocations resulting from AP arbitrage. We normalize the volume of

redemptions by the total outstanding volume of tokens to consider the difference in market sizes across

stablecoins. Finally, we include a year fixed effect to capture potential structural shifts in the AP sector

for each stablecoin. For example, the number and constraints of APs may evolve after some time with

the growth of stablecoins.

Table 5 shows the results. We observe that the regression coefficients are negative for both USDT

and USDC, which is consistent with larger redemption volumes on days with steeper discounts, i.e.,

more negative secondary market prices. Further, the coefficient for USDT is larger in absolute mag-

nitude than for USDC, which is consistent with the higher AP concentration of USDT constraining

redemption volume to be less sensitive to price dislocations. That is, a larger price dislocation is re-

quired to induce the same amount of redemptions for USDT than for USDC. Magnitude-wise, a 10

percentage point higher redemption volume as a fraction of the total volume outstanding corresponds

to a 3.0 cent larger discount at USDT and a 1.3 cent larger discount at USDC.

6.2 Asset Illiquidity φ

We proxy asset illiquidity with haircuts following Bai, Krishnamurthy and Weymuller (2018) and Ma,

Xiao and Zeng (2021). These haircuts proxy for the discount incurred when illiquid assets are converted

into cash at short notice.12 In other words, one minus the haircut is the amount of cash that stablecoin

issuers can provide to APs redeeming at short notice by borrowing against the asset. More liquid assets

are more readily pledged to obtain cash while more illiquid assets incur a higher discount. Figure 6

shows the median of asset discounts over time. In comparison, Treasuries are generally the most liquid,

while corporate loans are the most illiquid.

12The New York Fed publishes haircuts on different securities when pledged as collateral in repo loans.
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To measure the overall illiquidity of USDT and USDC’s reserve portfolios, we calculate the average

discounts of their reserve assets weighted by their portfolio weights. The results are shown in Figures

7a, and 7b. One challenge is that we do not know the liquidity of their deposits. As discussed in Section

4, these deposits include time deposits and CDs for which an early withdrawal penalty is incurred.

These penalties generally range from half-years to two years’ worth of interest rates, depending on the

financial institution and contract length. We set the discount on the early withdrawal of deposits to be

0.5%. This is a relatively conservative measure given that the lowest asset discounts are at 2%. Further,

0.5% would have been the approximate one-year penalty rate on 5-year CDs in the latter half of 2021,

which is the period for which asset breakdowns are available.

Overall, the reserve assets of USDT are more illiquid than those of USDC, but both of them shift

towards holding more liquid assets over the sample period. The discount on USDT reserve assets

decreased from 4.3% in September 2021 to 4.0% in March 2022. In comparison, the discount on

USDC reserve assets drops from 0.9% in August 2021 to 0.5 % in September 2021. We use these

estimates for the asset illiquidity parameter, φ, in our model.

6.3 Distribution of p(θ)

Finally, our model requires us to take a stance on the distribution of p(θ), which is the signal of how

likely the risky asset held in the issuer’s portfolio is to pay nothing. To estimate p empirically, we use

historical CDS prices to evaluate the extent to which the value of each portfolio component varies over

time, allowing us to calculate a synthetic measure for how much the expected recovery value of the

reserve portfolio is likely to fluctuate over time.

The CDS spread sc on an asset class c ∈ {1 . . . C} can be thought of as the probability of default

under a recovery rate of 0. Since we assume 0 recovery rates in our model, for a single asset, sc maps

exactly to p in our model. Now, suppose the issuer holds a fraction qc of her portfolio in asset class c.

If each asset pays off 1 with probability sc and 0 with probability (1− sc), the portfolio as a whole has

expected recovery value:
C∑
c=1

(1− sc) qc
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We add an adjustment factor to account for the fact that stablecoin issuers tend to be overcollateralized.

If the issuer holds 1+ξ in assets times the total number of stablecoin issued, then the expected recovery

value of assets, for each unit of stablecoin issued, is:

p = (1 + ξ)
C∑
c=1

(1− sc) qc (6.2)

Since p in the model is equal to the expected recovery value of assets per unit stablecoin issued, we

will use (6.2) on each date we observe CDS spreads as one realization of p. We can think of (6.2)

as the price of a composite security, which averages across CDS spreads of different components of a

stablecoin issuer’s portfolio, and accounts for the fact that issuers are slightly overcollateralized. With

any set of CDS spreads on a given day, we can calculate a value of p using (6.2). By plugging CDS

spreads from different dates into (6.2), we can calculate a distribution of signals p. Note that, when

we plug CDS spreads into (6.2), we use spreads from a single day; hence, this method accounts for

correlations between CDS prices of different asset classes.

We implement (6.2) using historical CDS spread data from Markit, from 2008 to 2022.

For deposits, we assign the average CDS of unsecured debt at the top 6 US banks to capture the

riskiness of the banking sector.13 We note that despite stablecoin issuers’ claim that deposits are riskless

in FDIC-insured institutions, they are not riskless or fully insured because deposit accounts exceeding

250K are not covered by deposit insurance. For Treasuries, we assign the CDS spreads on 3-year US

treasuries. For money market instruments, we use CDX spreads on 1-year investment-grade corporate

debt. For USDC’s corporate bonds, we assign the 10-year investment-grade corporate CDX because

they are stated to be of at least a BBB+ rating. For USDT’s corporate bonds, we assign the average 10-

year corporate CDX. The remaining categories, “foreign” and “other”, do not have a clear mapping to

the existing CDS series. For USDT, for example, assets in the “other” category include cryptocurrency,

which could potentially be very risky. In our baseline results, we use the emerging market CDX spread

as a proxy. We use the 10-year high-yield CDX spread as a robustness check.

13These include Bank of America, Wells Fargo, JP Morgan Chase, Citigroup, Goldman Sachs, and Morgan Stanley.
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Table 6 shows the distributions of p for USDT and USDC on dates with reported balance sheets. The

distributions of p are fairly concentrated near 1, with a narrow range from roughly 97% to 99.5%. In

comparison, the distribution of p’s for USDC is slightly worse than USDT, which arises from USDT’s

large holdings of Treasuries that have lower CDS spreads than bank deposits, which are the bulk of

USDC’s portfolio.

6.4 Calibration Results

Combining our estimates of the redemption elasticity, K and the asset illiquidity, φ, calculate run

cutoffs according to (5.7) in Proposition 3. Then, we can infer run probabilities for each stablecoin in

each time period based on the corresponding empirical distribution of the signal p(θ) following (5.8) in

Definition 1.

The results for run probabilities are shown in Table 7. Overall, run probabilities are substantial.

USDT’s run probability was 3.45% in March 2022 and USDC’s run probability was 0.14% in October

2021.

7 Conclusion

In this paper, we analyzed the possibility of panic runs on stablecoins. At a high level, stablecoins

holders engage in liquidity transformation, offering APs the option to redeem stablecoins for cash

dollars, while holding partially illiquid portfolios of assets. This creates the possibility for runs, where

market participants sell tokens in secondary markets, leading APs to buy and redeem stablecoins for

dollars with the issuer. We show, however, that stablecoin run risk is mediated by the market structure

of the AP sector, which serves as a “firewall” between the secondary and primary markets. When the

AP sector is more efficient, shocks in the secondary market transmit more effectively to the primary

market; peg stability of stablecoins is thus improved, but the first-mover advantage for sellers is also

higher, increasing run risk. If the AP sector is less efficient, shocks in secondary markets transmit less

effectively; peg stability suffers, but run risk actually decreases, as the price impact of stablecoin trades
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in secondary markets discourages market participants from panic selling. Calibrating the model to data,

we quantified run risk for the two leading fiat-backed stablecoins by market cap.
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Figure 1: The Design of Fiat-backed Stablecoins

This figure illustrates the design of fiat-backed stablecoins.
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Figure 2: Asset Size of Fiat-backed Stablecoins

This figure shows the asset size of the six largest fiat-backed stablecoins over time.
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Figure 3: Secondary Market Trading Price

Panels (a) to (f) show the the daily secondary market trading price of USDT, USDC, BUSD, USDP,
TUSD, and GUSD, respectively. Secondary market prices are volume-weighted average of trading
prices from the exchanges listed in Section 2.
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(f) GUSD
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Figure 4: Secondary Market Discount and Primary Market Structure

This figure shows the relationship between secondary market price dislocations and primary market
structure. In panel (a), each dot indicates the average secondary market discount and the average
number of redeeming APs in a month for a given stablecoin. In panel (b), each dot indicates the
average secondary market discount and the market share of the top give redeeming APs in a month for
a given stablecoin.
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Figure 5: Payoff Gain of Late Investors

This figure shows a late investor’s payoff gain between waiting until t = 2 versus selling at t = 1.
Parameters: p(θ) = 0.97, η = 0.2, φ = 0.05, K = 0.3.
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Figure 6: Liquidation Discounts

This figure shows median haircuts by collateral type. Data is from the New York Fed
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Figure 7: Asset Illiquidity

Panels (a) and (b) show the liquidation discount for USDT’s and USDC’s reserves. The sample period
covers the dates for which a breakdown of reserve holdings for USDT and USDC overlapped.
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Table 1: Asset Composition

This table shows the breakdown of reserves by asset class for USDT and USDC. Data are available for
the dates on which reserve breakdowns are published by USDT and USDC. For USDT, the “Deposit”
category includes bank deposits, while for USDC, the “Deposit” category includes US dollar deposits
at banks and short-term, highly liquid investments.

(a) USDT

Deposits Treas Muni MM Corp Loans Others
2021/06 10.0 24.3 0.0 50.7 7.7 4.0 3.3
2021/09 10.5 28.1 0.0 45.7 5.2 5.0 5.5
2021/12 5.3 43.9 0.0 34.5 4.6 5.3 6.4
2022/03 5.0 47.6 0.0 32.8 4.5 3.8 6.4

(b) USDC

Deposits Treas Muni MM Corp Loans Others
2021/05 60.4 12.2 0.5 22.1 5.0 0.0 0.0
2021/06 46.4 13.1 0.4 24.2 15.9 0.0 0.0
2021/07 47.4 12.4 0.7 23.0 16.4 0.0 0.0
2021/08 92.0 0.0 0.0 6.5 1.5 0.0 0.0
2021/09 100.0 0.0 0.0 0.0 0.0 0.0 0.0
2021/10 100.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 2: Secondary Market Price and Volume

This table provides statistics about secondary market trading, including the average daily trading vol-
ume, the proportion of days with discounts and premiums, the average discount and premium, and the
median discount and premium.

USDT USDC BUSD TUSD USDP GUSD

Average Daily Volume 16.4 15.4 13.5 11.4 10.5 7.3
Proportion of Discount Days (%) 30.5 27.2 34.9 38.2 41.6 39.7
Proportion of Premium Days (%) 69.5 72.8 64.4 61.4 57.3 58.9
Average Discount (%) 0.54 0.01 0.01 0.11 0.18 0.78
Average Premium (%) 0.36 0.02 0.02 0.13 0.64 1.17
Median Discount (%) 0.11 0.00 0.00 0.05 0.09 0.63
Median Premium (%) 0.11 0.01 0.01 0.10 0.18 0.82
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Table 3: Primary Market Daily Redemption Activity

Panels (a) to (f) provide statistics about daily primary market redemption activity on the ethereum
blockchain, including the number of APs, the market share of the top 1 and top 5 APs, and the volume
of redemptions. For each variable, we show the average, 25th percentile, 50th percentile , and 75th

percentile of values across days in our sample.

(a) USDT

mean p25 p50 p75
AP Num 1 1 1 2
Top 1 Share 94 100 100 100
Top 5 Share 100 100 100 100
Vol (mil) 57 2 12 60

(b) USDC

mean p25 p50 p75
AP Num 33 8 14 28
Top 1 Share 54 45 50 59
Top 5 Share 96 95 98 100
Vol (mil) 103 2 15 134

(c) BUSD

mean p25 p50 p75
AP Num 21 8 15 28
Top 1 Share 59 40 56 76
Top 5 Share 94 90 96 100
Vol (mil) 62 8 27 82

(d) USDP

mean p25 p50 p75
AP Num 18 8 17 27
Top 1 Share 55 37 52 73
Top 5 Share 90 85 95 100
Vol (mil) 12 3 6 13

(e) TUSD

mean p25 p50 p75
AP Num 6 3 6 8
Top 1 Share 72 54 73 91
Top 5 Share 99 99 100 100
Vol (mil) 6 1 2 5

(f) GUSD

mean p25 p50 p75
AP Num 1 1 1 1
Top 1 Share 100 100 100 100
Top 5 Share 100 100 100 100
Vol (mil) 6 0 1 3
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Table 4: Primary Market Monthly Redemption Activity

Panels (a) to (f) provide statistics about monthly primary market redemption activity on the ethereum
blockchain, including the number of APs, the market share of the top 1 and top 5 APs, and the volume
of redemptions. For each variable, we show the average, 25th percentile, 50th percentile , and 75th

percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
AP Num 6 3 6 8
Top 1 Share 66 42 61 89
Top 5 Share 97 98 100 100
Vol (mil) 577 46 123 763

(b) USDC

mean p25 p50 p75
AP Num 521 114 168 262
Top 1 Share 45 38 49 50
Top 5 Share 85 81 85 90
Vol (mil) 2976 160 460 4965

(c) BUSD

mean p25 p50 p75
AP Num 214 157 202 274
Top 1 Share 48 30 50 62
Top 5 Share 81 74 82 87
Vol (mil) 1596 233 1498 2720

(d) USDP

mean p25 p50 p75
AP Num 178 71 174 284
Top 1 Share 41 24 37 54
Top 5 Share 74 62 77 88
Vol (mil) 260 94 174 262

(e) TUSD

mean p25 p50 p75
AP Num 66 49 74 85
Top 1 Share 50 36 46 64
Top 5 Share 86 79 91 94
Vol (mil) 154 31 85 260

(f) GUSD

mean p25 p50 p75
AP Num 1 1 1 1
Top 1 Share 100 100 100 100
Top 5 Share 100 100 100 100
Vol (mil) 113 7 17 164

49



Table 5: Secondary Price Deviation versus Redemptions

This table shows the results from regressing the lowest daily secondary market price against the daily
volume of redemptions for each USDT and USDC. The lowest secondary market price is the lowest
hourly price for each coin on each day. The daily volume of redemptions is expressed as a proportion of
the total outstanding volume of each stablecoin. We include a year fixed effect to account for structural
shifts over time.

USDT USDC

(1) (2)
Redemption -0.30∗∗ -0.13∗∗

(0.13) (0.06)
Observations 438 892
Adjusted R2 0.14 0.02
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Table 6: Distribution of p(θ)

This table shows quantiles of the distributions of the expected recovery value of assets per unit stable-
coin. We combine Markit data on CDS spreads for different asset classes from 2008 to 2022, with data
on stablecoin issuers’ asset class holdings and over-collateralization ratios, using expression (6.2).

coin date p10 p25 p50 p75 p90
USDT 2021m9 0.9857 0.9896 0.9929 0.9940 0.9950
USDT 2021m12 0.9873 0.9908 0.9931 0.9941 0.9952
USDT 2022m3 0.9884 0.9915 0.9936 0.9945 0.9956
USDC 2021m8 0.9765 0.9858 0.9907 0.9931 0.9940
USDC 2021m9 0.9769 0.9861 0.9919 0.9944 0.9950
USDC 2021m10 0.9769 0.9861 0.9919 0.9944 0.9950
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Table 7: Estimated Run Probabilities

This table shows our estimated run probabilities for different stablecoin issuers at different dates, cal-
culated by combining our estimates of the distribution of p(θ), expected recovery value of assets per
unit stablecoin using CDS data from expression (6.2), with the run cutoffs computed using expression
(5.7).

month coin runprob
2022m3 USDT 0.0345
2021m10 USDC 0.0014
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Table 8: Primary Market Daily Redemption Activity (Tron)

Panels (a) to (f) provide statistics about daily primary market redemption activity on the tron
blockchain, including the number of APs, the market share of the top 1 and top 5 APs, and the vol-
ume of redemptions. For each variable, we show the average, 25th percentile, 50th percentile , and 75th

percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
AP Num 1 1 1 2
Top 1 Share 96 100 100 100
Top 5 Share 100 100 100 100
Vol (mil) 450 40 110 460

(b) USDC

mean p25 p50 p75
AP Num 33 7 17 28
Top 1 Share 67 45 67 94
Top 5 Share 93 91 98 100
Vol (mil) 2 0 0 2

(c) TUSD

mean p25 p50 p75
AP Num 1 1 1 1
Top 1 Share 97 100 100 100
Top 5 Share 100 100 100 100
Vol (mil) 10 0 0 2
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Table 9: Primary Market Monthly Redemption Activity (Tron)

Panels (a) to (f) provide statistics about monthly primary market redemption activity on the tron
blockchain, including the number of APs, the market share of the top 1 and top 5 APs, and the vol-
ume of redemptions. For each variable, we show the average, 25th percentile, 50th percentile , and 75th

percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
AP Num 5 2 4 6
Top 1 Share 72 53 68 94
Top 5 Share 100 100 100 100
Vol (mil) 4625 651 3575 7515

(b) USDC

mean p25 p50 p75
AP Num 446 11 317 391
Top 1 Share 58 33 51 81
Top 5 Share 84 78 85 100
Vol (mil) 41 3 24 70

(c) TUSD

mean p25 p50 p75
AP Num 4 2 3 7
Top 1 Share 87 69 95 100
Top 5 Share 100 100 100 100
Vol (mil) 61 0 21 32
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Table 10: Primary Market Daily Redemption Activity (Avalanche)

Panels (a) to (f) provide statistics about daily primary market redemption activity on the avalanche
blockchain, including the number of APs, the market share of the top 1 and top 5 APs, and the volume
of redemptions. For each variable, we show the average, 25th percentile, 50th percentile , and 75th

percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
AP Num 1 1 1 1
Top 1 Share 100 100 100 100
Top 5 Share 100 100 100 100
Vol (mil) 31 5 30 60

(b) USDC

mean p25 p50 p75
AP Num 3 1 2 4
Top 1 Share 88 78 99 100
Top 5 Share 100 100 100 100
Vol (mil) 6 0 0 1

(c) BUSD

mean p25 p50 p75
AP Num 2 1 1 2
Top 1 Share 90 86 100 100
Top 5 Share 100 100 100 100
Vol (mil) 0 0 0 0

(d) TUSD

mean p25 p50 p75
AP Num 6 3 6 8
Top 1 Share 72 54 73 91
Top 5 Share 99 99 100 100
Vol (mil) 6 1 2 5
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Table 11: Primary Market Monthly Redemption Activity (Avalanche)

Panels (a) to (f) provide statistics about monthly primary market redemption activity on the avalanche
blockchain, including the number of APs, the market share of the top 1 and top 5 APs, and the volume
of redemptions. For each variable, we show the average, 25th percentile, 50th percentile , and 75th

percentile of values across months in our sample.

(a) USDT

mean p25 p50 p75
AP Num 1 1 1 1
Top 1 Share 100 100 100 100
Top 5 Share 100 100 100 100
Vol (mil) 50 1 10 120

(b) USDC

mean p25 p50 p75
AP Num 34 18 32 47
Top 1 Share 49 31 42 60
Top 5 Share 94 87 96 99
Vol (mil) 111 3 16 219

(c) BUSD

mean p25 p50 p75
AP Num 22 10 18 30
Top 1 Share 37 30 40 42
Top 5 Share 83 73 82 94
Vol (mil) 0 0 0 0

(d) TUSD

mean p25 p50 p75
AP Num 66 49 74 85
Top 1 Share 50 36 46 64
Top 5 Share 86 79 91 94
Vol (mil) 154 31 85 260
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A Appendix: Additional Institutional Details

A.1 Minting of Stablecoins

Practically, stablecoins are ERC-20 tokens. The stablecoin “smart contract,” that is, the blockchain

code that governs the behavior of the stablecoin, gives the stablecoin issuer the arbitrary right to create,

or “mint”, new stablecoin tokens, into arbitrary wallet addresses. Stablecoin issuers adopt technically

slightly different strategies to issue and redeem stablecoins in primary markets. Some, like USDC,

directly “mint” new coins using the token smart contract into customers’ wallets. Others, like Tether,

occasionally mint large amounts of stablecoin tokens to “treasury” wallets under their own control, and

then issue stablecoins in primary markets by sending tokens from the “treasury” address to customers’

wallets, and allow redemptions when customers send tokens to the treasury address.14

A.2 Trading on Crypto Exchanges

There are a number of ways individuals can purchase stablecoins with local fiat currency. One method

is to deposit fiat on a custodial centralized crypto exchange (CEX), such as Binance or Coinbase.

Centralized exchanges, like stock brokerages, keep custody of fiat and crypto assets on behalf of users,

and allow users to purchase or sell crypto assets using fiat currencies. After purchasing stablecoins

on a CEX, the user can then “withdraw” the stablecoins, instructing the CEX to send her stablecoins

to a wallet address of her choosing, to self-custody the purchased stablecoins. Another approach is

to use peer-to-peer exchanges, such as Paxful. On these platforms, users list offers to buy or sell

stablecoins or other crypto tokens for other forms of payment. Accepted forms of payment in the US

include Zelle, Paypal, Western Union, ApplePay, and many others. The exchange platform plays an

escrow, insurance, and mediation role in these transactions. When a user buys a stablecoin, she sends

funds to the exchange’s escrow account and the stablecoin seller sends stablecoins to an address of the

buyer’s choosing. Once the buyer confirms receipt of the stablecoins, the exchange sends funds from

14Treasury address tokens technically count towards the market cap of any given stablecoin, but they are not economically
meaningful as part of market cap, since Tether does not have to hold US dollar assets against tokens it holds in its treasury.
Thus, we will not count tokens held in treasury addresses as part of the stablecoin supply in circulation.
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the escrow account to the seller’s account. In this process, purchased stablecoins are sent directly to the

user’s self-custodial wallet.
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1 Introduction

Over-the-counter (OTC) markets play a key role in the U.S. financial system: they include most

fixed income securities, asset-backed securities, repurchase agreements, and various types of

derivatives, along with a significant fraction of equity trading volume. OTC markets are different

from exchange-based markets because they are decentralized: participants must first find a willing

counterparty and then agree on the terms of trade. Search models have emerged as one of the

workhorse theoretical and quantitative frameworks to analyze these markets, following the seminal

work of Duffie, Gârleanu, and Pedersen (2005) (see Weill, 2020 for a survey). However, the main

assumption that investors search for counterparties is not grounded in direct empirical evidence

about the sequential trade process. The reason is simple: existing data from OTC markets is

comprised of transaction records, which contain information about the time and price at which a

trade occurs, but not about the time investors spend searching for a counterparty.1

In this paper, we leverage a proprietary data set to offer a unique window into the sequential

search process of investors in one of the most studied OTC financial markets—the market for U.S.

corporate bonds. The data provides a complete record of all inquiries made by customers, and

the corresponding replies from dealers, on the leading electronic trading platform for corporate

bonds, MarketAxess (MKTX). Crucially, by observing both successful and unsuccessful inquiries,

the data allows us to estimate how long it takes a customer to execute a trade and how this length

of time depends on the properties of the order and the characteristics of the customer. Moreover,

by studying the behavior of both the customer and dealers over the course of the sequential search

process, our analysis also offers new insights into the sources of delays in the trading process.

We start by documenting that inquiries fail to result in trade quite often—about a third of the

time—which is consistent with the findings of Hendershott and Madhavan (2015) from an earlier

time period. We go beyond this earlier work by analyzing the behavior of customers who, shortly

after a failed inquiry, return to the market to make new inquiries for the same quantity of the same

1This limitation stands in stark contrast with other applications of search models. For example, data on
unemployment spells is informative about workers’ sequential job-finding process, while observations of time-on-
the market for houses are informative about the sequential process for selling a home.
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bond. In fact, by combining the data from MKTX with additional data from the Trade Reporting

Compliance Engine (TRACE), we can observe when customers make additional electronic inquiries

on MKTX for the same trade, when they complete the trade on MKTX, when they complete the

trade outside of the electronic platform (via the traditional voice channels), and when they abandon

the trade altogether.

Studying the details of the search process at such a granular level leads to novel estimates of

the trading frictions that exist in the corporate bond market. For example, we find that it takes

two to three days for a customer to complete the purchase of an investment-grade bond after an

initial inquiry fails. Hence, given that approximately 70% of requests are filled at the first inquiry, a

lower bound for the unconditional time to trade is about one day.2 In addition, our analysis reveals

that time to trade varies systematically across different characteristics of the order: time to trade

is shorter for sells (relative to buys), small trades (relative to larger trades), and investment-grade

bonds (relative to high-yield bonds). We also find that time to trade differs significantly across

customers, as more “connected” investors get a larger number of responses to their inquiries and

trade more quickly.

We also document the characteristics of contact rates and dealers’ replies over the course of

the sequential search process. We find that customers appear to make inquiries on MKTX more

frequently as the number of failed inquiries increases, but these inquiries get fewer replies, the best

offer gets worse, and the probability of trading falls. These dynamics could be an indication that

the terms of trade worsen over the course of the search process, or they could reflect selection based

on unobservables. We find evidence of the latter. When interpreted through the lens of a sequential

search model, our estimates suggest that customers are heterogeneous in the intensity with which

they make inquiries and in the number of responses they are able to elicit from dealers.

We believe that our analysis generates three main contributions to the existing literature. Our

first contribution is to organize the data in a way that reveals customers’ sequential search process.

We do so by observing that when a customer becomes active on MKTX, she often submits a cluster

2This estimate is a lower bound because we do not have information about how long the customer was searching
prior to submitting their first inquiry on MKTX.
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of inquiries for a particular bond within a short period of time, rather than submitting one large

inquiry. Following the practice in the equity market, we call this cluster a “parent order.” Some

of the inquiries in a given parent order are for different quantities of the same bond, a form of

order splitting.3 However, other inquiries can be identified as repeated attempts to trade a specific

quantity; we call these “child orders.” Because order splitting may be viewed as evidence of

asymmetric information rather than search frictions, we focus on the sequential trade process for

child rather than parent orders.

Summary statistics about child orders immediately reveal several interesting insights. First,

sequential search is, indeed, a prominent feature of the trading process: as noted above, the

probability that an inquiry is unsuccessful is about 30 percent, and customers routinely submit

repeat inquiries. Conditional on the first inquiry failing, the median number of inquiries in a child

order is 2, the 75th percentile is 3, and the 99th percentile is 9. Second, trade is non-exclusive: a

customer may eventually trade on the voice market instead of MKTX, which we can observe using

the enhanced version of the TRACE data set. The third takeaway is that the probability a child

order ends without trade is significant, either because the investor abandons the trade altogether or

creates a new child order by submitting an inquiry for a different amount. Lastly, organizing trades

into parent and child orders has a significant effect on estimates of trading probabilities and time

to trade. For example, we estimate that approximately 80% of child orders are eventually filled,

whereas the existing literature (e.g., Hendershott and Madhavan, 2015) arrives at an estimate of

approximately 67% when individual inquiries for trade are treated independently.

After organizing the data into parent and child orders, our second contribution is properly

measuring the time it takes to successfully trade child orders. Even with our granular observations

of inquiries and trade, measuring the time to trade remains a nontrivial exercise because of two

potential sources of bias. The first is survivor bias created by “competing risks.” For example, the

measured average time to trade on MKTX is biased downwards because it is based on trades that have

occurred relatively quickly, before the arrival of other events such as trading with a dealer outside

3Czech and Pintér (2020) provide evidence of informed investors splitting their orders across multiple dealers in
the UK corporate bond market.
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the platform or deciding to abandon this particular child order. The second concern is selection bias:

since different types of inquiries (and customers) trade with different probabilities, we must account

for potential changes in the composition of inquiries—both observable and unobservable—over

the course of the sequential search process. We attempt to correct for these biases via Maximum

Likelihood estimation: we assume that successful inquiries on MKTX, unsuccessful inquiries on

MKTX, voice trades, and exit (i.e., abandoning the child order and/or beginning a new one) occur

at independent exponential times with intensities that depend on the characteristics of the child

order.

Equipped with these estimated intensities, we calculate the expected time it takes for a child

order to trade, either on MKTX or via voice trade, in the event that the customer does not exit

the child order. We find that it takes between two to three days to complete a trade after a first

failed inquiry. Trade is much faster, by about a day, for sales than purchases. Block trades (with

size above $5 million) take about one day longer to trade than micro-size ones (with size below

$100,000). Bonds with amounts outstanding below the median take half a day more to trade.

Bond age, turnover, and credit rating all have statistically significant impacts on time to trade, but

with economically small effects. Customer connectedness, measured by the average number of

responses that a particular customer elicits on MKTX, has an economically significant impact on

time to trade. Moreover, we observe a large increase in time to trade, by more than a day, during the

pandemic-induced crisis of March 2020, when the corporate bond market suffered severe liquidity

disruptions (Kargar, Lester, Lindsay, Liu, Weill, and Zúñiga, 2021). Finally, comparing time to

trade on MKTX and voice, we observe that child orders trade much faster on MKTX for all size

categories except block trades, suggesting customers use the platform for execution quality rather

than price discovery.

These estimates are helpful for at least two reasons. First, they can be directly applied to

quantitative analyses based on search-theoretic models, since the arrival rates we estimate are

crucial, yet controversial inputs that are typically identified via indirect inference. Second, the

correlations we find between our estimates of time to trade and other observable outcomes provide
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a natural starting point for additional empirical and theoretical work. For example, the fact that

it takes longer for a customer to buy a bond than it does to sell it suggests that it might take time

for dealers to locate (or “source”) a bond. Alternatively, it could indicate that sellers are more

distressed, on average, than buyers.

Our third contribution derives from studying the dependence of various trading outcomes on

the number of previously unsuccessful inquiries, which helps us unpack the evolution of customers’

and dealers’ behavior over the course of the sequential search process. After controlling for various

observed characteristics of child orders, we find that, with each additional failed inquiry, the number

of dealer responses declines, the terms of trade deteriorate, and the time to trade increases. This

dependence on the number of failed inquiries could, in principle, occur for two different reasons.

First, dealers could adjust their behavior when they recognize a customer has attempted multiple,

unsuccessful inquiries, perhaps because of information leakages or what Zhu (2011) calls the

“ringing-phone curse.” Alternatively, this dependence could derive from the fact that child orders

differ in characteristics unobserved by the econometrician. We find evidence in support of the

latter, rather than the former. In particular, when we repeat our estimation with child-order fixed

effects, which control for all characteristics, observed and unobserved, the dependence of outcome

variables on the number of failed inquiries largely disappears.

But what accounts for these child order fixed effects? In principle, it could be an unobserved

characteristic of the customer or of the market at the time of the child order. We propose a simple

theory that incorporates unobserved heterogeneity into the standard sequential search model in the

tradition of McCall (1970), and argue that the dependence of outcome variables on the number of

failed inquiries is consistent with child orders differing in their inquiry intensity and in the average

number of responses they can elicit from dealers. More specifically, some child orders have low

inquiry intensity and many responses, while others have high intensity and low responses.

5



Related literature

Our work is most closely related to the few other papers that have used the proprietary data from

MKTX to analyze the impact of electronic trading on corporate bond market conditions (e.g.,

Hendershott and Madhavan, 2015; O’Hara and Zhou, 2021; Hendershott, Livdan, and Schürhoff,

2021). Our analysis differs from these papers in both our focus and our approach. More specifically,

we are the first to organize the MKTX data into parent and child orders in order to offer new evidence

about the sequential search process, including novel estimates of the time to trade conditional on

the characteristics of the trade (size, direction, bond rating, and customer connectedness).

Our work also contributes to the vast empirical literature that studies corporate bond market

liquidity based on transaction data. Some prominent examples include Schultz (2001), Bessem-

binder, Maxwell, and Venkataraman (2006), Edwards, Harris, and Piwowar (2007), Goldstein,

Hotchkiss, and Sirri (2007), Bao, Pan, and Wang (2011), Bessembinder, Jacobsen, Maxwell, and

Venkataraman (2018), and many others.4 Our contribution relative to this literature is our attempt to

measure the time to trade and to empirically investigate the sequential search process of customers

in the corporate bond market. Our estimates of time to trade provide new empirical evidence on

a dimension of liquidity at the center of search-theoretic models. Hendershott, Li, Livdan, and

Schürhoff (2020) pursue similar goals but for a different dimension of liquidity (the cost of trade

failures) in a different market (the market for collateralized loan obligations).

Our attempt to measure time to trade is related to earlier works in the OTC search literature

which have proposed strategies to identify investors’ search intensities. For example, according

to the model of Afonso and Lagos (2015), Üslü (2019), and Brancaccio and Kang (2021), when

search is random and the distribution over agents’ state is continuous, every meeting results in

a trade. This allows one to identify the search intensity from the trading intensity. While this

identification strategy is reasonable for dealers, it is problematic for customers who presumably

spend long periods of time out of the market: clearly, observing that a customer trades once a year

does not imply that it takes a year to find a counterparty. Gavazza (2016) addresses this issue using

4See Bessembinder, Spatt, and Venkataraman (2020) for a survey
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a structural model, taking advantage of aggregate information about the total number of real assets

(in his case, aircraft) for sale at a time. Pintér and Üslü (2021), alternatively, use joint observation

of trade size and frequency to indirectly identify search intensities. We propose a more direct

approach, based on granular observations, which does not rely on the restrictions imposed by a

specific structural model.

Finally, our approach is related to the large literature that attempts to estimate the key objects of

interest in the standard sequential search model of McCall (1970), which was first used in financial

economics by Garbade and Silber (1976). Early attempts to do so in a labor market context include

Kiefer and Neumann (1979) and Flinn and Heckman (1982), among others. As in labor economics,

this simple partial equilibrium model is a natural starting point for interpreting micro data, as

it helps rationalize failed inquiries, repeated attempts to trade, and price dispersion.5 However,

while we find it useful to formulate a search-theoretic model to motivate our empirical exercise

and interpret its findings, it’s important to note that our measurement does not impose theoretical

restrictions from the model.

2 Data

Our main source of data is MarketAxess (MKTX), the leading electronic trading platform in the

corporate bond market. Prior to the introduction of MKTX, in 2000, the corporate bond market

operated almost exclusively under a “voice-based” trading system, whereby customers would

sequentially contact dealers (via telephone or chat) one at a time to solicit a quote. Stepping into

this market, MKTX offered a trading platform allowing buy-side traders (henceforth customers)

to query multiple dealers at once via an electronic request for quote (RFQ), thus reducing the

time-consuming process of gathering quotes and potentially increasing competition across dealers.

5Naturally, understanding the process that generates dealers’ offers requires expanding the model to include
an explicit analysis of the market structure of the dealer sector, along with the optimal strategies of (potentially
heterogeneous) dealers. Given the scope of the current paper, we leave this extended analysis for future work.
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As of the third quarter of 2022, MKTX accounts for approximately 21% of total trading volume in

the corporate bond market.6

When requesting a quote on the MKTX platform, customers specify the bond they wish to

trade, the desired quantity, the trade direction or “side” (buy or sell), and the duration of the auction

(usually between 5 and 20 minutes). Once submitted, a customer inquiry is sent to a list of pre-

authorized dealers.7 On the receiving end, dealers observe the details of the inquiry, including the

customer’s identity. The receiving dealers may respond to the inquiry with a quote, but are not

obligated to do so. At the end of the auction, customers observe the terms of the replies (if any),

and can choose to either accept one of the offers or pass.8

Our sample from MKTX covers all trading activity from January 3, 2017 to March 31, 2021.

The data contain detailed information on customer inquiries, dealer responses, and customer

trading decisions. More specifically, for each inquiry, we observe the submission time (stamped

at the second), an anonymized customer identifier, the CUSIP (Committee on Uniform Securities

Identification Procedures) number of the requested bond, the requested quantity, the trade side (buy

or sell), the number of dealers who received the request, and several other attributes. For every

response to an inquiry, we observe the anonymized identifier of the responding dealer together

with his quote. For inquiries that result in a transaction, we observe the time at which trade occurs

and the terms of trade. Note that we observe all inquiries, including those that do not result in a

trade, either because the inquiry receives no responses or because the customer chooses to reject

all responses.

Importantly, when an inquiry fails to trade on MKTX, a customer may trade outside the

platform via voice. In the next section, we describe how we attempt to identify these trades using

the enhanced version of the Trade Reporting Compliance Engine (TRACE) data set provided by

6Source: MarketAxess quarterly report for 2022Q3, available from: https://investor.marketaxess.com.
7Starting in 2012, MKTX initiated Open Trading, a trading protocol that enables all-to-all trading in the corporate

bond market. This protocol allows other investors as well as non-pre-authorized dealers to respond to requests for
quotes. Approximately 15% of MKTX auctions are won by responses submitted through Open Trading. For a
comprehensive analysis of the Open Trading protocol, see Hendershott, Livdan, and Schürhoff (2021).

8The main variation in dealers’ offers is price. In principle, dealers can respond to an offer with a different quantity,
but in practice more than 97% of dealer responses are at the quantity level requested by the customer.
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FINRA. The TRACE database contains detailed reports of every successful trade, whether it has

an electronic or voice origin. When working with TRACE, we filter the data following the standard

procedure laid out in Dick-Nielsen (2014). We merge the cleaned data set with the Mergent Fixed

Income Securities Database (FISD) to obtain bond fundamental characteristics (e.g., credit ratings,

amount outstanding, coupon rates, etc.) Following the bulk of the academic literature, we exclude

variable-coupon, convertible, exchangeable, and puttable bonds, as well as asset-backed securities,

privately placed instruments, and foreign securities. We also exclude primary market transactions.

Finally, we measure transaction costs as a markdown or markup relative to the benchmark

provided by MKTX, called Composite+ (CP+).9 CP+ is the proprietary algorithmic pricing engine

for corporate bonds from MKTX. It is designed to provide an unbiased two-sided market forecast

for institutional-size trades. The engine outputs reference bid and ask prices at a high frequency

(every 15 to 60 seconds). These forecasts can be used to benchmark a significant fraction of TRACE

records: 90% of high-yield TRACE records can be matched to a standing CP+ forecast; that figure

goes up to 95% for investment-grade bonds.

The construction of the forecasts follows two steps. First, MKTX trains a machine learning

(ML) algorithm using three distinct sources of bond trading data: (1) historical TRACE prints;

(2) indicative bond price data streamed by dealers; and (3) request for quote responses sent by

liquidity providers on the MKTX trading platform. Beyond trading data, MKTX uses bond level

information and other broad market data, such as CDX levels, to train the prediction engine. The

engine is recalibrated overnight at a daily frequency. Second, the calibrated engine is used over the

next trading day to generate real-time reference bid and ask prices of individual bonds using all

available intraday information.

2.1 The query process: parent and child orders

To give the reader a sense of how the query process works and to motivate the way we organize

and analyze the data, we believe it is helpful to present some representative examples of inquiries.

9For more details about Composite+, see https://www.marketaxess.com/price/composite-plus.
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First, panel (a) of Table 1 provides an example of a successful inquiry. In this example, a customer

submitted an inquiry to buy $300,000 in par value of an investment-grade bond issued by Bank

of America. The customer received six replies from dealers, whose anonymized identifiers are

provided in column (6). Note that, because the bond in question is investment-grade, dealer

responses in column (7) are in terms of yield spread relative to a benchmark Treasury bond (a

higher yield spread implies a lower purchasing price). As we can see from this column, dealers’

quoted yield spreads vary between 126.37 and 129.70 basis points. In the second row of column

(9), the entry “Done” shows that the customer accepted the best (highest) offer.10 In our sample,

67% of all inquiries result in a successful trade.11

[Table 1 about here.]

Panel (b) of Table 1 provides an example of unsuccessful inquiry. This inquiry was submitted

by the same customer and for the same bond as the inquiry reported in panel (a), but this time, the

customer requested to purchase an amount of $490,000 in par value instead of $300,000. A total of

nine dealers responded to the customer’s new request. By comparing the identifiers of responding

dealers for both inquiries, we see that five of the six dealers who responded to the first inquiry also

responded to the second untraded inquiry. Four additional dealers, who had not replied to the first

inquiry, replied to the second inquiry. However, the customer decided to pass on the best offer (a

yield spread of 127.01), as indicated by the “did not trade” (DNT) flag in the last column. In our

sample, 16% of inquiries that receive at least one response do not trade. An additional 18% of

inquiries do not receive any response.

While customer inquiries are informative about the trading process in and of themselves, a

careful examination of the data reveals that individual inquiries are often parts of larger trading

orders. As a result, individual inquiries should not always be treated as independent observations.

To help the reader see why, Table 2 reports all the inquiries that the customer in our previous

10In the last row of column (9) in Table 1, the entry “Cover” identifies the second best offer. MKTX informs dealers
who submit the second best offer of the rank of their quote. Dealers who submit lower-ranked offers do not learn their
relative position in the auction.

11While we examine a different time period, we find a fraction of successful trade consistent with the findings of
Hendershott and Madhavan (2015).
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examples (Table 1) submitted to purchase this particular Bank of America bond over a six month

period. To save space, we do not report the responses that each inquiry received, and report only

whether or not a given inquiry resulted in a trade (see column 7). Note that the first and second

inquiries reported in Table 2 correspond to the inquiries reported in panel (a) and panel (b) of

Table 1.

Notice immediately that the customer made repeated successful purchase inquiries for the same

bond over an eight day period. Of the six inquiries, four were successful and led to the purchase

of 300, 490, 290, and 680 bonds (with $1,000 par value) for a total of 1760 bonds. This anecdotal

evidence suggests that customers sometimes execute large orders by submitting a sequence of

smaller inquiries. To give further credence to this interpretation, Figure 1 plots the daily number of

purchase inquiries submitted by this customer over a six month horizon. The figure makes clear that

the customer’s inquiries over that horizon are concentrated in mid-August 2017, which supports

the view that the individual inquiries are part of a larger order and not independent events.

The second noteworthy feature of Table 2 is that the customer twice followed an unsuccessful

inquiry by resubmitting an identical inquiry (same bond, quantity, and trade side) soon afterward.

This phenomenon is first observed after the second inquiry and again after the fourth. While both

of these unsuccessful inquiries received multiple dealer responses, the customer chose to pass.12

Hence, the example in Table 2 suggests that even when customers are able to simultaneously contact

a large number of dealers, sequential search remains a feature of the trading process in the U.S.

corporate bond market.

These patterns of trade are widespread. For example, about a third of trading volume can be

attributed to a parent order with two or more child orders, and approximately a quarter of child

orders have at least two inquiries. Hence, we argue that a natural first step is to organize RFQs into

clusters, representing the total quantity of a particular bond that a customer is attempting to trade,

which we refer to as the “parent” order. Within each parent order, we further partition the set of

inquiries into sets of “child” orders in which the customer requests a specific quantity of the bond.

12For the second inquiry, this can be seen in panel (b) of Table 1. To save space, the responses associated with the
fourth inquiry are not reported.

11



0

1

2

2017-06-01 2017-07-03 2017-08-01 2017-09-01 2017-10-02 2017-11-01 2017-12-01

da
ily

nu
m

be
ro

fi
nq

ui
rie

s

Figure 1. Inquiry cluster
This figure shows an inquiry cluster for a customer purchase for an 11-year, 3.824% investment-grade bond issued on
January 17, 2017 by Bank of America over a six-month period in 2017.

We borrow the parent and child order terminology from the equity market literature on institutional

trading where large (parent) orders are often split into smaller (child) orders for execution. In the

example above, as one can see in columns (8) and (9) of Table 2, all six inquiries make up a single

parent order—where the customer attempts to trade 1760 units of this particular bond over an eight

day period—and this parent order is split into four smaller child orders.

[Table 2 about here.]

More precisely, since the data itself does not explicitly identify parent and child orders, we

employ the following procedure to construct the appropriate identifiers. First, to construct parent

orders, we group all inquiries made by a specific customer for a given bond and trade side until

we do not observe a new inquiry with the same characteristics (customer, bond, trade side) for 𝑁𝑝

days since the last inquiry. The time cutoff delimiting parent orders is admittedly arbitrary. In our

main specification, we use a cutoff of five days. However, our main results are not sensitive to this

choice; we obtain qualitatively similar results with a cutoff of ten days.

Second, we construct child orders by looking at repeated inquiries from a given customer for

the same bond, the same trade side, and the same requested quantity. We consider all inquiries
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with these characteristics as part of the same child order until either (i) the most recent inquiry

of the child order led to an electronic trade on MKTX; (ii) the customer submitted a new inquiry

requesting a different quantity, in which case we initiate a new child order with the updated quantity;

or (iii) there is no new inquiry with the same characteristics (same customer, bond, trade side, and

trade size) for more than 𝑁𝑐 days, where 𝑁𝑐 ≤ 𝑁𝑝. When no new inquiry has been submitted for

more than 𝑁𝑐 days, we consider the execution of the child order unsuccessful on MKTX. Here

again, the threshold 𝑁𝑐 is arbitrary. While we use a cutoff of five days in our main specification,

our main results are not sensitive to this choice.

There are two reasons why a child order may be unsuccessful on MKTX. First, the customer

might have given up trading the bond. Second, the customer might have traded the bond via voice.

These two outcomes have different economic implications and should be distinguished. Ideally,

we would match customer inquiries on MKTX that result in a voice trade using the corresponding

TRACE record. However, since TRACE does not report customer identities, it is impossible to

match a child order that is traded via voice to its corresponding TRACE record with certainty.

Fortunately, this issue can partially be overcome since most corporate bonds trade only a few times

a day or less. As a result, the likelihood that two different customers would trade the same quantity

of the same bond within a few days is arguably low. We thus infer the occurrence of a voice trade

by verifying if there exists a record in TRACE with the same characteristics as the unsuccessful

child order (same bond, traded quantity, trade side) within five days of that child order’s last on

MKTX. In the rare cases where there are multiple matches, we select the closest one in time.

2.2 Summary statistics

We could, in principle, conduct our analysis in two ways: at the level of parent orders, or at the

level of child orders. However, the splitting of a parent order into child orders may be driven by

considerations other than search, such as asymmetric information (as in, e.g., Kyle, 1985). For

this reason, we find it more natural to study the sequential search process using child orders as our

main unit of observation. We begin this section by presenting some summary statistics, explaining
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voice
trade

exit

MKTX inq.
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Figure 2. A child order event tree
A child order can be viewed as a sequence of events. Each element of the sequence is one of four possible events: a
MKTX inquiry without trade, a MKTX inquiry with trade, a voice trade and, if the child order ends without a trade, an
exit. By construction, the first event is always an inquiry on MKTX, either without or with trade.

how our sample differs from previous studies on the corporate bond market, and providing some

preliminary evidence about the sequential trade process.

A child order is a sequence of events. Each element of the sequence is one of four possible

events. First, the customer may make an inquiry on MKTX that fails to produce a trade. Second,

the customer may make an inquiry on MKTX that results in a trade with one of the dealers that

responded. Third, we may find that the customer traded the desired bond-quantity pair outside of

the MKTX platform, via voice trade, within a short period of time. Fourth, the customer may give

up on the trade and exit — either sending an inquiry for a different amount or abandoning the trade

altogether. By construction, the first event in any child order that we observe is always an inquiry

on MKTX, without or with trade. We can measure the time elapsed to the next event, unless it is

an exit. Figure 2 illustrates a child order event tree.

Our focus on child order sets us apart from previous studies, such as Hendershott and Madhavan

(2015) or O’Hara and Zhou (2021), who consider the universe of all inquiries and/or of all trades

on MKTX. A simple way to illustrate the conceptual difference between child orders and inquiries
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is to calculate trade probabilities. Since child orders include repeated inquiries on MKTX, they

are naturally associated with a larger trading probability than inquiries alone. The difference is

economically significant: in our sample, approximately 75% of child orders are traded on MKTX,

while the trade probability at the inquiry level is 67%.

In Table 3 and Figure 3, we present the results of a logit regression. The dependent variable is

whether trade occurs on MKTX and the independent variables are indicator functions for customer

and trade characteristics. The “baseline category” is a round lot, investment-grade, buy request, for

an above-median turnover and amount outstanding, and below-median time to maturity bond, from

a well connected customer. Column (1) and (2) of Table 3 present estimates at the child order and

inquiry levels, respectively. The unit of the coefficients is log odds ratio of trade. For example, the

intercept in the column (1) shows that the odds ratio of trade for the baseline category is exp(2.462),

leading to the probability of trade of exp(2.462)/(1 + exp(2.462)) = 92%. In other words, at the

child order level, the probability of trade for the baseline category is 92%. At the inquiry level

in column (2), the odds ratio is smaller by about 18 percentage points, corresponding to a trade

probability of 88%. So, one can see that child orders are executed with higher probability than

inquiries. In Figure 3, the blue bars represent inquiry-level trade probabilities, and the combined

blue and grey bars represent child-order trade probabilities.

[Table 3 about here.]

The estimates for covariates in Table 3 are interesting as well. For example, sequential trade

matters a great deal for the “least connected” customers, defined as those who elicit a relatively low

number of responses from dealers. The trade probability at the inquiry level is about 45%, but it is

about 55% at the child order level. One can also see that the probability of trade fell at both inquiry

and child order levels during the COVID-19 crisis in March 2020, but that the fall was much less

dramatic at the child order level: at the inquiry level, the trade probability falls to about 75%, but at

the child order level it falls much less, to 83%. This suggests another way sequential trade matters:

during stressful events, it is harder for customers to obtain good quotes on MKTX, but investors

could compensate for it by waiting.
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Figure 3. Estimated trade probability on MKTX at inquiry and child order levels
This figure compares the estimated trade probability on MKTX using logit regression estimates from Table 3. The
blue bars present trade probabilities at the inquiry level. The gray bars shows the extra trade probability for a child
order, taking into account the option to make repeat inquiries. The top panel shows trade probabilities for different
size categories. The bottom panel presents trade probabilities for non-size categories. Indicators for size and non-size
categories are defined in Table 8. The baseline category is an odd-lot purchase of an investment-grade bond, with high
turnover, low time-to-maturity, and high amount outstanding, during normal times, for a connected investor.

One may wonder whether our sample significantly differs from its inquiry- or trade-level

counterparts in other dimensions as well.13 Table 4 shows that this is not the case: child-order

and inquiry-level summary statistics are broadly the same for trade direction and size and bond

characteristics. As in previous studies, we find that trade sizes on MKTX are smaller and bond credit

risk is lower than in the market at large. To measure the inter-arrival time of trading opportunities,

13For example, suppose that high-yield bonds trade after twice as many inquiries as investment-grade bonds. Then
we would find that the number of high-yield inquiries is twice that of high-yield child orders.
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we will need to restrict the sample further to child orders with at least one failed inquiry. Column (3)

of Table 4 shows that the summary statistics remain similar, though the sample is now more selected

towards high-yield bonds and inquiries of larger size since both are less likely to trade at the first

MKTX inquiry.

[Table 4 about here.]

Table 5 offers some descriptive statistics about child orders. The first row shows that the probability

that a child order does not trade at the first inquiry is nontrivial, about 0.28. The following rows

provide the frequency distribution over the next event in the child order, conditional on the number

of failed inquiries to date. For example, the second row shows that if the first inquiry fails, the

probability that the following event is a failed inquiry on MKTX is 0.17, the probability that there

is a successful inquiry on MKTX is 0.09, the probability that there is a voice trade is 0.24, and

the probability of an exit is 0.49. We will argue later that these probabilities are not obvious to

interpret because of competing risk and selection biases. Notwithstanding these issues, there are

a few takeaways. First, trade is sequential: the probability of failing an inquiry is nontrivial, and

customers often submit repeat inquiries. Second, trade is non-exclusive: if the first inquiry fails, the

child order may eventually trade on MKTX or voice.14 The third takeaway is that exit is nontrivial:

the probability that a child order ends without trade is large. Fourth, the summary statistics in

Table 5 show that the frequency distribution over the four events depends on the number of failed

inquiries – a form of duration dependence.

[Table 5 about here.]

Table 6 presents inter-arrival times between events in child orders. For example, after one failed

inquiry, the average time to the next traded inquiry on MKTX is 0.65 business days. However, as

we argue below, this estimate is clearly biased downwards, since observing this event requires that

none of the other events occur first.

14While the probability of a voice trade is larger than that of an MKTX trade, the ratio is not as large as the relative
volume of voice to MKTX volume. This suggests that, although trade is nonexclusive, the customers in our sample are
using MKTX more intensely than the general population.
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[Table 6 about here.]

3 The sequential trade process: theory and evidence

3.1 A McCall (1970) model of a child order

In this section, we formulate and solve a sequential trade model of a child order in the style of McCall

(1970), which was first applied to financial markets by Garbade and Silber (1976). This theoretical

detour serves two purposes. First, it is a simple and natural theoretical framework to interpret our

child order data; in particular, it helps clarify competing risk and selection biases in child order

statistics and motivates the statistical models we estimate later. Second, since the McCall (1970)

model is the workhorse, partial equilibrium model of sequential search, it constitutes a key building

block in virtually all search-based models of OTC markets. Interpreting our empirical evidence

through the lens of this sequential search model offers guidance for the quantitative values of key

parameters—allowing us to infer, e.g., the time it takes to trade—and highlights which dimensions

of the model fit the data well, and which dimensions must be enriched in order to match certain

features of the data.

The model. Time is indexed by 𝑡 ∈ [0,∞) . We consider a child order to sell a perpetual par

bond, that is, a perpetuity with a coupon rate that is equal to the interest rate, 𝑟. We assume that the

seller is risk-neutral with discount rate 𝑟 and is distressed, in that she values the bond below its par

value of 1. Specifically, when she holds the bond, she derives a flow utility 𝑟 − 𝑐, for some distress

cost 𝑐 > 0. The seller recovers from distress with intensity 𝛾. Upon recovering, we assume that the

seller’s continuation value is equal to the par value of the bond, she stops searching, and exits the

market.15 We focus here on a customer looking to sell, for simplicity, but the analysis of a purchase

is symmetric.

Consistent with the child order tree of Figure 2, we take 𝑡 = 0 to represent the time at which

15We discuss alternative assumptions after Proposition 1.
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the seller makes her first inquiry on the electronic market.16 If the first inquiry is unsuccessful,

the seller makes inquiries on the electronic or the voice market with Poisson intensities 𝜆𝑒 and 𝜆𝑣,

respectively. At this level of abstraction, the arrival rate of trading opportunities could represent

frictions that derive from either side of the market. For example, the source of the friction could

be that the customer simply can’t find a dealer willing to buy the asset at an acceptable price, as in

the literature following Duffie, Gârleanu, and Pedersen (2005). Alternatively, it could be that the

customer is busy with other tasks and not actively trading in the market at all times, as in Biais and

Weill (2009) and Biais, Hombert, and Weill (2014).

After an inquiry in the electronic market, the seller receives 𝑗 ∈ {0, 1, 2, . . .} offers with

probability 𝑞 𝑗 . We represent an offer as a bid 1 − 𝑚, where 𝑚 is the markdown over the bond par

value of 1. We assume further that each offered markdown is drawn independently according to

the cumulative distribution function (CDF) 𝐺𝑒 (𝑚). Correspondingly, when she makes an inquiry

in the voice market, the seller receives just one offer, drawn according to the CDF 𝐺𝑣 (𝑚). For

simplicity we assume that, for both distributions, the lower bound of the support is 0. As will be

clear below, the optimal trading strategy of the seller depends on two “sufficient statistics.” First

the total Poisson intensity of inquiries,

𝜆 = 𝜆𝑒 + 𝜆𝑣,

and, second, the CDF over the lowest markdown, conditional on an inquiry,

𝐹 (𝑚) = 𝜆𝑒

𝜆𝑒 + 𝜆𝑣

∞∑︁
𝑗=0
𝑞 𝑗

[
1 − (1 − 𝐺𝑒 (𝑚)) 𝑗

]
+ 𝜆𝑣

𝜆𝑒 + 𝜆𝑣
𝐺𝑣 (𝑚).

The first term in this equation is the probability of making an inquiry on the electronic market,

multiplied by the probability that the smallest markdown among 𝑗 offers is less than 𝑚. The second

term has the same interpretation, but for the voice market.

Given this notation, the Hamilton Jacobi Bellman (HJB) equation for the seller’s value at any

16Alternatively, one may interpret 𝑡 = 0 as the time at which the seller becomes distressed.
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time 𝑡 > 0 is

𝑟𝑉 = 𝑟 − 𝑐 + 𝜆
∫

max{1 − 𝑚 −𝑉, 0} 𝑑𝐹 (𝑚) + 𝛾(1 −𝑉). (1)

The first term on the right-hand side is the flow value of holding the asset, i.e., the coupon 𝑟 net

of the distress cost 𝑐. The second term is the option value of search: the seller makes an inquiry

with intensity 𝜆, her best offer is distributed according to 𝐹 (𝑚), and she accepts if the price 1 − 𝑚

is larger than the value of continuing search, 𝑉 . The third and last term is the expected flow utility

if the seller recovers/exits. As is standard, the HJB shows that the optimal trading strategy of the

seller is entirely characterized by the reservation markdown

𝑚★ ≡ 1 −𝑉. (2)

That is, when she makes an inquiry, the seller trades if and only if the lowest markdown she

receives is less than𝑚★. To obtain an equation for𝑚★, we substitute (2) in the HJB and obtain, after

integration by parts, our version of McCall’s celebrated equation, summarized in the following

proposition.

Proposition 1 The reservation markdown of a seller is the unique solution to

𝑚★ =
𝑐

𝑟 + 𝛾 − 𝜆

𝑟 + 𝛾

∫ 𝑚★

0
𝐹 (𝑚) 𝑑𝑚. (3)

The reservation markdown 𝑚★ increases with the distress cost 𝑐, decreases with the interest rate,

𝑟, decreases with the exit rate, 𝛾, decreases with the inquiry intensity, 𝜆, and increases in response

to a first-order stochastic dominance shift in the distribution of the best markdown, 𝐹 (𝑚).

The first term in Equation (3), 𝑐/(𝑟 + 𝛾), is the expected present value of the seller’s distress cost.

It represents the monopsony markdown: the maximum markdown a seller would be willing to

accept if she received just one take-it-or-leave-it offer by a dealer, and no offer forever after. The
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optimal reservation markdown is less than the monopsony markdown because of the option value

of searching for another offer.

The comparative statics for the reservation markdown are similar to those obtained in the

classical job-search setting, with the exception of the effect of varying 𝑟 + 𝛾. The reason is that,

in our setting, increasing 𝑟 + 𝛾 impacts the seller’s problem in two ways. First, as in job-search

models, increasing 𝑟 + 𝛾 reduces the option value of search which, all else equal, increases the

reservation markdown. Second, and new to this setting, it decreases the present value of the seller’s

distress costs, which decreases the reservation markdown. The second effect, it turns out, always

dominates in our setting.17

Next, we use this simple model as an aid to interpret our child order data. Recall the child order

tree of Figure 2, where a child order is viewed as a sequence of events. According to the model,

there is a new event in the child order tree with intensity

𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾.

Conditional on an arrival, the new event is drawn independently from the arrival time according to

the following distribution. The new event is an inquiry without trade on the electronic market with

probability

𝜋1 =
𝜆𝑒

∑∞
𝑗=0 𝑞 𝑗 (1 − 𝐺𝑒 (𝑚★)) 𝑗

𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾
,

17For now, we have assumed that the seller exits the market when she recovers from distress: as shown in the HJB
equation (1), her continuation value is set to the par value of the bond (1) upon recovery. But one may consider other
plausible assumptions: for example, an exit in our data could occur because the seller goes back to the market with
a different inquiry, e.g., for another quantity or a closely substitutable bond. In the analysis of the McCall (1970)
model above, this amounts to changing the continuation value. Assume, for example, that when an exit occurs, the
seller submits another child order for almost the same quantity or a nearly identical bond. Then, in the HJB equation,
the continuation value is 𝑉 instead of 1, and the reservation markdown equation is almost the same: the appropriate
discount rate is now 𝑟 instead of 𝑟 + 𝛾.
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it is an inquiry with trade on the electronic market with probability

𝜋2 =
𝜆𝑒

∑∞
𝑗=0 𝑞 𝑗

[
1 − (1 − 𝐺𝑒 (𝑚★)) 𝑗

]
𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾

,

it is a trade on the voice market with probability

𝜋3 =
𝜆𝑣𝐺𝑣 (𝑚★)

𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾
,

and it is an exit with probability 𝜋4 = 1 − 𝜋1 − 𝜋2 − 𝜋3.

The formulae above illustrate two sources of bias that make interpreting child order statistics

difficult. We discuss these two sources of bias below.

Competing risk bias. First, since the event type is drawn independently from the event arrival

time, it follows that the observed expected arrival time of any of the four events is given by

𝜏 =
1

𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾
.

Notice that this observed expected arrival time is lower than the actual arrival time of the event.

For example, the actual arrival time of a voice trade is 1/(𝜆𝑣𝐺 (𝑚★)). This is a classical survivor

bias induced by competing risk (e.g., Flinn and Heckman, 1982; Katz and Meyer, 1990; Honoré

and Lleras-Muney, 2006) created by the arrival of other events. Imagine for example, that sellers

exit the market very fast. Then the only trades on the voice market we would observe are those that

occur sufficiently quickly, before an exit shock.

The formulae above show that there is a simple way to correct for this survivor bias. For

example, the true expected time to trade on voice is equal to the ratio 𝜏/𝜋3. As we will show below,

this correction can be made more generally using a Maximum Likelihood approach, conditional on

observable child-order characteristics.
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Selection bias. In the data, we can control for several observed characteristics of child orders,

such as bond type, trade size, and a natural measure of customer connectedness. But there may be

other characteristics that are difficult to control for based on observables, including the distressed

cost of a seller, 𝑐; her inquiry intensities, 𝜆𝑒 or 𝜆𝑣; her ability to elicit responses from dealers, {𝑞 𝑗 };

or her exit intensity, 𝛾. Such unobserved characteristics create classical selection issues that could

explain the apparent dependence of event probabilities on the number of failed inquiries, shown in

Table 5.

To fix ideas formally, suppose that heterogeneity in child orders can be summarized by a one-

dimensional type variable 𝑥 ∈ [𝑥, 𝑥]. This specification allows for heterogeneity in all structural

variables (𝜆𝑒, 𝜆𝑣, 𝛾, 𝑐, 𝑟 , 𝐺𝑒, 𝐺𝑣, and so on), provided that there is a fixed relationship between the

type 𝑥 and each structural variable in the cross-section of child orders. Then, the measure of type-𝑥

child orders with 𝑛 ≥ 1 failed inquiries, 𝜇(𝑥 | 𝑛), satisfies the following inflow-outflow equation:

𝜆𝑒 (𝑥)
[∑︁
𝑗

𝑞 𝑗 (𝑥)
[
1 − 𝐺𝑒 (𝑚★(𝑥) | 𝑥)

] 𝑗 ]
𝑑𝜇(𝑥 | 𝑛 − 1)

=
[
𝜆𝑒 (𝑥) + 𝜆𝑣 (𝑥)𝐺𝑣 (𝑚★(𝑥) | 𝑥) + 𝛾(𝑥)

]
𝑑𝜇(𝑥 | 𝑛).

The left-hand side is the inflow generated by child orders that make unsuccessful inquiries on

the trading platform. Similarly, the right-hand side is the outflow generated by child orders that

make inquiries on the trading platform, trade on the voice market, or exit. Taken together, these

inflow-outflow equations imply that

𝑑𝜇(𝑥 | 𝑛) = 𝜋1(𝑥)𝑛 𝑑𝜇(𝑥 | 0), where 𝜋1(𝑥) ≡
𝜆𝑒 (𝑥)

(∑
𝑗 𝑞 𝑗

[
1 − 𝐺𝑒 (𝑚★(𝑥) | 𝑥)

] 𝑗 )
𝜆𝑒 (𝑥) + 𝜆𝑣 (𝑥)𝐺𝑣 (𝑚★(𝑥) | 𝑥) + 𝛾(𝑥)

. (4)

According to (4), the measure of type-𝑥 child orders with 𝑛 failed inquiries declines geometri-

cally with 𝑛. As discussed above, the geometric coefficient, 𝜋1(𝑥), is simply the probability that a

type-𝑥 inquiry on the electronic trading platform fails to trade (the left-most branch of event 2 in

the child-order tree of Figure 2).
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Next we show that the direction of the selection bias depends on the geometric coefficient,

𝜋1(𝑥). Namely, let

𝑑𝐻 (𝑥 | 𝑛) = 𝑑𝜇(𝑥 | 𝑛)∫ 𝑥

𝑥
𝑑𝜇(𝑦 | 𝑛)

,

denote probability distribution of 𝑥 across child orders conditional on 𝑛 failed inquiries. The

following Lemma reports a key property of this distribution.

Lemma 1 If 𝜋1(𝑥) is an increasing (decreasing) function, then 𝐻 (𝑥 | 𝑛) first-order stochastically

dominates (is first-order stochastically dominated by) 𝐻 (𝑥 | 𝑛 − 1).

Lemma 1 shows that as the number of failed inquiries, 𝑛, increases, the sample of child order

becomes more selected towards those investors who, in their child order tree, fail inquiries on the

trading platform with higher probability. As a result, if 𝑥 is unobservable to the econometrician,

any outcome variable which is monotonically related to 𝑥 will appear to be monotonically related

to the number of failed inquiry.

For example, suppose child orders differ in terms of the customer’s distress cost, 𝑐, but are

otherwise identical. Then 𝜋1(𝑐) is decreasing in 𝑐 since more distressed sellers have a higher

reservation markdown, 𝑚★. As a result, as the number of failed inquiries increases, the sample

gets more and more selected towards less distressed customers. It follows that we should observe

two key outcome variables, the trading probability and the transaction markdown, decline with the

number of failed inquiries 𝑛.

3.2 Evidence about time to trade

We propose below a statistical framework to measure the time it takes customers to trade after their

first inquiry on MKTX, correcting for the competing risk bias discussed above, and controlling for

observable trade characteristics.
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Maximum Likelihood Estimation. Our unit of observation 𝑖 is an event node in the child order

tree of Figure 2: specifically, the type and time of the event that follows an unsuccessful inquiry

on MKTX. We index the 𝐾 = 4 possible events by 𝑘 ∈ {1, . . . , 𝐾}. Event 𝑘 = 1 is an inquiry

on MKTX without trade, 𝑘 = 2 is an inquiry on MKTX with trade, 𝑘 = 3 is a voice trade, and

𝑘 = 4 is an exit. We assume further that these events arrive at independent exponential times

with intensity 𝜆(𝜃′
𝑘
𝑥𝑖) = exp(𝜃′

𝑘
𝑥𝑖), where 𝑥𝑖 is a vector of covariates for that child order. These

covariates include trade size, bond characteristics, customers’ characteristics, and the number of

failed inquiries on MKTX; the latter is particularly important, in that it allows us to identify potential

duration dependence.

Given this statistical framework, conditional on 𝑥𝑖, the event 𝑘 occurs at time 𝜏𝑖 = 𝑡 with

probability density

P (𝜏𝑖 = 𝑡, 𝜔𝑖 = 𝑘 | 𝑥𝑖) = 𝜆(𝜃′𝑘𝑥𝑖)𝑒
−∑

ℓ 𝜆(𝜃′ℓ𝑥𝑖)𝑡 .

This formula is the product of the probability that event 𝑘 occurs at time 𝑡, 𝜆(𝜃′
𝑘
𝑥𝑖)𝑒−𝜆(𝜃

′
𝑘
𝑥𝑖)𝑡 , and

the probability that all other events, ℓ ≠ 𝑘 , occur after time 𝑡, 𝑒−
∑

ℓ≠𝑘 𝜆(𝜃′ℓ𝑥𝑖)𝑡 . This is the sense in

which there are “competing risks”: the probability density accounts for the fact that we observe

event 𝑘 only if the other events ℓ ≠ 𝑘 have not occurred before. Aggregating across events and the

number of inquiries, the likelihood function is, evidently:

𝑛∏
𝑖=1

(∑︁
𝑘

I{𝜔𝑖=𝑘}𝜆(𝜃′𝑘𝑥𝑖)𝑒
−∑

ℓ 𝜆(𝜃′ℓ𝑥𝑖)𝜏𝑖

)
.

Recall that we never observe the time of an exit in our data set; rather, we observe only whether

or not an exit occurred. Therefore, integrating with respect to 𝜏𝑖 when 𝜔𝑖 = 𝐾 , we obtain the

likelihood for our actual observations:

𝑛∏
𝑖=1

(∑︁
𝑘≠𝐾

I{𝜔𝑖=𝑘}𝜆(𝜃′𝑘𝑥𝑖)𝑒
−∑

ℓ 𝜆(𝜃′ℓ𝑥𝑖)𝜏𝑖 + I{𝜔𝑖=𝐾}
𝜆𝐾 (𝜃′𝐾𝑥𝑖)∑
ℓ 𝜆(𝜃′ℓ𝑥𝑖)

)
.
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Taking logs, after a few lines of algebra, we obtain that the log-likelihood is
∑
𝑖 𝐿 (𝜔𝑖, 𝜏𝑖, 𝑥𝑖, 𝜃),

where:

𝐿𝑖 (𝜔𝑖, 𝜏𝑖, 𝑥𝑖, 𝜃) =
∑︁
𝑘

I{𝜔𝑖=𝑘}𝜃
′
𝑘𝑥𝑖 − I{𝜔𝑖≠𝐾}

(∑︁
ℓ

exp(𝜃′ℓ𝑥𝑖)
)
𝜏𝑖 − I{𝜔𝑖=𝐾} log

(∑︁
ℓ

exp(𝜃′ℓ𝑥𝑖)
)
.

We first gain some qualitative and quantitative intuition by deriving the unconditional Maximum

Likelihood Estimator (MLE), i.e., the special case in which the only control is a constant.

Lemma 2 Let 𝜋̂𝑘 denote the empirical frequency of event 𝑘 and 𝜏 the empirical average inter-arrival

time of an event 𝑘 ≠ 𝐾 . Then, the MLE of 𝜃𝑘 is 𝜃𝑘 = log (𝜋̂𝑘/𝜏).

This is the same estimate that we intuitively derived in the previous section, when discussing

the competing risk bias. Indeed, after a failed inquiry, the expected arrival time of any event is

𝜏 = 1/(∑ℓ 𝜆ℓ), and the probability of event 𝑘 is 𝜋𝑘 = 𝜆𝑘/
∑
ℓ 𝜆ℓ. This shows that 𝜆𝑘 = 𝜋𝑘/𝜏 and

𝜃𝑘 = log(𝜆𝑘 ), which is the population counterpart of the estimator in Lemma 2. The estimation

results are shown in Table 7.

[Table 7 about here.]

The results offer some guidance about the orders of magnitude of arrival times for different events.

For example, the unconditional intensity of a voice trade is 𝑒−3.40 = 0.0333 per business hour,

corresponding to an average time of 1/0.0333 = 29.96 business hours, or about 3.3 business days

(assuming 9 hours of trading per day). Importantly, the estimates clearly show that competing risk

creates a significant bias in calculating time to trade: indeed, 3.3 business days is much larger than

the observed average inter-arrival times shown in Table 6 above.

Next, we move to the conditional MLE, with controls for trade characteristics (coefficients

shown in Table 8) and for the number of failed inquiries in the child order to date (coefficients

shown in Table 9). All controls are dummies. The baseline category is an odd-lot purchase of an

investment-grade bond, with high turnover, during normal times, for a connected investor, after one

failed inquiry. There is no closed form solution for the estimators. However, since the likelihood
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function is concave in the vector of coefficients 𝜃 = (𝜃𝑘 )1≤𝑘≤𝐾 , it can be maximized reliably using

existing optimization packages.

Table 8 shows the manner in which the intensities of each event, 𝜆(𝜃′
𝑘
𝑥), vary with trade

characteristics. The intensities for the baseline category are obtained by taking the exponential of

the intercept. The marginal effect of other trade characteristics is given by the exponential of their

respective coefficient. In particular, when the coefficient is sufficiently small, it approximates the

marginal effect in percentage term: e.g., from the fourth row in column (2) of Table 8, the intensity

of trade with MKTX for a bond rated Ca to C is approximately −(𝑒−0.4 − 1) ≃ 33% lower than for

an investment-grade bond.

The estimates in Table 8 demonstrate that intensities vary significantly with trade characteristics.

Consider, for example, trade size. We observe that the intensity of trade with MKTX for micro

size trades (with size < $100,000) is larger than for odd lot trades (our baseline category with size

between $100,000 and $1 million). The intensity for odd lots is larger than for round lots (with size

between $1 and $5 million), which is larger than for block trades (with size larger than $5 million).

Interestingly the intensity of voice trade is not monotonic in trade size: for example, block trades

trade faster on voice. Bonds with low turnover, and high-yield bonds, also have lower trading

intensity, both on MKTX and the voice market. Interestingly, sales and purchases are asymmetric:

customers trade faster when they sell, on average, than when they buy.

The last rows of Table 8 show the impact of customer connectedness on MKTX. To derive

a measure of customer connectedness, we first regress the average number of dealer responses

elicited by a particular customer on several control variables, including the customer’s average

inquiry size, the fraction of his requests that were sell vs. buy, and the fraction of requests that were

for investment-grade vs high-yield bonds. We then rank customers into deciles based on residuals

of this regression. This measure aims to proxy for customers’ existing relationships with dealers or

other unobserved characteristics of connected clients. We find that this measure of connectedness

creates significant differences in trading intensity on MKTX. This finding is intuitive because a

more connected customer receives more offers on average and so is more likely to obtain one that
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falls below her reservation markdown. Finally, the fifth row of Table 8 reveals that the COVID-19

crisis (identified by inquiries submitted in March 2020) had a significant negative impact on the

trading intensity.

[Table 8 about here.]

Table 9 shows that, after controlling for trade characteristics, the number of failed inquiries

retains predictive power for the intensity of each event. The intensity of an inquiry on MKTX that

doesn’t result in trade increases with the number of failed inquiries. In contrast, the intensity of

successful inquiries—i.e., inquiries on either MKTX or via voice that result in trade—decreases as

the number of failed inquiries increases. Through the lens of the McCall (1970) model outlined in

the previous section, this evidence suggests a role for unobserved child order characteristics, such

as heterogeneity in distress cost or the arrival rate of trading opportunities.

[Table 9 about here.]

Time to trade. We define time to trade as the expected time a customer takes to trade, either on

MKTX or on voice, if she is not subject to exit shocks. That is, we study a hypothetical world in

which the investor never exits in the child order tree—say, because she continues to search when

she receives an exit shock.

If the intensities did not depend on the number of failed inquiries, calculating time to trade

would be simple. For example, from the intercepts in columns (2) and (3) in Table 8 or 9, the

time to trade for our baseline category would be 1/(𝑒−3.65 + 𝑒−3.38) ≃ 16.65 business hours, or 1.8

business days. However, the dependence of intensities on the number of failed inquiries requires

us to modify this simple formula.

Formally, consider a child order after 𝑛 failed inquiries. With a slight abuse of notation, let 𝑥𝑛

denote the corresponding vector of covariates, where 𝑛 stands for the number of failed inquiries to
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date. Then, the expected time to trade satisfies the following recursive formula:

𝑇 (𝑥𝑛) = E [𝜏′ | 𝑥𝑛] + P [𝜔′ = 1 | 𝑥𝑛] × 𝑇 (𝑥𝑛+1)

+ P [𝜔′ = 2 | 𝑥𝑛] × 0

+ P [𝜔′ = 3 | 𝑥𝑛] × 0

+ P [𝜔′ = 4 | 𝑥𝑛] × 𝑇 (𝑥𝑛).

The first term is the expected time to the next event. The other terms add up to the expected

continuation time to trade after the next event. Specifically, if the next event is an unsuccessful

inquiry on MKTX, 𝜔′ = 1, then there is one additional failed inquiry and the continuation time to

trade is 𝑇 (𝑥𝑛+1). If the next event is 𝜔′ = 2 or 𝜔′ = 3, then trade occurs so the continuation time to

trade is zero. The last line corrects the bias induced by the competing risk of exit: specifically, if

the next event is an exit (𝜔′ = 4), we assume that the investor continues to search for a trade instead

of exiting, so the continuation time to trade is 𝑇 (𝑥𝑛).

Bringing the last term from the right-hand to the left-hand side, and using the exponential

formula for expected inter-arrival time and event probability, we obtain the following recursion:

𝑇 (𝑥𝑛) =
1

𝜆(𝜃′1𝑥𝑛) + 𝜆(𝜃
′
2𝑥𝑛) + 𝜆(𝜃

′
3𝑥𝑛)

+
𝜆(𝜃′1𝑥𝑛)

𝜆(𝜃′1𝑥𝑛) + 𝜆(𝜃
′
2𝑥𝑛) + 𝜆(𝜃

′
3𝑥𝑛)

𝑇 (𝑥𝑛+1). (5)

We can use this formula to calculate the time to trade. Moreover, differentiating (5) with respect to

𝑥, we obtain a corresponding recursive formula for the gradient of time to trade, which allows us

to apply the Delta method and obtain standard errors for the time to trade estimates. We illustrate

our results in a sequence of figures, where we plot the expected time to trade, conditional on the

number of failed inquiries and specific trade characteristics using estimates from the MLE. We

represent the 95% confidence intervals by shaded areas surrounding the conditional expectation.

Figure 4 shows that, for our baseline category, the time to trade increases from about two trading

days after one failed inquiry to nearly four trading days after ten failed inquiries. High-yield, old,
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Figure 4. Estimated conditional time to trade from the MLE: observed trade characteristics
This figure plots the estimated time to trade from Equation (5), conditional on the number of failed inquiries and on
observed trade characteristics except trade size and customer connectedness categories. “Sell” takes the value of 1 for
a sale request, and zero otherwise; “COVID” takes the value of 1 if the RFQ is submitted in March 2020, and zero
otherwise; “old age” takes the value of 1 if the bond’s age is above the 75th percentile of the distribution, and zero
otherwise; “low turnover” takes the value of 1 if the bond’s quarterly turnover is below median, and zero otherwise;
“high TTM” takes the value of 1 if the bond’s time to maturity is above the sample median, and zero otherwise; “low
amt out” takes the value of 1 if the bond’s amount outstanding is below the sample median, and zero otherwise. The
baseline category is an odd-lot purchase of an investment-grade bond, with high turnover, during normal times, for a
connected investor, after one failed inquiry.

and low turnover bonds have a longer time to trade, though the difference is small relative to other

covariates.

In Figure 5, we study the impact of trade size on time to trade. We observe that smaller trades

are faster on MKTX. For example, after one failed inquiry, it takes 1.5 days to trade a micro-size

bond, while the time it takes to trade a block-size inquiry is almost twice as long. This evidence

is consistent with prior studies that show electronic trading is concentrated on smaller trades (e.g.,

Hendershott and Madhavan, 2015; O’Hara and Zhou, 2021).

Figure 6 shows that less connected customers, classified as customers that receive fewer offers

from dealers, trade much slower on MKTX. For example, in the baseline category, the most

connected customers (in the tenth decile of connectedness) trade after approximately 2.5 days
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Figure 5. Estimated conditional time to trade from the MLE: impact of size
This figure plots the estimated time to trade from Equation (5), conditional on the number of failed inquiries and on
trade size categories, and controlling for other observed trade characteristics. “Micro size” takes the value of 1 if the
quantity of dealer response is below $100,000, and zero otherwise; “odd lot” takes the value of 1 if the quantity of
dealer response is between $100,000 and $1 million, and zero otherwise; “round lot” takes the value of 1 if the quantity
of dealer response is between $1 million and $5 million, and zero otherwise; “block trade” takes the value of 1 if the
quantity of dealer response exceeds $5 million, and zero otherwise. The baseline category is an odd-lot purchase of an
investment-grade bond, with high turnover, during normal times, for a connected investor, after one failed inquiry.

following two failed inquiries. For the least connected customers, in deciles 1 to 7, it takes almost

3.5 times more to trade on MKTX.

In Figure 7, we compare time to trade on MKTX to the one on voice for different trade size

categories. The first takeaway is that, except for block trades, child orders trade much faster on

MKTX than voice. This finding may be explained by the fact that customers initiate their first

inquiries on MKTX and prefer to trade on the electronic platform, possibly for its execution quality

rather than price discovery. Next, micro-size trades are faster than odd and round lots in both MKTX

and the voice market, but block trades are much slower on MKTX. Again, this is not surprising,

since, as mentioned above, smaller trades are more likely to be traded on electronic platforms.

It is important to keep in mind that our measurements are only descriptive. For example, the

time to trade is presumably an endogenous outcome resulting from choices made by both sides of

the market. The fact that customer purchases have longer time to trade could either indicate that
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Figure 6. Estimated conditional time to trade from the MLE: impact of customer connectedness
This figure plots the estimated time to trade from Equation (5), conditional on the number of failed inquiries and on
customer connectedness categories, and controlling for other observed trade characteristics. We first regress the average
number of dealer responses elicited by a particular customer, on that customer’s average inquiry size and fractions of
requests for sell trades and high-yield bonds. We then rank customers into deciles based on residuals of this regression.
“Connected decile 9” is an indicator for the customer being in decile 9, and similarly for other “Connected” indicators.
The baseline category is an odd-lot purchase of an investment-grade bond, with high turnover, during normal times,
for a connected investor (in decile 10), after one failed inquiry.

it takes time for dealers to source or locate a bond, or it could indicate that buyers are less eager

to trade than sellers, so more willing to continue searching for a better price. The fact that time to

trade increased during COVID could indicate that dealers were reluctant to accumulate inventories

and changed their bidding behavior as a result.

3.3 The dependence of outcomes on the number of failed inquiries

We have found above that, after controlling for observed trade characteristics, the intensities

estimated via MLE continue to depend on the number of failed inquiries. Figure 8 shows that

this is true for other outcome variables as well. Panel (a) plots the trading probability on MKTX,

calculated based on the MLE:

𝜆(𝜃′2𝑥)
𝜆(𝜃′1𝑥) + 𝜆(𝜃

′
2𝑥)

.
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Figure 7. Estimated conditional time to trade from the MLE: MKTX vs. voice
This figure compares the estimated time to trade from Equation (5), conditional on the number of failed inquiries in
MKTX vs. voice for the baseline (the top left panel), and different size categories. “Micro size” takes the value of 1 if
the quantity of dealer response is below $100,000, and zero otherwise; “odd lot” takes the value of 1 if the quantity of
dealer response is between $100,000 and $1 million, and zero otherwise; “round lot” takes the value of 1 if the quantity
of dealer response is between $1 million and $5 million, and zero otherwise; “block trade” takes the value of 1 if the
quantity of dealer response exceeds $5 million, and zero otherwise.

It shows that the trading probability goes down as the number of failed inquiries increases. Panel

(b) shows the inquiry intensity with MKTX, calculated based on the MLE, 𝜆(𝜃′1𝑥) + 𝜆(𝜃
′
2𝑥). Panel

(c) plots the best markdown or spread. It reveals that the best markdown increases as the number

of failed inquiries increases. Panel (d) shows the expected number of dealer responses, estimated

by Poisson regression.18 It shows that, as the number of failed inquiries increases, the expected

number of dealer responses falls.

18The associated regression results are presented in column (1) of Table 10.
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Figure 8. Unobserved characteristics
This figure plots, for the baseline category, the trading probability on MKTX in panel (a), the contact intensity with
MKTX in panel (b), the markdown or best offered transaction cost for traded inquiries in panel (c), and the expected
number of dealer responses in panel (d) as a function of the number of failed inquiries in child orders. The baseline
category is an odd-lot purchase of an investment-grade bond, with high turnover, during normal times, for a connected
investor, after one failed inquiry. As discussed in Section 2, we measure transaction cost as a markdown or markup
relative to the benchmark provided by MKTX, called Composite+.

The dependence of outcome variables on the number of failed inquiries can be interpreted in

two ways. The first explanation is that, as a customer fails more and more inquiries, the trading

environment changes. Just to give one example, the increase in the spread for traded inquiries

in panel (c) could be consistent with change in dealers’ bidding behavior because of information

leakage about this customer, as noted by Hendershott and Madhavan (2015), or because dealers

learn that the customer was not able to elicit competitive offers, as in the “ringing-phone curse”

described in Zhu (2011).
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The second explanation is instead that child orders are heterogeneous in characteristics un-

observed by the econometrician. Indeed, according to Lemma 1, the distribution of child orders

along such unobserved characteristics changes systematically with the number of failed inquiries.

For example, suppose that child orders differ in distress costs, 𝑐. Then, since child orders with

higher distress costs have larger reservation markdown, 𝑚★, they trade with higher probability.

This implies that, conditional on a larger number of failed inquiries, the sample becomes selected

towards low distress cost child orders that trade with lower probability. Hence, heterogeneity in

distress costs could explain why a child order time to trade appears to increase with the number of

failed inquiries.

To tell these two hypotheses apart, we study the dependence of outcome variables on the number

of failed inquiries in two ways: controlling for observed trade characteristics and controlling for

child-order fixed effects. If unobserved child order characteristics explain the dependence of

outcome variables on the number of failed inquiries, then the dependence should disappear after

controlling for child order fixed effects. Indeed, when we control for child order fixed effects, we

keep all child order characteristics fixed, whether they are observed or not.

[Table 10 about here.]

Table 10 shows the Poisson regression results when the outcome variable is the number of dealer

responses. In column (1), we control for observed trade characteristics. We find that holding all

observed trade characteristics constant, increasing the number of inquiries from 1 to 2, reduces the

number of dealer responses by approximately 27% (= 1 − 𝑒−0.311). Second, in column (2), we use

child order fixed effects instead of trade characteristics. Now changing the number of inquiries has

much more muted impact on the number of dealer responses: increasing the number of inquiries

from 1 to 2, actually increases the number of dealer responses by 3.7% (= 1 − 𝑒−0.0361). The

results in Table 10 provide evidence in favor of the hypothesis that child orders differ in unobserved

characteristics.

In Table 11, we do the same but for another variable: the spread (transaction cost) of traded

inquiries. As discussed in Section 2, we measure transaction cost as a markdown or markup relative
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to the CP+ benchmark provided by MKTX.19 The evidence in column (1) is consistent with panel

(b) of Figure 8, showing that spreads rise as the number of inquiries increases. However, when we

control for potentially unobserved characteristics with child order fixed effects, in column (2), we

obtain a very different picture: the spreads of traded inquiries are much more stable as the number

of inquiries within a child order changes and, if anything, go slightly in the opposite direction.

[Table 11 about here.]

These regression results suggest that unobserved characteristics are a likely explanation of the

dependence of outcome variables on the number of failed inquiries. But they do not shed light on

the nature of these unobserved characteristics. However, our model can help make some indirect

inference about these. For example, we can easily reject heterogeneity in distress cost: while this

would explain why the trading probability decreases in the number of failed inquiries, as in panel (a)

of Figure 8, it would be hard to reconcile with the observation that the inquiry intensity increases.

Which specific unobserved characteristics could be qualitatively consistent with the evidence

in the four panels of Figure 8 and with the evidence on time to trade presented above? Panel (b)

suggests that, as the number of failed inquiries increase, the sample becomes more and more

selected towards child orders with high inquiry intensity on MKTX. According to Lemma 1, this

is consistent with a McCall (1970) model in which investors are heterogeneous in their inquiry

intensity on the electronic market, 𝜆𝑒, because, in the child-order tree, the probability of a failed

inquiry

𝜋1 =

𝜆𝑒

(∑
𝑗 𝑞

𝑗
[
1 − 𝐺𝑒 (𝑚★)

] 𝑗 )
𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾

,

is increasing in 𝜆𝑒, for two reasons. First, the probability of an inquiry on the electronic market,

𝜆𝑒/(𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾), evidently increases with 𝜆𝑒. Second, from Proposition 1, the reservation

markdown, 𝑚★, decreases with 𝜆𝑒, since customers who make more frequent inquiries have a larger

19As an alternative measure, we also compute the trading cost measure in Hendershott and Madhavan (2015), which
uses the last inter-dealer trade as the reference price for a given bond instead of CP+. Results remain qualitatively
similar using this alternative transaction cost measure.
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option value of continuing their search. Panel (a) is consistent with this heterogeneity in 𝜆𝑒 too,

since the trading probability on the electronic market declines with the number of failed inquiries.

However, Figure 8 is inconsistent with the hypothesis that child orders are only heterogeneous

in their inquiry intensity 𝜆𝑒. Indeed, panel (c) shows that the best offered transaction cost in a given

inquiry on MKTX increases with the number of failed inquiries. This suggests that child orders are

heterogeneous in another dimension: the distribution of their best offer on the electronic market.

Panel (d) suggests a precise reason why this distribution may differ across child orders: the average

number of dealer responses declines with the number of failed inquiries. Taken together, panels (a)

through (d) of Figure 8 suggest that, after controlling for observable characteristics, child orders

differ in two dimensions: first in their inquiry intensity, and second in the number of responses they

elicit from dealers.

To formally establish that these two dimensions of heterogeneity are qualitatively consistent

with the empirical observations in this paper, consider the McCall model where, for simplicity,

child orders trade only on MKTX. Assume the distribution of dealer responses is Poisson with

parameter 𝜇. Suppose there are two types of child orders: type A with high inquiry intensity and

low number of responses, and type B with low inquiry intensity and high number of responses.

Let the associated parameters for these two types be 𝜆𝐴 > 𝜆𝐵 and 𝜇𝐴 < 𝜇𝐵. Denote the associated

distribution of best offers by 𝐹 (𝑚 | 𝜇𝐴) and 𝐹 (𝑚 | 𝜇𝐵), where

𝐹 (𝑚 | 𝜇) =
∑︁
𝑗≥0

𝑒−𝜇
𝜇 𝑗

𝑗!
[
1 − (1 − 𝐺 (𝑚)) 𝑗

]
= 1 − 𝑒−𝜇𝐺 (𝑚) .

Finally, let the associated reservation markdowns be 𝑚★
𝐴

and 𝑚★
𝐵
. Then we obtain the following

Lemma.
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Lemma 3 Suppose that 𝜆𝐴 > 𝜆𝐵 > 𝜆𝐴𝐹 (𝑚★𝐴 | 𝜇𝐴). Then, as 𝜇𝐵 → ∞:

𝜋1𝐴 > 𝜋1𝐵

𝐹 (𝑚★𝐴 | 𝜇𝐴) < 𝐹 (𝑚★𝐵 | 𝜇𝐵)

E𝜇𝐴 [𝑚] > E𝜇𝐵 [𝑚] .

Taken together with Lemma 1, the first inequality in Lemma 3 implies that, conditional on a

larger number of failed inquiries, the sample becomes more selected towards child orders with high

inquiry intensity, but low number of dealer responses. This is consistent with both panel (b) and

(d) of Figure 8. The second inequality in Lemma 3 makes it consistent with panel (a) of Figure 8,

since child orders with high inquiry intensity but low number of dealer responses have lower trading

probability. The third inequality makes it consistent with panel (c), since these child orders also

trade at worse spread. Finally, the restriction that 𝜆𝐵 > 𝜆𝐴𝐹 (𝑚★𝐴 | 𝜇𝐴) ensures that these child

orders have longer time to trade.

4 Conclusion

In this paper, we use data from a leading electronic trading platform to provide new and direct

empirical evidence about search frictions in the OTC market for corporate bonds. We start from

the observation that when a customer’s inquiry on the platform fails to trade, the same customer

often returns to the market shortly after to make subsequent inquiries for the same quantity of

the same bond. We argue that the resulting sequence of repeated inquiries sheds light on the

customers’ sequential search process. We estimate that, after a failed inquiry, it takes customers

between two and three days to trade. We show that this time to trade depends systematically

on trade characteristics and trading venue (electronic vs. voice). We provide evidence consistent

with unobserved characteristics being a likely reason for the dependence of outcome variables on

the number of prior failed attempts to trade. Overall, our estimates can serve as useful inputs
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into future quantitative applications of search models while also providing guidance for future

theoretical explorations of the micro-foundations of search frictions in OTC markets.
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Appendix

A Omitted proofs

A.1 Proof of Lemma 1

Using the definition of 𝐻, we obtain that

𝑑𝐻 (𝑥 | 𝑛) = 𝜋1(𝑥) 𝑑𝜇(𝑥 | 𝑛 − 1)∫ 𝑥

𝑥
𝜋1(𝑦) 𝑑𝜇(𝑦 | 𝑛 − 1)

=
𝜋1(𝑥) 𝑑𝐻 (𝑥 | 𝑛 − 1)∫ 𝑥

𝑥
𝜋1(𝑦) 𝑑𝐻 (𝑦 | 𝑛 − 1)

where the first equality follows from the recursion 𝑑𝜇(𝑥 | 𝑛) = 𝜋1(𝑥) 𝑑𝜇(𝑥 | 𝑛 − 1), and the second equality

follows from dividing both the numerator and the denominator by
∫ 𝑥

𝑥
𝑑𝜇(𝑥 | 𝑛 − 1). Therefore:

sign (𝐻 (𝑥 | 𝑛) − 𝐻 (𝑥 | 𝑛 − 1)) = sign
©­­«
∫ 𝑥

𝑥
𝜋1(𝑦) 𝑑𝐻 (𝑦 | 𝑛 − 1)∫ 𝑥

𝑥
𝜋1(𝑦) 𝑑𝐻 (𝑦 | 𝑛 − 1)

−
∫ 𝑥

𝑥

𝑑𝐻 (𝑦 | 𝑛 − 1)
ª®®¬

= sign

(∫ 𝑥

𝑥

[
𝜋1(𝑦) −

∫ 𝑥

𝑥

𝜋1(𝑧) 𝑑𝐻 (𝑧 | 𝑛 − 1)
]
𝑑𝐻 (𝑦 | 𝑛 − 1)

)
.

Recall that 𝜋1(𝑦) is strictly increasing. This implies that 𝜋1(𝑦) −
∫ 𝑥

𝑥
𝜋1(𝑧) 𝑑𝐻 (𝑧 | 𝑛) is strictly increasing as

well, strictly negative when 𝑦 = 𝑥, and strictly positive when 𝑦 = 𝑥. It follows that there is an 𝑥0 such that

𝜋1(𝑦) −
∫ 𝑥

𝑥
𝜋1(𝑧) 𝑑𝐻 (𝑧 | 𝑛 − 1) < 0 for all 𝑦 < 𝑥0, and strictly positive for all 𝑦 > 𝑥0. Hence,

𝑥 ↦→
∫ 𝑥

0
𝑑𝐻 (𝑦 | 𝑛 − 1)

[
𝜋1(𝑦) −

∫ 𝑥

0
𝜋1(𝑧) 𝑑𝐻 (𝑧 | 𝑛 − 1)

]
is first decreasing and then increasing. Since this function is obviously equal to zero at the upper bound of

its domain, 𝑥 = 𝑥, it follows that 𝐻 (𝑥 | 𝑛) ≤ 𝐻 (𝑥 | 𝑛 − 1), and we have established first-order stochastic

dominance.
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A.2 Proof of Lemma 3

Clearly, an increase in 𝜇 creates a first-order negative shift in 𝐹 (𝑚 | 𝜇) (i.e., markdown are lower). Hence

the reservation markdown is decreasing in 𝜇. Going to the limit in the reservation markdown equation (3),

noting that lim𝜇→∞ 𝐹 (𝑚 | 𝜇) = 1 for all 𝑚 > 0, we obtain that

lim
𝜇→∞

𝑚★ =
𝑐

𝑟 + 𝛾 + 𝜆 > 0.

But 𝐹 (𝑚 | 𝜇) → 1 for 𝑚 > 0, i.e., the trading probability becomes arbitrarily close to 1, and the expected

markdown becomes arbitrarily close to zero. The result follows.
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Tables

Table 1. Responses of a traded and an untraded inquiry
Panel (a) provides dealers’ disclosed responses for a traded inquiry submitted on 08/15/2017 to buy $300,000 of an
11-year, 3.824% investment-grade (USHG) bond issued on 01/17/2017 by Bank of America. The customer received 6
responses, all from dealers, whose anonymized IDs are provided in column (6). Response level (spread over Treasuries
for USHG in MKTX) for each dealer response is reported in column (7). In column (10), the response status “Done”
flags the response that the submitter accepted, the response status “Cover” flags the second best offer, and the response
status “Missed” flags the rest of the responses that the submitter rejected. Panel (b) provides dealer disclosed responses
for an untraded inquiry submitted on 08/17/2017 to buy $490,000 of the same bond in panel (a). The customer
received 9 responses, all from dealers, whose anonymized IDs and response levels are reported in columns (6) and (7),
respectively. The response status “DNT” for this inquiry in column (9) indicates that the inquiry did not trade.

Panel (a): Responses to a traded inquiry on 08/15/2017

Cust. Bond Trade Submit Resp. Dealer Resp. Resp. Resp.
ID CUSIP Side Time ID ID Level Quant. Status
(1) (2) (3) (4) (5) (6) (7) (8) (9)

127 06051GGF0 Buy 08:07:06 1 15420 126.37 300 Missed
127 06051GGF0 Buy 08:07:06 2 16323 129.70 300 Done
127 06051GGF0 Buy 08:07:06 3 11595 128.00 300 Missed
127 06051GGF0 Buy 08:07:06 4 16664 128.05 300 Missed
127 06051GGF0 Buy 08:07:06 5 10392 128.32 300 Missed
127 06051GGF0 Buy 08:07:06 6 12867 128.70 300 Cover

Panel (b): Responses to an untraded inquiry on 08/17/2017

Cust. Bond Trade Submit Resp. Dealer Resp. Resp. Resp.
ID CUSIP Side Time ID ID Level Quant. Status
(1) (2) (3) (4) (5) (6) (7) (8) (9)

127 06051GGF0 Buy 09:56:49 1 15420 125.32 490 DNT
127 06051GGF0 Buy 09:56:49 2 11122 125.70 490 DNT
127 06051GGF0 Buy 09:56:49 3 16377 124.70 490 DNT
127 06051GGF0 Buy 09:56:49 4 12867 125.70 490 DNT
127 06051GGF0 Buy 09:56:49 5 16323 126.20 490 DNT
127 06051GGF0 Buy 09:56:49 6 16664 125.31 490 DNT
127 06051GGF0 Buy 09:56:49 7 10392 125.32 490 DNT
127 06051GGF0 Buy 09:56:49 8 11684 127.01 490 DNT
127 06051GGF0 Buy 09:56:49 9 13910 126.71 490 DNT
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Table 2. Cluster of inquiries
This table provides details on the inquiries composing the cluster for an 11-year, 3.824% investment-grade bond issued
on 01/17/2017 by Bank of America over a six-month period in 2017, depicted in Figure 1.

Inquiry Cust. Bond Trade Submit Requested Inquiry Parent Child
ID ID CUSIP Side Time Quantity Traded? Order # Order #
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 127 06051GGF0 Buy 08/15/2017 08:07:06 300 Yes 1 1
2 127 06051GGF0 Buy 08/17/2017 09:56:49 490 No 1 2
3 127 06051GGF0 Buy 08/17/2017 13:57:19 490 Yes 1 2
4 127 06051GGF0 Buy 08/18/2017 08:35:20 290 No 1 3
5 127 06051GGF0 Buy 08/21/2017 08:45:43 290 Yes 1 3
6 127 06051GGF0 Buy 08/23/2017 11:11:38 680 Yes 1 4
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Table 3. Trade probability on MKTX: inquiry vs. child order level
This table presents logit regression results of whether trade occurs as the dependent variable and indicators for trade
and customer characteristics as independent variables, defined in Table 8. Column (1) presents the regression at the
child order level and the corresponding inquiry level estimates are presented in column (2). We rank customers into
deciles according to the number of dealer responses they receive, after controlling for inquiry size, fraction of requests
for sell trades and HY bonds. “Connected decile 9” is an indicator for the customer being in decile 9, and similarly for
other “Connected” indicators. Heteroskedasticity-robust standard-errors are reported in parentheses.

Dependent Variables: child is traded inq is traded
Model: (1) (2)

Variables
(Intercept) 2.462∗∗∗ 2.019∗∗∗

(0.0029) (0.0025)
Micro size 0.4815∗∗∗ 0.4187∗∗∗

(0.0021) (0.0018)
Round lot -0.3408∗∗∗ -0.1795∗∗∗

(0.0035) (0.0032)
Block trade -0.6760∗∗∗ -0.3941∗∗∗

(0.0109) (0.0101)
Sell 0.6565∗∗∗ 0.6514∗∗∗

(0.0020) (0.0017)
HY -0.4866∗∗∗ -0.4732∗∗∗

(0.0024) (0.0021)
Covid -0.8599∗∗∗ -0.9448∗∗∗

(0.0053) (0.0046)
Old age -0.1863∗∗∗ -0.1803∗∗∗

(0.0021) (0.0018)
High time-to-maturity -0.0659∗∗∗ -0.0227∗∗∗

(0.0020) (0.0017)
Low turnover -0.3229∗∗∗ -0.2827∗∗∗

(0.0027) (0.0024)
Low amt outstanding -0.5826∗∗∗ -0.6091∗∗∗

(0.0020) (0.0017)
Connected decile < 7 -2.296∗∗∗ -2.186∗∗∗

(0.0028) (0.0024)
Connected decile 7 -1.800∗∗∗ -1.681∗∗∗

(0.0030) (0.0027)
Connected decile 8 -1.204∗∗∗ -1.159∗∗∗

(0.0030) (0.0025)
Connected decile 9 -0.6484∗∗∗ -0.7128∗∗∗

(0.0030) (0.0024)

Fit statistics
Observations 8,680,700 9,441,617
Squared Correlation 0.16503 0.17491
Pseudo R2 0.16729 0.15811
BIC 6,969,783.3 8,986,339.2

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 4. Summary statistics
This table presents summary statistics for size, bond age and maturity, rating, and trade direction for all child orders
(column 1), all inquiries (column 2), and child orders with at least one failed inquiry (column 3). “Sell” takes the value
of 1 for a sale request, and zero otherwise; “HY” takes the value of 1 if the bond is high-yield, and zero otherwise;
“Dealer-submitted” takes the value of 1 if the inquiry is submitted by a dealer, and zero otherwise.

Child orders Inquiries Child orders
(all) (all) (≥ 1 failed inq.)
(1) (2) (3)

HY 0.17 0.18 0.26
Sell 0.52 0.51 0.42
Dealer-submitted 0.10 0.11 0.23
Size

micro size (< $100k) 0.49 0.48 0.37
odd lot ($100k–1 million) 0.42 0.43 0.52
round lot ($1–5 million) 0.09 0.08 0.10
block trade (> $5 million) 0.01 0.01 0.01

Bond age distribution
Average bond age 3.85 3.91 4.43
< 2 years 0.35 0.34 0.31
2–5 years 0.39 0.39 0.38
5–20 years 0.26 0.27 0.30
> 20 years 0.01 0.01 0.02

Bond maturity distribution
Average maturity 12.43 12.53 13.71
< 2 years 0.002 0.002 0.002
2–5 years 0.07 0.07 0.06
5–20 years 0.73 0.73 0.68
> 20 years 0.20 0.20 0.25

Observations 9,861,143 11,020,815 2,774,478
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Table 5. Child order event statistics
This table presents summary statistics about child order events. A child order can be viewed as a sequence of events,
as depicted in Figure 2. Each element of the sequence is one of four possible events: an untraded inquiry on MKTX, a
MKTX inquiry with trade, a voice trade, and, if the child order ends without a trade, an exit. By construction, the first
event is always either an inquiry on MKTX, without or with trade. The first row shows the probability of a failed and
successful inquiry on MKTX. The following rows provides the frequency distribution over the next event in the child
order, conditional on the number of failed inquiries to date.

Prob. MKTX Prob. MKTX Prob. voice Prob.
inq. w/o trade inq. w trade trade exit

Event (1) (2) (3) (4)
First inquiry 0.28 0.72 N/A N/A
After 1 failed inquiry 0.17 0.09 0.24 0.49
After 2 failed inquiries 0.34 0.10 0.17 0.39
After 3 failed inquiries 0.46 0.09 0.13 0.31
After 4 failed inquiries 0.55 0.08 0.10 0.26
After 5 failed inquiries 0.61 0.08 0.08 0.22
After 6 failed inquiries 0.66 0.07 0.07 0.20
After 7 failed inquiries 0.69 0.06 0.07 0.18
After 8 failed inquiries 0.73 0.06 0.06 0.16
After 9 failed inquiries 0.74 0.05 0.05 0.15
After 10 failed inquiries 0.77 0.05 0.05 0.14
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Table 6. Child orders statistics: Inter-arrival times.
This table presents summary statistics about time between child order events (in business days). A child order can be
viewed as a sequence of events, as depicted in Figure 2. Each element of the sequence is one of four possible events:
an untraded inquiry on MKTX, a MKTX inquiry with trade, a voice trade, and, if the child order ends without a trade,
an exit. Columns (1)–(3) present time, in business days, to an untraded inquiry on MKTX, a MKTX trade, and a trade
on voice across child orders, conditional on the number of failed inquiries to date.

Time to MKTX Time to MKTX Time to
inq. w/o trade inq. w trade voice trade

(1) (2) (3)

After 1 failed inquiry 0.82 0.65 1.04
After 2 failed inquiries 0.87 0.82 1.34
After 3 failed inquiries 0.85 0.85 1.46
After 4 failed inquiries 0.84 0.88 1.53
After 5 failed inquiries 0.82 0.85 1.56
After 6 failed inquiries 0.80 0.87 1.56
After 7 failed inquiries 0.78 0.89 1.63
After 8 failed inquiries 0.77 0.84 1.59
After 9 failed inquiries 0.75 0.86 1.44
After 10 failed inquires 0.72 0.88 1.44
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Table 7. The unconditional Maximum Likelihood Estimator
This table presents estimation results for the unconditional MLE, where the only control is a constant for event
𝑘 ∈ {1, . . . , 𝐾}, with 𝐾 = 4. Event 𝑘 = 1 is an inquiry on MKTX without trade, 𝑘 = 2 is an inquiry on MKTX with
trade, 𝑘 = 3 is a voice trade, and 𝑘 = 4 is an exit. Robust standard errors as explained in Chapter 12.5.1 of Wooldridge
(2010) are reported in parentheses. Our sample has 𝑁 = 2, 383, 637 observations.

MKTX MKTX voice
inq. w/o trade inq. w trade trade exit

Event (1) (2) (3) (4)
−3.59∗∗∗ −4.211∗∗∗ −3.40∗∗∗ −2.93∗∗∗

(2.76 × 10−6) (4.67 × 10−6) (2.11 × 10−6) (1.71 × 10−6)

Robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 8. The estimated coefficients of the MLE, part 1: trade characteristic dummies
This table presents the first part of our estimation results for the MLE, conditional on trade characteristics (this table)
and the number of failed inquiries in the child order to date (in Table 9). “Sell” takes the value of 1 for a sale request,
and zero otherwise; “Ba1 to Caa3” takes the value of 1 if the bond’s Moody’s rating is between Ba1 and Caa3; “Ca
to C” is similarly defined; “COVID” takes the value of 1 if the RFQ is submitted in March 2020, and zero otherwise;
“Old” takes the value of 1 if the bond’s age is above the 75th percentile of the distribution, and zero otherwise;
“Turnover below median” takes the value of 1 if the bond’s quarterly turnover is below median, and zero otherwise;
“High time-to-maturity” takes the value of 1 if the bond’s time to maturity is above the sample median, and zero
otherwise; “Low amt outstanding” takes the value of 1 if the bond’s amount outstanding is below the sample median,
and zero otherwise; “Micro size” takes the value of 1 if the quantity of dealer response is below $100,000, and zero
otherwise; “Odd lot” takes the value of 1 if the quantity of dealer response is between $100,000 and $1 million, and
zero otherwise; “Round lot” takes the value of 1 if the quantity of dealer response is between $1 million and $5 million,
and zero otherwise; “Block trade” takes the value of 1 if the quantity of dealer response exceeds $5 million, and zero
otherwise. We rank customers into deciles according to the number of dealer responses they receive, after controlling
for inquiry size, fraction of requests for sell trades and HY bonds. “Connected decile 9” is an indicator for the customer
being in decile 9, and similarly for other “Connected” indicators. Robust standard errors as explained in Chapter 12.5.1
of Wooldridge (2010) are reported in parentheses. Our sample has 𝑁 = 2, 383, 637 observations.

MKTX MKTX voice
inq. w/o trade inq. w trade trade exit

Event (1) (2) (3) (4)
(Intercept) −4.06∗∗∗ −3.65∗∗∗ −3.38∗∗∗ −2.91∗∗∗
intercept (0.0056) (0.0065) (0.0049) (0.0044)
Sell 0.121∗∗∗ 0.632∗∗∗ 0.354∗∗∗ −0.029∗∗∗
Sell (0.0036) (0.0048) (0.0033) (0.003)
Ba1 to Caa3 −0.00544∗ −0.0246∗∗∗ 0.0769∗∗∗ −0.203∗∗∗
Ba1 to Caa3 (0.0042) (0.0056) (0.0039) (0.0035)
Ca to C 0.00523 −0.4∗∗∗ 0.259∗∗∗ −0.255∗∗∗
Ca to C (0.041) (0.065) (0.036) (0.036)
COVID −0.0705∗∗∗ −0.483∗∗∗ −0.412∗∗∗ −0.167∗∗∗
Covid (0.0074) (0.0098) (0.0065) (0.0059)
Old 0.0157∗∗∗ −0.108∗∗∗ −0.0549∗∗∗ 0.045∗∗∗
Old (0.0036) (0.0047) (0.0032) (0.0029)
Turnover below median 0.00936∗∗ −0.106∗∗∗ −0.0617∗∗∗ 0.164∗∗∗
Turnover below median (0.0041) (0.0056) (0.0041) (0.0034)
High time-to-maturity −0.0111∗∗∗ 0.0539∗∗∗ −0.0852∗∗∗ 0.0804∗∗∗
high TTM (0.0036) (0.0048) (0.0033) (0.0029)
Low amt outstanding 0.155∗∗∗ −0.264∗∗∗ −0.294∗∗∗ 0.179∗∗∗
Low Amt Out (0.0036) (0.0047) (0.0032) (0.0029)
Micro size 0.0277∗∗∗ 0.213∗∗∗ 0.399∗∗∗ −0.311∗∗∗
Micro size (0.0035) (0.0047) (0.0034) (0.003)
Round lot −0.186∗∗∗ −0.407∗∗∗ −0.0374∗∗∗ 0.366∗∗∗
Round lot (0.0075) (0.0099) (0.0071) (0.0056)
Block trade −0.436∗∗∗ −1.07∗∗∗ 0.112∗∗∗ 0.594∗∗∗
Block trade (0.03) (0.04) (0.026) (0.021)
Connected decile < 7 0.0436∗∗∗ −1.63∗∗∗ −0.219∗∗∗ 0.0469∗∗∗
Connected decile below 7 (0.0049) (0.0072) (0.0044) (0.0038)
Connected decile 7 0.0322∗∗∗ −1.14∗∗∗ −0.0113∗∗ 0.0297∗∗∗
Connected decile 7 (0.0059) (0.0078) (0.0052) (0.0046)
Connected decile 8 0.286∗∗∗ −0.503∗∗∗ 0.611∗∗∗ 0.0966∗∗∗
Connected decile 8 (0.006) (0.0076) (0.0057) (0.0051)
Connected decile 9 0.113∗∗∗ −0.318∗∗∗ −0.135∗∗∗ −0.123∗∗∗
Connected decile 9 (0.0052) (0.006) (0.0049) (0.0043)

Failed inquiry controls Yes Yes Yes Yes

Robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

52



Table 9. The estimated coefficient of the MLE, part 2: the failed inquiries dummies
This table presents the second part of our estimation results for the MLE, conditional on trade characteristics (in
Table 8) and the number of failed inquiries in the child order to date (this table). Event 𝑘 = 1 is an inquiry on MKTX
without trade, 𝑘 = 2 is an inquiry on MKTX with trade, 𝑘 = 3 is a voice trade, and 𝑘 = 4 is an exit. “Failed 𝑗” takes
the value of 1 if the number of failed inquiries in the child order to date is equal to 𝑗 , and zero otherwise. Robust
standard errors as explained in Chapter 12.5.1 of Wooldridge (2010) are reported in parentheses. Our sample has
𝑁 = 2, 383, 637 observations.

MKTX MKTX voice
inq. w/o trade inq. w trade trade exit

Event (1) (2) (3) (4)
(Intercept) −4.06∗∗∗ −3.65∗∗∗ −3.38∗∗∗ −2.91∗∗∗
intercept (0.0056) (0.0065) (0.0049) (0.0044)
Failed 2 0.509∗∗∗ −0.0764∗∗∗ −0.497∗∗∗ −0.345∗∗∗
failed 2 (0.0045) (0.0063) (0.0045) (0.0039)
Failed 3 0.841∗∗∗ −0.0685∗∗∗ −0.729∗∗∗ −0.567∗∗∗
failed 3 (0.0062) (0.01) (0.0081) (0.0068)
Failed 4 1.04∗∗∗ −0.0485∗∗∗ −0.943∗∗∗ −0.738∗∗∗
failed 4 (0.0081) (0.015) (0.013) (0.011)
Failed 5 1.17∗∗∗ −0.082∗∗∗ −1.08∗∗∗ −0.858∗∗∗
failed 5 (0.01) (0.022) (0.02) (0.015)
Failed 6 1.29∗∗∗ −0.114∗∗∗ −1.22∗∗∗ −0.949∗∗∗
failed 6 (0.012) (0.029) (0.028) (0.021)
Failed 7 1.36∗∗∗ −0.193∗∗∗ −1.23∗∗∗ −1.1∗∗∗
failed 7 (0.015) (0.038) (0.035) (0.028)
Failed 8 1.43∗∗∗ −0.21∗∗∗ −1.35∗∗∗ −1.21∗∗∗
failed 8 (0.017) (0.048) (0.047) (0.036)
Failed 9 1.5∗∗∗ −0.156∗∗∗ −1.42∗∗∗ −1.24∗∗∗
failed 9 (0.019) (0.056) (0.06) (0.044)
Failed ≥ 10 1.71∗∗∗ −0.253∗∗∗ −1.34∗∗∗ −1.3∗∗∗
failed 10 (0.011) (0.036) (0.033) (0.027)

Trade char. controls Yes Yes Yes Yes

Robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 10. Poisson model for the number of dealer responses
This table presents Poisson regression estimates for number of dealer responses on indicators for the inquiry number
in child orders. “Inquiry 𝑗” takes the value of 1 if it is the 𝑗 th inquiry in the child order. In column (1) we include
trade characteristics described in Table 8. In column (2), we control for the unobserved child order characteristics by
adding child order fixed effects to the regression. The sample excludes inquiries submitted by dealers.

Dependent Variable: number of dealer responses
Model: (1) (2)

Variables
(Intercept) 1.903∗∗∗

(0.0003)
Inquiry 2 -0.3110∗∗∗ 0.0361∗∗∗

(0.0008) (0.0006)
Inquiry 3 -0.4241∗∗∗ 0.0607∗∗∗

(0.0016) (0.0012)
Inquiry 4 -0.4724∗∗∗ 0.0670∗∗∗

(0.0027) (0.0019)
Inquiry 5 -0.4799∗∗∗ 0.0812∗∗∗

(0.0038) (0.0026)
Inquiry 6 -0.4990∗∗∗ 0.0867∗∗∗

(0.0051) (0.0034)
Inquiry 7 -0.5211∗∗∗ 0.0837∗∗∗

(0.0066) (0.0044)
Inquiry 8 -0.5163∗∗∗ 0.1017∗∗∗

(0.0081) (0.0053)
Inquiry 9 -0.5156∗∗∗ 0.1065∗∗∗

(0.0097) (0.0064)
Inquiry ≥ 10 -0.4973∗∗∗ 0.1055∗∗∗

(0.0055) (0.0069)

Trade char. controls Yes

Fixed-effects
child order Yes

Fit statistics
Observations 9,455,325 9,108,063
Squared Correlation 0.33738 0.99172
Pseudo R2 0.14526 0.36693
BIC 45,117,005.9 165,520,283.0

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 11. Unobserved heterogeneity: Transaction costs
This table reports the estimates of regressing inquiry spreads on indicators for inquiries in child orders. In column
(1), we include trade characteristics described in Table 8 and year-month fixed effects. In column (2), in addition to
indicators for inquiry number in child orders, we add year-month and child order fixed effects to control for unobserved
heterogeneity. As discussed in Section 2, we measure transaction cost as a markdown or markup relative to the
benchmark provided by MKTX, called Composite+.

Dependent Variable: inq. best offered transaction cost (bps)
Model: (1) (2)

Variables
Inquiry 2 8.008∗∗∗ -2.307∗∗∗

(0.4365) (0.0600)
Inquiry 3 12.12∗∗∗ -2.254∗∗∗

(0.8524) (0.1282)
Inquiry 4 13.26∗∗∗ -2.154∗∗∗

(1.536) (0.2092)
Inquiry 5 14.18∗∗∗ -1.311∗∗∗

(2.415) (0.2935)
Inquiry 6 12.81∗∗∗ -2.073∗∗∗

(3.402) (0.3876)
Inquiry 7 11.23∗∗ -1.924∗∗∗

(4.410) (0.5107)
Inquiry 8 11.32∗∗ -0.6653

(5.146) (0.5839)
Inquiry 9 11.47∗∗ -0.1492

(5.077) (0.6896)
Inquiry ≥ 10 7.668 -1.017

(4.992) (0.8269)

Trade char. controls Yes

Fixed-effects
child order Yes
year-month Yes Yes

Fit statistics
Observations 8,212,803 8,218,662
R2 0.20256 0.95339
Within R2 0.18961 0.04535

Clustered standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Introduction

Firms (e.g., retailers, airlines, hotels, energy providers etc.) increasingly rely on algorithms to set

the price of their products.1 This evolution reflects efficiency and predictive gains of artificial intel-

ligence but it generates new concerns, in particular about price discrimination and tacit collusion

among algorithms (see MacKay and Weinstein (2022), CMA (2018), OECD (2017)).2 Surprisingly,

this worry has not been expressed for market makers in securities markets even though propri-

etary trading firms (market makers such as Citadel, Virtu, Jane Street, etc.) began using pricing

algorithms at least two decades ago and now dominate liquidity provision in exchanges.3

Is this lack of concern justified? Is tacit collusion among pricing algorithms more difficult in

securities markets? To study this question, we consider a framework in which “algorithmic market

makers” (AMs) compete in prices and are at risk of trading with better informed investors. Our

setting is, by design, very similar to standard models of market making with asymmetric information

(in the spirit Glosten and Milgrom (1985) and Kyle (1985)). However, in contrast to these models,

we assume that quotes are posted by AMs that set their quotes using Q-learning algorithms, a

special type of reinforcement learning algorithm (often mentioned as the type of algorithms used for

pricing decisions; see CMA (2018)). We focus on whether Q-learning algorithms cope with adverse

selection, learn to account for the information contained in trades in choosing prices and whether

their prices are competitive. To our knowledge, our paper is the first to analyze how Q-learning

algorithms behave in the presence of asymmetric information (an important feature of trading in

securities markets).

In our framework, AMs simultaneously post offers in response to clients’ requests to buy one

share of a risky asset. Clients’ valuation for the asset is the sum of the payoff of the asset (a common

value component) and a component specific to each client (a private valuation component). Clients

1For instance, Chen et al. (2016) find that more than 500 Amazon third-party sellers on Amazon marketplace were
using algorithms to price their products.

2For instance, MacKay and Weinstein (2022) write: “The explosion in the use of pricing algorithms over the past
decade has sparked concerns about the effect on competition and consumers [...].”.

3These firms are often referred to as “high-frequency market makers” because their algorithms (and hardware
equipments) generate very frequent new orders (quotes, cancellations etc.). Menkveld (2013) finds that, in 2007-2008,
a single high-frequency market maker accounts for about 15% of total trading volume in Dutch stocks (and more than
60% on one of the trading platforms for these stocks). Brogaard et al. (2015) find that fast traders on the Stockholm
Stock Exchange are primarily market makers, who account for 83% of all limit orders on this exchange (and 44% of
trading volume).
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arrive sequentially and each one trades with the dealers posting the best offer in response to her

request, provided that this offer is less than her valuation.4 As clients’ demand for the asset increases

with the common value, dealers are exposed to adverse selection (they are more likely to sell the

asset when its payoff is high than when it is low). In the baseline case, a new realization of the

asset payoff is drawn after each client’s arrival.

AMs behave as follows. In each trading round, each AM starts with an assessment of the

expected profit associated with each possible price, picks a price (on a grid) based on this assessment,

and updates its assessment of the expected profit associated with this price by taking a weighted

average (with pre-specified weights) of its realized profit at the end of the trading round and its

prior assessment of its expected profit. The assessment of the expected profit associated with other

possible prices is unchanged. In each round t, the AM picks the price that generates the largest

expected profit according to its assessment with a given probability of “exploitation”. Otherwise,

it “explores” by picking at random (with equal probability for each possible price) another price.

Exploration enables the AM to receive feedback about the profit generated by a price and therefore

to “learn” the expected profit associated with this price.

This iterative process is repeated over a large number of “episodes” (each made of one trading

round), which collectively constitute one “experiment”. In a given experiment, the set of parameters

(e.g., the number of AMs, the distribution of the asset payoff, and the distribution of each client’s

private valuations) is constant across episodes and forms the “environment”. For each environment

considered in our analysis (i.e., for a fixed set of parameters), we run 10, 000 experiments, each

made of 200, 000 episodes. In each experiment we record each AM’s quote, the transaction price,

and the trading volume (0, or 1) in each episode.

In early episodes of a given experiment, AMs “learn” the expected profit associated with each

possible price, which leads to significant volatility in prices. After a large number of episodes,

their pricing strategy eventually “converges” in most experiments, in the sense that AMs keep

playing the same price over a large number of episodes. However, this “long run” price can vary

4In electronic securities markets (e.g., electronic limit order books markets used in most of the major stock markets
in the world), market makers compete in prices (“à la Bertrand”) with no room for product differentiation. Price
priority is strictly enforced, which guarantees that clients’ orders are filled at the best price, as assumed in our analysis.
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from one experiment to another. Thus, our analysis focuses on the empirical distribution of final

outcomes (e.g., transaction prices and dealers’ profits) across experiments (holding the environment

constant). We study how this distribution varies with parameters of the environment (in particular

the intensity of adverse selection) and we systematically compare final outcomes to those predicted

by economic theory. When there are multiple dealers, the outcomes predicted by theory (e.g.,

transaction prices and profits) are those corresponding to the Bertrand-Nash equilibrium of the

environment considered in our simulations (accounting for the fact that market makers must post

their quotes on a grid).5 When there is a single dealer, predicted outcomes are those corresponding

to the equilibrium of the environment in which the dealer behaves as a monopolist.

We observe several interesting regularities. First, when there is a single AM, it does not nec-

essarily learn the monopoly price and its average quote is smaller than the monopoly price. In

contrast, when there are two AMs, they charge a price above the competitive price on average (even

the smallest price in the distribution of observed prices is well above the competitive price). This

markup decreases with the number of AMs and becomes close to zero only with 10 AMs.

Second, in all environments, AMs learn how not to be adversely selected. That is, they charge

prices that (more than) cover adverse selection costs. However, when their exposure to adverse

selection increases (either because the volatility of the asset payoff increases or the variance of

clients’ private valuations decreases), AMs tend to choose prices that are more competitive (in

particular, their realized bid-ask spreads are smaller on average). This is particularly striking

when the variance of clients’ private valuations increases. In this case, AMs’ offers (and therefore

transaction prices) increase, even though the competitive (Nash-Bertrand) price decreases because

adverse selection costs decline. Overall these findings suggest that adverse selection interacts with

the way Q-learning algorithms learn in non-intuitive ways.

In existing models (Kyle (1985) or Glosten and Milgrom (1985)), market makers are assumed

to learn the asset payoff from the trading history (the “order flow”) in a Bayesian way. For this

reason, holding the asset payoff constant, these models predict that dealers eventually discover asset

payoffs. For instance, dealers’ pricing errors (the average squared difference between the asset payoff

5In particular, as is well-known, price discreteness can generate multiple Bertrand-Nash equilibria. We take this
into account in our analysis.
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and the transaction price) decrease over time (trades) on average (see, for instance, Glosten and

Milgrom (1985)). To study whether AMs can also discover asset values, we extend our baseline

setting to allow for two trading rounds per episode. We find that AMs behave qualitatively like a

Bayesian learner would. That is, after a buy (no trade), they increase (reduce) their offer in the

second trading round. Thus, price discovery takes place, even though AMs have no knowledge of the

data generating process and their learning process is not Bayesian. However, observing the outcome

of the first period brings new information to the algorithms, which then face less adverse selection

in the second period. As adverse selection curbs algorithms’ rent-seeking behavior, prices become

less competitive on average in the second period. Moreover, this effect is stronger after observing

a trade than after observing no trade in the first period. In this sense, AMs seem to overreact to

trades relative to a Bayesian learner.

In summary, our findings have two main implications. First, algorithmic market makers settle

on non competitive prices, even though they operate in an environment where economic theory

predicts competitive outcomes. This echoes findings in Hendershott et al. (2011) and Brogaard

and Garriott (2019). The former find empirically that algorithmic trading (AT) increases dealers’

expected profits net of adverse selection costs (realized bid-ask spreads). Commenting on this result,

they write (on p.4): “This is surprising because we initially expected that if AT improved liquidity,

the mechanism would be competition between liquidity providers.” Brogaard and Garriott (2019)

study the effect of high frequency market makers’ entry on one trading platform for Canadian

stocks. They find that this entry triggers a decrease in bid-ask spreads. However, the entry of two

competitors is not sufficient to obtain the competitive outcome, in contrast to what standard models

of market making predicts. This pattern is exactly what we find when we compare average bid-ask

spreads across environments that only differ by the number of AMs. Our second main implication is

that adverse selection induces AMs to post quotes that are more competitive. In a cross-section of

assets, this means that realized bid-ask spreads for AMs (a measure of dealers’ expected profits net

of adverse selection costs) should be smaller in assets that are more exposed to informed trading.

For instance, they should be smaller for stocks than for Treasuries (high frequency market makers

are active in both types of assets), even though adverse selection costs are larger for stocks. This
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implication also holds dynamically: as adverse selection is resolved over time we expect AMs to

quote less competitively, contrary to the predictions of standard asymmetric information models.

It is worth stressing that we do not claim that market-making algorithms necessarily behave as

our AMs.6 This does not mean however that the patterns uncovered by our analysis are unlikely

to hold in reality.7 Our approach is to make stylized assumptions on pricing algorithms to develop

predictions about their effects on securities markets. In particular, our assumptions capture that

(some) algorithms used in practice rely on experimentation (“trial and error”) but eventually ex-

periment less and less, as experimentation is costly. We believe these properties are reasonable in

a financial context. As explained above, this approach delivers predictions that are quite different

from those of standard economic models in the same environment. To decide which approach has

more explanatory power, the next step (which is beyond the scope of this paper) would be to test

these predictions empirically.

The rest of the paper proceeds as follows. In the next section, we position our contribution in

the literature. Section 2, we present the economic environment analyzed in our paper. In Section

3, we study the case in which each episode has a single trading round. In this case, our analysis

focuses on how AMs’ behavior differ from two benchmarks: (a) competitive behavior (Nash-Bertrand

equilibrium) and (b) monopolistic behavior (monopoly prices). In Section 4, we study whether AMs

can discover asset fair values by considering the case in which each episode has two trading rounds.

Section 5 concludes.

1 Contribution to the literature

Our paper is related to the emerging literature on algorithmic pricing and the possibility for algo-

rithms to sustain non competitive outcomes. Calvano et al. (2020) show that Q-learning algorithms

6There is not much guidance on the actual design of market making algorithms in reality because market making
firms do not disclose information on their algorithms. Securities trading firms strongly push back a regulator’s attempt
to require disclosure of their computer codes for surveillance purpose. See “US regulator declares ‘dead’ moves to seize
HFT code”, Financial Times, October 14, 2017. In the EU, proprietary trading firms must make sure that they take
steps to insure that their algorithms will not lead to disordely markets. However, they do not have to disclose their
algorithms to regulators.

7The behavior of market makers in existing economic models is also highly stylised and, in contrast to our approach
here, they are assumed to have a complete knowledge of their environment (e.g., the distribution of asset payoffs,
traders’ valuations etc.). Yet, these models have explanatory power for the behavior of security prices at high frequency
(see, for instance, Glosten and Harris (1988) and the subsequent literature using price impact regressions).
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can learn dynamic collusive strategies in a repeated differentiated Bertrand game. Asker et al.

(2021) and Abada et al. (2022) show that supra competitive prices can be reached in this type

of environment even if dynamic strategies are ruled out, through what Abada et al. (2022) call

“collusion by mistake”.8 Cartea et al. (2022a) and Cartea et al. (2022b) study different families

of reinforcement learning algorithms and develop new methods to study which ones may lead to

non Nash behavior in a market-making environment.9 Banchio and Skrzypacz (2022) find that Q-

learning algorithms post less competitive bids in first price auctions than in second price auctions.

In contrast to our setting, bidders and sellers have a fixed valuation for the auctioned good and

bidders are not exposed to adverse selection in their setting (they consider private value auctions).

In sum, in line with other papers, we find that pricing algorithms relying on Q-learning can lead

to non competitive outcomes even when dynamic strategies are ruled out and when price setters

compete in prices. However, new to the literature, we find that adverse selection tends to mitigate

this issue.10 Moreover, to our knowledge, we are the first to study price discovery with Q-learning

algorithms (an issue specific to securities markets).

Our paper also contributes to the literature on algorithmic trading in securities markets. The

theoretical literature on this issue (e.g., Biais et al. (2015), Budish et al. (2015), Menkveld and

Zoican (2017), Baldauf and Mollner (2020), etc.) has mainly focused on how the increase in the

speed with which algorithms can respond to information increases or reduces liquidity suppliers’

exposure to adverse selection, using traditional workhorses models (Glosten and Milgrom (1985)

or Kyle (1985)). Yet, O’Hara (2015) calls for the development of new methodologies to study the

effects of algorithms in financial markets, writing that as a result of algorithmic trading: “the data

that emerge from the trading process are consequently altered [...] For microstructure researchers, I

believe these changes call for a new research agenda, one that recognizes how the learning models used

in the past are lacking [...].” Our paper responds to this call. Instead of modeling algorithmic traders

as Bayesian learners, with an omniscient knowledge of the environment in which they operate, we

8This idea is in line with an earlier literature in machine learning showing that games between Q-learning algorithms
do not necessarily converge to a Nash equilibrium (Wunder et al., 2010).

9In particular, Cartea et al. (2022b) show that using a finer pricing grid (a lower “tick size”) reduces the scope for
collusion.

10Another rather unique feature of our setting is that, in our setting, the demand faced by pricing algorithms is
stochastic. See also Hansen et al. (2021) and Cartea et al. (2022b) other settings in which selling algorithms face a
stochastic demand elasticity, but without adverse selection.
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model them as Q-learning algorithms. These algorithms learn by trial and error with almost no prior

knowledge of the environment, which represents the polar opposite of standard Bayesian learning.

Moreover, Q-learning is relatively simple and transparent, which makes it a good candidate for

a workhorse model of algorithmic interaction, much like the Glosten-Milgrom environment is a

workhorse model of market-making. This approach generates strikingly different implications for

those of canonical Bayesian-learning models. In particular, price competition does not guarantee

a competitive outcome and, maybe even more surprisingly, increased adverse selection can reduce

dealers’ rents.

2 The economic environment

In this section, we provide a general description of the economic environment considered in our

experiments (Section 3.3). We consider the market for one risky asset with t = 1, 2, ..., T episodes

(one can think of them as “trading days”). Quotes in this market are posted by N dealers who

trade with clients. Each episode has τ̄ trading rounds and the asset payoff ṽ is realized at the end of

the last trading round in a given episode. This payoff has a binary distribution, ṽ ∈ {vL, vH}, with

vL ≤ vH and µ := Pr(ṽ = vH) = 1
2 . We denote ∆v = vH − vL. Realizations of the asset payoffs are

independent across episodes. In the rest of this section, we describe traders’ actions and realized

profits in a given episode.

In each trading round τ , a new trader (the “client”) arrives to buy one share of the asset. The

buyer’s valuation for the asset is vCτ = ṽ + L̃τ , where L̃τ is i.i.d across trading rounds. Clients’

private valuations are assumed to be normally distributed with mean zero and variance σ2. The

buyer observes her valuation for the asset and requests quotes from the dealers, who simultaneously

respond by posting their offers a(τ) = {a1τ , ..., aNτ}. The ask price anτ is the price at which dealer

n is ready to sell at most one share in trading round τ . We denote by (i) amin
τ = min

n
{anτ} the

smallest ask price, (ii) Dτ the set of dealers posting this price and (iii) zτ the number of dealers in

Dτ . The client buys the asset if the best offer is less than her valuation for the asset (amin
τ ≤ vCτ )

and, in this case, she splits her demand among the zτ dealers posting this price. Otherwise she does

not trade.
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Let denote by V (a(τ), L̃τ , ṽ) the volume of trade in round τ . It equals 1 if the client buys the

asset, i.e., if the client valuation ṽ + L̃τ is not smaller than the lowest price amin
τ , and it is zero

otherwise. Let denote by Z(anτ , a(τ)) the fraction of the τ th round trade executed by dealer n, that

is, Z(anτ , a(τ)) = 1
zτ

if anτ = amin
τ and is zero otherwise. In trading round τ , dealer n’s realized

trading volume is:

I(an,τ , a(τ), L̃τ , ṽ) := V (a(τ), L̃τ , ṽ)Z(anτ , a(τ)), (1)

and his realized profit is:

Π(anτ , a(τ), L̃τ , ṽ) := I(an,τ , a(τ), L̃τ , ṽ)(a
min
τ − ṽ), (2)

Hence, dealer n’s total realized profit in a given episode is:

τ∑
τ=1

Π(anτ , a(τ), L̃τ , ṽ). (3)

In our setting, holding prices constant, dealers are more likely to sell the asset when the asset

payoff is high than when the asset payoff is low. Indeed, conditional on a realization of v, the

likelihood that a trade occurs in trading round τ is:

D(amin
τ , v) := Pr(amin

τ ≤ v + L̃τ ) = 1−G(amin
τ − v), (4)

which increases with v asD(amin
τ , vH) > D(amin

τ , vL). Thus, dealers are exposed to adverse selection:

they are more likely to sell the asset when its payoff is high than when it is low.

Finally, we denote by Π(a, µτ ) = NE[Π(a, a, L̃, ṽ)] the dealers’ expected aggregate profit when

they all post the same price a, and attach probability µτ to the event ṽ = vH . This gives

Π̄(a, µτ ) := µτD(a, vH)(a− vH) + (1− µτ )D(a, vL)(a− vL) (5)

In the rest of the paper, we study how AMs using Q-learning algorithms set their prices in such

an environment. We consider two cases. In the first case, analyzed in Section 3, we consider an
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environment in which τ = 1 (a single trading round per episode). Our focus in this case is on whether

and how outcomes when prices are set by AMs differ from those obtained in two benchmarks: (i)

the Nash-Bertrand equilibrium with multiple dealers (the competitive case) and (ii) the case in

which dealers set their price to maximize their aggregate expected profit (the monopoly case). This

comparison will help us to analyze how AMs exert market power and cope with adverse selection

relative to rational Bayesian dealers. In the second case, analyzed in Section 4, we consider a

dynamic environment in which τ = 2 (two trading rounds per episode) and we focus on price

discovery (i.e., on how AMs adjust their quotes over time).

3 The Static Case (τ̄ = 1)

In this section, we compare the pricing policies chosen by AMs using a Q-learning algorithm to

equilibrium outcomes predicted by standard economic analysis in the environment described in

Section 2 when there is a single trading round per episode. We refer to this case as the static case

since, when we solve for dealers’ equilibrium pricing policies in this case, they behave as if they

were facing a static one-shot problem. We proceed in three steps. First, in Section 3.1, we derive

the equilibrium outcomes in two benchmark cases (the monopolist and competitive cases). Then, in

Section 3.2, we describe the Q-learning algorithms used by AMs to choose their pricing policy when

τ̄ = 1. Third, in Section 3.3, we compare the pricing policies chosen by AMs to those obtained in

the benchmarks.

3.1 Benchmarks

Monopolist Case. In the monopolist case, in each episode, each dealer chooses her price, denoted

am, to maximize dealers’ aggregate expected profit. Recalling that Pr(ṽ = vH) = µ = 1/2, am

solves:

am ∈ argmax
a

Π̄

(
a,

1

2

)
. (6)

Economic theory predicts that this price should be the equilibrium outcome when N = 1.

Competitive Case. In the competitive case, dealers choose a price ac such that each dealer’s
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expected profit is nil. That is,

ac s.t. Π̄

(
ac,

1

2

)
= 0. (7)

When the set of prices is continuous, ac is the Bertrand-Nash equilibrium of the game played by

dealers in each trading round. This is the outcome predicted by economic theory when N ≥ 2.

We explain how to obtain ac and am in Appendices A.4 and A.3 and we find (numerically) that

(i) the competitive price, ac, increases with ∆v and decreases with σ while (ii) the monopoly price

increases with both ∆v and σ. We provide a numerical example in Table 1 where we report am and ac

when ∆v = 4 and σ = 5 (vH = 4 and vL = 0, so that E(ṽ) = 2), the baseline values of the parameters

in our experiments. The table also reports the expected half-quoted spread, E(a−E(ṽ)) = a−E(ṽ),

(the difference between the ask price posted by each dealer and the unconditional expected payoff

of the asset) and the expected half realized spread, E(a− ṽ | V = 1). In contrast to the average half

quoted spread, the expected half realized spread measures the expected profit of a dealer conditional

on a trade by the client. As this trade is more likely when v is high, this measure accounts for the

adverse selection cost borne by the dealer. In fact the difference between average half quoted spread

and average half realized spread is often used as a measure of adverse selection costs in empirical

studies.11 Last observe that the total expected profit of a dealer is the expected half realized spread

times the probability that the client trades (Π̄(a, µ) = Pr(V = 1)E(a−˜̃v | V = 1)).

[Insert Table 1 about here]

When the dispersion of clients’ private valuations (σ) increases or the volatility of the asset payoff

(∆v) decreases, dealers’ ask prices become lower in the competitive case because dealers’ adverse

selection costs decline. In contrast, when the dispersion of clients’ private valuations increases, the

monopolist offer becomes larger, despite the fact that their adverse selection costs decline. This

reflects an increase in dealers’ rents, as shown by the increase in the expected realized spread. The

reason is that as σ increases, clients’ demand becomes more inelastic, which as usual enables a

monopolistic dealer to extract larger rents. In contrast, when ∆v increases, the client’s demand

becomes more elastic and the adverse selection cost increases. As a result, the monopolist dealer

11See Foucault et al. (2013), ch. 2, for a description of various measures of bid-ask spreads in securities markets
and their interpretation.
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charges a larger price but she obtains smaller rents (the realized bid-ask spread declines).

3.2 Q-Learning Algorithms

3.2.1 Description of the Algorithms

We now describe the functioning of Q-learning algorithms in the environment described in Section

2 when τ̄ = 1.12 We use the same notations as in Section 2, unless otherwise stated. In contrast

to the benchmark case, we restrict AMs to choose their quotes in a discrete and finite action set

A = {a1, a2...aM}, where each am is a possible ask price.13

To each dealer n and episode t, we associate a so-called Q-Matrix Qn,t ∈ RM×1. In this section,

Qn,t is simply a column vector of size M . The m-th entry of the matrix is denoted qm,n,t where

qm,n,t represents the estimate in episode t of the payoff that AM n expects from playing price am.

The Q-learning algorithm is meant to refine the payoff estimates in Qn,t over time, and to end up

playing the action associated with the highest estimate.

More formally, the algorithms (AMs) play the game according to the following process. We first

initialize the matrices Qn,0 with random values: Each qm,n,0 for 1 ≤ m ≤ M and 1 ≤ n ≤ N is i.i.d.

and follows a uniform distribution over [q, q]. Then, in each episode t, we do the following:

1. For each dealer n, we define m∗
n,t = argmax

m
qm,n,t−1 the index associated with the highest

value in matrix Qn,t−1, and we denote a∗n,t = am∗
n,t

the greedy price of AM n in episode t. This

is the price that seems to maximize the AM’s static profit, according to the estimates available in

episode t.

2. For each dealer n, with probability ϵt = e−βt the AM “explores” by playing an,t = am̃n,t ,

where β > 0 and m̃n,t is a random integer between 1 and M , all values being equiprobable. The

price am̃n,t is thus a price taken randomly in A. With probability 1− ϵt, the dealer “exploits” and

plays an,t = a∗n,t, the greedy price. The random draws leading to exploring or exploiting are i.i.d.

across all dealers in a given episode.

12See Calvano et al. (2020) for an introduction to Q-learning algorithms in the more complex case of infinite horizon
problems. See also Sutton and Barto (2018) for an introductory textbook on this topic.

13This constraint is necessary because the algorithm must evaluate the payoff associated with each possible price.
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3. We compute amin
t = min

n
an,t the best ask in episode t, zt the number of AMs with an,t = amin

t ,

and draw ṽt and L̃t. Each dealer n then receives a profit equal to πn,t = Π(an,t, a(t), L̃t, ṽt), as given

by (2).14

4. We update the Q-matrix of each dealer as follows, with 0 < α < 1:

∀1 ≤ n ≤ N, qm,n,t =


απn,t + (1− α)qm,n,t−1 if an,t = am

qm,n,t if an,t ̸= am

(8)

5. We then repeat starting from stage 1, until the last episode T .

Intuitively, each Q-learning algorithm alternates between experimenting random prices, and

playing the price that seems to lead to the highest payoff based on past plays. As the number of

past episodes grows, information accumulates and there should be less value in experimenting. For

this reason, the probability of experimenting decays over time (here exponentially, at rate β). This

important parameter of the algorithm governs the trade-off between experimenting and exploiting.

A second trade-off is how much should one react to one particular observation πn,t, knowing that

payoffs are stochastic. This is governed by the parameter α: if α is large the algorithm reacts

quickly to new observations, but the estimates generated in the Q-matrix are unstable (consider

the extreme case α → 1). Conversely, if α is small the estimates are stable but it will take a lot

of experimentation to move the values of the Q-matrix towards accurate estimates of the expected

payoffs associated with each price.

3.2.2 Convergence

There are many variants of the Q-learning algorithm, with different specifications for the experi-

mentation probability ϵt and the updating rule (8). The one described in the previous section is

common in practical applications and is also the one used in recent papers in the economic lit-

erature (e.g., Calvano et al. (2020)). We choose it for comparability with prior literature. This

version of Q-learning does not satisfy the assumptions given in, e.g., Watkins and Dayan (1992),

14We index all variables by the episode counter and omits the trading round index, τ within an episode since τ = 1
in each episode here.
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Jaakkola et al. (1994), or Tsitsiklis (1994) to guarantee convergence. In fact, given the design of

these algorithms and the environment in which they operate, Lemma 1 below shows that no matter

t (that is, even when T becomes very large), with a probability that is bounded away from 0, the

Q-matrix changes by an amount that is bounded away from 0. Thus, entries in the Q-matrix never

converge.

Lemma 1. (Impossibility of convergence of the Q-matrix) For any given t and am ∈ A, if

an,t = am = amin
t , then ,

Pr (|qm,n,t − qm,n,t+1| ≥ ∆∗
m) ≥ P ∗

m,

where

∆∗
m :=

α

2

(
vH − vL +

∣∣∣∣am − vH − vL
2

∣∣∣∣) ,

and

P ∗
m := min

{
1

2N
D(am, vL), 1−

1

2
(D(am, vL) +D(am, vH))

}
For instance, consider the case N = 1 and suppose that the AM plays for T consecutive periods

the same price am. Then, as T goes to infinity, the value of the Q-matrix qm,t does not converge

in probability to Π(am, µ), that is the actual monopolist dealer’s expected profit when she sets a

price of am (the metrics a monopolist would use to set his price in economic theory). Because the

Q-matrix does not converge, the price that maximizes the Q-matrix needs not stay the same and

will vary with probability 1 after sufficiently many episodes. Thus, one cannot expect the greedy

price to remain stable, even when T becomes very large. This also implies that the greedy price

observed in the final episode will vary across experiments.

In actual simulations, when α is small, most experiments give the impression of “converging”

in the sense that, after a sufficiently large number of episodes, the price chosen by each AM stays

constant for many periods (this is because ∆∗
m is linear in α). This is the meaning of “convergence”

in many papers in the literature (e.g., Calvano et al. (2020)). Thus, following the literature, we

say that an experiment has “converged” if all algorithms’ actions have been constant over the last

κT periods (e.g., κ = 0.05). Moreover, to describe the outcome of the interaction between AMs
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we look at the distribution of prices after a large number T of episodes and across a large number

K of experiments, focusing in particular on the mean of the distribution. When needed, we use a

superscript k to denote the outcome of the kth experiment. For instance, a∗kn,t is the greedy price of

dealer n in episode t of experiment k.

Keeping these observations in mind, we set the parameters of our baseline simulations as follows.

The parameters of the economic environment are the same as in Table 1: ∆v = 4, σ = 5, vH = 4,

and vL = 0. In addition, the set of available prices A is all integers between 1 and 15 included.

We initialize the Q-matrices with values between q = 3 and q = 6 so that all values of the initial

Q-matrix are above the maximal payoff a dealer can get in a given period.15 There are K = 10, 000

experiments, T = 200, 000 episodes per experiment, and in all experiments we set β = 0.0008 and

α = 0.01. This means that the algorithm chooses to experiment 1249.5 times in expectation, and

hence “tries” each price about 100 times on average. As α = 0.01, this frequency of experimentation

is enough (in expectation) to override the initial values of the Q-matrix.16 Finally, we set κ = 0.05,

so that an experiment is said to “converge” if algorithms’ actions have been unchanged for the last

10,000 episodes.

3.3 Results

In this section, we report the main results of our experiments. We first consider the monopoly case

(N = 1) and duopoly case (N = 2), holding other parameters to their baseline values (Sections

3.3.1 and 3.3.2). In particular, we compare the distribution of final prices in these cases to their

equilibrium values when N = 1 (monopoly price) and N = 2 (duopoly case), accounting for the fact

that dealers must position their prices on a grid. Given this constraint, the theoretical monopoly

price is am = 7 and there are two possible Nash-Bertrand equilibria (ac = 3 or ac = 4).

15This specification is common in the literature on Q-learning to guarantee that all actions are chosen sufficiently
often to overcome the initial values of the Q-matrix. Indeed, as long as qm,n,t is larger than the maximal payoff the
agent can realize, action m will necessarily be picked again because all the cells associated with actions that are played
eventually fall below the maximal payoff.

16Note that Q-learning algorithms are meant for situations in which agents have no prior knowledge of the envi-
ronment. Hence, there is no basis on which one could optimize the algorithm, e.g., by picking the “best” values of α
and β. Rather, these values and the rules used by the algorithm must be seen as parameters.
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3.3.1 A single AM (N = 1) behaves more competitively than in theory

Consider the case in whichN = 1 first. Panel (a) of Figure 1 reports the evolution of the greedy price

a∗k1,t over episodes, averaged over the 10, 000 experiments while Panel (b) reports the distribution over

the K experiments of the final greedy price, a∗k1,T (whether convergence takes place or not). Panel

(a) suggests that, on average the greedy price converges as the number of episodes becomes large.

However, only 73.64% of the experiments converge (as defined in Section 3.2.2) and the final greedy

price is heterogeneous across experiment as shown in Figure 1. The average final greedy price, a∗k1,T ,

across all experiments is 6.16. However, there is substantial heterogeneity across experiments. As

panel (b) shows, while most experiments ultimately reach a greedy price of 6, a substantial number

reach 5 or 7, and in a few cases even 8 or 9. This dispersion in final outcomes across experiments

is due to the environment being stochastic. Even though the values of the Q-matrix are not very

sensitive to individual observations (remember that α = 0.01), there is still a significant probability

to obtain sufficiently many “bad draws” resulting in zero demand with prices of 6 or 7 to lead to a

Q-matrix with a greedy price of 5 or 8, even though the monopolist’s payoff is maximized at 7.

[Insert Fig. 1 here.]

A striking feature of this experiment is that, most of the times (in more than 75% of all exper-

iments), the algorithm fails to learn the theoretical (optimal) monopoly price 7 even though T is

large. Moreover, this failure is not random: On average, the final price posted by the algorithm is

below 7. The modal price is 6, and the algorithm is more likely to set a price of 5 than a price of

8, even though playing 8 would give a higher expected profit than playing 5. The reason is that

the updating rule (8) is biased against actions giving a high payoff with a low probability, such as

choosing a high price. This effect is more pronounced when α is larger, but still significant even

with the low value of α we are using (in unreported results, we checked that the average final greedy

price indeed decreases in the parameter α).17

17To understand this point, imagine there are only two actions a1 and a2. Action a1 gives a sure payoff π1, whereas
a2 gives a payoff π+ > π1 with probability p, and π− < π1 with probability 1− p, with π2 = pπ+ +(1− p)π− > π1. If
both actions are played many times, the expectation of q2,t associated with a2 will converge to π2. However, as noted
in Lemma 1, the random variable q2,t itself does not converge pointwise. Instead, the distribution of q2,t converges to
a non-degenerate distribution. A simple example is the case α = 1: then q2,t will be equal to π+ > π1 with probability
p and π− < π1 with probability 1 − p. Hence, the Q-learning algorithm will mistakenly pick action 1 as the greedy
action with probability 1− p.

15



One might be tempted to interpret this failure to learn the optimal price with probability 1 as a

deficiency of the algorithm. However, this class of algorithms is not explicitly designed to learn the

optimal price. Rather they seek to reach a certain balance between “exploring” and “exploiting”.

For instance, one could reach a final outcome closer to the monopoly price by choosing smaller

values of α and β. However, doing so would be at the cost of playing suboptimal prices for more

periods (so that the average profit of the AMs over all episodes might be smaller).

In any case, an important conclusion from the single dealer case is that the Q-learning algorithm

used by the AMs in our experiments is not by itself biased towards high prices. If anything, the

single dealer case shows that the opposite happens. This makes the non competitive final outcomes

observed in the duopoly case (see next section) more striking.

3.3.2 Two AMs do not suffice to obtain Bertrand-Nash outcomes

Now consider the duopoly case (N = 2). The starting values of the Q-matrices, Q1,0 and Q2,0, for

each AM as well as all the subsequent random draws for the two AMs, are drawn independently of

each other (except the client’s demand). Panel (a) of Figure 2 reports the evolution of the greedy

price a∗kn,t for each AM over T episodes, averaged over the K experiments. Panel (b) reports the

distribution of the final greedy price a∗kn,T for each AM over the K experiments.

[Insert Fig. 2 here.]

As can be seen in Figure 2, the AMs’ quotes converge more quickly in the duopoly case than

in the monopoly case. Convergence is also more frequent: In 94.18% of the experiments, the

quote posted by each AM has converged after 200,000 episodes (vs., only 73.64% when N = 1).

Moreover, in all experiments with convergence, the AMs end up posting the same price (a∗k1,T = a∗k2,T ).

However, this price is rarely one of the two Bertrand-Nash equilibrium prices (3 or 4 due to price

discreteness). Indeed, we observe a∗k1,T = a∗k2,T = 4 in 5.57% of experiments only, and we never

observe a∗k1,T = a∗k2,T = 3. As Panel (b) of Figure 2 shows, a majority of experiments (more than

60%) converge to a price of 5, about 20% converge to a price of 6, and some to 7 (the monopoly

price) or 8. Thus, on average, the prices posted by the two competing AMs are far above the

Bertrand-Nash equilibrium price.
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The reason for this seemingly collusive outcome is different from the one in Calvano et al. (2020),

because our setup precludes dynamic strategies (quotes cannot be contingent on past competitors’

quotes in our set-up). Its origin seems closer to that in Asker et al. (2022) who also find that prices set

by Bertrand competitors using Q-learning are above competitive prices (in an environment without

adverse selection). In the first episodes, both AMs are experimenting with a high probability. AM

1 for instance is gradually learning how to best respond to AM 2. However, most of the time, AM

2 chooses a random price since the likelihood of experimentation is high in early episodes. The

best response to AM 2 is actually for AM 1 to play a = 6. As AM 1 plays 6 more and more often

(since the likelihood of experimentation declines over time), AM 2 should in principle learn that her

best response is then to play a = 5 (in an undercutting process typical of Bertrand competition).

However, because both AMs experiment less and less often over time, this undercutting process will

typically not last long enough to reach the Bertrand outcome. For instance, both AMs may have

reached a price of only 5 when the probability of experimenting ever again becomes very small. If

for both AMs playing 3 or 4 did not prove profitable in the past (when the other AM was playing

differently), then the AMs appear “stuck” with supra-competitive prices.18 Our next step is to study

how the probability that this happens depends on the parameters of the model, and in particular

on the degree of adverse selection.

3.3.3 Adverse selection tends to make AMs’ quotes more competitive

In this section we study how the outcomes of the simulations vary when we change the parameters of

the economic environment, in particular the degree of adverse selection. For each set of parameters,

in each experiment k and episode t we compute the following four variables (which correspond to

empirically observable quantities):

1. The trading volume V k
t , which is equal to 1 if a trade happens and 0 otherwise.

2. The quoted spread QSk
t , which is the best ask minus the asset’s ex ante expected value:

QSk
t = amin,k

t − E[ṽ]. (9)
18See Abada et al. (2022) for a comprehensive analysis and discussion of this issue. Wunder et al. (2010) show that

even in a simple prisoner’s dilemma Q-learning algorithms may not reach the Nash equilibrium.
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3. The realized spread RSk
t , which is:

RSk
t = amin,k

t − vkt . (10)

The realized spread is computed only when there is a trade. It measures the profit actually

realized by the AM with the best quote, given the actual value vkt of the asset. Its average

value over trades is a standard measure of dealers’ expected profits per share in the literature

(see Section 3.1).

We then compute the average across the K experiments of these three quantities in the last episode.

That is, we compute:

V =

∑K
k=1 V

k
T

K
(11)

QS =

∑K
k=1QSk

T

K
(12)

RS =

∑K
k=1 V

k
T RSk

T∑K
k=1 V

k
T

. (13)

(14)

[Insert Fig. 3 here.]

Panels a) and b) in Figure 3 show the effect of a change in σ (the variance of clients’ private

valuation) and ∆v (the volatility of the asset payoff) on the average trading volume, the average

quoted spread, and the average realized spread in the case with a single AM (dashed line), two AMs

(plain line) and in the Bertrand-Nash equilibria (dotted lines).

As explained previously, an increase in σ reduces dealers’ exposure to adverse selection and the

elasticity of clients’ demand to dealers’ price. In the benchmark case (see Table 1), the first effect

reduces adverse selection costs. For this reason, the quoted spread in the Bertrand-Nash equilibria

decreases (weakly due to price discreteness) with σ. However, surprisingly, the opposite pattern is

observed for the quoted spread posted by AMs: As σ increases, the two AMs post less competitive

quotes. In fact, the effect of σ on AM’s quotes is similar to its effect on the monopoly price (red

dashed line in 3). In this case, like a monopolist, the competing AMs seem to take advantage of
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the decrease in the client’s demand elasticity to charge larger markups and thereby obtain larger

expected profits (as shown by the evolution of the average realized spread).19

Thus, surprisingly, a decrease in adverse selection makes the quotes posted by AMs less com-

petitive. The effect of ∆v on AMs’ quotes (Panel b) conveys a similar message. As ∆v decreases

from 8 to 4, AMs’ exposure to adverse selection decreases. However, as shown by the evolution

of AMs’ realized spread, their rents increase, exactly as in the monopolist case. When ∆v keeps

decreasing (from 4 to 1), AMs rents decrease but in a way similar to what is observed in theory for

the monopolist.20 In sum, competing AMs react to a decline in adverse selection (an increase in σ or

a decrease in ∆v) in a way qualitatively similar to a monopolist rather than Bertrand competitors.

Panel (c) of 3 shows the effect of an increase in the number of AMs (from 1 to 10). As the number

of AMs increases, AMs’ quotes become closer to the Bertrand-Nash equilibria. Thus, AMs’ rents

(realized bid-ask spreads) decline. This pattern may seem intuitive. However, in theory it takes only

two dealers to obtain the Bertrand-Nash equilibrium. Thus, economic theory predicts that bid-ask

spreads and dealers’ rents should decline when N increases from 1 to 2 but that a further increase in

N should have no effect. Empirical findings regarding the effects of high frequency market makers’

entry on bid-ask spreads, reported in Brogaard and Garriott (2019) (discussed in the introduction),

are more consistent with the patterns obtained for AMs than those predicted by the Bertrand-Nash

equilibrium.

3.3.4 Welfare implications of algorithmic market-making

Spread measures do not immediately translate into welfare measures. In particular, the realized

spread RS measures a market-maker’s realized profit (and hence, cost for the client) conditionally

on a trade, but does not take into account the probability that this trade occurs. To further

investigate the consequences of AMs for total welfare in the economy and its distribution between

market-makers and buyers, we compute the levels of welfare, consumer surplus, and firm profits

achieved with AMs and compare them to their counterparts in the competitive benchmark.

19The decline in the client’s demand elasticity explains why trading volume increases with σ in the experiments,
despite the fact that AMs charge a larger price to their client.

20AMs’ rents also evolve in a way similar to that observed in one of the two Nash Bertrand equilibria (dotted purple
line) but opposite to that in the other one (yellow dashed line). We think that the pattern observed in first case is
due to price discreteness and will therefore not be robust with a finer grid, in contrast to other patterns.
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For a given best ask a, total welfare can be computed as:

W (a) = Pr(ṽ + L̃ ≥ a)E[L̃|ṽ + L̃ ≥ a]. (15)

In words, welfare in this model is driven by the liquidity shocks L̃, which create gains from trade

between buyers and market-makers. Welfare is always lower when the ask price increases, and as a

result even in the competitive case as increase in adverse selection lowers welfare. Welfare can be

further decomposed into consumer surplus CS and producer surplus PS:

CS(a) = Pr(ṽ + L̃ ≥ a)E[L̃+ ṽ − a|ṽ + L̃ ≥ a], (16)

PS(a) = Pr(ṽ + L̃ ≥ a)E[a− ṽ|ṽ + L̃ ≥ a]. (17)

Based on the results of the experiments, we compute the average realized values of W,CS, and

PS, and show in Fig. 4 how they vary with ∆v and σ.

[Insert Fig. 4 here.]

We observe that an increase in σ leads to an increase in profits, due to both the AMs behaving

less competitively (realized spreads increase) and demand elasticity being lower. However, because

this elasticity is low, high prices have a lower impact on the probability that a trade is realized, and

conditionally on a trade the gains are also higher. As a result, consumer surplus and total welfare

also increase with σ. An increase in ∆v has a somewhat ambiguous impact on realized spreads but

it reduces profits, consumer surplus, and hence total welfare.

Overall, the comparative statics of welfare and profit with respect to σ and ∆v are the same in

the two benchmarks and with a duopoly of AMs, the levels reached with AMs being in between the

monopoly benchmark and the competitive benchmark.
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4 Price Discovery (τ̄ = 2)

Models of trading with asymmetric information in financial markets are often used to study the

process by which market participants discover asset fundamental values (“price discovery”). In

these models, trades convey information about an asset payoff (because some trades come from

informed investors). Using this information, uninformed traders (e.g., dealers) update their beliefs

about this payoff in a Bayesian way. Via this dynamic learning process, over time, prices get closer

to the asset value (see, for instance, Glosten and Milgrom (1985) or Easley and O’Hara (1992)).

In this section, we study whether AMs can also discover asset fundamental values (ṽ in our

setting). To do so, we consider the case with two trading rounds (τ̄ = 2), following the same steps

as when τ̄ = 1. That is, in Section 4.1, we first explain how to derive equilibrium prices in our

two benchmarks (the monopoly case and the Bertrand-Nash equilibrium). Then, we explain how

Q-learning algorithms work in this environment (Section 4.2). Finally we present the results in

Section 4.3.

4.1 Benchmarks: Learning the Fundamental Value

When τ̄ = 2, dealers can learn information about ṽ from the trading outcome at date 1. Thus,

their beliefs regarding the payoff of the asset evolve over time. As is standard in models of trading

with asymmetric information, in the benchmark monopoly and competitive cases, we assume that

dealers update their beliefs in a Bayesian way. At the end of the first trading round in a given

episode, there are two possible trading histories (H1): (i) a trade at price amin
1 (H1 = {1, amin

1 }) or

(ii) no trade (H1 = {0, amin
1 }). In the first case, dealers’ Bayesian beliefs about the likelihood that

v = vH is (remember that dealers’ prior belief about this event is 1/2):

µ2(1, a
min
1 ) := Pr(v = vH | H1 = {1, amin

1 }) = D(amin
1 , vH)

D(amin
1 , vH) +D(amin

1 , vL)
, (18)
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where D(a, v), given by (4), is the probability that the client buys the asset at price a when the

asset value if v. In the second case, dealers’ Bayesian beliefs about the likelihood that v = vH is:

µ2(0, a
min
1 ) := Pr(v = vH | H1 = {0, amin

1 }) = 1−D(amin
1 , vH)

2− (D(amin
1 , vH) +D(amin

1 , vL))
. (19)

It is easily checked that µ2(1, a
min
1 ) > µ2(0, a

min
1 ) if (and only if) ∆v > 0. That is, Bayesian dealers

should revise their beliefs about the expected payoff of the asset upward after a trade (buy) at date

1 and downward after no trade at date 1.

Given these observations, one expects the monopoly price and the competitive price (the Nash-

Bertrand equilibrium price) to be larger (smaller) in the second trading round than in the first if

there is a trade (no trade) in the first trading round. Table 2 shows that this is the case for the

parameters of our experiments. In addition, in the competitive case, the difference between dealers’

ask prices when there is a trade and when there is no trade increases with the informativeness of

the order flow in the first period (i.e., increases with ∆v and decreases with σ). In addition, Table

2 shows that, in the competitive experiment, the ask price posted by dealers in the second period

is smaller on average than in the first period (that is, E[ac2] − ac1 ≤ 0). This reflects the fact that

as time passes, the informational asymmetry between dealers and their clients decline since dealers

learn information about the asset payoff. Thus, they face less adverse selection and therefore across

all possible realizations of v and the trading history at date 1, their ask price should be closer to

the asset unconditional value in the second period than in the first period. In Section 4.3, we study

whether AMs’ quotes satisfy these properties or not. This is a way to study whether AMs learn

to discover the asset payoff, even though they are not programmed to be Bayesian, as competitive

dealers do in the benchmark case.

[Insert Table 2 here.]

Table 2 also shows that, as in the case with one trading round (and for the same reasons), (i)

the competitive and the monopoly prices increase with the volatility of the asset (∆v) in each

trading round, (ii) the competitive prices in each trading round decrease with the dispersion of

clients’ private valuations (σ) and (iii) the monopoly prices in each trading round increase with this
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dispersion.

Last, observe that, in the competitive case, the quotes posted by dealers in the first trading

round are identical to those obtained when there is a single trading round (compare Tables 1 and

2). In contrast, the monopolist price in the first trading round differs from that obtained when there

is a single a trading round. This reflects the fact that, in choosing her price in the first trading

round, a monopolist accounts for the effect of this price on her expected trading profit in the first

trading round and her expected trading profit in the second trading round via the effect of her

choice on her belief about the asset payoff given the first period outcome (trade/no trade).21

4.2 Q-Learning Algorithms

In this section, we explain how we adapt the Q-learning algorithms described in Section 3.2 to the

case in which episodes have two trading rounds. The algorithms will keep track in each episode of the

“state” they are in, and will play an action depending on the state. More specifically, for each AM

n, we define (N+3) states, denoted sn, as follows: (i) sn = ∅ in the first trading round; (ii) sn = NT

in the second trading round if no trade takes place in the first; (iii) sn ∈ S =
{
0, 1

N , 1
N−1 , ...,

1
2 , 1

}
is the number of shares sold by AM n if a trade took place in period 1 (depending on how many

AMs shared the market). Each AM then relies on a Q-matrix Qn,t ∈ RM×(N+3), in which each line

corresponds to a different price and each column to a state, ordered as in the previous paragraph.

We denote qm,s,n,t the (m, s) entry of matrix Qn,t.

We then modify the process described in Section 3.2.1 as follows. For any experiment k, we

initialize the matrices Qn,0 with random values: Each qm,s,n,0 (for 1 ≤ m ≤ M , 1 ≤ n ≤ N , and

s ∈ S) is i.i.d. and follows a uniform distribution over [q, q]. Then, in each episode t, we do the

following:

Period 1:

1. For each AM n, we define m1,∗
n,t = argmax

m
qm,∅,n,t−1 the index associated with the highest

value in matrix Qn,t−1 in state s = ∅ (the first period), and we denote a1,∗n,t = a
m1,∗

n,t
the

21One can show that µ2(1, a
min
1 ) and µ2(0, a

min
1 ) increase with amin

1 . Thus, by choosing a high amin
1 , the monopolist

improves the informational content of a trade at date 1 but it reduces the informational content of observing no trade.
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corresponding greedy price.

2. For each AM n, with probability ϵt = e−βt the AM “explores” by playing a1n,t = am̃1
n,t
, where

β > 0 and m̃1
n,t is a random integer between 1 and M , all values being equiprobable. With

probability 1 − ϵt, the AM “exploits” and plays the greedy price a1n,t = a1,∗n,t. The random

draws leading to exploring or exploiting are i.i.d. across all AMs in a given trading round of

a given episode.

3. We compute a1,min
t = min

n
a1n,t, and draw ṽt and L̃1,t. This determines the position I1n,t taken

by each AM in period 1 and the state sn,t it will be in when period 2 starts. Formally, denote

D1
t the set of AMs who quote a1,min

t and z1t the size of this set. Then, if ṽt + L̃1,t ≥ a1,min
t we

have I1n,t = sn,t =
1
z1t

for every n ∈ D1
t , and I1n,t = sn,t = 0 for n /∈ D1

t . If ṽt + L̃1,t < a1,min
t

then I1n,t = 0 and sn,t = NT for every n.

4. We update the first column of the Q-matrix of each AM as follows:

∀1 ≤ n ≤ N, qm,∅,n,t =


α[a1n,tI

1
n,t +max

m′
qm′,sn,t,n,t−1] + (1− α)qm,∅,n,t−1 if a1n,t = am

qm,∅,n,t−1 if an,t ̸= am

(20)

Period 2:

1. At the beginning of period 2 we know the state sn,t in which AM n finds itself. We define

m2,∗
n,t = argmax

m
qm,sn,t,n,t−1 the index associated with the highest value in matrix Qn,t−1 in

state s = sn,t, and we denote a2,∗n,t = a
m2,∗

n,t
the corresponding greedy price.

2. With probability ϵt the AM plays a random price a2n,t, following the same process as in period

1. With probability 1− ϵt, the AM plays a2n,t = a2,∗n,t.

3. We compute a2,min
t = min

n
a2n,t and draw L̃2,t. This determines the position I2n,t taken by each

AM in period 2, following the same rules as in period 1.
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4. For each AM n, we only update the column corresponding to state sn,t, as follows:

∀1 ≤ n ≤ N, qm,sn,t,n,t =


α[a2n,tI

2
n,t − ṽt(I

1
n,t + I2n,t)] + (1− α)qm,sn,t,n,t−1 if a2n,t = am

qm,sn,t,n,t−1 if a2n,t ̸= am

(21)

Q-learning algorithms were initially designed to solve dynamic stochastic optimization problems

(both finite and infinite horizon), and are thus in principle well suited to optimizing prices in this

environment. The Q-matrix is defined in such a way that each algorithm can in principle learn to

play a different price in period 2 depending on the “state”, that is, depending on whether there was

a trade in period 1. Note that, in addition, the state needs to include the amount sold by the AM

in period 1. Indeed, as vt is only revealed in period 2, the Q-matrix can record only at the end of

period 2 what was the actual cost of selling some units of the asset in period 1.22

4.3 Results

To study price discovery with AMs using the Q-learning algorithms described in the previous section,

we proceed exactly as in Section 3.3. In particular, we use the same parameter values for K (number

of experiments), T (number of episodes per experiments), α and β. For brevity, we only focus on the

case with two AMs (N = 2). We measure price discovery by AMs (i.e., whether AMs’ quotes reflect

information about the asset payoff contained in the first period trade) by computing the magnitude

of the average price reaction to the observation of a trade vs. no trade (across experiments with the

same environment). Formally, defining V τ,k
t the total trading volume in trading round τ of episode

t in experiment k, we compute:

Discovery =

∑K
k=1 V

1,k
T [a2,min,k

T − a1,min,k
T ]∑K

k=1 V
1,k
T

−
∑K

k=1(1− V 1,k
T )[a2,min,k

T − a1,min,k
T ]∑K

k=1(1− V 1,k
T )

. (22)

22Using inventory levels as the state variable is common in other applications of Q-learning, in particular in dynamic
pricing and revenue management. See, e.g., Rana and Oliveira (2014) for a recent example. The list of states used by
the algorithms is an important parameter of the model. The list could be even richer (e.g., conditioning on prices in
period 1 as well), or coarser (not distinguishing states NT and 0).
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The variable Discovery is the empirical counterpart, in our experiments, of the difference between

the ask price in the second period when there is a trade and when there is no trade in the benchmark

cases. In these cases, this difference is always positive because dealers become more optimistic about

the asset payoff after observing a buy in the first trading round than after observing no buy (see

Table 2).

We also want to study whether price discovery induces dealers to charge lower markups relative

to their expectation of the asset payoff because it reduces informational asymmetries, as is observed

when dealers are competitive in the benchmark case (E(ac2) < ac1; see Table 2). To this end, we

compute the average difference (denoted Difference) between the ask price posted in the second

trading round and the ask price posted in the first trading round across experiments:

Difference =

∑K
k=1[a

2,min,k
T − a1,min,k

T ]

K
. (23)

If AMs behave as in the competitive benchmark, Difference should be negative. If it is not and

Discovery > 0, this indicates that (i) price discovery takes place but (ii) AMs take advantage

of the reduction in informational asymmetries to charge less competitive prices, in line with our

observations in the static case.

Figure 5 plots Discovery and Difference for different values of σ and ∆v. In addition, we

plot the highest and lowest values these quantities can take across the several Nash equilibria of the

game, the monopoly benchmark, and the competitive benchmark with continuous prices.

[Insert Fig. 5 here.]

First, we observe that for all values of the parameters, Discovery is positive. Thus, AMs learn

to quote higher prices when a trade occurred in period 1 than when a trade did not occur. Hence,

Q-learning algorithms are able to learn from past trades and contribute to price discovery. However,

the algorithms seem to significantly “overshoot”. That is, the difference in the prices posted by

AMs following a buy or no buy in the first trading round is always larger than that predicted in

the most competitive Nash-Bertrand equilibrium (the dashed dotted line), given price discreteness.

This indicates that the difference in posted prices following a trade or no trade in the first trading
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round is in part driven by deviations from competitive prices.

Second, we observe that Difference is always positive, that is on average the algorithms use a

higher price in the second trading round than in the first. This is in stark contrast to the competitive

benchmark in which, at least if the tick size were zero, Difference should be negative (as shown

in Table 2 and the dashed green line in Figure 5 in the case of ”Difference”).

A mechanism that explains both results is, as in the static case, that adverse selection curbs

the market power of algorithms. In our set-up, observing the trading outcome in the first trading

round always reduces informational asymmetries between dealers and clients in the benchmark case.

Thus, dealers’ adverse selection cost is smaller in the second trading round. This decrease in adverse

selection leads the AMs to settle on using less competitive prices, as we already observed in the static

case. In addition, adverse selection is reduced more after a trade than after no trade (observing a

trade is less likely ex ante, hence is more informative when it happens). Thus, AMs tend to charge

larger markups after a trade than after no trade, explaining why on average Difference is positive

insead of negative as in the competitive case.

These results give interesting insights into how competition between algorithms can be spotted

in the data. The first result implies that quotes will tend to over-react to order flow, potentially

generating more long-term reversal. The second result implies that spreads tend to widen as adverse

selection is resolved over time, whereas in competitive environments the opposite should occur (see,

e.g., Glosten and Putnins (2020)).

5 Conclusion

We study the interaction of market-makers using Q-learning algorithms in a standard microstructure

environment a la Glosten and Milgrom (1985). We show that this provides a natural workhorse

model to study the role of algorithms in securities markets, and how their behavior may differ from

what is predicted by standard theory. We find that, despite their simplicity and the challenge of an

environment with adverse selection, algorithms behave in a realistic way: their quotes reflect adverse

selection costs and they update their quotes in response to the observed order flow. However, their

behavior is markedly different from what standard theory predicts. In particular, their quotes tend
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to be above the competitive level, and to become less competitive over time as adverse selection gets

resolved. More generally, our analysis shows that the interaction between algorithms is significantly

affected by the presence and extent of adverse selection, suggesting that securities markets are a

quite specific and particularly interesting application of recent research on competition between

algorithms.

28



References

Abada, I., Lambin, X. and Tchakarov, N. (2022). Collusion by Mistake: Does Algorithmic Sophistication
Drive Supra-Competitive Profits? Working paper. 6, 17

Asker, J., Fershtman, C. and Pakes, A. (2021). Artificial intelligence and pricing: The impact of
algorithm design. Tech. rep., National Bureau of Economic Research. 6

—, — and — (2022). Artificial intelligence, algorithm design, and pricing. AEA Papers and Proceedings,
112, 452–56. 17

Baldauf, M. and Mollner, J. (2020). High-frequency trading and market performance. The Journal of
Finance, 75 (3), 1495–1526. 6

Banchio, M. and Skrzypacz, A. (2022). Artificial intelligence and auction design. Available at SSRN
4033000 9. 6

Biais, B., Foucault, T. and Moinas, S. (2015). Equilibrium fast trading. Journal of Financial Economics,
116 (2), 292–313. 6

Brogaard, J. and Garriott, C. (2019). High-frequency trading competition. Journal of Financial and
Quantitative Analysis, 54 (4), 1469–1497. 4, 19
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A Appendix

A.1 Tables

Panel A

σ 0.5 1 3 5 7

Competitive Case

ac 4.00 4.00 3.24 2.68 2.47
Quo. Spread 2.00 2.00 1.24 0.68 0.47
Real. Spread 0 0 0 0 0

Monopoly

am 4.37 4.69 5.68 6.54 7.03
Quo. Spread 2.37 2.69 3.68 4.54 5.03
Real. Spread 0.03 0.09 0.32 0.68 1.03

Panel B

∆v 0 2 4 6 8

Competitive Case

ac 2 2.16 2.68 3.65 5.02
Quo. Spread 0 0.16 0.68 1.65 3.02
Real. Spread 0 0 0 0 0

Monopoly

am 5.75 5.94 6.54 7.66 9.11
Quo. Spread 3.75 3.94 4.54 5.66 7.11
Real. Spread 0.82 0.78 0.69 0.57 0.47

Table 1: Predicted Outcomes in the Benchmark Cases, τ̄ = 1. Prices are continuous. Clients’
private valuations are normally distributed with mean zero and variance σ2. Moreover, E(v) = 2
and µ = 1

2 (vH = 4 and vL = 0). Panel A: ∆v = 4. Quotes have been rounded up to two decimals
(which explains why they are equal when σ = 0.5 and σ = 1). Panel B: σ = 5.
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Panel A

σ 0.5 1 3 5 7

Competitive Case

ac1 4.00 4.00 3.24 2.68 2.47
ac2, V1 = 1 4.00 4.00 3.82 3.26 2.92
ac2, V1 = 0 4.00 4.00 2.44 2.08 2.02
E(ac2) 4.00 4.00 2.96 2.62 2.45

Monopoly

am1 4.38 4.75 5.65 6.53 7.8
am2 , V1 = 1 4.38 4.75 6.2 7.33 8.47
am2 , V1 = 0 4.38 4.75 5.45 6.28 7.59
E(am2 ) 4.38 4.75 5.65 6.53 7.8

Panel B

∆v 0 2 4 6 8

Competitive Case

ac1 2 2.16 2.68 3.65 5.03
ac2, V1 = 1 2 2.5 3.26 4.6 5.87
ac2, V1 = 0 2 1.8 2.08 2.45 3.67
E(ac2) 2 2.09 2.62 3.42 4.61

Monopoly

am1 5.76 5.94 6.53 7.61 9.09
am2 , V1 = 1 5.76 6.2 7.33 8.61 9.73
am2 , V1 = 0 5.76 5.87 6.28 7.26 8.86
E(am2 ) 5.76 5.93 6.49 7.53 9.01

Table 2: Predicted Outcomes in the Benchmark Cases, τ̄ = 2. Prices are continuous. Clients’
private valuations are normally distributed with mean zero and variance σ2. Moreover, E(v) = 2
and µ = 1

2 (vH = 4 and vL = 0). Panel A: ∆v = 4. Quotes have been rounded up to two decimals
(which explains why they are equal when σ = 0.5 and σ = 1). Panel B: σ = 5. In each case, I1 = 1
if a trade takes place at date 1 and I1 = 0 otherwise.
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A.2 Figures

(a) Average greedy price as a function of time. (b) Distribution of the final greedy price.

Figure 1: A single AM - Baseline Parameters.
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover,
σ = 5, E(v) = 2 and µ = 1

2 (vH = 4, vL = 0 and ∆v = 4)

(a) Average greedy price of both AMs as a function of
time.

(b) Distribution of the final greedy price of both AMs.

Figure 2: Duopoly of AMs - Baseline Parameters.
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover,
σ = 5, E(v) = 2 and µ = 1

2 (vH = 4, vL = 0 and ∆v = 4)
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(a) Dispersion of Clients’ Private Valuations (σ)
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover,
E(v) = 2 and µ = 1

2 (vH = 4, vL = 0 and ∆v = 4)

34



(b) Volatility of the Asset Payoff (∆v)
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover,
σ = 5, E(v) = 2 and µ = 1

2
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(c) Number of AMs (N)
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover,
σ = 5, E(v) = 2 and µ = 1

2 (vH = 4, vL = 0 and ∆v = 4)

Figure 3: Comparative statics
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(a) Dispersion of Clients’ Private Valuations (σ)
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover,
E(v) = 2 and µ = 1

2 (vH = 4, vL = 0 and ∆v = 4)
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(b) Volatility of the Asset Payoff (∆v)
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover,
σ = 5, E(v) = 2 and µ = 1

2
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(c) Number of AMs (N)
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover,
σ = 5, E(v) = 2 and µ = 1

2 (vH = 4, vL = 0 and ∆v = 4)

Figure 4: Comparative statics
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(a) Dispersion of Clients’ Private Valuations (σ)
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover, E(v) = 2
and µ = 1

2 (vH = 4, vL = 0 and ∆v = 4)

(b) Volatility of the Asset Payoff (∆v)
Clients’ private valuations are normally distributed with mean zero and variance σ2. Moreover, σ = 5,
E(v) = 2 and µ = 1

2

Figure 5: Comparative statics
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A.3 Derivation of the Competitive Price

In this section, we explain how to compute the competitive price in a given trading round for given

dealers’ beliefs about the distribution of the asset payoff. We do so in the general case (for any τ)

so that our results apply in particular when τ = 1 and τ = 2.

Let Vτ = I(a(τ), L̃τ , ṽ) ∈ {0, 1} denote the realized trade in period τ and let Inτ = VτZ(anτ , a(τ)) ∈

[0, 1] the trade executed by dealer n in round τ . Let Hτ denote the trading history (the obser-

vation of clients’ trading decisions and the best quotes until trading round τ). That is, Hτ =

{(Vi, a
min
i )}{i=1,2,...τ,} for τ ≥ 0 and H(0) = ∅. The trading history contains information about the

asset payoff. Indeed, holding the best quote constant, a client is more likely to buy the asset when

ṽ is large than when ṽ is low. Let µ(Hτ−1) be dealers’ estimate of the probability that ṽ = vH at

the beginning of trading round τ (with µ(0) = µ = 1
2), given the trading history.

In a Nash-Bertrand equilibrium, in the τ th trading round, all dealers posts the same price acτ

such that their expected profit is zero. This happens only if the expected profit of the dealer posting

the lowest price is nil among all dealers. Thus, acτ solves:

Π(acτ , µ(Hτ−1)) = µ(Hτ−1)D(acτ , vH)(acτ − vH) + (1− µ(Hτ−1))D(acτ , vL)(a
c
τ − vL) = 0. (A.1)

We deduce that:

acτ = E(ṽ | Hτ−1) +
µ(Hτ−1)(1− µ(Hτ−1))(vH − vL))(D(acτ , vH)−D(acτ , vL))

µ(Hτ−1)D(acτ , vH) + (1− µ(Hτ−1))D(acτ , vL)
. (A.2)

The competitive price is the smallest solution to this equation. Observe that it is equal to dealers’

expectation of the asset payoff conditional on their information at the beginning of trading round j

plus a markup (since D(acτ , vH)−D(acτ , vL) = G(c−vH)−G(ac − vL) > 0). This markup increases

with dealers’ uncertainty about the asset payoff at the beginning of trading round τ (measured by

µ(Hτ−1)(1− µ(Hτ−1))(vH − vL)).

There is no analytical solution to (A.2). However, one can easily solve it numerically for specific

parameter values. To solve (numerically) for the competitive price in the first trading round, we

just replace µ(Hτ−1) by µ = 1/2 in (A.2) (dealers’ prior at the beginning of an episode). To solve
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for the competitive price in the second trading round after a trade in the first trading round, we

replace µ(H1) by µ2(1, a
c
1) (given in (18) in the text) in (A.2). To solve for the competitive price

in the second trading round after no trade in the first trading round, we replace µ(H1) by µ2(0, a
c
1)

(given in (19) in the text) in (A.2). Also, note that the probability that a trade occurs in trading

round τ is Pr(Vτ = 1) = µ(Hτ−1)D(acτ , vH) + (1− µ(Hτ−1))D(acτ , vL). Hence, one also gets that:

acτ = E(v | Hτ−1, Vτ = 1). (A.3)

That is, the competitive price is the expected payoff of the asset conditional on the beginning of

the trading history up trading round τ and the occurrence of a trade in trading round τ .

A.4 Derivation of the Monopolist’s Prices

For any given belief µ ∈ [0, 1] that a monopolist might have about ṽ in a given round τ , if the

monopolist sets a price of a, his expected payoff from that trading round is equal to Π̄(a, µτ−1).

Let am(µ) solve:

am(µ) ∈ Argmax
a

Π̄(a, µ). (A.4)

That is, am(µ) is the price that maximizes the monopolist dealer’s expected payoff in round τ , given

his belief µ. If the monopolist plays price am(µ), his round τ expected payoff is equal to

Π∗(µ) := Π̄(am(µ), µ)

Monopolist case with one trading round (τ̄ = 1). Because the initial belief is µ = 1
2 , when

there is a single trading round, the monopolist sets a price of am
(
1
2

)
.

Monopolist case with two trading rounds (τ̄ = 2). We now consider the optimal pricing

policy of a monopolist dealer when there are two trading rounds. To do so, we proceed by backward

induction.

In the second and last round, the price that the monopolist will choose if at the beginning of the

second period his belief is µ2 must be equal to am(µ2) leading to a second period payoff of Π∗(µ2)

42



Let consider now the monopolist total payoff from the perspective of period 1. If he sets a first

period price of a, then his posterior belief µ2 is equal to µ2(1, a) (given in (18) in the text) in (A.2)

if the first period client buys, whereas µ2 = µ2(0, a) (given in (18) in the text) if the first period

client does not buy. Hence the monopolist will set his first period price am1 equal to the price a

maximizing his total payoff

Π̄

(
a,

1

2

)
︸ ︷︷ ︸

First round payoff

+Pr(a)Π∗(µ2(1, a)) + (1− Pr(a))Π∗(µ2(0, a))︸ ︷︷ ︸
second round payoff

, (A.5)

where Pr(a) := 1
2(D(a, vH) +D(a, vL)) is the probability that a trade takes place at date 1 if

the monopolist chooses price a at this date. Thus, in choosing her price at date 1, the monopolist

accounts for the effect of this price on her expected profit on the trade at date 1 and her continuation

value.

When τ̄ = 2, we obtain the benchmark price at date 2 in the monopoly case by solving numeri-

cally (A.4) (both when there is a trade at date 1 and when there is no trade) and the benchmark

price at date 1 by maximizing (A.5).

A.5 Proof of Lemma 1

Fix a price am and a dealer n. Suppose that at episode t the dealer’s price is an,t = am and

it is the lowest price among dealers, i.e. an,t = am = amin
t . Then three outcomes are possible:

either the dealer does not trade, the dealer sells the asset worth vH , or the dealer sells the asset

worth vL. In all cases the Q-matrix is updated. If the dealer does not trade then πn,t = 0 and

qm,n,t+1 = (1− α)qm,n,t+1, implying

|qm,n,t − qm,n,t+1| = α|qm,n,t|

If the dealer trades then qm,n,t+1 = α(am − ṽ) + (1− α)qm,n,t+1, and thus

|qm,n,t − qm,n,t+1| = α|am − vH − qm,n,t|
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if ṽ = vH , and

|qm,n,t − qm,n,t+1| = α|am − vL − qm,n,t|

if ṽ = vL. Denote ∆m(q) := αmax{|q|, |am − vH − q|, |am − vL − q|} the maximum possible value

of that |qm,n,t − qm,n,t+1| can take given that qm,n,t = q. Note that

min
q

∆m(q) = αmax

{
am − vL

2
,
vH − am

2
,
vH − vL

2

}
=

α

2

(
vH − vL +

∣∣∣∣am − vH − vL
2

∣∣∣∣) = ∆∗
m

In words, no matter the value of qm,n,t, at least one of the three possible outcomes mentioned above

leads to |qm,n,t − qm,n,t+1| ≥ ∆∗
m. Thus the probability that |qm,n,t − qm,n,t+1| ≥ ∆∗

m cannot be

smaller than the smallest of the probabilities of these three events.

Now, given an,t = am = amin
t , the probability that the dealer sells the asset worth vH , is at least

1
2ND(am, vH). The probability that the dealer sells the asset worth vL, is at least

1
2ND(am, vL) <

1
2ND(am, vH). The probability that the dealer does not trade is 1 − 1

2(D(am, vL) + D(am, vH)),

hence the expression for P ∗
m. Q.E.D.
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1 Introduction

Various studies have documented that retail order flow predicts the cross-section of stock returns.

However, the source of this predictive power is less clear. Some studies simply attribute this re-

turn predictability to a subset of retail investors possessing stock-specific information (e.g., Kelley

and Tetlock (2013), Fong, Gallagher, and Lee (2014), and Boehmer, Jones, Zhang, and Zhang

(2021)). Conversely, Kaniel, Saar, and Titman (2008) argue that retail investors may effectively

trade against institutional investors whose trades exert price pressures that eventually reverse, lead-

ing to a positive association between retail order flow and future returns.1 The challenge for testing

this mechanism is that order flow segmentation prevents institutional investors from directly inter-

acting with marketable retail order flow. We address this challenge by using microstructure features

of modern U.S. equity markets that allow publicly available data to uncover an economic mech-

anism underlying indirect retail-institutional order flow interactions. We establish that absolute

imbalances in an easily-observable subset of retail trades provide novel measures of stock liquidity

that also capture implicit institutional trading costs. We then document the strong explanatory

power of these liquidity measures for expected returns, uncovering a new channel through which

retail order flow predicts stock returns.

We provide the first evidence of wholesalers intermediating between retail and institutional

investors in modern equity markets, wherein a wholesaler chooses to “internalize” unequal amounts

of retail buy vs. sell orders to offset inventory accumulated from providing liquidity to institutional

investors on the opposite side of the market. We obtain imbalances in long-only institutional and

short-seller trading interests from ANcerno and FINRA data that we link to imbalances in a select

subset of internalized marketable retail orders identified using the algorithm proposed by Boehmer

et al. (2021), henceforth BJZZ.2 Crucially, the BJZZ algorithm differentially identifies a subset of

retail orders that wholesalers internalize to provide liquidity to institutions.3

1To clarify, we are interested in unconditional return predictability of retail order flow. Some studies examined this
return predictability conditional on imminent earnings announcement (e.g., Kaniel, Liu, Saar, and Titman (2012);
Boehmer et al. (2021)).

2Importantly, using data from 58 brokers and 6 wholesalers, SEC (2022) implies BJZZ’s algorithm identifies less
than 40% of all marketable retail orders. Barber, Huang, Jorion, Odean, and Schwarz (2022), using self-generated
trades, and Battalio, Jennings, Salgam, and Wu (2022), using proprietary wholesaler data, obtain similar conclusions.

3Battalio et al. (2022) also find BJZZ’s algorithm might mis-classify institutional trades as retail trades. Robustness
analyses, reported in Section 5.2 and Internet Appendix C.3, indicate that this does not impact the algorithm’s ability
to identify retail trades internalized by wholesalers to provide liquidity to institutional clients.
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Like BJZZ, we find imbalances in internalized marketable retail flow, denotedMroib, vary across

stocks and robustly predict future stock returns for several weeks. However, rather than informed

retail trading, we attribute this return predictability to the subsequent unwinding of institutional

price pressure, consistent with Kaniel et al. (2008).4 We provide evidence that large imbalances

in these observable internalized retail trades—large |Mroib|—reflect the internalized retail orders

used by wholesalers to balance their inventories when providing liquidity to institutional investors,

especially when liquidity is scarce. This leads us to propose stock-level averages of |Mroib| as

liquidity measures. These easy-to-construct liquidity measures proxy for cross-sectional variation

in institutional trading costs and, unlike existing liquidity measures, are related to investor holding

horizons as predicted by theory. In further contrast, our liquidity measures identify annualized

liquidity premia of 2.74–3.20%, associated with one standard deviation reduction in liquidity, post

2010 when existing liquidity measures fail to explain the cross-section of expected stock returns.

Figure 1. Retail Imbalances versus Institutional Imbalances and Price Impacts. This figure plots
institutional trade imbalances and institutional-trade price impacts constructed from ANcerno data against imbal-
ances in the volumes of observable internalized retail orders (Mroibvol). Each week, stocks are sorted into deciles
according to their respective internalized retail order flow imbalance. The averages of institutional trade imbalances
and institutional price impacts are then calculated within each decile each week using ANcerno data from 2010–2014.
Time-series means of these averages are plotted by Mroibvol decile.

Panel A: Institutional trade imbalance Panel B : Institutional price impact
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Figure 1 illustrates two properties of Mroib that highlight the liquidity provision facilitated by

retail order flow internalization. Panel A shows that institutional trade imbalances are inversely

related to BJZZ-identified retail imbalances,5 while Panel B shows that institutional price impacts

4Internet Appendix C.3 proposes improvements to BJZZ’s algorithm that reinforce Mroib’s return predictability.
5Table 2 shows that short sellers are net buyers (sellers) when Mroibvol is negative (positive), even though we

have to aggregate observations over bi-weekly horizons rather than daily. The positive average institutional trade
imbalance in Figure 1 is expected as mutual funds experienced net inflows in the 2010–2014 post-crisis period.
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are highest when these retail imbalances are the most extreme. These patterns suggest that large

imbalances in this internalized retail order flow reflect the internalization choices of wholesalers in

response to the opposing liquidity demand imbalances of institutions facing high trading costs.

The U.S. equity market structure provides wholesalers, a group of high-frequency market mak-

ers, a competitive advantage in providing liquidity to institutions in less liquid markets. Wholesalers

interact with institutional investors on exchanges, Alternative Trading Systems (ATSs), and their

own Single-Dealer Platforms (SDPs). On the other side, retail brokers outsource the handling of

nearly all customer orders to wholesalers in return for payment for order flow (PFOF) or sub-penny

price improvements (PI) for their customers. Wholesalers can then choose to (i) internalize retail

orders by executing them against their own capital and offering PI; (ii) execute retail orders on a

riskless principal basis, without PI, by rerouting orders to ATSs or exchanges; or (iii) reroute retail

orders to another wholesaler. Hence, wholesalers secure the option to fill retail orders before these

orders are exposed to other market participants, effectively segmenting order flow.6 Reflecting this

segmentation, U.S. wholesalers do not compete with retail investors when providing liquidity to

institutions.7 Instead, wholesalers can use retail flow as an exclusive inventory management mech-

anism (Baldauf, Mollner, and Yueshen (2022)). Thus, wholesalers can offset inventory accumulated

from filling unbalanced institutional order flow by choosing to internalize disproportionately more

retail order flow from the opposing side of the market, especially when liquidity is scarce.8

Crucially, the internalized retail orders that facilitate this intermediation often involve sub-

penny retail execution prices due to PI and are observable by BJZZ’s algorithm. As detailed in

Section 3.2, most retail trades not identified by this algorithm are of two types: (1) retail trades

chosen by the wholesaler for riskless principal execution on an ATS or exchange; (2) retail orders

internalized by the wholesaler due to regulatory requirements rather than by choice.

We document more unbalanced internalized retail flow and higher marginal costs of internaliza-

tion to wholesalers in the form of greater PI or PFOF when institutional liquidity demand is more

6Wholesaler internalization choices determine whether other market participants may directly interact with these
retail orders. Practitioners describe internalized orders as “inaccessible liquidity” (Cowen Market Structure 2021).

7See Korajczyk and Murphy (2019) for high-frequency market makers’ interactions with institutional investors in
Canada, where unlike the U.S., all retail orders are routed to public venues, e.g., exchanges.

8Simultaneous offsetting of institutional inventory using retail orders also mitigates wholesalers’ exposure to toxic
(informed) institutional orders. Section 3.2 also notes that wholesalers may use institutional-sourced liquidity to offset
inventory accumulated due to retail order flow imbalance. Such executions require abundant liquidity as a wholesaler
uses institutional-sourced midpoint liquidity to fill unbalanced retail order flow at the midpoint. Importantly, the
BJZZ algorithm facilitates identification of scarce liquidity by excluding such mid-point-filled retail trades.

3

https://www.cowen.com/insights/retail-trading-whats-going-on-what-may-change-and-what-can-institutional-traders-do-about-it/


unbalanced and trading costs are higher. This evidence indicates that wholesalers respond to the

increased demand for liquidity from liquidity-constrained institutional investors by internalizing

costlier retail order flow. Intuitively, wholesalers are willing to exercise their option to internalize

costlier retail order flow in order to facilitate inventory management when filling unusually prof-

itable institutional orders in less liquid markets. Internet Appendix A provides a simple theoretical

framework that links internalization choices to the costs of internalization. We then use exogenous

variations in the profits and costs of internalization generated by the Tick Size Pilot to document

causally the effect of wholesaler choices on Mroib.

Cross-sectional tests highlight the impact of institutional liquidity demand on Mroib. Inter-

nalization of more (less) retail sell orders than buy orders is associated with higher (lower) net

institutional buy volume, and more covering (accumulation) of short interest. Consistent with a

lack of institutional counter-parties to offset institutional imbalances on ATSs, a larger |Mroib| is

associated with abnormally low quote-midpoint liquidity. In addition, larger |Mroib| is associated

with wider quoted spreads and lower quoted depth. These revealed low levels of liquidity present

wholesalers with opportunities to fill institutional orders at wide spreads while maintaining a bal-

anced inventory by internalizing costlier retail order flow. Finally, consistent with retail liquidity

provision to institutions, but not informed retail trading, contemporaneous intraday prices move in

the same direction as institutional trade imbalances and thus in the opposite direction of Mroib.9

Cross-sectional regressions of stock returns on Mroib reveal that higher Mroib is associated

with higher near-term future weekly returns (through 12 weeks). Consistent with Kaniel et al.

(2008), Internet Appendix C attributes the near-term return predictability of Mroib to price re-

versals following price pressure induced by persistent institutional trading, especially institutional

buying (Hendershott and Seasholes (2007), Akepanidtaworn, Di Mascio, Imas, and Schmidt (2020)).

Specifically, negative current Mroib (retail selling, institutional buying) is associated with lower

future returns for several weeks due to the unwinding of institutional price pressure. Further decom-

posing daily returns into intraday and overnight returns sheds further light on the liquidity-driven

price dynamics, with intraday institutional price pressure being followed by overnight reversals.

Crucially, the relation between Mroib and future returns becomes ∪-shaped after 6 weeks. This

∪-shape pattern persists for well beyond a year, and is consistent with a liquidity premia demanded

9Mroib reflects regular-hour trades, making intraday returns the relevant metric.
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by institutional investors for holding less liquid stocks, which tend to have high values of |Mroib|,

and hence give rise to the ∪-shape relationship.

The economic mechanism uncovered by our analysis and the availability of data for large cross-

sections of stocks motivate our use of |Mroib| to proxy illiquidity and institutional trading costs. We

construct stock-level liquidity measures ILMT and ILMV by averaging daily absolute imbalances

in, respectively, the number of trades and trading volumes involving BJZZ-identified internalized

retail order flow. Comparing these ILMs to existing liquidity measures reveals that they are among

the few that are positively related to institutional price impacts in the cross-section.

We then provide direct evidence that ILMs capture the liquidity concerns of institutional in-

vestors better than existing measures by linking the liquidity of fund manager holdings based on

different liquidity measures to their holding horizon. As Amihud and Mendelson (1986) observe,

managers with longer holding horizons should be more willing to invest in illiquid stocks, implying

a positive relation between a manager’s holding horizon and the measured illiquidity of their eq-

uity under management (EUM). We calculate the illiquidity of EUMs using 15 different liquidity

measures. For each measure, we examine the relation between the illiquidity of a fund manager’s

EUM and their holding horizon. Existing liquidity measures all deliver a non-monotone relation be-

tween measured EUM illiquidity and holding horizon. In contrast, ILMs induce a more monotone

positive relation, consistent with Amihud and Mendelson’s prediction.

We then investigate the relation between illiquidity and holding horizon at the stock level. To

do this, we calculate the average holding horizon of fund managers in individual stocks (Gaspar,

Massa, and Matos (2005); Cella, Ellul, and Giannetti (2013)) and then regress different stock-

level liquidity measures in quarter q on the stock’s average institutional holding horizon as well

as its volatility, market capitalization, and institutional ownership in quarter q − 1. The R2s

obtained in regressions using ILMs are 3.5-24.2 times larger than those using existing liquidity

measures. Moreover, after orthogonalizing ILMs with respect to existing liquidity measures, the

residual ILMs continue to exhibit the predicted positive relation with holding horizon. Conversely,

the reverse orthogonalizations only deliver the expected relation with holding horizon for quoted

spread and quoted depth. In sum, ILMs are the only liquidity measures that have economically

meaningful relations with holding horizon at both the investor and stock levels.

Next, we establish that ILMs explain expected stock returns. Fama-MacBeth (1973) specifi-
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cations regress stock returns in month m on ILMs in month m − 2 as well as an array of stock

characteristic controls.10 Skipping monthm−1 ensures that returns in monthm are not confounded

by short-term reversals following large retail order flow imbalances.11 As in the prior literature, we

find existing high- and low-frequency liquidity measures are not priced (or have negative liquidity

“premia”) in the 2010–2019 period. In contrast, ILMs are priced with economically significant

liquidity premia: a one standard deviation increase in ILMT (ILMV ) is associated with an annu-

alized liquidity premium of 2.74% (3.20%), comparable to the institutional price impacts computed

from ANcerno data that are priced with an annualized premium of 3.8% over 2010-2014.12

Portfolio sorts confirm the economic magnitude of the liquidity premia associated with ILMs.

Each month, we sort stocks into deciles based on their ILMT s or ILMV s in month m − 2, skip

month m−1, and examine portfolio returns in month m. The high-minus-low return spreads involv-

ing deciles 1 and 10, after a Fama-French three-factor adjustment, are 0.86% and 1.06% per month

for ILMT and ILMV , respectively. Value-weighting returns after removing stocks with smallest

20% market-capitalizations, reduces these risk-adjusted returns to 0.58% and 0.46%, respectively.

Robustness tests confirm that risk-adjusted return spreads associated with ILMs exceed those

based on existing liquidity measures. Moreover, unlike with existing liquidity measures, signifi-

cant risk-adjusted return spreads are associated with ILMs between intermediate deciles, such as

spreads between decile 2 vs. 9, decile 3 vs. 8, and decile 4 vs. 6.

The regression and portfolio results are confirmed by a battery of robustness tests that use

alternative estimation approaches, employ specifications that weight observations unequally, and

apply various filters that remove small and/or low-priced stocks from the sample. Our highly robust

results enable us to conclude that liquidity premia conditional on ILMs hold among stocks that

are the most likely to be held by institutional investors. In terms of economic magnitude, a one

standard deviation increase in ILMs is associated with annualized liquidity premia between 2.74–

3.74%. Similarly, depending on whether “penny stocks” are included in the sample, annualized

risk-adjusted return spreads associated with portfolios based on ILMs range between 4.08–15.24%.

Our liquidity measures reveal that stock returns still reflect economically meaningful trading

10Internet Appendix H demonstrates robustness to constructing ILMs over three months, m− 4 to m− 2.
11Consistent with the stock-specific temporal persistence in ILMs, the use of ILMs from month m− 1 or skipping

more than one month leaves our qualitative findings unaffected.
12ANcerno data became unavailable in 2015, preventing liquidity premia estimates using institutional price impacts.
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costs incurred by institutional investors when entering and exiting stock positions. As reported by

Di Maggio, Egan, and Franzoni (2022), institutional price impacts exhibit a standard deviation of

64bps in recent years. This heterogeneity implies investors should demand a liquidity premium that

accounts for stock-level institutional price impacts.13 Our liquidity premia findings are consistent

with these trading costs of institutional investors who collectively hold about 70% of publicly-

traded equity in the U.S. (Blume and Keim (2012)) in recent years.14 According to Amihud

(2019), “illiquidity has a number of dimensions that are hard to capture in a single measure,

including fixed costs, variable costs—price impact costs that increase in the traded quantity—and

opportunity costs.” The multifaceted nature of liquidity became even more complicated in the

post-RegNMS era where spreads are often a few pennies and depth is negligible in fragmented

markets. Indeed, a recent literature cautions against using existing liquidity measures to proxy

for institutional trading costs post-RegNMS.15 We overcome the empirical challenges of measuring

liquidity in the modern era by developing liquidity measures based on identifiable intermediation

by wholesalers between retail and institutional investors when liquidity is scarce. The likelihood

and intensity with which wholesalers engage in such intermediation comprise a persistent stock

“characteristic” that explains the cross-sectional variation in expected stock returns.

2 Contributions to the Literature

Our paper extends the literature on the relationship between retail order flow and future returns,

some of which documents the return predictability of retail order flow.16 While studies such as

Kelley and Tetlock (2013), Fong et al. (2014), and Boehmer et al. (2021) attribute this return

predictability to informed retail trades, Kaniel et al. (2008) posit that unbalanced retail order flow

13With quarterly re-balancing and a 50% turnover ratio, annualized round-trip execution costs rise by 4×2×0.5×
64bps = 2.56% per year in response a one standard deviation increase in price impacts. This estimate is close to the
liquidity premium estimates inferred from our regression analysis, where one standard deviation increase in ILM is
associated with 2.47–3.20% increased expected returns.

14In contrast, Asparouhova, Bessembinder, and Kalcheva (2010), Ben-Rephael, Kadan, and Wohl (2015), Drienko,
Smith, and von Reibnitz (2019), Harris and Amato (2019), and Amihud (2019), among others find vanishing liquidity
premia in recent decades using traditional liquidity measures.

15Goyenko, Holden, and C. A. Trzcinka (2009), Chordia, R. Roll, and Subrahmanyan (2011), Kim and Murphy
(2013), Holden and Jacobsen (2014), Angel, Harris, and Spatt (2011), O’Hara (2015), Eaton, Irvine, and Liu (2021).
Barardehi, Bernhardt, and Davies (2019) propose alternative measures.

16E.g., Barber and Odean (2000), Barber and Odean (2008), Kumar and Lee (2006), Foucault, Sraer, and Thesmar
(2011), Kaniel et al. (2008), Barrot, Kaniel, and Sraer (2016), Kaniel et al. (2012), Kelley and Tetlock (2013), Fong
et al. (2014).
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reflects strong institutional liquidity demand on the opposite side of the market, which exerts price

pressure that subsequently reverses. They suggest institutional investors offer “price concessions”

to “entice” retail investors’ liquidity provision, a mechanism hard to reconcile with segmented retail

and institutional order flows in today’s U.S. equity markets. We provide evidence that wholesalers’

exclusive access to retail flow allows them to intermediate between retail and institutional investors.

These intermediation choices are reflected by the opposite imbalances in internalized marketable

retail orders identified using the algorithm proposed by Boehmer et al. (2021), i.e., Mroib, especially

when liquidity is scarce. Our findings reinforce Barrot et al. (2016)’s notion of unintentional liquidity

provision by retail investors; and are consistent Kaniel et al. (2008)’s conclusions in that we find

Mroib’s return predictability reflects return reversals following institutional investors’ consumption

of retail-sourced liquidity.17 Most importantly, we uncover a new channel for return predictability

of retail order flow by showing that institutional trading costs and illiquidity can be proxied by

|Mroib|, which robustly explains the cross-section of expected returns.

We also contribute to a vast literature that designs stock liquidity measures or examines their

implications for asset pricing.18 Our paper develops a proxy of illiquidity using an easily-observable

subset of retail trades, distinguishing our liquidity measures from those in the literature. For

example, observing the endogenous responses of sophisticated investors to time-varying liquidity,

Barardehi et al. (2019) develop trade-time liquidity measures that reflect per-dollar price impacts

measured over successive time intervals required for execution of stock-specific fixed dollar values.

Bogousslavsky and Collin-Dufresne (2022) use the volatility in total order flow in a given week

as a metric of liquidity risk, and document its ability to predict next week’s return.19 Finally,

we establish the superior performance of our liquidity measures vis à vis sixteen existing liquidity

measures along three dimensions: (1) correlation with institutional price impacts; (2) correlation

with institutional holding horizons; and (3) robust ability to explain the cross-section of expected

returns. Our findings indicate that even though the BJZZ algorithm measures overall retail trading

17Theoretical and empirical studies on the link between internalization and market quality includes Battalio and
Holden (1995), Battalio, Greene, and Jennings (1997), Battalio, Greene, Hatch, and Jennings (2002), Peterson and
Sirri (2003), Parlour and Rajan (2003), Parlour and Rajan (2003), Battalio (2012), and Amirian and Norden (2021).

18E.g., Roll (1984), Glosten and Harris (1998), Brennan and Subrahmanyan (1996), Pástor and Stambaugh (2003),
Hasbrouck (2009), Goyenko et al. (2009), Chordia et al. (2011), Kim and Murphy (2013), Barardehi et al. (2019),
Bogousslavsky and Collin-Dufresne (2022), among many others.

19Bogousslavsky and Collin-Dufresne (2022)’s measure is based on second moments, in contrast to most liquidity
measures that employ first moments. These authors are interested in identifying high-frequency liquidity risk, rather
than a persistent stock characteristic that captures the average costs of entering and exiting stock positions.
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and order imbalance with large errors, it can be used to construct effective liquidity measures in

modern U.S. equity markets.

3 Institutional Details

3.1 Retail Trade Execution

Executions of retail orders in U.S. equity markets are subject to “best execution” principles.20

Wholesalers, e.g., Virtu and Citadel, handle the vast majority retail orders on behalf of retail

brokers, e.g., Charles Schwab and E*Trade. These high-frequency market makers compete over

providing execution quality to retail trades (Battalio and Jennings (2022)), ensuring best execution

principles are met in addition to providing payment for order flow (PFOF) to certain brokers.21

Retail orders handled by wholesalers are executed in two ways. According to SEC (2022) nearly

20% of marketable retail orders are rerouted for riskless principal execution, where a wholesaler

quotes an identical order on exchanges/ATSs and fills the retail order once that proprietary order is

executed.22 The remaining 80% of marketable retail order executions are internalized, a process by

which wholesalers execute retail order flow against their own inventory.23 Wholesalers are usually

registered brokers, but are not subject to the rules of registered exchanges or ATSs. Most notably,

wholesalers can execute trades at sub-penny prices despite the 1¢ minimum tick size. This flexibility

allows wholesalers to coordinate with retail brokers and execute retail orders at sub-penny prices

reflecting price improvements that fulfill “best execution” duties and improve execution quality.

Panel A in Table 1 reports the distribution of order types across all non-directed orders24

and all retail volume executed by wholesalers, along with the average PFOF for each order type.

Market orders and marketable limit orders account for a disproportionately large share of executed

volume receiving PFOF, indicating that wholesalers prefer internalizing marketable orders over

20SEC (2021) describes “best execution” as being “at the most favorable terms reasonably available under the
circumstances, generally, the best reasonably available price.” See FINRA Regulatory Notice 21-23 for more details.

21In addition to receiving order flow from brokers, a wholesaler may also receive retail orders from other wholesalers.
22Most retail orders originally placed as non-marketable limit orders are routed to exchange limit order books

for riskless principal execution. However, a subset of orders organically placed as marketable limit orders become
non-marketable when received by the wholesaler due to rapid quote updates.

23In May 2012, internalized orders comprised roughly 8% of consolidated volume in NMS stocks (Tuttle (2022)).
Reflecting increased retail investor participation, this fraction was 20% in September 2021 (Rosenblatt (2021)).

24Retail investors may use a “directed order” to specifying a particular trading venue. However, directed orders
comprise a tiny fraction of the orders received by brokers. For example, about 0.01% of the orders received by TD
Ameritrade in the first quarter of 2020 were directed.
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non-marketable orders. Calculations suggest the share of executed volume of non-marketable limit

orders receiving PFOF is only one fourth that of marketable orders. Of note, non-marketable limit

orders executed by wholesalers receive over twice as much PFOF per share as marketable orders.

PFOF and PI combine to determine the direct internalization costs to a wholesaler. PFOF

and average PI often reflect pre-negotiated terms between brokers and wholesalers, with brokers

often trying to obtain the most favorable average PI for their retail customers. However, there is

significant variation in PI across individual transactions. Calculations in Section C.3 that compare

each execution price with the corresponding NBBO suggest that over 50% of observable internal-

ized marketable orders receive sub-penny PI of no more than 0.1¢. In contrast, underscoring the

significant variation in wholesaler internalization costs, over 35% of internalized orders are executed

at prices that are inside the NBBO by over 1¢.

Institutional details suggest two channels underlie these large PIs. Most importantly, the Man-

ning rule requires wholesalers with access to proprietary data feeds on odd-lot liquidity to use

any inside-quote liquidity to determine best execution terms. Due to the 1¢ tick size, inside-

quote odd-lot liquidity is quoted at 1¢ price increments. Thus, when such liquidity exists, to price

improve over the “best available price” some internalized marketable retail orders must receive

greater-than-1¢ PI. Second, internalized orders executed at prices over 1¢ inside the NBBO may

be inside-NBBO non-marketable limit orders, originally placed as marketable orders.25 Internal-

izing such non-marketable limit orders is very costly, even when executed at minimal PI because

non-marketable orders receive much higher PFOF.

3.2 Implications for BJZZ’s Algorithm

Wholesalers internalize about 80% of the marketable retail orders received (SEC (2022)),26 and

BJZZ’s algorithm identifies only a select subset of these trades. The algorithm’s systematic selection

25Consistent with internalization of some non-marketable limit orders, Virtu Financial reports that Virtu “reflects
a substantial percentage”, but not all, of non-marketable orders handled by them on exchanges. That the average
PFOF for non-marketable limit orders slightly exceeds 0.3¢ is consistent with competition from exchanges offering such
liquidity-making rebates. Spatt (2020) highlights how liquidity fee/rebate tiers incentivize brokers to let wholesalers
handle their non-marketable orders because wholesalers receive higher rebates. Upon receipt of a non-marketable
order, the wholesaler may execute it on a riskless principal basis by submitting an identically-priced order to an
exchange/ATS. If it is executed, the wholesaler fills the standing retail limit order and pays PFOF to the broker.

26Wholesalers typically receive four times as much marketable as non-marketable retail order volume, and they
internalize a much smaller percentage of those non-marketable orders according to Rule 606 filings, industry reports
(Measuring Retail Execution Quality by Virtu Financial), and our analysis of TAQ data.
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of a subset of retail trades is key to our analysis for at least three reasons.

First, the BJZZ algorithm excludes retail trades filled at the NBBO. Wholesalers have three

main options when handling retail orders: (1) internalize them; (2) execute them on a riskless

principal basis by rerouting orders to exchanges/ATSs, where non-midpoint sub-penny execution

prices are prohibited; and (3) reroute them to another wholesaler. Over 42% (8%) of rerouted (all)

retail orders fill at the NBBO (SEC (2022)), implying that the algorithm excludes retail trades that

wholesalers choose not to internalize.

Second, the algorithm excludes midpoint-filled retail trades that account for a large share of

omitted trades and reflect the best execution requirements of brokers. These requirements force

wholesalers to internalize orders at the midpoint when they detect undisplayed midpoint liquidity,

e.g., due to pinging some exchange/ATS for midpoint liquidity. SEC (2022) reports that over 31%

of all retail orders are filled at the quote midpoint (also see Battalio et al. (2022)). Importantly, such

trades reflect regulatory requirements and not the endogenous internalization choices of wholesalers

to source liquidity for their institutional clients. Hence, excluding these trades, which tend to

occur when institutional midpoint liquidity is abundant, improves our identification of retail trades

internalized by wholesalers to provide liquidity to institutional investors when liquidity is scarce.27

Finally, reflecting wholesaler internalization choices, 55% of retail trades reflect non-midpoint

internalized orders that receive PI (SEC (2022)), and BJZZ’s algorithm picks up such trades with

sub-penny PI.28 Collectively, the BJZZ algorithm, by focusing on a selected subset of retail trades,

makes observable those retail trades that wholesalers choose to internalize; and this selection un-

derlies the strength of our liquidity measures.

3.3 Wholesalers and Institutional Liquidity Demand

Most wholesalers, including Citadel Securities and Virtu Americas LLC, own Single Dealer Plat-

forms (SDPs). On SDPs, also known as ping pools, a select set of institutions and institutional

27Alternatively, midpoint trades may reflect wholesaler competition to provide execution quality (Battalio and
Jennings (2022)). Importantly, such executions require abundant liquidity to facilitate wholesaler inventory manage-
ment, as a wholesaler uses institutional-sourced midpoint liquidity to fill unbalanced retail order flow at the midpoint.
Hence, such intermediation should be excluded from an analysis of scarce liquidity, and BJZZ algorithm excludes it.

28Less than 1/3 of PI are in round-pennies (SEC (2022)) and not picked up by the algorithm, but such internalized
trades likely reflect wholesaler responses to regulatory requirements like the Manning rule when inside quote liquidity
exists, indicative of abundant liquidity. SEC (2022) reports that broker-dealers commonly use proprietary order-
book data feeds that are more comprehensive than the SIP. Like retail trades filled at the midpoint, the algorithm’s
exclusion of these trades helps our analysis of wholesaler choices when liquidity is scarce.
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brokers trade against the wholesaler.29 SDPs date back to 2005, and were originally referred to

as Electronic Liquidity Providers (BestEx Research (2022)). By 2017, over 2.5% of all trading in

NMS stocks occurred on SDPs, comprising roughly 30% of all internalized retail order flow.30 An

institution may “ping” a wholesaler on its affiliated SDP, often using Indication of Interest or Imme-

diate or Cancel orders to signal an unusually high demand for liquidity. This signal encourages the

wholesaler to intermediate between retail and institutional investors by providing the institution

with liquidity sourced from retail order flow.31 In 2021, Citadel and Virtu combined to execute

almost 17% of consolidated U.S. trading volume by internalizing retail orders, and their affiliated

SDPs accounted for over 4% of this volume (Rosenblatt (2021)). Put differently, they internalized

about 425 shares of retail orders per 100 shares of institutional orders filled on their SDPs.

When wholesalers use internalized retail buy (sell) order flow to fill unbalanced institutional sell

(buy) liquidity demand, the internalized retail orders often receive sub-penny price improvements.

Consequently, the correspondingMroib will be unbalanced and inversely related to institutional liq-

uidity demand. As institutions with high liquidity demand are prepared to pay more to wholesalers,

wholesalers can pay higher internalization costs in the form of high PI or high PFOF, internalizing

orders that are executed by more that 1¢ inside the NBBO. This leads to a positive relation between

|Mroib| and the intensity with which these high-cost retail orders are internalized.

4 Data

To analyze wholesaler intermediation between retail and institutional investors, we construct our

sample following BJZZ for the period January, 2010 to December, 2014, covering common shares

listed on the NYSE, AMEX, and NASDAQ.32 We use daily open and close prices from CRSP to

calculate daily close-to-close (CC), intraday open-to-close (ID), and overnight, close-to-open (ON)

returns. We account for overnight adjustments and, to minimize the impact of bid-ask bounce,

29Trading that does not occur on exchanges or ATSs has attracted the attention of regulators. For example, FINRA
Regulatory Notice 18-28 describes the nature of SDP trading, a major component of non-ATS trading, and highlights
the agency’s transparency concerns that led to Regulatory Notice 19-29, which expanded the transparency of OTC
trading volume in December 2019.

30See Tuttle (2022) and Trader VIP Clubs, ‘Ping Pools’ Take Dark Trades to New Level, Bloomberg, Jan 16, 2018.
31For example, VEQ Link, Virtu’s SDP, explicitly advertises Virtu’s Client Market Making service as the link

between its SDP and their retail-broker clients. We emphasize that retail orders are not “redirected” to SDPs. To
profit from its intermediation, the wholesaler uses its own capital to fill both institutional orders and retail orders.

32We exclude 2015, which is in BJZZ’s sample because our ANcerno institutional trade data ends in 2014. Unre-
ported results verify that all findings that do not require ANcerno data are robust to adding 2015.
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returns are on based quote midpoints at close. We aggregate daily log-return observations into

overlapping 5-day rolling windows to construct daily cross-sections of 5-day (weekly) returns, as in

BJZZ. We include observations with a previous-month-end’s closing price of at least $1.

We follow BJZZ to construct measures of observable internalized retail order flow based on

the selected sample identified by their algorithm. Using TAQ data, we focus on round-lot off-

exchange trades with sub-penny prices.33 Transactions are classified as retail buy and sell or-

ders if the sub-penny increments exceed 0.6¢ and are below 0.4¢, respectively.34 We construct

daily, normalized measures of imbalance in internalized retail trade frequency and trade volume.

Mroibtrd = (Mrbtrd − Mrstrd)/(Mrbtrd + Mrstrd) divides the difference between the num-

ber of internalized retail buy and internalized retail sell orders by their sum, while Mroibvol =

(Mrbvol−Mrsvol)/(Mrbvol+Mrsvol) is the normalized difference in internalized trade volume.

Panel B in Table 1 reports these measures’ summary statistics, which closely match those in BJZZ.35

We then aggregate these daily observations of normalized internalized retail order flow imbalances

into overlapping 5-day rolling windows, constructing daily cross-sections of 5-day (weekly) internal-

ized retail order flow imbalances. We also follow BJZZ to construct stock characteristics, including

volatility (VOLAT), book-to-market (BM),36 previous month’s return (RET−1), the compound

return over the preceding 5 months (RET(−6,−2)), and previous month’s turnover (TO).

From TAQ data, we match each identified internalized retail transaction with the National Best

Bid and Offer prices at the same millisecond. We calculate the daily fractions of internalized retail

volume executed at prices that are at least 1¢ better than the NBBO at the time of transaction.

We then match 5-day rolling average of these fractions with 5-day (weekly) Mroib measures.

ANcerno data from 2010-2014 provide institutional trade sizes, buy versus sell indicators, exe-

cution prices, and stock identifiers. We aggregate institutional buy and sell trades separately at the

stock-day level to construct the institutional analogue of Mroibvol denoted Inroibvol. To construct

institutional price impact measures we calculate volume-weighted average buy and sell execution

33As in BJZZ, our findings are robust to including odd-lots.
34Internet Appendix C.3 shows that the algorithm mis-classifies subsets of buy and sell orders. Correcting for this

mis-classification using quote midpoints marginally reinforces our qualitative findings.
35Simple calculations reveal that Mroib daily imbalances are large enough to meet most institutional liquidity

demands. The sum Mrbvol + Mrsvol averages over 92k shares, or over $1.8 million for a $20 average share price.
Hence, a one standard deviation change in Mroibvol is worth over $800k, which exceeds the $500k average dollar
value of daily institutional trade reported by ANcerno (Hu, Jo, Wang, and Xie (2018)).

36Book value is defined as Compustat’s shareholder equity value (seq) plus deferred taxes (txdb).
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prices across institutional investors for each stock-day. The price impact of a typical institutional

buy trade equals the average execution price minus the open price divided by the open price and

scaled by the trade’s dollar value in millions. Similarly, the price impact of a typical institutional

sell trade equals open price minus the average execution price divided by the open price and scaled

by the trade’s dollar value in millions. We then aggregate institutional trading outcomes over 5-day

rolling windows to construct daily cross-sections of 5-day (weekly) institutional trading outcomes.

To analyze liquidity premia, we construct a sample spanning January 2010 through Decem-

ber 2019, of common shares listed on the NYSE, AMEX, and NASDAQ. We construct two daily

institutional liquidity proxies as |Mroibtrd| and |Mroibvol|. We use WRDS Daily Indicators,

TAQ, and CRSP data to construct the following liquidity measures: (1) time-weighted dollar

quoted spreads (QSP); (2) time-weighted share depth (ShrDepth); (3) size-weighted dollar effective

spread (EFSP); (4) size-weighted dollar realized spread (RESP); (5) size-weighted price impacts

(PIMP);37 (6) monthly estimates of Kyle’s λ, constructed by regressing 5-minute returns (calcu-

lated from quote midpoints) on the contemporaneous signed square root of net order flow (esti-

mated using the Lee-Ready algorithm) from the respective month;38 (7) Amvist liquidity measure,

defined as the daily ratio of absolute return to turnover; (8) Roll (1984)’s measure of effective

spreads; (9) Amihud (2002)’s measure (ILLIQ); (10) Barardehi, Bernhardt, Ruchti, and Weidemier

(2021)’s open-to-close measure (ILLIQ OC); (11 & 12) Barardehi et al. (2019)’s trade-time liquid-

ity measures (BBD and WBBD);39 (13) our trade-based institutional liquidity measure (ILMT ),

which averages |Mroibtrd|; (14) our volume-based institutional measure (ILMV ), which averages

|Mroibvol|. We also construct a stock-specific institutional price impact measure (InPrIm) using

ANcerno data from 2010–2014 to directly capture post-trade institutional trading costs per $100k

of trade. For each stock-month, we calculate a size-weighted average of institutional price impacts

(defined above) associated with individual institutional trades reported by ANcerno.

For all liquidity measures (including IMLT and IMLV ), we construct two versions; one over

a 1-month-horizon that averages daily liquidity proxies and another that averages daily liquidity

proxies over rolling three-month windows with monthly updates. For each ILM measure, we also

37In unreported analysis, we verify our liquidity measures also outperform spread and price impact measures
constructed relative to quote midpoints.

38We follow Holden and Jacobsen (2014) in cleaning the data, matching transactions with the corresponding NBBO
with millisecond timestamps.

39The sample period for these measures is 2010 to 2017 rather than 2010-2019.
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calculate corresponding daily averages of the share of volume occurring at sub-penny prices to

total daily trading volume. These measures, denoted SPVS, help isolate extreme ILM magnitudes

reflecting excessively-infrequent sub-penny trading at the stock level.

We construct a set of stock characteristics for our asset pricing analysis using data from CRSP

and Compustat. For stock j in monthm, RETj,m−1 and RETm−12
j,m−2, respectively, capture compound

returns over the preceding month and the 11 months prior; Mj,m−12 reflects market-capitalization

based on the closing price 12 months earlier; DYDj,m−1 reflects dividend yield, i.e., the ratio of

total dividend distributions over the 12 months ending in month m− 2 divided by the closing price

at the end of month m − 2. The book-to-market ratio, BMj,m−1, is the most recently reported

book value divided by market capitalization at the end of month m− 1.40 We obtain three-factor

Fama-French betas for each stock from Beta Suite by WRDS. Our approach employs weekly data

from rolling horizons that span the preceding 104 weeks, requiring a minimum of 52 weeks. For

each stock month, the set of betas represent estimates from the estimation horizon ending in the

last week of that month. As in Ang, Hodrick, Zhing, and Zhang (2006), we use a CAPM regression

using daily observations in each month to construct monthly idiosyncratic volatility measures.

We construct measures of holding horizon using institutional ownership (13F filings data). Fol-

lowing Gaspar et al. (2005) and Cella et al. (2013), for each institutional investment manager, we

calculate a “churn ratio” at the stock-quarter level. For a given manager in quarter q, the churn

ratio for an individual stock in her portfolio is defined as the change in the value of that stock in

the manager’s portfolio relative to that in quarter q − 1 that is not attributable to variation in its

price, divided by the average value of the manager’s holdings of that stock in quarters q and q− 1.

We aggregate manager-quarter churn ratios across all managers holding that stock, with each man-

ager’s churn ratio weighted by the fraction of institutional ownership held by that manager in the

underlying stock. For each stock-quarter, we use the moving average of these weighted mean churn

ratios over the preceding four quarters to measure a manager’s holding horizon. We also calculate a

weighted average churn ratio at the manager-quarter level using each manager’s fractional holding

in a stock relative to their overall holdings as weights. We define standardized holding horizons at

the manager and stock levels using rank statistics of their churn ratios. Specifically, we use 1 minus

churn ratio percentile statistics in a quarter to measure institutional holding horizons.

40We use the “linktable” from WRDS to match stocks across CRSP and Compustat, dropping stocks without links.
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5 Internalized Retail Order Flow Imbalance (Mroib)

This section provides cross-sectional evidence of the impact of institutional liquidity demand on

Mroib. We show that extremely positive or extremely negative Mroib both signify wholesalers

intermediating between retail and institutional investors when the demand for liquidity by institu-

tional investors is unbalanced and liquidity is scarce. We then analyzeMroib’s return predictability,

providing extensive evidence that Mroib’s return predictability is not due to informed retail trading

but rather the unwinding of institutional price pressure.

5.1 Mroib and Trading Activity

We first examine how Mroib is related to overall trading volume and to the distribution of trading

volume across four sources of trading activity: exchanges, ATSs, SDPs, and internalized retail

order flow. This analysis provides insights into how each of these sources contributes to the overall

trading activity as a function of the prevailing liquidity conditions. We obtain aggregate ATS

and non-ATS off-exchange trading volumes at the stock-week level for 01/2019 through 06/2019

from FINRA.41 Aggregate non-ATS volume is primarily comprised of internalized retail order flow

and SDP trading volume (see FINRA Regulatory Notice 18-28). We decompose non-ATS weekly

volume into the trading volume identified as retail by BJZZ’s algorithm and a residual component.

The residual volume is mostly a combination of internalized retail orders executed at (or near) the

midpoint and SDP executed institutional volume. Since the midpoint internalized retail volume

should be relatively higher when ATS liquidity is high, the opposite should hold for SDP volume.42

It follows that subtracting this “BJZZ volume” from non-ATS volume yields an over-estimate of

SDP volume, especially when ATS midpoint liquidity is high. We construct overall trading volume

at the stock-week level from daily observations provided by WRDS Intraday Indicators.

Panel A in Figure 2 reveals that a striking ∩-shaped relationship obtains between trading

volume and Mroibvol, indicating that a large (absolute) Mroib imbalance is associated with scarce

41These data are available from 10/2017. To avoid the effects of the Tick Size Pilot on both ATS and non-ATS
volume (Comerton-Forde, Grégoire, and Zhong (2019)), we do not use data from years 2017–2018. Our access to
institutional trade data from ANcerno ends in 2014, so we cannot directly examine the relationship between Mroib
and institutional trading outcomes, as in Section 5.2, when ATS and non-ATS volume data are available.

42Most of the rest of the residual component reflects the internalized retail orders that receive either full-cent PI or
zero PI. We show that wholesalers offer greater PI when Mroib is more imbalanced. This suggests that when Mroib
is more imbalanced, full-cent PI is more likely and zero cent PI is less likely.
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Figure 2. Retail Imbalances versus Trading Volume and Volume Distribution Across Venues. This
figure plots total trading volume during regular hours and the cross-venue distribution of trading volume against
imbalances in internalized retail order flow (Mroibvol). Each calendar week, stocks are sorted into deciles according
to their respective internalized retail order flow imbalance. Average trading volume as well as average shares of the
volume executed on exchanges, on ATSs, on SDPs, and via internalization calculated within each decile each week.
Time-series averages of these weekly averages for each decile are plotted from 01/2019 through 06/2019. Weekly ATS
and non ATS volumes are obtained from FINRA. The non-ATS volume is decomposed into BJZZ volume, calculated
using TAQ data, and SDP volume which is estimated as the difference between non-ATS and BJZZ (internalized
retail) volume.
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liquidity. Total trading volume is over 80% lower in the extreme (unbalanced) Mroibvol deciles

than in the middle deciles that feature near-zero (balanced) Mroibvol levels. The relative absence

of trading volume when Mroibvol is unbalanced signifies a decrease in overall liquidity. As a result,

the probability that an institutional investor can find another institutional counterparty with whom

to trade falls, leaving HFMMs as the primary source for liquidity. Consistent with this, Panel B in

Figure 2 presents a break-down of trading volume according to the source of trading activity. The

shares of trading volume executed on exchanges and ATS are both over 2bps lower when Mroibvol

is at its two most extreme (unbalanced) deciles than when it is close to balanced. The absence

of trade on exchanges and ATSs when Mroibvol is most unbalanced is offset by increases of over

2bps in the shares of trading volume executed via SDPs and the internalization of retail order flow.

Moreover, (1) BJZZ’s algorithm excludes all internalized retail trades executed at the midpoint

and (2) midpoint ATS liquidity is notably more abundant when Mroibvol is closer to zero, so our

estimates of SDP volume are likely especially biased upwards for intermediate levels of Mroibvol.

This suggests that the true ∪-shaped pattern of SDP volume share in Mroibvol is even stronger

than that reported in Figure 2. Importantly, both sources of non-ATS trading activity almost
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exclusively reflect wholesaler trades.

These findings indicate that when liquidity is scarce, institutional investors access liquidity pro-

vided by wholesalers, encouraging wholesalers to internalize more retail orders. These interactions

between institutional investors and wholesalers would lead to imbalances in wholesaler inventory

absent their ability to internalize retail orders. To avoid inventory imbalances, wholesalers internal-

ize retail orders, resulting in unbalancedMroib on the opposite side of the imbalance in institutional

order flow. We next provide evidence that Mroib imbalances are in response to wholesalers expe-

riencing a high demand for liquidity from institutions by relating Mroib to institutional order flow

imbalances, institutional trading costs and price pressure, and internalization costs.

5.2 Mroib, Institutional Trading, and Liquidity

Table 2 summarizes the relationships between Mroibvol and various contemporaneous outcomes

across deciles of Mroibvol. Close-to-close returns rise monotonically from −2bps in the bottom

Mroibvol decile to 30bps in the top decile. However, this pattern is not due to price pressure from

retail order flow. To show this, we decompose daily returns into intraday and overnight components.

Doing so reveals that intraday returns fall monotonically from 10bps in the bottom Mroibvol

decile to −14bps in the top decile.43 As most internalized (price-improved) trades are market

and marketable-limit orders, the negative association between Mroibvol and intraday returns is

inconsistent with retail price pressure. This negative association is also at odds with informed

retail trading, as it would imply a negative price impact of “informed” orders.

In sharp contrast to intraday returns, overnight returns are positively related to Mroibvol. The

signs of intraday and overnight returns differ for eight of the ten Mroibvol deciles, in particular for

the more extreme, unbalanced Mroibvol deciles. We next investigate different trading outcomes to

understand these patterns.

Table 2 shows that, like intraday returns, trade imbalances from both long-only institutional

investors and short sellers are negatively related to Mroibvol. Average institutional flow falls

from 27.7% in the bottom decile to 17.2% in the top decile. Short selling activity also occurs

on the opposite side of internalized retail order flow: increased short interest is associated with

larger positive internalized retail order flow imbalances. Importantly, directional (as opposed to

43Recall that BJZZ’s algorithm only uses regular-hour off-exchange transactions.
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liquidity-providing) short sellers, whose aggregate positions are reflected in short interest data,

are known to be informed (Desai, Ramesh, Thiagarajan, and Balachandran (2002); Engelberg,

Reed, and Ringgenberg (2012); Boehmer and Wu (2013)). The negative association between such

short selling activity and Mroibvol comprises further evidence against the informativeness of retail

orders executed at sub-pennies, pointing instead to institutional price pressure driving intraday

price movements.

We next show that the negative association between Mroib and institutional trade imbalance

does not reflect incorrectly signed institutional trades picked up by BJZZ’s algorithm (Battalio et al.

(2022)). TAQ data contain ANcerno-reported institutional trades, including those with sub-penny

price increments that the algorithm picks up. Battalio et al. (2022) suggest the algorithm incor-

rectly signs 80% of those trades. To preclude the possibility that Mroib imbalances simply reflect

mistakenly-included institutional trade imbalances on the opposite side, we apply the algorithm

to execution prices of ANcerno trades to construct BJZZ-implied institutional trade imbalances

in ANcerno data. If our results reflect mis-classified institutional trades that enter Mroib, then

BJZZ-implied institutional trade imbalances must be positively related toMroib. Table 2 shows this

imbalance is negative on average, while the analogue for actual institutional imbalance is positive,

consistent with Battalio et al. (2022)’s finding that the algorithm signs most institutional trades

incorrectly. More importantly BJZZ-implied institutional trade imbalances exhibit no discernible

pattern in Mroib, establishing that Mroib’s negative correlation with ANcerno institutional trade

imbalances is a robust feature. Section C.3 provides additional robustness analyses.

We next show that extreme values of Mroibvol are associated with less liquid markets. To do

this, we construct a stock-specific measure of abnormal realized off-exchange institutional liquidity.

For each stock-day, we divide the volume of large off-exchange mid-point executions44 by the average

of this quantity over the sample period for that stock. Higher values of this measure indicate greater

midpoint liquidity. The bottom row in Table 2 shows abnormally low levels of block trades receive

off-exchange midpoint execution when Mroibvol is more extreme. That is, large internalized retail

order flow imbalances are more common when off-exchange liquidity is abnormally scarce. Together

with imbalances in institutional liquidity demand, this finding indicates that institutional investors

44TAQ data transactions with trade venue flag ‘D’ that are at least 1,000 shares, worth at least $50k, and executed
at a price within 0.1¢ of the corresponding quote midpoint.
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have trouble locating counter-parties with whom to trade at the midpoint.

Liquidity is also scarce on exchanges when Mroibvol is more extreme. Table 2 shows that

spreads are widest and depth at the NBBO is lowest for the extreme deciles of Mroibvol. Specif-

ically, median price impacts per $1m transaction for the average stock are 19bps and 22bps for

the lowest and highest Mroibvol deciles, respectively. In contrast, balanced Mroibvol is associated

with only 3bps of such costs. Moreover, strikingly, average dollar and relative quoted spreads in the

lowest and highest Mroibvol deciles are roughly double those when Mroibvol is relatively balanced.

The lack of mid-point liquidity on ATSs means that institutional investors with pressing liquidity

needs must turn to venues where they are more likely to trade with HFMMs as intermediaries.

Using a wholesaler’s SDP allows an institution to trade against a single HFMM—the wholesaler—

to conceal its trades. Even when institutional investors opt for exchanges, the exclusive access

of wholesalers to segmented retail flow provides them competitive advantages over other HFMMs,

making wholesalers more willing to fill institutional orders and thereby creating imbalances in

Mroibvol.

Importantly, most executions on SDPs and exchanges take place at or near the NBBO because

liquidity on these venues is quoted at round-penny increments. In turn, since spreads are wider

due to the lack of liquidity, filling institutional demands is unusually lucrative. This suggests that

wholesalers may be willing to pay more than normal to internalize retail trade to fill those unusually

lucrative institutional orders. Consistent with this argument, the ratio of internalized retail trades

executed at prices that are superior to the NBBO by 1¢ or more rises by 33% as Mroibvol diverges

from intermediate levels to the two extremes (also see Section C.3). That is, wholesalers incur more

costly retail internalization on one side of the market when institutional liquidity demand on the

opposite side is abnormally high.

Reverse causality, i.e., wholesalers filling more institutional orders to offset imbalances in in-

ternalized retail order flow, cannot explain our findings. For this reverse explanation to hold,

the liquidity available to institutions has to improve when Mroib is extreme, since wholesalers

would need to attract institutional flow by offering abnormally high ATS midpoint liquidity or

by improving quoted prices and depth on exchanges. Therefore, under the alternative explana-

tion, an abnormal abundance of retail trading interest on one side of the market would predict

that wholesalers internalize retail orders with minimal PI. However, Table 2 reports the exact op-
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posite pattern—high Mroib is associated with both higher institutional trading costs and higher

internalization costs.45

These findings also relate our study to the literature on liquidity timing.46 Investors with a

pressing need to quickly establish or unwind a position may have limited ability to time their trades.

This leads Anand, Irvine, Puckett, and Venkataraman (2013) to classify institutional investors as

“liquidity demanding” and “liquidity supplying” with the former incurring higher trading costs.

Institutional investors accessing liquidity via the internalization of retail order flow in our study

are likely “liquidity demanding” institutions. Battalio, Hatch, and Salgam (2022) document higher

execution shortfalls for institutional “parent” orders that seek liquidity on SDPs that are typically

operated by wholesalers who obtain liquidity by internalizing retail order flow.47 Our analysis

extends these insights by showing that institutions differentially access the liquidity provided by

internalized retail order flow when mid-point off-exchange liquidity is scarce. This indicates how

wholesalers gain from their access to segmented retail order flow, which they can use for inventory

management purposes to offset high institutional demand in less liquid markets.

Our collective findings allow us to attribute the negative association between intraday returns

and Mroib to institutional price pressure that occurs in the opposite direction of Mroib imbal-

ances. As such, we reconcile the opposing patterns in overnight returns as price reversals follow

institutional price pressure from the preceding intraday period.

Table 2 also reveals that intraday and overnight returns in the extreme Mroibvol deciles reflect

more than just the immediate unwinding of price pressure. Most obviously, price pressure from insti-

tutional buying is 0.098% in Mroibvol’s bottom decile, but the contemporaneous overnight reversal

of −0.116% is even larger—a finding that deviates from the stylized fact that unconditional intra-

day and overnight average returns are negative and positive, respectively (Cliff, Cooper, and Gulen

(2008); Berkman, Koch, Tuttle, and Zhang (2012)). To study these phenomena more precisely, we

45This is not to say that wholesalers do not use institutional liquidity to provide liquidity to retail investors.
Section 3.2 discusses why this type of intermediation, which most likely happens when liquidity is abundant, is not
picked up by the BJZZ algorithm, implying that it may not drive our findings.

46Research on endogenous liquidity consumption includes Campbell, Ramadorai, and Vuolteenaho (2005), O’Hara
(2015), Collin-Dufresne and Fos (2015), Kacperczyk and Pagnotta (2019), and Barardehi and Bernhardt (2021).

47This evidence suggests that institutions resort to off-exchange liquidity on SDPs to conceal their intended position
sizes by exploiting the delayed reporting of off-exchange trade executions to the Security Information Processor (Ernst,
Skobin, and Spatt (2021)). While there may be limited “information leakage” associated with seeking liquidity on
SDPs (see BestEx Research), institutional traders have only worse alternatives when mid-point liquidity is limited
on ATSs, as trading on exchanges is far more transparent by design.
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construct a 5-day overnight return that omits the first close-to-open return and adds the overnight

return on the sixth day. This adjustment aligns the timing of intraday price pressure and overnight

reversals. This adjustment exacerbates the disconnect between the intraday “price pressure” and the

subsequent (next-day) overnight “reversals” that average −0.134% when Mroibvol is in decile 1. In

fact, comparing intraday and “next-day” overnight returns when Mroibvol is in decile 1 vs. decile 5

reveals differences of 0.098−(−0.063) = 0.161% and −0.0138−0.257 = −0.379%, respectively. The

analogous differences when Mroibvol is in decile 10 vs. decile 5 are −0.138− (−0.063) = −0.075%

and 0.456 − 0.257 = 0.199%. Thus, weekly overnight returns revert by far more than is needed

to offset intraday returns, especially when Mroibvol is extremely negative. Internet Appendix C.1

reconciles this pattern by establishing that institutional buy order flow is more persistent than

institutional sell order flow. As a result, institutional buy order flow predicts returns and, in turn,

is predicted by retail imbalance (with an inverse relation) over longer horizons. These findings are

consistent with Campbell, Ramadorai, and Schwartz (2009).

5.3 Return Predictability of Mroib

We next formally examine the return predictability of Mroib. Our findings are inconsistent with

Mroib capturing informed retail order flow. In contrast, near-term future weekly returns condi-

tional on Mroib are consistent with price reversals following liquidity consumption by institutional

investors. We then analyze Mroibvol’s long-term return predictability, providing evidence consis-

tent with extreme Mroibvol stocks being less liquid, and hence requiring greater liquidity premia.

Panel B in Table 1 provides summary statistics that closely match those in Table I of BJZZ,

confirming that our construction of Mroibtrd and Mroibvol parallels theirs.48 We estimate the

predictability of weekly returns conditional on Mroibvol by estimating:

Rj,w+i = c0w + c1wMroibvolj,w−1 + c2w
⊤
controlsj,w−1 + uj,w+i, (1)

where Rj,w+i ∈ {CCRj,w+i, IDRj,w+i, ONRj,w+i} denotes weekly (rolling 5-day) close-to-close, in-

traday, and overnight returns, respectively, of stock j in week w + i. Mroibvolj,w−1 denotes the

imbalance in the trading volume of internalized retail order flow receiving sub-penny price im-

48Slight differences arise since our sample period spans 2010–2014, while BJZZ’s spans 2010–2015.
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provement in the previous week. We estimate equation (1) to examine Mroibvolj,w−1’s return

predictability separately for future returns measured over different segments of a day. Control vari-

ables include the previous week’s return (Rw−1) in percentage points, the previous month’s return

(RET−1), the return over the five months prior to the last month (RET(−7,−2)), return volatil-

ity (VOLAT), as well as the natural logs of turnover (ln(TO)), market capitalization (ln(Size)),

and book-to-market ratio (ln(BM)). As in BJZZ, we estimate equation (1) using Fama-Macbeth

regressions, featuring Newey-West corrected standard errors with 6 lags.

Table 3 presents estimation results for week i = 0. The second column corresponds to the

second column of Table III in BJZZ. Our point estimate (ĉ1w) of 0.087% is nearly identical to their

estimate of 0.09%. Coefficients on control variables are also similar to BJZZ’s estimates. However,

we document a striking difference between Mroibvolw−1’s loadings when overnight and intraday

returns serve as dependent variables. Specifically, Mroibvolw−1 predicts next week’s overnight

return with the “correct” positive sign, whereas it predicts next week’s intraday return with a

negative coefficient.

These findings are consistent with temporally-persistent institutional price pressures over suc-

cessive trading sessions and the partial reversals that occur overnight in between daily trading

sessions, i.e., overnight. Table 2 established that Mroibvol imbalances were inversely related to

both contemporaneous institutional trade imbalance and price pressure, as reflected by intraday

returns. Hence the negative predictive power of Mroibvol for future intraday returns is consistent

the persistent institutional price pressure across successive trading days. Internet Appendix C.1

provides direct evidence of this using ANcerno data, confirming existing evidence in the literature

(e.g., Campbell et al. (2009) and Akepanidtaworn et al. (2020)). The positive association between

current Mroibvol and future overnight returns, implies a negative association between current

institutional price pressure and future overnight returns. This is consistent with reversals that

follow institutional price pressure (Hendershott and Seasholes (2007)). In sum, these findings allow

us to attribute Mroib’s short-term return predictability to price dynamics driven by institutional

liquidity consumption, rather that informed retail trading.

Our analysis of the the link between currentMroib and longer-term future returns reinforces our

interpretation that attributes Mroib’s short-term return predictability to institutional consumption

of retail-sourced liquidity. Kaniel et al. (2008) document stronger such return predictability for less
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liquid stocks. Moreover, less liquid stocks are known to command liquidity premia in the form

of greater expected returns. Consistent with these insights, Table 4 shows that stocks with more

extreme Mroibvol in week w−1 are associated with higher returns in the future. Even though week

w returns are monotinically positively related to Mroibvolw−1, the return difference between the

bottom and top deciles of Mroibvolw−1 falls rapidly over time, nearly disappearing by week w+12.

Instead, a striking ∪-shaped pattern in close-to-close returns across Mroibvolw−1 deciles emerges

at week w + 3, strengthening sharply in subsequent weeks. For example, average week w + 12’s

close-to-close returns in deciles 1 and 10 of Mroibvolw−1 (0.15% and 0.18%, respectively) are over

double that in decile 6 (0.07%). This ∪-shaped pattern holds in all future weeks—future returns

are inversely related to negative Mroibvolw−1 and positively related to positive Mroibvolw−1.
49

Hence, we relate the ∪-shaped pattern in longer future returns to liquidity premia. A liquidity

premium associated with expected trading costs as a stock characteristic implies long-term return

differences according to the level of liquidity. The strong association between liquidity measures,

institutional trading costs, and retail order flow internalization suggests that stocks with more ex-

tremeMroibvolw−1 are less liquid. Hence, these stocks should command higher permanent expected

return (higher cross-sectional returns) as compensation that institutional investors require to hold

less liquid assets (where entering and exiting positions is costlier), as Amihud and Mendelson (1986)

first argued. To make clear that liquidity premia drive the long-term ∪-shaped pattern in returns,

we focus on lower Mroibvolw−1 deciles, where Internet Appendix C.2 provides evidence that the

positive relationship between near-term returns and Mroibvolw−1 in lower Mroibvol deciles likely

reflects extended price reversals following price pressure from previously-accumulated long institu-

tional positions.50 Clearly, this positive relationship is temporary and is eventually dominated by

the liquidity premia that underlie the ∪-shaped pattern in longer-term future returns.51

49See Interned Appendix B for formal estimates of these distinct relationships.
50In high Mroibvolw−1 deciles, disentangling short-term and long-term effects in close-to-close returns is more

difficult since their impacts on returns have the same sign.
51Untabulated findings indicate that decomposing close-to-close returns into intraday and overnight components can

identify when liquidity premia are realized during the day and contribute to the asset pricing literature documenting
time-of-day return disparities that are important to asset pricing anomalies. Our decomposition of close-to-close
returns reveals that the ∪-shaped pattern in future close-to-close returns as Mroibvolw−1 rises from low deciles to
high are due to intraday returns. In fact, overnight returns follow a ∩-shaped pattern in Mroibvolw−1. Thus, we
provide an economic mechanism that reconciles why intraday and overnight return anomalies differ—the ∪-shaped
pattern in intraday returns reflect liquidity premia, and liquidity premia are realized only when there is trade. These
findings are complementary to the conclusions of Bogousslavsky (2021), and, contrary to Lou, Polk, and Skouras
(2019), provide a rational explanation for the negative correlation between successive intraday and overnight returns.
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Investigating Mroibvol’s dynamics provides further evidence that Mroib does not reflect in-

formed directional retail trading. Instead, the likelihood and intensity of extreme Mroib occur-

rences reflect a stock characteristic, indicative of the extent to which institutional investors consume

retail-sourced liquidity through wholesalers when liquidity is scarce. This analysis is motivated

by BJZZ’s finding that Mroib persists over time—their regression of weekly Mroibvol on lagged

Mroibvol yields a coefficient of 0.22 (BJZZ, p. 2265). BJZZ use a linear model to estimate the

dynamics of Mroibvol, but their assumed AR(1) process fails to capture the heterogeneity in the

dynamics of retail imbalances. To show this mis-specification we adopt a non-parametric approach

to estimate the distribution of Mroibvol in week w + i conditional on week w − 1.

Panel A in Figure 3 reveals that stock-weeks with extreme negative and extreme positive

Mroibvol quantities in week w − 1 also tend to have extreme imbalances in week w + 12. This

pattern also holds more generally for different weeks w + i. Crucially, stocks with extremely neg-

ative Mroibvol in week w − 1 are likely to have extremely negative or positive Mroibvol in week

w+12. Put differently, extreme retail selling “pressure” predicts both extreme retail selling and ex-

treme retail buying “pressure” 13 weeks forward. So, too, stocks with extremely positive Mroibvol

in week w − 1 are likely to have extremely positive or negative Mroibvol in week w + 12.52 To

show these findings are inconsistent with a linear formulation of Mroib’s persistence, we use simu-

lated data from an AR(1) process as a benchmark—Panel B in Figure 3 shows that very different

non-parametric estimates obtain from those in Panel A.

Motivated by these collective findings, we next show that Mroib can be used to construct stock

liquidity measures that better capture institutional trading costs than existing liquidity measures.

Importantly, reflective of their ability to capture liquidity and institutional trading considerations,

these measures are strongly priced in the cross-section of stocks, even in recent years.

6 ILM Characteristics

This section highlights the important characteristics of our liquidity measures and contrasts them

with existing liquidity measures.

52Controlling for stock characteristics leaves the qualitative patterns unaffected.
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6.1 ILM s, Existing Liquidity Measures, and Institutional Price Impacts

To begin, we investigate how institutional liquidity measures (ILMs) are related to key stock

characteristics. We then examine how ILMs compare with existing liquidity measures in exhibiting

correlations with future post-trade institutional price impacts.

We construct weekly ILMT and ILMV for each stock by averaging |Mroibtrd| and |Mroibvol|,

respectively, over 5-day rolling windows to obtain weekly observations. We then match these weekly

observations with stock characteristics constructed at the end of the preceding calendar month (see

Section 4). After excluding stocks whose previous month’s closing price are below $2 (results are

robust to excluding stocks with closing prices below $5), we sort each weekly cross-section into

deciles of ILM ∈ {ILMT, ILMV }. We then calculate stock characteristic averages by ILM decile

and date before computing the time-series averages of these averages across dates by ILM deciles.

Table 5 demonstrates that high-ILM stocks, i.e., less liquid stocks according to ILMs, tend to be

small growth stocks with relatively poor recent returns and low CAPM betas.

We next show that for less liquid stocks, according to various measures of liquidity, including

ILMs, lower liquidity in month m − 2 is associated with higher realized post-trade institutional

price impacts in month m. However, for more liquid stocks, this monotone relationship obtains

only based on a handful of liquidity measures, including ILMs. We sort each monthly cross-

section in month m into deciles of a given liquidity measure, constructed in m − 2, with decile

1 (10) containing the most (least) liquid stocks. We then calculate a time-series average of the

institutional price impacts of the median stock in each liquidity decile.53 Panel A in Figure 4 shows

that for more liquid stocks (those in liquidity deciles 1–5), future institutional price impacts only rise

monotonically with “improved” liquidity as measured by Kyle’s lambda, Amihud measures, trade-

time liquidity measures, and ILMs—institutional price impacts display no systematic patterns in

other liquidity measures. Panel B in Figure 4 shows that for less liquid stocks (liquidity deciles

6–10), worsened liquidity according to most standard liquidity measures (movements from decile

6 to 10) is associated with increased future institutional price impacts. The bottom line is that

53Using order statistics rather than simple correlation coefficients lets us identify potential non-linearities and non-
monotonicities. Order statistics ensure that the tails of the distributions do not exert undue influence on our estimates
and confound interpretations. These considerations are especially relevant for institutional price impacts obtained
from ANcerno data that covers less than 7% of CRSP-reported volume for the average stock (3.5% of volume for the
median stock). Using stock portfolios rather than individual stocks as test assets sharply reduces measurement error
(and noise) that would otherwise impact stock-level estimates.
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most liquidity measures can proxy institutional trading costs for less liquid stocks, while a few,

including ILMs, also do so for more liquid stocks.54 The decline in the ability of traditional

market microstructure measures to capture these trading costs in the past two decades reflects

numerous significant changes to the equity trading environment.

6.2 Persistence of Institutional Liquidity Measures

We next investigate the temporal persistence in ILMT and ILMV at the stock level to determine

whether they comprise a stock characteristic. The institutional liquidity measures ILMT and

ILMV used in our asset pricing tests average daily |Mroibtrd| and |Mroibvol| observations over

one month.55 To examine the persistence in these measures, we regress ILMT and ILMV on their

lags from the six preceding months. These Fama-MacBeth regressions correct for auto-correlated

error terms using Newey-West standard errors based on 6 lags, as do the rest of our regression

analyses. We exclude stocks priced below $2, before estimating equally-weighted and value-weighted

regressions (with weights computed using a stock’s market capitalization in the previous month).

Table 6 documents strong persistence in ILMs: past ILM levels strongly predict future levels.

That is, stocks with high ILMs in one month tend to have high ILMs in future months. This

holds even when we weight observations by market capitalization, indicating that persistence is not

attributable to the illiquidity of small stocks. This persistence indicates that our liquidity measures

represent a stock characteristic that is long-lasting enough to impact institutional investors with

extended holding horizons and hence justify the existence of a liquidity premium in stock returns.

7 Liquidity and Institutional Holding Horizon

Our next analyses are motivated by the testable hypotheses in Amihud and Mendelson (1986) that

(a) at the investor level, investors with longer holding horizons are predicted to hold less liquid

stocks, and (b) at the stock level, less liquid stocks are predicted to be held by institutional investors

with longer holding horizons.

54Internet Appendix D shows that excluding stocks for which sub-penny volume comprises a low share of total
volume leavs our qualitative findings unaffected. As such, the prevalence of sub-penny trade execution does underlie
the variation in ILM and its ability to proxy institutional trading costs.

55Constructions of Mroibtrd and Mroibvol include all transactions. However, our findings are robust to focusing
only on round-lot transactions. Odd-lots are only reported by TAQ after 2013.
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7.1 Investor-Level Analysis

To calculate the liquidity of an institutional investor’s Equity Under Management (EUM), we

first calculate the weighted average of each liquidity measure across all stocks held by individual

fund managers. We weight observations by the fraction of an investor’s total dollar-denominated

portfolio value in a stock. Other EUM characteristics, including volatility, market capitalization,

and institutional ownership, are computed using a similar methodology in the previous quarter.

We follow Gaspar et al. (2005) and Cella et al. (2013) to construct investor-level churn ratios in

the previous quarter. The churn ratio captures the frequency at which a fund enters and exits

positions, and hence is inversely related to its holding horizon. The churn ratio is calculated at the

stock-quarter level, and then weighted by holdings at the manager-quarter level (see Section 4).

We estimate semi-parametric relations at the investor level between EUM liquidity and holding

horizons, defined as 1 minus churn ratio percentiles, after controlling for other EUM characteristics.

Each quarter, we obtain regression residuals from fitting EUM illiquidity as a function of volatility,

market capitalization, and institutional ownership. We then sort each quarterly cross-section into

percentile statistics of residual EUM liquidity and holding horizon, independently. Finally, for each

liquidity measure, we fit a local polynomial of the residual EUM liquidity percentiles as a function

of holding horizon percentile statistics.

Figure 5 illustrates that EUM illiquidity measured by existing liquidity measures, including

quoted and relative spreads, quoted depth at best prices, Kyle’s lambda, Amihud measure, and

trade-time measures display a strong ∩-shaped pattern with respect to holding horizon. In contrast,

ILM -based EUM illiquidity displays a more monotonically increasing pattern with holding horizon

despite flattening for the longest holding horizons.

7.2 Stock-Level Analysis

Institutional investors hold about 70% of U.S. equity, so the relation between holding horizon and

liquidity should extend to the individual stock level. That is, less liquid stocks should be held by

institutional investors with longer holding horizons after controlling for other stock characteristics.

To test whether different illiquidity measures yield estimates consistent with this prediction,

we follow Vovchak (2014). For each stock in each quarter, we first calculate the weighted-average
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churn ratio across all investors holding the stock. The weight assigned to an investor’s churn ratio

is the fraction held by the investor relative to all institutional investment in the stock. We then

calculate moving averages over the four preceding quarters for these churn ratios to obtain a stock-

quarter measure of institutional turnover. Finally, we regress each liquidity measure at the end of a

quarter on the institutional holding horizon percentile (1 minus churn ratio percentile), controlling

for volatility, market capitalization, and institutional ownership from the previous quarter. We

estimate Fama-MacBeth regressions with Newey-West standard errors based on 6 lags.

Panel A in Table 7 reports that for most liquidity measures, the institutional holding horizon

percentile has a coefficient with the expected sign. However, differences show up in R2 magnitudes.

The R2s associated with ILMT and ILMV are 0.61 and 0.63, respectively, indicating that holding

horizon explains a large amount of the variation in investor-level portfolio liquidity based on ILMs.

In contrast, the R2s associated with existing liquidity measures are notably smaller—the next

highest R2 is 0.44 and most are far lower, with some only marginally different from zero.

To further highlight that ILMs better capture the concerns of institutional investors, we or-

thogonalize the ILM measures with respect to the other liquidity measures. To do this we use

Fama-MacBeth regressions, first regressing ILMT and ILMV on existing liquidity measure X,

denoting the respective residuals by ZILMT and ZILMV . We then examine the ability of holding

horizon to explain variation in these residuals. Next, we reverse the specification and regress each

existing liquidity measure, separately, on ILMT and ILMV , denoting these respective residuals

as YILMT and YILMV . Finally, we examine the ability of holding horizon to explain variation in

these residuals.

The top four rows in Panel B of Table 7 report that, relative to every existing liquidity measure,

ILMT and ILMV have incremental liquidity-related implications for institutional investors. In

contrast, the bottom four rows in Panel B of Table 7 report that the coefficients for holding

horizon have their expected sign only for dollar quoted/effective spread, relative effective spread,

and quoted depth. Moreover, the R2s in these specifications indicate that for these four liquidity

measures, the variation in the YILMT and YILMV residuals explained by holding horizon (and

stock characteristics) is less than one-twentieth of the variation in the ZILMT and ZILMV residuals

explained by holding horizon (and stock characteristics). That is, institutional holding horizons

better explain ILM residuals than they explain residuals of existing liquidity measures. In sum,
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ILMs have incremental implications for investors relative to existing liquidity measures, but the

converse is not true.

Overall, ILMs are the only liquidity measures whose relations with holding horizons at both at

the investor and stock levels match the prediction of Amihud and Mendelson (1986).

8 Liquidity Premia

We next contrast the extent to which ILMs and existing liquidity measures predict the cross-section

of expected stock returns over the recent 2010–2019 period. We show that, unlike existing measures,

ILMs robustly predict the cross-section of stock returns, with economically-large liquidity premia.

Long-short portfolios reinforce these findings.

8.1 Regression Analysis

To examine the abilities of ILMs and the other liquidity measures described in Section 4 to predict

future monthly returns, we first estimate the following Fama-MacBeth regression

RETj,m = γ0m + γLIQm (LIQj,m−2) + Γ⊤CONTj,m−1 + uj,m, (2)

with Newey-West-corrected standard errors using 6 lags where the dependent variable RETj,m is

stock j’s return in month m. LIQj,m−2 denotes one of the liquidity measures obtained at the end

of month m−1 for stock j. CONTj,m−1 denotes a vector of control variables containing betas from

the three-factor Fama-French model, book-to-market ratio, market capitalization, dividend yield,

idiosyncratic volatility, and the previous month’s return as well as the return from the prior 11

months. Green, Hand, and Zhang (2017) examine the return predictability of a comprehensive list

of 94 stock characteristics and find their predictive power to fall sharply after 2003. It is therefore

unlikely that controlling for more stock characteristics would qualitatively change our results, as

our sample starts in 2010. Consistent with this, our findings are robust to using panel regressions

that control for unobserved heterogeneities using stock and date fixed effects.

Recall that we impose a $2 minimum price requirement to preclude the possibility that findings

are driven by penny stocks. To further ensure that results are not spurious, we add a one-month
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lag between the construction of each liquidity measure and monthly returns.

Panel A in Table 8 reports that unlike other liquidity measures, both the institutional price im-

pact measure (InPrIm) and the ILMs explain the cross-section of expected returns.56 Specifically,

InPrIM, ILMT , and ILMV coefficients are 0.029, 1.20 and 1.27, respectively. Multiplying these

coefficients by their respective standard deviations (of 0.109, 0.19, and 0.21) yields monthly liquid-

ity premia of 31.6 bps, 22.8bps, and 26.7bps, respectively. Thus, one standard deviation increases

in ILMs are associated with 22.8–26.7bps increases in expected monthly returns, with associated

annualized increases of 2.74–3.20%. The analogous annual liquidity premium attributable to re-

alized institutional price impacts is 3.8%. These results comprise strong evidence that investors

demand economically-significant liquidity premia.

Online Appendix E documents robustness to $1 and $5 minimum share price requirements.

Consistent with Barardehi et al. (2019) and Barardehi et al. (2021), quoted depth, ILLIQ OC,

BBD, and WBBD only explain the cross-section of stock returns when a $1 minimum price filter

is imposed, indicating that these measures are only priced in very illiquid stocks. Furthermore,

consistent with low institutional trading in penny stocks, InPrIM is not priced with a $1 minimum

price filter, but it is priced with a $5 minimum price filter.57

Panel B in Table 8 presents the significant incremental information content of ILMT and

ILMV vis à vis each existing liquidity measures. Each ILM measure is first regressed on an

alternative liquidity (price impact) measure using Fama-MacBeth regressions. The residual from

such regressions are then used, one at a time, as LIQj,m−2 in equation (2). The ILMT and

ILMV residuals, with the exception of those orthogonalized to realized institutional price impacts

(InPrIm), explain the cross-section of expected returns. Untabulated results verify that the residuals

of existing liquidity measures with respect to our measures fail to explain the cross-section of returns.

These results suggest that the literature’s conclusion that liquidity premia have disappeared

post-decimalization (e.g., Asparouhova et al. (2010); Ben-Rephael et al. (2015)) solely reflect the

use of liquidity measures that no longer capture the institutional features of modern equity markets.

In particular, tight spreads (often binding at a penny tick) combined with limited depth at the

56In unreported results, we compare ILMs to relative (percentage) quoted, effective, and realized spreads, and find
ILMs outperform them in all the three dimensions examined.

57Online Appendix H establishes the robustness of these results to the construction of our liquidity measures
over 3-month rolling windows. This alternative construction results in monthly liquidity premia of 25–31bps, with
associated annual liquidity premia of 3.07–3.74%.
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NBBO in a fragmented marketplace cannot capture the complicated trade execution strategies

institutions adopted in response. In contrast, ILMs are motivated by the actual trading costs of

institutional investors and the propensity with which they need to rely on retail-sourced liquidity

through wholesalers. As a result, the use of ILMs reveals that institutions account for cross-stock

heterogeneity in trading costs when pricing stocks.58 That ILMT and ILMV do not outperform

InPrIm in these residual analyses suggests that only liquidity measures based on proprietary data

with limited availability, such as ANcerno data, can possibly compete with ILMs in capturing

institutional trading costs.

Table 9 summarizes the results of several robustness tests that confirm the liquidity premia

captured by our liquidity measures. First, estimating equation (2) using panel regressions that

include date and stock fixed effects and double-cluster standard errors by date and stock leaves our

qualitative findings largely unaffected. Second, correcting for market microstructure noise, as in

Asparouhova et al. (2010), does not affect the economic significance of the liquidity premia. Third,

excluding the smallest 20% of stocks (at the end of the previous month) leaves our qualitative

findings unaffected, indicating that the liquidity premia are not a small-stock phenomena. Intu-

itively, this reflects the relevance of ILMs to institutional investors who tend to hold larger stocks.

Fourth, excluding stocks in the bottom 10% of SPVS in each cross-section results in more efficient

estimates of liquidity premia. This reflects that ILMs of stocks with low sub-penny volume tend to

have higher measurement error. Fifth, weighting observations by stock-level market-capitalizations

improves statistical significance of liquidity premia estimates for ILMT , but reduces it for ILMV .

Sixth, excluding the top and bottom 10% of each ILM cross-section increases the precision of liq-

uidity premia estimates and leaves our qualitative findings unaffected. This indicates that estimates

are not driven by the tails of the ILM distributions. Indeed, down-weighting (censoring) extreme

ILM observations strengthens our results. All robustness tests are implemented separately after

imposing minimum share price requirements of $1, $2, and $5. Seventh, we document robustness

of liquidity premia across listing exchanges. This final robustness test is motivated by Asparouhova

et al. (2010) and Ben-Rephael et al. (2015), who detect liquidity premia post decimalization for

NASDAQ-listed firms, but not NYSE-listed firms. Online Appendix H confirms the robustness of

58Kyle’s λ fails to explain the cross-section of expected returns. This suggests that the conclusions of Huh (2014)
that Kyle’s λ explained the cross-section of returns in the 1983–2009 period do not extend past 2010.
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the liquidity premia when liquidity measures are constructed over 3-month rolling windows.

Overall, our empirical results provide compelling evidence that ILMs predict expected stock

returns and are associated with economically significant liquidity premia.

8.2 Portfolio Sorts

This section reports that long-short portfolios based on ILM generate abnormal (risk-adjusted)

monthly returns. For each monthly cross-section, we form 10 liquidity portfolios using ILMT

and separately using ILMV . These portfolios are first formed by sorting the cross-section of

stocks into deciles based on the entire CRSP common-share universe before calculating equally-

weighted portfolio returns. In additional robustness tests, we form portfolios breakpoints using

ILMs of NYSE-listed stocks after removing stocks whose market capitalization is in the bottom

20% before calculating value-weighted portfolio returns.59 Portfolio returns are calculated as the

average return of the stocks assigned to the respective portfolio net of the contemporaneous 1-month

Treasury-bill rate. The monthly long-short portfolio return equals the return difference between

the least liquid and the most liquid portfolios. Finally, we regress the time-series of individual

portfolio returns as well as the time-series of the long-short returns on the Fama-French three

factors. The intercept of each time-series regression is the relevant risk-adjusted return (spread),

whose significance is assessed using Newey-West standard errors with 6 lags. We apply three

different minimum share price filters that remove stocks whose month-end closing price in the prior

month is below pmin ∈ {$1, $2, $5}.

Table 10 reports significant risk-adjusted return spreads between the least liquid portfolio and

the most liquid portfolio according to both ILMT and ILMV . The portfolio risk-adjusted returns

display roughly monotonic patterns, increasing from the most liquid portfolio to the least liquid

portfolio. The corresponding return spreads are economically significant, ranging between 0.93%

and 1.20% per month in our main sample (Panel B in Table 10) and between 0.41% and 1.27%

per month across all specifications. Online Appendix H establishes the robustness of findings

to constructing ILMs over 3-month rolling windows, uncovering three-factor return spreads that

range from 0.34% to 1.18% per month. Overall, our estimates imply that annualized portfolio

return spreads based on ILM range between 4.08–15.24%, with the larger estimates attributable

59Conclusions are robust to alternative combinations of break-points, weights, and small-firm filters.
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to samples involving involve small, low-priced stocks.

An investigation of ANcerno data suggests that our liquidity premium estimates are plausible

manifestations of expected implicit trading costs. Figure 5 suggests a 20bp difference in expected

institutional price impacts between stocks in the top and bottom ILMs deciles for a $2 price fil-

ter. Our institutional price impacts estimates (InPrIm) are re-scaled to reflect costs per $100k of

institutional trade size—hence, the 20bp difference can be re-scaled to reflect the variation associ-

ated with alternative benchmark trade sizes. To match the 40-120pbs liquidity premia estimates

in Table 10, true dollar values for monthly institutional trade volumes in a typical stock should

be about $200-600k , scaling up the benchmark trade size used in our estimates by factors of 2–6.

ANcerno data suggest that these benchmarks are reasonable. The median and average dollar value

of institutional trades per month in 2010 are about $110k and $1,200k, respectively, when we use

a $2 price filter. These values understate true institutional monthly trade volumes because larger

institutional investors employ “in-house” trade execution algorithms and do not use Abel Noser’s

execution quality assessment services—so their trades are not reflected in ANcerno data.

Internet Appendix F repeats the portfolio sorting exercise for alternative liquidity measures

using the three minimum price filters. It confirms that ILMs are the only measures for which the

long-short portfolio risk-adjusted return spreads reflect liquidity premia close to 1% or higher.

We also find that alphas associated with ILMs survive double sorts that control for key stock

characteristics. Internet Appendix G forms an array of 5 × 5 portfolios that first condition on a

stock characteristic (one of market beta, market capitalization, book-to-market ratios, past returns,

and the share of sub-penny volume), and then on an ILM . We document liquidity premia for high-

and low-beta, small and large, growth and value stocks, past losers and past winners, and stocks

with low and high sub-penny executed volume. We then investigate whether trading costs can

explain the returns of anomalies based on stock characteristics by switching the order of the double

sorts. Consistent with the existing literature (e.g., Lesmond, Schill, and Zhou (2004); Korajczyk

and Sadka (2004)), we find that momentum profits do not survive institutional trading costs.
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9 Conclusion

Our paper attributes the strong return predictability of the imbalance in retail buy vs. sell orders

internalized at sub-penny prices (Boehmer et al. (2021)) to liquidity provision by retail investors

to institutional investors (Kaniel et al. (2008)). Importantly, order flow segmentation in U.S.

equity markets prevents retail liquidity provision through direct interactions between retail and

institutional order flows. We provide the first evidence of wholesalers, a group of high-frequency

market makers, intermediating between retail and institutional investors. Wholesalers’ exclusive

access to internalized retail orders equips them with a competitive advantage in providing liquidity

to institutional investors when liquidity is scarce. When liquidity-constrained institutions access

liquidity by interacting with a wholesaler on one side of the market, the wholesaler internalizes

unequal amounts of retail buy and sell order flow to offset the inventory they would otherwise

accumulate when providing liquidity to institutions. We show that such institutional liquidity

consumption when liquidity is scarce is associated with institutional price pressure. The subsequent

price reversals create a positive association between imbalances in a select subset of internalized

retail flow that reflect wholesaler choices and future returns. Hence, this return predictability

should not be attributed to informed retail trading.

These findings motivate our use of the absolute value of the imbalance in observable internalized

retail flow as a stock-level proxy of institutional trading costs—higher such imbalances signify

scarce liquidity from the perspectives of institutional investors. We show that, relative to existing

measures, our stock-level institutional liquidity measures are more closely linked with realized

institutional trading costs and institutional holding horizons. We also provide robust evidence

that our liquidity measures are priced in the cross-section of stock returns and yield economically

significant liquidity premia post 2010, when existing liquidity measures are no longer priced. This

finding is important for three reasons: (1) consistent with nontrivial institutional trading costs,

it shows that stock returns still contain liquidity premia, indicating that a recent literature did

not find significant liquidity premia only because their measures no longer capture relative trading

costs; (2) it uncovers a new channel for return predictability of retail order flow; and (3) it provides

researchers with an easy-to-construct measure of stock liquidity that captures the institutional

details of modern U.S. equity markets.
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Figures and Tables

Figure 3. Dynamics of Mroibvol : A Conditional Distribution. Panel A illustrates conditional distributions
of Mroibvol in week w+12 given Mroibvol deciles in week w−1. Stocks are first sorted into deciles of Mroibvolw−1.
Within each deciles, stocks are then sorted into deciles of Mroibvolw+12. The figure plots the relative frequencies
of different Mroibvolw+12 deciles at any given Mroibvolw−1 decile. Panel B illustrates the analogous conditional
distributions using simulated for a variable with AR(1) structure yw = 0.8yw−1 + ϵw, with ϵw ∼ N(0, 1) and y0 = ϵ0.
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Figure 4. ILM s, Standard Liquidity Measures, and Future Institutional Price Impacts. The table
reports on the cross-sectional relation between various liquidity measures constructed in month m− 2 and realized,
post-trade institutional price impacts, InPrIm, (in bps per $100k) constructed in monthm. Liquidity measures include
(1) quoted bid-ask spread (QSP); (2) quoted depth at best prices (Depth); (3) effective spreads (EFSP); (4) realized
spreads (RESP); (5) price impacts (PIMP); (6) Kyle’s lambda estimates (Lambda); (7) Amvist illiquidity measure
(AMVST); (8) Roll measure of realized spreads (ROLL); (9 & 10) close-to-close and open-to-close Amihud measures
(ILLIQ & ILLIQ OC); (11 & 12) simple and volume-weighted trade-time liquidity measures (BBD & WBBD); (13 &
14) trade- and volume-based institutional liquidity measures (ILMT & ILMV). Each month, stocks are sorted into
deciles of liquidity, with decile 1 (10) reflecting the most (least) liquid stocks, based on a given liquidity measure from
month m − 2. Month m InPrIm of the median stock in each liquidity decile is averaged across months by liquidity
decile. This average is plotted against the respective liquidity decile. Panels A and B report results for liquidity
deciles 1 through 5 and 6 through 10, respectively. The sample includes NMS common shares from January 2010 to
December 2019, excluding stocks whose previous month-end’s closing price is below $2.
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Figure 5. EUM Liquidity and Holding Horizon. This figure provides local polynomial estimates of equity
under management (EUM) liquidity as a function of holding horizon. Holding weighted EUM liquidity, volatility,
market capitalization, and institutional ownership are calculated for each manager. Every quarter, the residuals from
regressing EUM liquidity on volatility, market capitalization, and institutional ownership are sorted into percentile
statistics. Every quarter, manager-level holding horizons are calculated following Vovchak (2014) and sorted into
percentile statistics. The figures present local polynomial estimates of residual EUM liquidity percentile statistics as
functions of holding horizon percentile statistics. The sample includes all NMS common shares from January 2010 to
December 2019. The sample for institutional price impacts (InPrIm) spans January 2010 through December 2019.
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Table 1. Summary Statistics. Panel A reports (1) distributions of retail order types among all non-directed
orders received by retail brokers; (2) distributions of retail order types, based on trade volume, among non-directed
orders that are executed by wholesalers and receive PFOF; and (3) PFOF amount per 100 shares for different retail
order types. All quantities are extracted from Charles Schwab, TD Ameritrade, and E*TRADE’s 606 filing disclosures
for the final quarter of 2020. When applicable, quantities reflect dollar-weighted averages across the top-5 wholesalers
handling retail orders for the respective broker. Panel B reports summary statistics for daily measures of internalized
order flows for our sample of NYSE-, AMEX-, and NASDAQ-listed common shares during the 2010–2014 period.
Mrbvol and Mrsvol denote trading volumes for internalized trades classified as retail buy and retail sell, respectively.
Mrbtrd and Mrstrd denote the number of internalized trades classified as retail buy and retail sell, respectively.
Mroibvol and Mroibtrd then denote normalized imbalances in internalized retail order flow based on trading volume
and trade frequency, respectively.

Panel A: Retail Orders Receiving Payment for Order Flow

Charles Schwab TD Ameritrade E*TRADE
Non-
directed
orders (%)

Volume
receiving
PFOF (%)

PFOF
(cents per
100 shares)

Non-
directed
orders (%)

Volume
receiving
PFOF (%)

PFOF
(cents per
100 shares)

Non-
directed
orders (%)

Volume
receiving
PFOF (%)

PFOF
(cents per
100 shares)

Market 52.9 57.2 9.0 18.8 44.7 12.0 49.3 53.7 19.9

Marketable limit 4.8 14.1 9.0 9.2 24.2 12.0 5.8 12.9 18.8

Non-marketable limit 33.8 21.1 29.6 31.9 21.2 33.5 35.0 18.0 29.3

Other order types 8.5 7.6 10.0 40.2 9.9 9.4 9.9 15.5 15.8

Total 100 100 − 100 100 − 100 100 −

Panel B: Internalized Retail Order Flow

N Mean St. dev. Median Q1 Q3

Mrbvol 4,627,339 46,345 288,628 5,850 1,395 23,157

Mrsvol 4,627,339 46,249 270,718 6,333 1,559 24,346

Mrbtrd 4,627,339 108 389 23 6 79

Mrstrd 4,627,339 106 349 24 6 81

Mroibvol 4,627,339 −0.035 0.453 −0.025 −0.286 0.209

Mrioibtrd 4,627,339 −0.030 0.430 −0.008 −0.263 0.200

Mroibvol > 0 2,154,810 0.330 0.295 0.233 0.101 0.471

Mroibvol < 0 2,448,368 −0.357 0.301 −0.265 −0.522 −0.115

Mroibtrd > 0 2,088,865 0.321 0.282 0.232 0.111 0.435

Mroibtrd < 0 2,329,910 −0.347 0.290 −0.261 −0.500 −0.123
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Table 2. Portfolios of Mroibvol : Contemporaneous Return, Liquidity, Institutional Trading, and
Short Interest. The table presents the cross-sectional relationship between weekly Mroibvol and the contempo-
raneous return, institutional trade, and liquidity outcomes. Outcome variables include (1) returns (close-to-close,
intraday, and overnight returns, with a version of overnight returns shifted by one day); (2) liquidity (dollar and
relative quoted spreads, depth, in shares, and abnormal off-exchange midpoint executions of larger trades); (3)
institutional trading (actual trade imbalance, institutional price impact (in bps/$1m), and BJZZ-implied trade im-
balance); and (4) short interest (% change in bi-weekly short interest). Each weekly cross-section is sorted into deciles
of Mroibvol. The average of an outcome variable Y is calculated by Mroibvol decile in each cross-section before the
averages of mean-Y time-series are calculated. For short interest, bi-weekly relative % changes in short interest are
constructed and Mroibvol is aggregated over two-week periods, before forming Mroibvol portfolios. Median short
interest changes by Mroibvol and stock size tercile, before averaging the time-series of medians.

Deciles of internalized retail order flow imbalance (Mroibvol)

1 2 3 4 5 6 7 8 9 10

Mroibvol −2.043 −1.132 −0.745 −0.467 −0.238 −0.033 0.173 0.417 0.763 1.607

Ratio of inside quote executions 0.158 0.135 0.126 0.123 0.121 0.122 0.120 0.122 0.132 0.162

Returns (%)

Close-to-close return −0.019 0.091 0.135 0.179 0.219 0.249 0.269 0.290 0.267 0.321

Intraday return 0.098 0.053 0.019 −0.005 −0.063 −0.118 −0.176 −0.210 −0.237 −0.138

Overnight return −0.116 0.038 0.117 0.184 0.283 0.367 0.445 0.500 0.505 0.459

Next-day overnight return −0.134 0.019 0.100 0.166 0.257 0.340 0.423 0.490 0.488 0.456

Institutional Trading

Actual trade imbalance 0.277 0.265 0.264 0.247 0.238 0.228 0.212 0.212 0.202 0.172

Price impact 19.57 7.13 3.48 3.10 3.25 2.96 4.04 7.25 7.60 22.50

BJZZ-implied trade imbalance −0.243 −0.257 −0.266 −0.270 −0.267 −0.250 −0.256 −0.252 −0.245 −0.221

Change in Short Interest (%)

Small stocks −2.58 −1.90 −1.38 −0.87 −0.61 0.22 0.16 0.70 1.21 2.25

Mid-sized stocks −0.70 −0.54 −0.39 −0.10 −0.01 0.29 0.26 0.37 0.63 0.41

Large stocks −1.16 −0.58 −0.72 −0.33 −0.25 −0.27 0.06 0.04 0.20 0.80

Liquidity

Dollar quoted spread (¢) 8.9 6.8 5.8 5.4 5.3 5.7 5.4 5.5 6.4 9.3

Relative quoted spread (bps) 69 46 38 33 31 32 31 34 43 70

Ask-side depth 972 1,288 1,409 1,557 1,738 1,857 1,893 1,751 1,500 905

Bid-side depth 972 1,306 1,449 1,602 1,790 1,935 2,000 1,864 1,618 960

Large midpoint executions 0.79 0.89 0.94 0.98 1.00 1.04 1.07 1.06 1.03 0.99
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Table 3. Internalized Retail Order Flow and the Cross-section of Next Week’s Returns. This table
presents estimates of the association between internalized retail order flow and the cross-section of the next week’s
returns (in percentage points). Daily returns of each stock are calculated based on the mid-points of best bid and ask
prices at close as well as open prices, decomposing each day’s close-to-close returns into intraday (open-to-close), and
overnight (close-to-open) before aggregating each return type into weekly observations, denoted CCRw, IDRw,and
ONRw, respectively. According to equation (1), week w returns are regressed on week w−1’s internalized order flows
(Mroibvolw−1) and control variables including last week’s return (CCRw−1), last month’s return (RET−1), the return
over the preceding five months (RET(−7,−2)), volatility (VOLAT), and natural logs of turnover (ln(TO)), market
capitalization (ln(Size)), and book-to-market ratio (ln(BM)). Estimates are based on Fama-Macbeth regressions,
featuring Newey-West corrected standard errors with 6 lags. Sample includes NMS common shares from Jan 2010
– Dec 2014, excluding observations with previous month-end’s closing price below $1. Numbers in brackets reflect
t-statistics, and symbols ***, **, and * identify statistical significance at the 1%, 5%, and 10% type one errors,
respectively.

Dependent Variable CCRw ONRw IDRw

Constant 0.0063 0.58*** −0.57**
[0.02] [4.58] [−2.10]

Mroibvolw−1 0.087*** 0.12*** −0.029***
[13.73] [25.53] [−4.41]

Rw−1 −0.021*** 0.00090 −0.022***
[−5.86] [0.50] [−7.07]

RET(−1) 0.21 −0.19** 0.40**

[1.14] [−2.30] [2.47]

RET(−7,−2) 0.063 0.061** 0.0024

[0.84] [2.45] [0.03]

ln(TO) −0.037*** 0.036*** −0.073***
[−3.60] [8.89] [−8.16]

VOLAT −6.44*** 9.68*** −16.1***
[−3.55] [11.02] [−10.03]

ln(Size) 0.020 −0.033*** 0.053***
[1.47] [−5.31] [4.39]

ln(BM) 0.058*** −0.038*** 0.096***
[2.73] [−6.10] [4.75]

Observations 3,330,408 3,330,408 3,330,408
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Table 4. Portfolios of Mroibvol and Future Weekly Returns. The table presents the cross-sectional
relationships between Mroibvol and future weekly (%) returns. Each cross-section is sorted into portfolios (deciles)
of Mroibvolw−1 to calculate portfolio-specific averages of future close-to-close (CCR) returns in week w + i, with
i ∈ {0, 1, 2, 3, 6, 9, 12, 24, 36, 39, 42, 45, 48, 51, 54, 57, 60}. The means of the time-series of portfolio future returns are
presented by Mroibvol decile.

Deciles of Mroibvolw−1

Week 1 2 3 4 5 6 7 8 9 10

w −0.02 0.09 0.13 0.18 0.22 0.25 0.27 0.29 0.27 0.32

w + 1 0.13 0.15 0.14 0.15 0.15 0.14 0.17 0.16 0.21 0.34

w + 2 0.14 0.16 0.17 0.16 0.16 0.15 0.16 0.17 0.21 0.31

w + 3 0.17 0.20 0.18 0.18 0.17 0.17 0.17 0.18 0.23 0.29

w + 6 0.19 0.17 0.19 0.18 0.16 0.16 0.18 0.18 0.21 0.26

w + 9 0.14 0.16 0.16 0.13 0.13 0.12 0.10 0.11 0.15 0.19

w + 12 0.15 0.12 0.11 0.10 0.08 0.07 0.07 0.09 0.12 0.18

w + 24 0.21 0.18 0.19 0.15 0.14 0.13 0.13 0.15 0.16 0.22

w + 36 0.22 0.21 0.20 0.17 0.15 0.13 0.14 0.15 0.17 0.20

w + 39 0.16 0.17 0.16 0.14 0.13 0.11 0.10 0.10 0.13 0.14

w + 42 0.18 0.15 0.13 0.13 0.12 0.11 0.09 0.08 0.12 0.15

w + 45 0.19 0.17 0.15 0.14 0.12 0.10 0.09 0.10 0.12 0.14

w + 48 0.14 0.13 0.11 0.09 0.07 0.05 0.06 0.04 0.06 0.10

w + 51 0.13 0.10 0.12 0.07 0.02 0.02 0.01 0.03 0.04 0.07

w + 54 0.08 0.10 0.08 0.08 0.04 0.01 0.00 -0.01 0.03 0.06

w + 57 0.07 0.03 0.04 0.01 -0.01 -0.01 -0.01 0.02 0.03 0.05

W + 60 0.08 0.07 0.04 0.01 0.00 0.00 -0.01 -0.02 0.00 0.00
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Table 5. Institutional Liquidity Measures and Stock Characteristics. The table reports on the cross-
sectional relation between ILMs and (1) three-factor Fama-French betas, (2) book-to-market ratios (BM), (3) natural
log of market capitalizations (ln(Mcap)), (4) dividend yields (DYD), (5) idiosyncratic volatilities (IdVol), (6) previous
month’s returns (RET(−1)), and (7) preceding returns from the prior 11 months (RET(−12,−2)). Stock characteristics
are computed from the prior month. Each weekly cross-section is sorted into ILM deciles. The average outcome
variable is calculated by ILMT decile in each cross-section before the average of the time-series is calculated. Panels
A and B report the results for ILMT and ILMV , respectively. The sample includes NMS common shares from
January 2010 to December 2019, excluding stocks whose previous month-end’s closing price is below $2.

Panel A: Trade-based Institutional Liquidity Measures (ILMT s) versus stock characteristics

Weekly ILMT deciles
1 2 3 4 5 6 7 8 9 10

Stock Characteristics:
βmkt 1.02 1.02 1.02 1.01 1.00 0.99 0.97 0.93 0.88 0.82

βhml 0.73 0.73 0.73 0.73 0.74 0.75 0.76 0.77 0.78 0.79

βsmb 0.15 0.15 0.16 0.16 0.17 0.17 0.18 0.20 0.22 0.24

BM 0.64 0.64 0.65 0.65 0.66 0.67 0.68 0.72 0.76 0.80

ln(Mcap) 20.99 20.98 20.95 20.91 20.85 20.76 20.64 20.38 20.05 19.71

DYD 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.015

Id. Vol. 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.022

RET(−1) 0.016 0.018 0.016 0.017 0.016 0.015 0.014 0.015 0.015 0.016

RET(−12,−2) 0.19 0.19 0.19 0.19 0.19 0.18 0.17 0.16 0.15 0.14

Panel B: Volume-based Institutional Liquidity Measures (ILMT s) versus stock characteristics

Weekly ILMV deciles
1 2 3 4 5 6 7 8 9 10

Stock Characteristics:
βmkt 1.07 1.07 1.06 1.04 1.02 1.00 0.94 0.94 0.89 0.73

βhml 0.71 0.71 0.72 0.73 0.73 0.75 0.74 0.79 0.82 0.77

βsmb 0.12 0.12 0.13 0.14 0.15 0.17 0.19 0.21 0.25 0.29

BM 0.62 0.62 0.63 0.63 0.64 0.65 0.70 0.70 0.74 0.87

ln(Mcap) 21.29 21.26 21.19 21.10 20.97 20.81 20.45 20.36 20.01 19.26

DYD 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.015

Id. Vol. 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.020 0.021 0.021

RET(−1) 0.019 0.018 0.017 0.016 0.016 0.015 0.014 0.014 0.014 0.015

RET(−12,−2) 0.21 0.21 0.20 0.19 0.19 0.18 0.16 0.16 0.15 0.13
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Table 6. Persistence in the Institutional Liquidity Measures. The table reports on ILM ’s persistence.
For LIQ ∈ {ILMT, ILMV }, monthly observations are regressed on monthly lagged observations from the preceding
six months. Estimates are from Fama-MacBeth regressions that have Newey-West corrected standard errors with
6 lags. Both equally-weighted (EW) and value-weighted (VW) estimates, with weights being the previous month’s
market capitalization, are reported. The sample includes NMS common shares from January 2010 to December 2019,
excluding stocks whose previous month-end’s closing price is below $2. The numbers in brackets are t-statistics with
***, **, and * identifying statistical significance at the 1%, 5%, and 10% level, respectively.

ILMT ILMV
EW VW EW VW

Constant 0.0080*** 0.0091*** 0.0096*** 0.0045***
[5.81] [6.14] [7.84] [5.80]

LIQm−1 0.40*** 0.39*** 0.43*** 0.37***
[69.77] [33.97] [83.17] [49.29]

LIQm−2 0.19*** 0.15*** 0.19*** 0.18***
[54.73] [14.43] [55.50] [31.86]

LIQm−3 0.13*** 0.13*** 0.13*** 0.15***
[37.56] [14.46] [47.16] [31.93]

LIQm−4 0.078*** 0.085*** 0.068*** 0.084***
[19.72] [10.00] [21.83] [10.64]

LIQm−5 0.070*** 0.070*** 0.060*** 0.076***
[22.27] [9.70] [23.77] [15.89]

LIQm−6 0.090*** 0.092*** 0.087*** 0.10***
[39.04] [14.33] [31.25] [16.66]

Observations 310,847 310,847 310,847 310,847
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Table 7. Stock Liquidity and Institutional Holding Horizon. This table reports on the relation between the holding horizons of institutional investors
and stock liquidity using different liquidity measures. Institutional investor turnover measures are constructed by stock and quarter as the weighted averages
of turnover across the institutional investors holding a stock. For each stock, the weight assigned to an investor’s turnover is the fraction held by the investor
relative to the total amount held by institutional investors. Each quarter, investor-level holding horizon percentile statistics, “HH pctile”, are defined as 1 minus
institutional turnover percentile statistics across all the stocks held by an investor. In Panel A, for each stock j in quarter q, liquidity measure LIQj,q is regressed
on the holding horizon percentile statistic, return volatility, natural log of market capitalization, and institutional ownership from quarter q − 1. Panel B reports
on the relation between institutional turnover and liquidity, after orthogonalizing ILMT and ILMV with respect to existing liquidity measures and vice versa.
ZILMT and ZILMV , respectively, are the residuals from regressing quarterly cross-sections of ILMT and ILMV on existing liquidity measures. YILMT and
YILMV , respectively, are the residuals from regressing quarterly cross-sections of individual existing liquidity measures on ILMT and ILMV . ZILMT , ZILMV ,
YILMT , and YILMV from quarter q are then regressed on institutional turnover, return volatility, natural log of market capitalization, and institutional ownership
from quarter q − 1. Institutional turnover coefficients are reported. Estimates are from Fama-MacBeth regressions that have Newey-West corrected standard
errors with 6 lags. The sample includes NMS common shares from January 2010 to December 2019, excluding stocks whose previous month-end’s closing price is
below $2. The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: Stock liquidity and institutional turnover

InPrIm QSP ShrDepth EFSP RESP PIMP Lambda AMVST ROLL ILLIQ ILLIQ OC BBD WBBD ILMT ILMV

HH pctile −7.07 0.12*** −7.82*** 0.12*** 0.11** 0.0082 0.14*** 0.051*** −0.00029 0.15*** 0.099*** 0.25 0.092** 0.093*** 0.12***
[−0.81] [7.52] [−6.50] [3.26] [2.66] [0.40] [4.24] [6.92] [−0.43] [4.12] [5.16] [1.61] [2.13] [11.63] [19.36]

Volatility 435.6 −1.50*** 239.9*** −0.26 −0.11 −0.23 5.61*** −0.25 0.19*** 3.17*** 2.15*** 5.23*** 2.79*** −2.73*** −3.60***
[1.30] [−7.40] [3.94] [−0.40] [−0.15] [−1.27] [9.62] [−1.49] [17.36] [3.75] [4.54] [4.85] [6.17] [−12.14] [−19.65]

ln(Mcap) 0.88 −0.021*** 3.94*** −0.015*** −0.0036 −0.011*** −0.15*** −0.020*** −0.0013*** −0.12*** −0.074*** −0.098*** −0.049*** −0.064*** −0.077***
[1.13] [−14.40] [6.09] [−10.84] [−0.87] [−2.79] [11.19] [−9.81] [−17.40] [13.03] [13.62] [−3.19] [−5.11] [−23.20] [−46.22]

Ownership −19.0 −0.089*** −18.0*** −0.095*** −0.13** 0.040 −0.56*** −0.12*** −0.0048*** −0.53*** −0.33*** −0.31*** −0.18*** −0.13*** −0.12***
[−0.95] [−7.55] [−15.27] [−4.37] [−2.61] [1.02] [10.96] [−8.17] [−10.20] [13.10] [15.45] [−9.81] [−10.20] [−27.37] [−27.59]

R2 0.0061 0.092 0.026 0.095 0.021 0.011 0.36 0.027 0.13 0.11 0.14 0.18 0.18 0.61 0.63
Obs. 28,679† 91,541 91,541 91,541 91,541 91,541 91,541 91,541 91,541 91,541 91,541 71,952†† 71,952†† 91,541 91,541
† The number of observations reflects the largest sample of ANcerno data available from 2010–2014.
†† The number of observations reflects the largest sample available for BBD and WBBD from 2010–2017.

Panel B: Stock liquidity and institutional turnover, ILM versus existing measures

Residual InPrIm QSP ShrDepth EFSP RESP PIMP Lambda AMVST ROLL ILLIQ ILLIQ OC BBD WBBD

ZILMT 0.10*** 0.053*** 0.092*** 0.055*** 0.087*** 0.090*** 0.078*** 0.089*** 0.092*** 0.086*** 0.082*** 0.090*** 0.090***
[9.56] [10.18] [12.25] [9.47] [8.28] [10.02] [13.96] [11.08] [13.39] [11.52] [12.15] [12.56] [12.96]

R2 0.60 0.54 0.61 0.54 0.60 0.61 0.41 0.60 0.57 0.55 0.52 0.53 0.53

ZILMV 0.13*** 0.080*** 0.12*** 0.082*** 0.12*** 0.12*** 0.11*** 0.12*** 0.12*** 0.12*** 0.11*** 0.12*** 0.12***

[17.39] [18.49] [19.91] [17.90] [13.18] [15.80] [22.54] [18.22] [22.28] [18.87] [19.82] [18.58] [18.97]
R2 0.61 0.56 0.62 0.56 0.62 0.63 0.44 0.62 0.59 0.57 0.54 0.55 0.55

YILMT −5.60 0.080*** −7.17*** 0.085** 0.072* 0.014 −0.047*** −0.0081 −0.0018*** −0.069*** −0.029** 0.12 0.024

[−0.59] [4.97] [−4.82] [2.44] [1.86] [0.97] [−3.13] [−1.15] [−3.25] [−3.13] [−2.23] [0.95] [0.66]
R2 0.0026 0.025 0.022 0.025 0.0096 0.0069 0.13 0.029 0.086 0.024 0.031 0.057 0.058

YILMV −4.39 0.070*** −6.36*** 0.078** 0.069* 0.011 −0.082*** −0.013 −0.0018*** −0.099*** −0.049*** 0.11 0.014

[−0.47] [4.82] [−4.36] [2.24] [1.77] [0.73] [−4.52] [−1.68] [−3.46] [−4.23] [−3.51] [0.85] [0.41]
R2 0.0026 0.025 0.020 0.025 0.0097 0.0065 0.14 0.022 0.092 0.030 0.038 0.065 0.065
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Table 8. The Cross-Section of Expected Stock Returns and ILM . This table reports on the relation between alternative high-frequency liquidity
measures and the cross-section of expected returns. In Panel A, equation (2) is estimated using liquidity measures (LIQj,m−2) constructed over 1-month horizons.
Control variables include three-factor Fama-French betas (βmkt

j,m−1, β
hml
j,m−1, β

smb
j,m−1), estimated using weekly observations from the two-year period ending in the

final full week of month m − 1, book-to-market ratio, (BMj,m−1), natural log of market capitalization, (ln(Mcapj,m−1)), dividend yield (DYDj,m−1), defined as
total dividends over the past 12 months divided by the share price at the end of month m − 1, idiosyncratic volatility (IdVolj,m−1), previous month’s return
(RET(−1)), and preceding return from the prior 11 months (RET(−12,−2)). Panel B replaces each high-frequency liquidity measure by the residuals of ILMT and
ILMV with respect to each alternative liquidity measure, with residuals calculated separately for each monthly cross-section. Estimates are from Fama-MacBeth
regressions that have Newey-West corrected standard errors with 6 lags. The sample includes NMS common shares from January 2010 to December 2019, excluding
stocks whose previous month-end’s closing price is below $2. The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the
1%, 5%, and 10% level, respectively.

Panel A: Stock liquidity and the cross-section of expected returns

InPrIm QSP ShrDepth EFSP RESP PIMP Lambda AMVST ROLL ILLIQ ILLIQ OC BBD WBBD ILMT ILMV

Constant 1.38 1.00 0.99 0.95 0.99 1.00 1.45* 0.99 1.41 1.13 1.00 1.68* 1.63* −0.99 −1.54
[1.08] [1.11] [1.14] [1.06] [1.15] [1.15] [1.73] [1.16] [1.60] [1.30] [1.13] [1.93] [1.87] [−0.77] [−1.13]

Liquidity 0.029* 0.0057 −0.00 0.13 0.049 −0.034 −0.11 0.043 −8.24*** −0.015 0.050 −0.070 −0.055 1.20*** 1.27***
[1.91] [0.05] [−0.84] [0.78] [0.63] [−0.33] [−1.53] [0.35] [−3.47] [−0.45] [0.56] [−0.56] [−0.28] [2.91] [3.11]

βmkt −0.023 −0.15 −0.15 −0.15 −0.15 −0.15 −0.16 −0.16 −0.15 −0.16 −0.15 −0.17 −0.17 −0.070 −0.043
[−0.06] [−0.75] [−0.75] [−0.74] [−0.74] [−0.75] [−0.78] [−0.75] [−0.71] [−0.76] [−0.75] [−0.71] [−0.70] [−0.36] [−0.23]

βhml −0.15 −0.098 −0.097 −0.097 −0.098 −0.098 −0.096 −0.097 −0.10 −0.098 −0.096 −0.064 −0.064 −0.11 −0.12
[−1.02] [−0.83] [−0.82] [−0.82] [−0.82] [−0.82] [−0.81] [−0.82] [−0.88] [−0.82] [−0.81] [−0.47] [−0.47] [−0.92] [−0.98]

βsmb 0.12 0.063 0.062 0.064 0.062 0.061 0.053 0.064 0.060 0.052 0.060 0.057 0.061 0.10 0.11
[1.28] [0.84] [0.82] [0.86] [0.83] [0.81] [0.69] [0.85] [0.79] [0.68] [0.80] [0.67] [0.71] [1.44] [1.58]

BM 0.22 0.0056 0.0059 0.0058 0.0056 0.0052 −0.0015 0.0044 0.0088 0.0073 0.0023 0.055 0.054 0.0030 0.0043
[1.52] [0.11] [0.12] [0.12] [0.11] [0.11] [−0.03] [0.09] [0.18] [0.15] [0.05] [0.71] [0.69] [0.06] [0.09]

ln(Mcap) 0.0048 0.022 0.023 0.023 0.023 0.022 0.0024 0.022 0.0055 0.016 0.022 −0.0054 −0.0030 0.097* 0.12**
[0.09] [0.59] [0.62] [0.62] [0.63] [0.61] [0.07] [0.62] [0.15] [0.44] [0.59] [−0.15] [−0.08] [1.89] [2.15]

DYD 0.35 −0.049 −0.062 −0.050 −0.066 −0.075 −0.070 −0.053 −0.077 −0.088 −0.086 0.11 0.11 −0.13 −0.11
[0.31] [−0.09] [−0.11] [−0.09] [−0.12] [−0.13] [−0.12] [−0.09] [−0.14] [−0.15] [−0.15] [0.17] [0.17] [−0.23] [−0.20]

Id. Vol. −0.16** −0.23*** −0.23*** −0.23*** −0.23*** −0.23*** −0.23*** −0.23*** −0.22*** −0.23*** −0.24*** −0.23*** −0.23*** −0.22*** −0.21***
[−2.47] [−4.75] [−4.78] [−4.75] [−4.76] [−4.75] [−4.62] [−4.77] [−4.51] [−4.69] [−4.65] [−4.01] [−4.05] [−4.54] [−4.46]

RET−1 −0.74 −0.38 −0.39 −0.38 −0.37 −0.36 −0.36 −0.37 −0.39 −0.33 −0.35 −0.42 −0.43 −0.44 −0.48
[−1.04] [−0.81] [−0.82] [−0.81] [−0.78] [−0.77] [−0.75] [−0.79] [−0.82] [−0.70] [−0.74] [−0.79] [−0.80] [−0.93] [−1.02]

RET(−12,−2) 0.35* 0.21 0.21 0.21 0.21 0.21 0.18 0.21 0.21 0.20 0.20 0.21 0.21 0.27* 0.28*

[1.80] [1.39] [1.39] [1.39] [1.39] [1.40] [1.14] [1.38] [1.37] [1.32] [1.30] [1.11] [1.13] [1.76] [1.81]

Observations 128,135† 340,227 340,227 340,227 340,227 340,227 339,681 340,225 340,227 340,225†† 340,225†† 277,750††† 277750††† 340,227 340,227

Panel B: Loadings of ILMs in the cross-section of expected returns after orthogonlization relative to other liquidity measures

InPrIm QSP ShrDepth EFSP RESP PIMP Lambda AMVST ROLL ILLIQ ILLIQ OC BBD WBBD ILMT ILMV

ILMT residual 0.10 1.22*** 1.19*** 1.15*** 1.18*** 1.20*** 1.30*** 1.20*** 1.38*** 1.27*** 1.13** 1.14** 1.12** - -
[0.19] [3.51] [2.92] [3.27] [2.85] [2.90] [2.85] [2.77] [3.35] [2.90] [2.48] [2.18] [2.17]

ILMV residual 0.055 1.31*** 1.24*** 1.25*** 1.25*** 1.28*** 1.34*** 1.25*** 1.40*** 1.31*** 1.19*** 1.17** 1.15** - -
[0.11] [3.85] [3.11] [3.60] [3.05] [3.14] [3.05] [2.98] [3.45] [3.11] [2.76] [2.30] [2.29]

† The number of observations reflects the largest sample of ANcerno data available from 2010–2014.
†† The number of observations reflects the largest sample available for ILLIQ and ILLIQ OC.
††† The number of observations reflects the largest sample available for BBD and WBBD from 2010–2017.
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Table 9. The Cross-Section of Expected Stock Returns and ILM : Robustness Tests. This table
reports on the robustness of the relation between between our institutional liquidity measures and the cross-section
of expected stock returns. Equation (2) is estimated using institutional liquidity measures (LIQj,m−2) constructed
over 1-month horizons. Control variables include three-factor Fama-French betas (βmkt

j,m−1, β
hml
j,m−1, β

smb
j,m−1), estimated

using weekly observations from the two-year period ending in the final full week of month m − 1, book-to-market
ratio (BMj,m−1), natural log of market capitalization (ln(Mcapj,m−1)), dividend yield (DYDj,m−1), defined as total
dividends over the past 12 months divided by the share price at the end of month m − 1, idiosyncratic volatility
(IdVolj,m−1), previous month’s return (RET(−1)), and preceding return from the prior 11 months (RET(−12,−2)).
Panel A reports on the robustness of the results to (1) estimating coefficients using panel regressions with date and
stock fixed effects and date-stock double-clustered standard errors, (2) weighting observations (by size or according
to Asparouhova et al. 2010) to correct for microstructure noise, (3) excluding firms with the smallest 20% market
capitalization, (4) excluding stocks in the bottom 10% of the ratio of sub-penny volume in total volume; and (5)
excluding stocks in the top or bottom 10% of the respective ILM . Stocks whose previous month-end’s closing price
is below pmin ∈ {$1, $2, $5} are excluded. Panel B reports on the robustness of the estimates in equation (2) to
listing exchange. Observations are weighted according to Asparouhova et al. (2010) after excluding stocks whose
previous month-end’s closing price is below $1 and stocks falling in the bottom 10% of the ratio of sub-penny volume
in total volume. Estimates are from Fama-MacBeth regressions that have Newey-West corrected standard errors with
6 lags. The sample includes NMS common shares from January 2010 to December 2019. The numbers in brackets
are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: Robustness to estimation method and sample selection

Robustness specification
ILMT ILMV

Price > $1 Price > $2 Price > $5 Price > $1 Price > $2 Price > $5

Panel regressions + stock & date FEs 1.20** 1.17** 0.55 1.54*** 1.27*** 0.80*
+ double-clustered S.E. [2.18] [2.25] [1.16] [2.98] [2.64] [1.85]

Asparouhova et al. (2010)
1.19** 1.18*** 0.66* 1.35*** 1.24*** 0.88**
[2.45] [2.72] [1.88] [2.80] [2.83] [2.43]

Asparouhova et al. (2010) 0.99** 0.95** 0.62* 1.10** 1.06** 0.84**
+ top 80% market capitalization [2.38] [2.41] [1.74] [2.52] [2.57] [2.30]

Asparouhova et al. (2010) 1.33*** 1.34*** 0.86** 1.51*** 1.41*** 1.09***
+ low sub-penny volume stocks excluded [2.64] [2.98] [2.37] [3.02] [3.09] [2.89]

Size-weighted estimation
1.50** 1.52** 1.53** 0.38 0.38 0.36
[2.38] [2.39] [2.35] [0.73] [0.72] [0.67]

Stocks in top and bottom 2.42*** 2.35*** 1.33*** 1.77*** 1.62*** 1.35***
10% of ILM excluded [2.92] [3.29] [2.72] [2.96] [2.93] [2.92]

Panel B: Robustness to estimation by listing exchange

ILMT ILMV

NYSE/AMEX NASDAQ NYSE/AMEX NASDAQ

Asparouhova et al. (2010) 0.83 1.11** 1.17** 1.25**
+ Price > $1 [1.57] [2.14] [2.15] [2.55]

Asparouhova et al. (2010) + Price > $1 1.04* 1.20** 1.43** 1.36***
+ low sub-penny volume stocks excluded [1.90] [2.29] [2.48] [2.73]
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Table 10. Liquidity Alphas. This table presents three-factor alphas conditional on our liquidity measures. Panels A, B, and C report results based on
NMS-listed common shares using CRSP breakpoints and equally-weighted portfolio returns. Panels D, E, and F report results based on the NMS-listed common
shares, after removing stocks with the smallest 20% market capitalization at the end-of-last-month, using NYSE breakpoints and value-weighted portfolio returns.
Stocks in each monthly cross-section are sorted into ten ILM portfolios (deciles). Monthly portfolio returns are averages of monthly stock returns in the portfolio.
The time-series feature 118 months. The time-series returns of each portfolio (after subtracting the 1-month Treasury-bill rate) including the long-short portfolio
are then regressed on Fama-French three factors. The resulting intercepts represent three-factor alphas. The sample period is from January 2010 to December
2019, excluding stocks whose previous month-end’s closing price is below pmin ∈ {$1, $2, $5}. The numbers in brackets are t-statistics with ***, **, and *
identifying statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: CRSP breakpoints, $1 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.32*** −0.34*** −0.19** −0.17 −0.23*** −0.24* −0.032 0.089 0.38** 0.64*** 0.96***

[−2.77] [−3.82] [−2.13] [−1.58] [−2.80] [−1.83] [−0.30] [0.63] [2.48] [4.25] [4.30]

ILMV −0.63*** −0.44*** −0.25*** −0.25*** −0.11 0.00096 −0.027 0.32*** 0.32** 0.64*** 1.27***

[−4.28] [−4.40] [−2.88] [−3.56] [−1.07] [0.01] [−0.28] [2.85] [2.10] [4.76] [5.49]

Panel B: CRSP breakpoints, $2 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.30*** −0.33*** −0.21** −0.062 −0.18** −0.14 0.023 0.11 0.34** 0.62*** 0.93***

[−2.70] [−4.05] [−2.17] [−0.82] [−2.26] [−1.33] [0.27] [0.92] [2.54] [4.48] [4.33]

ILMV −0.58*** −0.33*** −0.23*** −0.25*** −0.084 0.091 0.041 0.28*** 0.31** 0.63*** 1.20***

[−3.97] [−3.86] [−2.76] [−3.68] [−0.92] [1.12] [0.59] [3.37] [2.26] [4.97] [5.09]

Panel C: CRSP breakpoints, $5 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.29*** −0.24*** −0.14* 0.053 0.019 −0.0071 0.12 0.28*** 0.38*** 0.65*** 0.95***

[−2.66] [−2.89] [−1.98] [0.78] [0.26] [−0.11] [1.26] [2.84] [3.49] [4.72] [4.30]

ILMV −0.43*** −0.21*** −0.14** −0.11 0.0080 0.048 0.19*** 0.37*** 0.43*** 0.68*** 1.10***

[−3.35] [−2.64] [−2.16] [−1.54] [0.10] [1.01] [2.86] [4.65] [4.02] [5.32] [4.82]

Continued on next page
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Table 10 – continued from previous page

Panel D: NYSE breakpoints, largest 80% market capitalization, $1 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.10 −0.0096 −0.0039 0.0073 0.10 0.23** 0.19** 0.26* 0.15* 0.47*** 0.58***

[−1.58] [−0.10] [−0.05] [0.06] [0.90] [2.61] [2.37] [1.87] [1.76] [7.07] [6.09]

ILMV −0.084 0.085 −0.026 −0.026 0.12 0.069 0.19* 0.25*** 0.32** 0.32*** 0.41***

[−1.41] [1.20] [−0.29] [−0.29] [1.17] [0.65] [1.87] [3.40] [2.42] [3.12] [4.05]

Panel E: NYSE breakpoints, largest 80% market capitalization, $2 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.099 −0.017 −0.015 −0.0083 0.14 0.17 0.22** 0.24* 0.17* 0.48*** 0.58***

[−1.51] [−0.18] [−0.20] [−0.06] [1.29] [1.64] [2.51] [1.77] [1.93] [7.12] [6.15]

ILMV −0.086 0.086 −0.016 −0.030 0.11 0.071 0.17 0.26*** 0.28** 0.37*** 0.46***

[−1.43] [1.18] [−0.19] [−0.32] [1.12] [0.67] [1.64] [3.33] [2.24] [3.63] [4.69]

Panel F: NYSE breakpoints, largest 80% market capitalization, $5 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.10 −0.041 0.024 0.0047 0.20** 0.082 0.33*** 0.17 0.10 0.53*** 0.63***

[−1.58] [−0.46] [0.29] [0.03] [2.01] [0.77] [3.46] [1.34] [1.04] [7.20] [6.17]

ILMV −0.091 0.11 −0.060 −0.0087 0.11 0.086 0.22** 0.21** 0.28*** 0.34*** 0.43***

[−1.52] [1.38] [−0.68] [−0.10] [1.22] [0.81] [2.47] [2.25] [2.65] [2.91] [4.27]
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Internet Appendix

A Economics of Retail Order Internalization

A.1 Wholesaler Incentives, Mroib, and Institutional Liquidity

In this section, we provide a setting to illustrate the economic incentives underlying a wholesaler’s

decisions about which retail orders to internalize, and the consequences for Mroib. We focus

on a setting where the wholesaler faces variable costs of internalization due to the possibility of

internalizing both marketable and non-marketable orders. Similar economic considerations arise

in a framework where internalization of marketable orders is sometimes more costly as a result of

inside quote hidden liquidity (due to the Manning rule).

Suppose that the public information value of a share is V , and there is a four tick spread.

Thus, the bid is $(V − 2t) and the ask is $(V +2t). The distribution of retail orders routed by the

broker-dealer to a wholesaler is given by

• ns
−2 marketable sell orders at $(V − 2t)

• ns
−1 limit sell orders at $(V − t)

• ns
0 limit sell orders and nb

0 limit buy orders at $V

• nb
1 limit buy orders at $(V + t)

• nb
2 marketable buy orders at $(V + 2t)

To illustrate the economics, suppose there is more retail sell interest than retail buy interest so

that ns
−j ≥ nb

j , for j = 0, 1, 2, and we define ∆j = ns
−j − nb

j ≥ 0. To reduce the number of cases

that we need to enumerate, we assume that (a) ns
−2 ≤ nb

2 + nb
1, and (b) ns

−2 + ns
−1 ≤ nb

2 + nb
1 + nb

0.

Qualitatively similar implications obtain when these assumptions do not hold.

The wholesaler chooses whether to internalize a retail order in return for giving the broker-

dealer PFOF, or to reroute it directly to an exchange, in which case all rebates (or fees) go to the

retail broker, where the rebate for liquidity-making limit orders exceeds that for liquidity-taking

market orders.60 The broker-dealer obtains PFOFj in return for outsourcing the execution of a

60A third possibility in practice is that the wholesaler can post similarly-priced orders out of its own inventory on
an exchange, and fill the order received if its proprietary order is executed on an exchange, where upon execution,
the wholesaler internalizes the retail order and pays PFOF.
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type j order to the wholesaler.

Price improvement of PIM > 0 is offered to marketable orders in order to satisfy best execution

duties. For simplicity, we assume that fraction αNM ≥ 0 of non-marketable orders receive price

improvement of PINM > 0. As we show, a large share of trade executions with sub-penny price

improvements are inside the NBBO, indicating that αNM is non-trivial. To ease presentation, we

assume that the total PFOF plus PI offered is less than half a tick, so that it is profitable to

intermediate buy and sell orders than are one tick apart.

It is costly for the wholesaler to hold inventory that deviates by q from its preferred inventory

level of 0. The notion that a market-maker has “preferred” inventory positions dates back to

Amihud and Mendelson (1980).61 We assume that these costs rise convexly in q, i.e., c(q)− c(q−1)

is strictly increasing in q, consistent with risk-averse liquidity providers as in Grossman and Miller

(1988) or Campbell, Grossman, and Wang (1993), where c(1)− c(0) is assumed to be less than the

expected liquidity rebate, consistent with tiny deviations from optimal inventory levels not being

that costly.

We first highlight the economic forces for balanced levels of Mroib in the absence of institutional

liquidity demand. When a wholesaler is not “pinged” by an institution, it is strictly profitable for

the wholesaler to internalize marketable sell orders and limit sell orders at $(V − t) simultaneously

with marketable buy orders and limit buy orders at $(V + t), as the PFOF plus PI paid is less than

the profit obtained by intermediating these orders. Thus, at least min{ns
−2+ns

−1, n
b
2+nb

1} = nb
2+nb

1

is filled on each side by the wholesaler’s internalization. The BJZZ algorithm identifies the subset of

those internalized orders that receives price improvement, which comprise a total of 2(nb
2+αNMnb

1).

After filling these orders, the distribution of the remaining retail orders is given by

• 0 marketable sell orders at $(V − 2t)

• ns
−2 + ns

−1 − (nb
2 + nb

1) limit sell orders at $(V − t)

• ns
0 limit sell orders and nb

0 limit buy orders at $V

• 0 limit buy orders at $(V + t)

• 0 marketable buy orders at $(V + 2t)

61Other early studies suggesting or modeling the existence of such inventory positions include Smidt (1971), Barnea
and Logue (1975), Stoll (1976), Ho and Stoll (1982), and Grossman and Miller (1988), among others.
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Next observe that it is optimal for the wholesaler to internalize some of the remaining limit sell

orders at $(V − t) by holding inventory, stopping at the inventory imbalance of q∗ where

t− (c(q∗)− c(q∗ − 1)) ≥ t− PFOF1 − PFOF0 − 2αNMPI1

> t− (c(q∗ + 1)− c(q∗)).

That is, the wholesaler stops internalizing orders when the marginal profit from internalizing by

holding more unbalanced inventory would be less than that from simultaneously filling a non-

marketable limit sell order at $(V − t) and a non-marketable limit buy order at $V . Again, BJZZ’s

algorithm identifies fraction αNM of these orders.

When ns
−2+ns

−1− (nb
2+nb

1) > q∗, the wholesaler fills the remaining limit sell orders at $(V − t)

with limit buy orders at $V . The dealer then submits all remaining limit orders62 at $V to ex-

changes. Thus, absent institutional liquidity demand, for ns
−2+ns

−1 ≤ nb
2 + nb

1 + q∗, internalization

order imbalances identified by the BJZZ algorithm equal

|Mroibvol| =
(ns

2 + αNMns
1)− (nb

−2 + αNMnb
−1)

nb
2 + αNMnb

1 + ns
−2 + αNMns

−1

=
∆2 + αNM∆1

nb
2 + ns

−2 + αNM (nb
1 + ns

−1)
.

|Mroibvol| reaches a maximum at ns
−2 + ns

−1 = nb
2 + nb

1 + q∗, where substituting for ∆1 = q∗ −∆2

yields

|Mroibvol| = αNMq∗ + (1− αNM )∆2

2(nb
2 + αNMnb

1) + αNMq∗ + (1− αNM )∆2
.

For ns
−2+ns

−1 > nb
2 + nb

1 + q∗, |Mroibvol| falls with further increases in ns
−1, as sell orders at $V −t

are crossed with buy orders at $V , while the denominator rises due to the “crossing” of the fraction

αNM receiving price improvement. Thus, if αNM = 1, then a peak of

|Mroibvol| = q∗

2(nb
2 + nb

1) + q∗

is reached, and if αNM = 0, then the peak is

|Mroibvol| = q∗ −∆1

2nb
2 + q∗ −∆1

Thus, with no institutional liquidity demand, we predict that internalization of retail orders should

62That is, the ns
0 limit sell orders, and the nb

0 − q∗ − (ns
−2 + ns

−1 − (nb
2 + nb

1)) remaining limit buy orders.
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be roughly balanced.

Now suppose there is significant institutional liquidity demand. Such demand, when non-zero,

is likely large relative to retail order flow, reflecting the much larger positions that institutions take,

and the fact that there is little point for an institution to ping a wholesaler for a small position. To

highlight how institutional demand changes Mroib measures, suppose now that there is extensive

institutional sell demand in the setting above, where previously there were relatively small negative

(sell) retail trade imbalances.

Internalized order flow is an expensive source of liquidity for institutions. To see why, first note

the straightforward direct effect—an institution seeking to sell shares must compensate a wholesaler

for the profits that the wholesaler would otherwise obtain by internalizing retail sell orders. More

subtly, an institution must also compensate a wholesaler for the foregone possibility of using the

internalized retail buy orders to profitably fill retail sell orders without distorting the wholesaler’s

inventory—retail buy orders that are used to fill institutional sell orders cannot be used to fill retail

sell orders. Finally, a wholesaler may have some bargaining power in negotiations with institutions.

This logic implies that an institution interested in selling shares on an SDP must compensate the

wholesaler via a combination of a low purchase price ps and SDP access fees.

To begin suppose that the institution seeks to sell more than nb
2 + nb

1 + nb
0 + q∗s where

V − ps − (c(q∗s)− c(q∗s − 1)) ≥ 0

> V − ps − (c(q∗s + 1)− c(q∗s)).

Then a wholesaler will internalize the retail buy orders received (nb
2+nb

1+nb
0) to fill the institution’s

sell orders, and continue to fill them via increasing its inventory only up to the point (nb
2+nb

1+nb
0+q∗s)

where the marginal profit from internalization exceeds the marginal increase in inventory costs.

Now, all retail sell orders are rerouted to other trading venues so that, rather than being negative,

Mroibvol takes on its maximum value of one.

From this point, as one reduces institutional sell demand, one eventually reaches the level

(nb
2 + nb

1 + nb
0 + q∗s) below which a wholesaler now fills all of the institution’s orders. To do this, a

wholesaler uses all retail buy orders while distorting its inventory to the minimum extent needed,

and still reroutes all retail sell orders to trading venues. Thus, on this range, the marginal order
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is accommodated out of inventory, so Mroibvol = 1, remaining maximally tilted in the opposite

direction of true retail order flow imbalance,

∑
j ∆j∑

j(n
b
j + ns

−j)
< 0.

With further reductions, one reaches a level of institutional sell demand at which the marginal

inventory cost just falls below the profit from filling a marketable retail sell order. At this point,

a wholesaler starts to internalize marketable retail sell orders, causing |Mroibvol| to begin to fall,

as first more attractive retail sell limit orders are internalized, and then limit buy orders at $V are

rerouted to other trading venues instead of being internalized.

Taken together the observations with and without institutional liquidity demand reveal that (i)

smallMroib imbalances are an indication of the absence or near absence of net institutional demand,

while (ii) very large Mroib imbalances indicate unbalanced net institutional liquidity demand with

the opposite sign of Mroib.

A.2 Minimum Tick Sizes and Internalization

In this section, we exploit the design of the Tick Size Pilot to establish that variation in Mroibtrd

and Mroibvol reflects the internalization decisions of wholesalers. We first examine the response

in a wholesaler’s appetite to internalize, proxied by the extent of off-exchange sub-penny BJZZ-

identified trading volume, to a shock in the profitability of wholesaler liquidity provision. More

importantly, we also analyze the effect of a shock to the cost of internalization on imbalances in

Mroibtrd and Mroibvol. This analysis allows us to link wholesaler cost-benefit considerations to

their choices of which retail orders to internalize.

The SEC implemented the Tick Size Pilot program (TSP) on October 3, 2016. This program

offered an experimental design for studying the causal impact of the minimum tick size on trading

outcomes. The program included 2,400 securities. To ensure that stocks were randomly assigned to

control and treatment groups, stocks were sorted into 27 categories based on share price, market-

capitalization, and trading volume terciles. Across these categories, stocks were randomly assigned

to three treatment groups of 400 stocks each. Treated stocks in Test Group 1 were subject to

a minimum quoting requirement of 5¢ but could trade at price increments of 1¢—the quote rule

(Rindi and Werner (2019)). Treated stocks in Test Groups 2 and 3 were subject to a minimum

quoting requirement of 5¢ and had to trade at price increments of 5¢—the trade rule (Rindi and

Werner (2019)). Test Group 3 stocks were also subject to a Trade-At Prohibition provision that
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effectively prevented sub-penny off-exchange execution prices, rendering test Group 3 irrelevant for

our study (see Hu and Murphy (2022)).63

A key exception to the minimum tick size applied to retail trades. Although retail trades are

quoted using the minimum tick size, they could be executed at sub-penny prices off-exchange. While

TSP did not restrict the magnitudes of PI for test Group 1, the program imposed a minimum PI of

0.5¢ for off-exchange retail order executions of Test Group 2 stocks, raising the cost of internalizing

orders in test Group 2 stocks above that for control and test Group 1 stocks.64 This key difference

provides an opportunity to examine the causal impacts of internalization costs onMroib imbalances.

BJZZ’s algorithm is designed to detect sub-penny execution prices in a 1¢ tick size regime, but

it can be scaled to detect sub-tick execution prices in any tick size regime. To do this for Test

Group 2, after activation of the Trade Rule, we re-scale the algorithm’s command that classifies

trades according to small vs. large sub-penny increments by a factor of 5: in BJZZ’s notation,

we replace “Zjt = 100 ∗ mod(Pjt, 0.01)” by “Z5
jt = 20 ∗ mod(Pjt, 0.05)”, where Z5

jt is the sub-tick

execution price (Pjt) increment for a 5¢ tick size. With this scaling, Z5
it ∈ [0, 1] and transactions

can be classified into retail buy and retail sell trades as in Section 4.

The TPS provides an ideal setting to study the economics of retail flow internalization by

wholesalers since the experiment raises (i) the profitability of off-exchange liquidity provision in all

test groups (Rindi and Werner 2018); and (ii) the costs of internalization in test Group 2. These

impacts let us conclude that variation in Mroibtrd and Mroibvol is determined by wholesaler

decisions to internalize specific retail orders. We use the following Difference-in-Difference (DiD)

methodology to examine the causal impact of a tick size change:

Xj,d = bg0 + bg1(Postd) + bg2(Treat
g
j ) + bg3(Postj)× (Treatgd) + uj,d. (3)

Here d ∈ [−11,−1] indexes the 11 trading days ending on 10/02/2016, and d ∈ [0, 10] indexes the

11 trading days beginning on 10/17/2016.65 Xj,d is stock j’s outcome variable on trading day d;

63Non-midpoint sub-penny trade executions remain available for Group 3 stocks through exchange retail liquidity
programs. However, these executions do not involve wholesalers.

64Highlighting the binding nature of this constraint for test Group 2 stocks, Figure C.1 illustrates that absent the
minimum 0.5¢ PI restrictions, wholesalers offer only 0.01¢ PI most of the time, implying that this restriction raised
the PI-driven cost of internalization by a factor of 50 for most internalized trades.

65Our event window excludes the 10 trading days spanning 10/03/2016 through 10/16/2016 to account for the
staggered phase-in of tick size changes for treated stocks. There were three phase-ins of treated stocks in Test Groups
1 and 2 stocks: 5 stocks from each group on 10/03/2016, 92 stocks from each group on 10/10/2016, and the remaining
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Postd is an indicator variable that equals 0 if d < 0 and 1 if d ≥ 0. Treatmentgj is an indicator

variable that equals 0 if stock j is in the control group and 1 if stock j is in the treatment group for

Test Group g ∈ {1, 2}. The coefficient bg3 captures the treatment effects associated with Test Group

g. To ensure that estimated treatment effects are unaffected by outliers, we use both OLS and

quantile (median) regressions to estimate equation (A.2). Following standard practice (see Rindi

and Werner (2019), Griffith, Roseman, and Shang (2020), Albuquerque, Song, and Yao (2020), we

condition estimates on quoted spread levels prior to the introduction of TSP.

We obtain the identifying information for control and treatment stocks in the U.S. Tick Size

Pilot program (TSP) from FINRA’s website, focusing on Test Groups 1 and 2. For each stock, we

construct daily observations over the 10 trading days prior to implementation of TSP on 10/03/2016

as well as the 10 trading days after full implementation on 10/17/2016.66 From Daily TAQ’s Trades,

Quotes, and NBBO files, we obtain trade and quote information to match off-exchange transactions

executed at sub-penny prices with the national best bid and ask prices at the time of transaction

based on millisecond timestamps. Then, for each stock-day, we construct the following outcome

variables: (1) the absolute value of Mroibtrd; (2) the absolute value of Mroibvol; (3) size-weighted

average relative percentage price improvement, which divides the relative price improvement for a

sub-penny-executed transaction (i.e., the difference between the best quoted price and the transac-

tion price) by the mid-point of best bid and ask; (4) total dollar-denominated price improvement,

which is the sum of dollar relative price improvements across all sub-penny-executed transactions;

(5) the total share volume of trades receiving price improvement; and (6) the size-weighted average

sub-tick (sub-penny) fraction of trades receiving price improvement.

Table A.1 presents estimation results for Test Group 1. Panels A-C in Figure A.1 provide

complementary visual evidence. The quote rule raises the average and median volume of sub-

penny-executed trades by 9% and 63% relative to the corresponding intercept, respectively.67 This

indicates that the quote rule causes wholesalers to internalize retail orders more aggressively. The

effects are stronger for stocks with tighter pre-TSP quoted spreads—stocks that are more likely to

303 stocks on 10/17/2016.
66Implementation consists of three phase-ins with different subsets of control stocks experiencing tick size

changes on 10/03/2016, 10/10/2016, and 10/17/2016. For more details about the Tick Size Pilot program, see
https://www.sec.gov/rules/sro/nms/2015/34-74892.pdf.

67Rindi and Werner (2019) find no discernible effect on consolidated volumes of treated stocks in TSP, indicating
that our findings are likely orthogonal to any stock-level volume effect.
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have binding quote test restrictions.

Table A.1. Retail Order Internalization and Tick Size Pilot Quote Rule. This table reports OLS and Quantile
(median) Regression (QR) estimates of equation (A.2), comparing stocks in Test Group 1 to control stocks. Panels A and C
report results for stocks whose average quoted spread in during August, 2016 was below sample median; and Panels B and
D report results for stocks with above-median spreads. Sample periods spans the 10 trading day prior to implementation of
TSP on 10/03/2016 as well as the 10 trading days following the full implementation of TSP on 10/17/2016 for Test Group 1
stocks. Outcome variables are constructed using trade and quote information of sub-penny-executed off-exchange transactions,
and they include (1) the absolute value of Mroibtrd; (2) the absolute value of Mroibvol; and (3) the total share volume, in
round lots, of trades receiving price improvement (PI shr vol). Numbers in brackets reflect t-statistics, and symbols ***, **,
and * identify statistical significance at the 1%, 5%, and 10% type one errors, respectively.

Panel A: Low-spread stocks, OLS Panel B: High-spread stocks, OLS

Outcome variable: |Mroibtrd| |Mroibvol| PI shr vol |Mroibtrd| |Mroibvol| PI shr vol

Intercept 0.31*** 0.39*** 14517.1*** 0.31*** 0.39*** 14517.1***
[198.21] [225.90] [74.77] [173.36] [208.29] [89.14]

PrePost −0.047*** −0.047*** 6277.4*** 0.10*** 0.12*** −8964.6***
[−17.74] [−16.08] [18.90] [32.11] [34.77] [−32.32]

Treat −0.012*** −0.0099** 462.3 −0.012*** −0.0099** 462.3
[−3.15] [−2.33] [0.97] [−2.76] [−2.15] [1.16]

PrePost*Treat 0.0034 0.0015 1360.3* −0.019** −0.010 −334.1
[0.54] [0.21] [1.70] [−2.46] [−1.25] [−0.49]

Panel C: Low-spread stocks, QR Panel D: High-spread stocks, QR

Outcome variable: |Mroibtrd| |Mroibvol| PI shr vol |Mroibtrd| |Mroibvol| PI shr vol

Intercept 0.23*** 0.32*** 4893*** 0.23*** 0.32*** 4893***
[132.83] [136.29] [71.81] [102.92] [112.02] [107.96]

PrePost −0.029*** −0.040*** 4389*** 0.097*** 0.14*** −3506***
[−9.81] [−10.07] [37.65] [24.58] [27.06] [−45.42]

Treat −0.014*** −0.015*** −86 −0.014*** −0.015** −86
[−3.40] [−2.62] [−0.52] [−2.63] [−2.15] [−0.78]

PrePost*Treat 0.014** 0.011 3057*** −0.023** −0.0075 927***
[2.04] [1.18] [10.87] [−2.44] [−0.61] [4.85]

Consider a low spread stock for which the 5¢ minimum spread reflects an exogenously-widened

quoted spread. For example, suppose marketable limit buy and sell orders were quoted at best

prices of $10.02 and $9.99, respectively, before the spread was widened to $10.03 and $9.98. This

widening of the spread increases depth at the best price, facilitating larger transactions (Rindi and

Werner 2019). However, the aggregate amount of order flow that a wholesaler would otherwise

have internalized is unaffected,68 replacing the set of attractive non-marketable limit orders with

marketable limit orders.69 More importantly, widening the quoted spread increased the profitability

of off-exchange liquidity provision at the midpoint, increasing the willingness of wholesalers to

68Werner et al. (2019) find that the wider spread incentivized the submission of limit orders, resulting in a longer
queue at the bid and ask, while volume was unchanged.

69For example, consider two stocks, one with a mandated 5¢ spread and one with a non-mandated (pre-existing)
5¢ spread. There can be attractive non-marketable limit orders with the latter but not the former.
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Figure A.1. Tick Size Pilot. This figure provides visual evidence associated with the results of the Difference-in-
Difference specification in equation (A.2) for Test Group 1 and Test Group 2. The sample period spans the 10 trading days
prior to the TSP’s implementation on 10/03/2016 as well as the 10 trading days following its full implementation on 10/17/2016.
The figure plots the daily medians for six outcome variables across the control and treatment groups. The outcome variables
are constructed using trade and quote information for sub-penny-executed off-exchange transactions and include: the absolute
value of Mroibtrd; the absolute value of Mroibvol; and the total share volume of trades receiving price improvement. Panels
A-C and D-F present findings associated with the Quote Rule (QR) and Trade Rule (TR), respectively.

Panel A: |Mroibtrd|, QR Panel B : |Mroibvol|, QR Panel C : volume of PI trades, QR
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internalize order flow.

Table A.1 reports that the intensity of sub-penny-executed retail trades—as measured by the

total volume of price-improved trades—rises due to the minimum 5¢-spread. In contrast, the

absolute values of Mroibvol and Mroibtrd fall, moving in the opposite direction of retail order flow

internalization intensity. That is, Mroibvol and Mroibtrd respond to the economic incentives of

wholesalers regarding retail order internalization rather than retail trading per se.

Table A.2 presents estimation results for Test Group 2 that introduced a 0.5¢ minimum PI

in addition to the 5¢ pricing increment. Panels D–F in Figure A.1 provide complementary visual

evidence. In contrast to the quote-rule treatment, the trade-rule treatment caused the absolute

values of Mroibtrd and Mroibvol to increase dramatically, even though the treatment reduced the
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volume of internalized (sub-penny) trades. For stocks with tight spreads, median internalized trade

volume fell by 47%relative to the corresponding intercept, while trade volume is unchanged for

stocks with wide spreads.70

Table A.2. Retail Order Internalization and Tick Size Pilot Trade Rule. This table reports OLS and quantile
(median) regression estimates of equation (A.2), comparing stocks in Test Group 2 to control stocks. Panels A and C report
results for stocks whose average quoted spread in during August, 2016 was below sample median; and Panels B and D report
results for stocks with above-median spreads. Sample periods spans the 10 trading day prior to implementation of TSP on
10/03/2016 as well as the 10 trading days following the full implementation of TSP on 10/17/2016 for Test Group 1 stocks.
Outcome variables are constructed using trade and quote information of sub-penny-executed off-exchange transactions, and
they include (1) the absolute value of Mroibtrd; (2) the absolute value of Mroibvol; and (3) the total share volume, in round
lots, of trades receiving price improvement (PI shr vol). Numbers in brackets reflect t-statistics, and symbols ***, **, and *
identify statistical significance at the 1%, 5%, and 10% type one errors, respectively.

Panel A: Low-spread stocks, OLS Panel B: High-spread stocks, OLS

Outcome variable: |Mroibtrd| |Mroibvol| PI shr vol |Mroibtrd| |Mroibvol| PI shr vol

Intercept 0.31*** 0.39*** 14695.6*** 0.31*** 0.39*** 14695.6***
[198.89] [225.93] [75.76] [172.60] [207.06] [90.92]

PrePost −0.056*** −0.065*** 7917.6*** 0.087*** 0.10*** −8872.9***
[−21.80] [−22.28] [23.91] [27.91] [31.63] [−32.19]

Treat 0.0043 0.011** −1382.4*** 0.0043 0.011** −1382.4***
[1.13] [2.53] [−2.92] [0.98] [2.32] [−3.51]

PrePost*Treat 0.032*** 0.076*** −3277.9*** 0.042*** 0.052*** 591.6
[5.13] [10.79] [−4.07] [5.44] [6.27] [0.88]

Panel C: Low-spread stocks, QR Panel D: High-spread stocks, QR

Outcome variable: |Mroibtrd| |Mroibvol| PI shr vol |Mroibtrd| |Mroibvol| PI shr vol

Intercept 0.22*** 0.31*** 4948*** 0.22*** 0.31*** 4948***
[125.61] [131.66] [71.84] [97.95] [111.11] [109.61]

PrePost −0.036*** −0.052*** 5796*** 0.075*** 0.12*** −3296***
[−11.86] [−13.06] [49.29] [18.57] [23.75] [−42.81]

Treat 0.0058 0.0065 −546*** 0.0058 0.0065 −546***
[1.31] [1.12] [−3.25] [1.03] [0.94] [−4.96]

PrePost*Treat 0.027*** 0.091*** −2326*** 0.028*** 0.092*** 120
[3.71] [9.32] [−8.13] [2.75] [7.45] [0.64]

In Group 2 stocks, the trade rule’s minimum 0.5¢ PI requirement sharply raises the costs of

internalizing retail orders. The increases in |Mroibtrd| and |Mroibvol| let us attribute the increased

variation in Mroib to this increased cost.71 We posit that these effects manifest themselves in

70Our findings are robust to correcting for multiple-testing issues due to reusing natural experiments. Almost all
t-statistics associated with the significant treatment effects in Tables A.1 and A.2 exceed the heuristic critical values
of 2.5 and 3.0 proposed by Heath et al. (2022).

71The increased variation in Mroib may also reflect the increased share of non-marketable limit orders in all
internalized order flow. The trade rule quintupled the trading increment. This impacted the composition of retail
orders: as market orders risked execution at prices 5¢ further from current best prices (i.e., by more than 1¢), retail
traders would rely more on marketable limit orders in lieu of market orders. By the time a wholesaler handles orders
flagged as marketable limit, some will have become non-marketable due to updates in the order book, increasing the
share of non-marketable limit orders, and hence reducing internalization. Again, internalization is reduced by less
when there is (more profitable) institutional demand on the other side than when are retail market orders, resulting
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the increased sensitivity of Mroib to institutional liquidity demand, as the orders that are more

costly to internalize are the marginal retail orders used to provide liquidity to institutions through

internalization. Section C.3 provides further support for this prediction when Mroib is constructed

from retail orders with price improvement levels that are relatively more likely to be associated

with internalized orders executed at prices falling over 1¢ inside the NBBO.

These findings based on the TSP reinforce conclusions that variations inMroibtrd andMroibvol

are largely not due to imbalances in the underlying retail order flow. Instead, these measures reflect

wholesaler decisions of whether to internalize retail order flow. Our findings also indicate thatMroib

is unlikely to capture directional informed retail trading. Interpreting the higher |Mroib| associated

with Test group 2 stocks as due to increased informed retail trading would imply that wholesalers

pay more PFOF + PI to internalize more toxic (informed) retail orders. This is hard to reconcile

with any notion of profit-maximization by wholesalers. In contrast, the willingness to pay more

for internalizing these marginal orders is consistent with wholesalers facilitating liquidity provision

when institutional demand is high. Having established that wholesaler internalization choices are

responsible for variation in Mroib, we now examine the cross-sectional variation in Mroib.

B Signed Mroib’s Return Predictability

In this section, we examine the return predictability of Mroib in more detail. Our findings are

inconsistent with Mroib capturing informed retail order flow. In contrast, near-term future weekly

returns conditional on Mroib are consistent with price reversals following liquidity consumption by

institutional investors.

We estimate (1) both unconditionally and conditional on the sign of Mroibvolj,w−1 to examine

its return predictability separately when this order flow imbalance is negative and positive. As in

BJZZ, we estimate equation (1) using Fama-Macbeth regressions, featuring Newey-West corrected

standard errors with 6 lags. We extend their analysis in three ways. First, we estimate the weekly

return predictability ofMroibvolj,w−1 for up to 60 weeks ahead (past the 12 weeks in BJZZ). Second,

we estimate return predictability conditional on the sign of Mroibvolj,w−1. Third, we decompose

returns entering the left-hand-side of equation (1) into intraday and overnight components.

Striking evidence obtains. Figure B.1 shows that the coefficients on Mroibvolj,w−1 become

in more unbalanced Mroib.
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Figure B.1. Internalized Order Flow and the Cross-sections of Future Weekly Returns.
This figure shows the associations between Mroibvolw−1 and future week w + i returns (in %), with i ∈
{0, 1, 2, 3, 6, 9, 12, 24, 36, 39, 42, 45, 48, 51, 54, 57, 60}. Returns reflect the quoted mid-points at the close. Accord-
ing to equation (1), week w + i returns in each sample are regressed on Mroibvolw−1, whose loadings are plotted
in future weeks for both the unconditional analysis and the analysis conditional on the sign of Mroibvolw−1. The
estimated loadings are from Fama-Macbeth regressions, featuring Newey-West standard errors with 6 lags. Statisti-
cally significant and insignificant Mroibvolw−1 loadings at the 10% type one error are identified by filled and hollow
markers, respectively. The sample includes NMS common shares from January 2010 to December 2014, excluding
observations when the previous month-end’s closing price is below $1.
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uniformly negative after 39 weeks. This is inconsistent with informed retail trading, but consistent

with return dynamics reflecting pricing errors (Hendershott, Menkveld, Praz, and Seasholes (2022)).

The far-future return reversals are also consistent with the positive association between Mroib and

changes in short interest documented in Table 2. As established by the literature, increased short

interest (associated with higher Mroib) predicts lower future returns, while decreased short interest

(associated with lower Mroib) predicts higher future returns (Desai et al. (2002); Engelberg et al.

(2012); Boehmer and Wu (2013)). Moreover, although a negative Mroibvolj,w−1 yields a positive

coefficient for the current week’s close-to-close return (i = 0), this coefficient declines and becomes

negative by week w + 6, contrary to retail sell orders being informed, as “retail sell order flow”

realizes weekly losses due to persistent price appreciation after 6 weeks. In contrast, a positive

Mroibvolj,w−1 yields a positive coefficient for weekly returns across all horizons.

Decomposing returns into intraday and overnight components uncovers further asymmetries in

the loadings conditional on the sign of Mroibvolj,w−1. For overnight returns, ĉ1w is positive after

negative Mroibvolj,w−1 (retail selling, institutional buying), but negative and insignificant after

positive Mroibvolj,w−1 (retail buying, institutional selling). Barclay and Hendershott (2003) and
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Jiang, Likitapiwat, and T. McInish (2012) show that overnight price movements are information-

driven; the insignificant negative relation between net retail buying imbalances and next week’s

overnight returns indicates that retail buys are not informed.72 Moreover, informed retail trading

cannot explain why ĉ1w switches sign for intraday returns when Mroibvolj,w−1 switches sign.73

C Why Does Mroib Predict Short-Term Returns?

In this section, we report how wholesaler liquidity provision to institutional investors is responsible

for the return predictability of Mroib. Specifically, we attribute this return predictability to the

unwinding of institutional price pressure.

C.1 Dynamics of Institutional and Retail Order Flows

In Section 5.2, we documented that overnight reversals exceeded intraday price pressure (in the

same week). This section reconciles this phenomenon by showing that overnight reversals also

reflect the unwinding of institutional price pressure accumulated in prior weeks. This effect is more

salient when more retail sell orders have been internalized, presumably to provide liquidity for

institutional buy orders.

To show this, we estimate

Xj,w = a0 +

6∑
i=1

a1i Inoibvolj,w−i +

6∑
i=1

a2i [I(Inoibvolj,w−i < 0)] (4)

+
6∑

i=1

a3i [I(Inoibvolj,w−i < 0)× Inoibvolj,w−i] + ϵj,w,

where X ∈ {Inoibvol,Mroibvol}; and I(·) is an indicator function that equals 1 if Inoibvol < 0

and equals 0 otherwise. The models are estimated using Fama-MacBeth regressions, with standard

errors corrected using the Newey-West methodology with 6 lags. On average across stocks, ANcerno

covers less than 7% of the total daily trading volume reported by CRSP.74 To reduce the noise

attributable to a lack of coverage we use the subset of stocks for which the share of ANcerno-

72Furthermore, retail short selling is limited, suggesting that informed trading does not underlie the association
between net retail selling imbalances and next week’s overnight returns.

73Table ?? shows that the asymmetry in the predictability of close-to-close returns also holds for intraday and
overnight returns, which is further at odds with retail investors being informed.

74Hu et al. (2018) report similar coverage over a longer sample period. However, modest coverage does not invalidate
the representativeness of ANcerno data (Puckett and Yan 2011; Anand et al. 2012; Jame 2018).
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reported volume relative to CRSP is above-average.

Columns (1)–(4) in Table C.1 present the AR(k) estimates for Inoibvol, showing that past pos-

itive and negative institutional trade imbalances, especially those for institutional buying, predict

current institutional trade imbalances differently. The most recent week’s positive and negative

Inoibvol predict current week’s Inoibvol similarly, with point estimates of 0.33 and 0.35 for posi-

tive and negative Inoibvolw−1, respectively. However, these coefficients sharply diverge for k > 1,

where the loadings of negative Inoibvolw−i become 30-70% smaller than those on their positive

Inoibvolw−i counterparts. This finding is consistent with a literature that finds long-only fund

managers accumulate long positions slowly, but sell quickly, largely to fund purchases.75 This

persistent institutional buying drives the accumulation of positive price pressure whose unwinding

extends beyond the subsequent close-to-open to subsequent days, while institutional selling is less

persistent.

Columns (5)–(8) in Table C.1 highlight how past institutional trade imbalances predict future

internalized retail order flow, reinforcing our earlier conclusion that wholesalers intermediate trades

between institutional and retail investors. Consistent with the stronger auto-correlation for insti-

tutional buying, and retail sell orders being internalized to provide liquidity for institutional buy

orders, Inoibvolw−i loads with negative and significant coefficients.76 Mirroring the weaker auto-

correlation in institutional trade imbalances when Inoibvolw−i < 0, the loadings for Inoibvolw−i

become positive for k > 2. These dynamics indicate that the most negative Mroibvolw observa-

tions, i.e., those in decile 1 of Table 2, are disproportionately more likely to arise following persistent

institutional buying pressure whose unwinding makes the current week’s overnight returns more

negative.

These statistical findings contain insights about institutions’ demand for retail sourced liquidity.

The negative correlation between past positive institutional trade imbalances and current internal-

ized retail order flow is consistent with institutions resorting to retail-sourced liquidity, provided

by wholesalers, especially in less liquid markets.

75This asymmetry is consistent with institutional buying, but not selling, being motivated by a fund manager’s
best ideas (Akepanidtaworn et al. 2021). This leads managers to accumulate long positions more slowly to conceal
their presence, prolonging the unwinding of price pressure. Hendershott and Seasholes (1994) also find that short
positions of market makers, which are accumulated due to institutional buying, are associated with subsequent price
reversals that last up to 11 trading days. In contrast, price reversals following the accumulation of long positions by
market markers, which reflect institutional selling, only last for 7 trading days.

76The only exception to statistical significance appears in column (8) for Inoibvolw−5.
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Table C.1. Asymmetric Persistence in Institutional Trade Imbalances: Implications for Retail Flow Inter-
nalization. This table presents estimates of the predictive power of past institutional trade imbalance, conditional on its sign,
for both current institutional trade imbalance and current internalized retail order flow. Columns (1)–(4) report estimation
results of equation (4) for i ∈ {3, 4, 5, 6} and X = Inoibvolw. Columns (5)–(8) report estimation results of equation (4) for
i ∈ {3, 4, 5, 6} and X = Mroibvolw. Fama-MacBeth regressions are used with Newey-West-corrected standard errors using 6
lags. The sample contains stocks with average ANcerno-to-CRSP daily volume of 6.8% or higher. Numbers in brackets reflect
t-statistics, and symbols ***, **, and * identify statistical significance at the 1%, 5%, and 10% type one errors, respectively.

Dependent variable: Inoibvolw Dependent variable: Mroibvolw

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 0.065** 0.038 0.023 0.0088 −0.16*** −0.15*** −0.15*** −0.14***
[2.46] [1.42] [0.86] [0.32] [−14.54] [−13.32] [−12.50] [−11.77]

Inoibvolw−1 0.33*** 0.33*** 0.33*** 0.33*** −0.016*** −0.016*** −0.016*** −0.016***
[58.36] [59.42] [58.50] [58.00] [−7.43] [−7.86] [−7.66] [−7.58]

I(Inoibvolw−1 < 0)× Inoibvolw−1 0.020*** 0.022*** 0.022*** 0.023*** 0.0083*** 0.0085*** 0.0081** 0.0085***
[2.71] [2.98] [3.03] [3.24] [2.63] [2.69] [2.56] [2.65]

Inoibvolw−2 0.075*** 0.072*** 0.071*** 0.069*** −0.0067*** −0.0062*** −0.0060*** −0.0059***
[17.07] [16.60] [16.60] [15.35] [−3.41] [−3.06] [−2.94] [−2.90]

I(Inoibvolw−2 < 0)× Inoibvolw−2 −0.023*** −0.020*** −0.020*** −0.018** 0.0059* 0.0051 0.0046 0.0044
[−3.06] [−2.70] [−2.68] [−2.46] [1.85] [1.57] [1.38] [1.31]

Inoibvolw−3 0.062*** 0.048*** 0.045*** 0.043*** −0.0069*** −0.0054*** −0.0052** −0.0050**
[13.26] [10.52] [9.90] [9.65] [−3.40] [−2.64] [−2.53] [−2.41]

I(Inoibvolw−3 < 0)× Inoibvolw−3 −0.017*** −0.014** −0.012* −0.011* 0.0091*** 0.0079*** 0.0078*** 0.0077**
[−2.63] [−2.14] [−1.86] [−1.79] [3.09] [2.66] [2.63] [2.54]

Inoibvolw−4 0.052*** 0.040*** 0.037*** −0.0055*** −0.0048** −0.0050**
[12.29] [9.65] [8.77] [−2.64] [−2.30] [−2.40]

I(Inoibvolw−4 < 0)× Inoibvolw−4 −0.023*** −0.021*** −0.019*** 0.0078** 0.0080*** 0.0078***
[−3.51] [−3.20] [−2.90] [2.58] [2.69] [2.60]

Inoibvolw−5 0.041*** 0.031*** −0.0041** −0.0028
[10.22] [7.73] [−2.11] [−1.38]

I(Inoibvolw−5 < 0)× Inoibvolw−5 −0.029*** −0.025*** 0.00047 0.000084
[−4.14] [−3.78] [0.16] [0.03]

Inoibvolw−6 0.037*** −0.0044**
[9.35] [−2.15]

I(Inoibvolw−6 < 0)× Inoibvolw−6 −0.026*** 0.0019
[−3.79] [0.63]

Observations 976,110 976,110 976,110 976,110 976,110 976,110 976,110 976,110

C.2 Institutional Trading and Short-Term Return Predictability

We next establish that Mroib’s short-term return predictability is a liquidity-driven phenomenon.

Due to the persistence of institutional liquidity demand, especially institutional buying, overnight

price reversals associated with extreme Mroibvol magnitudes extend into future weeks. This cre-

ates distinguishable differences between close-to-close returns that follow extremely negative and

extremely positive internalized retail order flow imbalances.
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To highlight the persistence of institutional liquidity demand, we estimate

Inoibvolj,w = c0 +
6∑

i=1

c1iMroibvolj,w−i +
6∑

i=1

c2i [I(Inoibvolj,w−i < 0)] (5)

+

6∑
i=1

c3i [I(Inoibvolj,w−i < 0)×Mroibvolj,w−i] + ϵj,w.

Variable definitions and estimation approaches are identical to those in equation (4). Table C.2

shows that the first and second lags of internalized retail order flow load with significantly negative

coefficients when these lagged internalized order flows correspond to positive institutional flow.

That is, when institutional buy pressure is higher, the greater internalization of retail sell orders

relative to buy orders is associated with abnormally high institutional buy pressure for up to two

weeks ahead. This persistence drives subsequent abnormally negative overnight returns, due to

reversals after institutional price pressure that skew future weeks’ close-to-close returns downward.

Thus, while Mroibvol seems to predict future close-to-close returns, this just reflects price reversals

following institutional buy pressure.

C.3 Implications of the Size of Price Improvement

To provide further support for how wholesaler choices drive Mroib imbalances, we now delve

more deeply into the link between institutional liquidity demand and the magnitudes of sub-penny

price improvements that wholesalers offer when internalizing retail orders. We show that stronger

institutional demand for liquidity, as manifested by more extreme institutional trade imbalance

and price impacts, is associated with more costly internalization, i.e., internalized retail orders not

only with larger sub-penny price improvements but also a higher probability of execution at prices

inside the NBBO by over 1¢.

Figure C.1 plots the histogram of sub-penny price improvements associated with internalized

retail trades, as identified by BJZZ’s algorithm. Over 80% of sub-penny PIs are at 0.01¢, 0.1¢,

0.2¢, 0.25¢, 0.3¢, or 0.4¢ increments, suggesting that simple informal agreements govern price im-

provement schedules. More importantly, we find that (1) the size of price improvement is positively

related to the bid-ask spread; (2) the sub-penny increments of PIs are larger when internalized

orders are executed inside the NBBO by over 1¢; and (3) more frequent such inside-quote internal-

ization is associated with wider bid-ask spreads.
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Table C.2. Predictability of Institutional Trade Imbalances Using Internalized Retail Trading Imbalance.
This table presents estimates of the predictive power of past internalized order flow, conditional the sign the corresponding
institutional trade imbalance, for current institutional trade imbalance. Equation (5) for i ∈ {3, 4, 5, 6} and X = Inoibvolw
is estimated using Fama-MacBeth regressions with Newey-West-corrected standard errors using 6 lags. The sample contains
stocks with average ANcerno-to-CRSP daily volume of 6.8% or higher. Numbers in brackets reflect t-statistics, and symbols
***, **, and * identify statistical significance at the 1%, 5%, and 10% type one errors, respectively.

(1) (2) (3) (4)

Constant 1.04*** 1.09*** 1.14*** 1.17***
[39.71] [40.99] [41.98] [43.14]

Mroibvolw−1 −0.020*** −0.021*** −0.021*** −0.020***
[−3.69] [−3.74] [−3.74] [−3.57]

I(Inoibvolw−1 < 0)×Mroibvolw−1 0.021*** 0.020*** 0.020*** 0.021***
[2.85] [2.78] [2.81] [2.79]

Mroibvolw−2 −0.013** −0.014** −0.013** −0.013**
[−2.43] [−2.56] [−2.43] [−2.38]

I(Inroibvolw−2 < 0)×Mroibvolw−2 0.025*** 0.025*** 0.025*** 0.024***
[3.41] [3.39] [3.42] [3.30]

Mroibvolw−3 −0.0043 −0.0063 −0.0054 −0.0067
[−0.72] [−1.13] [−0.93] [−1.14]

I(Inoibvolw−3 < 0)×Mroibvolw−3 0.017** 0.018*** 0.019*** 0.020***
[2.38] [2.59] [2.59] [2.72]

Mroibvolw−4 0.0047 0.0054 0.0035
[0.70] [0.87] [0.57]

I(Inoibvolw−4 < 0)×Mroibvolw−4 0.0017 0.0038 0.0038
[0.23] [0.51] [0.52]

Mroibvolw−5 −0.0058 −0.0065
[−1.08] [−1.20]

I(Inoibvolw−5 < 0)×Mroibvolw−5 −0.0036 −0.0018
[−0.45] [−0.22]

Mroibvolw−6 0.0025
[0.42]

I(Inoibvolw−6 < 0)×Mroibvolw−6 0.0056
[0.63]

Observations 976,110 976,110 976,110 976,110

We first observe that BJZZ’s algorithm, which does not require the use of quote data, incorrectly

signs some buy retail trades as sells, and vice versa. We describe the source of mis-classification

with an example: suppose the NBB and NBO are $9.97 and $10.03, and a marketable buy order

placed at $10.03 is executed at $10.013. BJZZ’s algorithm observes the sub-penny increment of

0.3¢ and signs this transaction as a sell, but the trade is actually a buy receiving price improvement

of 1.7¢. As Section 5.2 notes, Battalio et al. (2022) show that many trade mis-classifications reflect

the algorithm’s inclusion of some institutional trades.

Matching each transaction with the corresponding NBBO and comparing execution prices

against quote midpoints yields estimates for the share of incorrectly-signed trades by sub-penny
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Figure C.1. Distributions of Sub-penny trades, Bid-Ask Spreads, and the Probability of Inside-Quotes
Execution. This figure plots a histogram of sub-penny price improvements (in 1/100th cents) associated with transactions.
For each stock-year, the frequency of trades associated with each of the 80 sub-penny increments, from 0.01¢ through 0.40¢
and from 0.60¢ through 0.99¢ is calculated. The mean frequency for a given increment, measured on the left axes of the for
panels, is then averaged across stocks and years. The figure also reports, for the 12 most frequent sub-penny price improvement
outcomes, (1) the share of corresponding transactions executed by at least 1¢ inside the NBBO (Panel A); (2) the share of
transactions mis-classified by the BJZZ algorithm (Panel B); (3) the share of corresponding transactions executed by at least
1¢inside the NBBO after removing mis-classified trades from the sample (Panel C); and (4) average bid-ask spread at the time
of execution (Panel D).

Panel A: Inside-quote executions Panel B : Probability of mis-classification
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Panel C : Corrected inside-quote executions Panel D : Bid-ask spreads
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increment.77 Panel B in Figure C.1 shows that this share rises sharply with the distance of the

sub-penny increment from the nearest full penny. Importantly, an unreported robustness analysis

reveals that all of our main findings continue to hold when we correct for the mis-classification

of trades, likely because our aggregation to the weekly level mitigates the largely idiosyncratic

nature of mis-classified buy and sell trades. Complementing our findings in Section 5.2, this ro-

bustness finding indicates that imbalances in sub-penny executed institutional trades not reported

77Barber et al. (2022) use a similar approach to identify signing errors in BJZZ’s algorithm.
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by ANcerno do not drive the variation in Mroib.

We next document a strong relation between the size of sub-penny increment of PIs and the

likelihood that the corresponding execution takes place inside the NBBO by over 1¢. This finding

is robust to removing mis-classified retail trades from the sample. As Panels A and C in Figure C.1

illustrate, the share of internalized retail orders whose execution price is at least 1¢ better than

the NBBO at the time of transaction rises sharply with the size of sub-penny PI increment. For

example, after removing mis-classified trades, this share goes from about 5% to over 50% as the

sub-penny increment of PI goes from 0.01¢ (0.99¢) to 0.4¢ (0.6¢). Moreover, Panel D of Figure C.1

shows that both larger sub-penny PI increments and more frequent inside-quote executions are

associated with wider bid-ask spreads. Overall, our findings suggest that wholesalers are willing to

spend more PFOF+PI to internalize orders in less liquid markets. We next show that the imbalance

in these more costly internalized orders is more strongly related to institutional trading costs than

the imbalance in the less costly internalized orders, highlighting the economic motives that justify

such costlier internalization.

Figure C.1 shows that the median sub-penny price improvement is 0.1¢. This leads us to

construct two versions of Mroibvol, one for internalized retail orders with “small” sub-penny PI

increments of less than 0.1¢ and one for “large” such increments of at least 0.1¢.78 We then

compare institutional trading outcomes, price impacts, institutional trade imbalances, intraday

returns (proxy for institutional price pressure), and overnight return (proxy for the unwinding of

institutional price pressure), across the two versions of Mroibvol.

Panel A in Figure C.2 shows that price impacts display far stronger ∪-shaped patterns for high-

sub-penny Mroibvol than for low-sub-penny Mroibvol. That is, the most extreme high-sub-penny

Mroibvol observations occur when institutional trading costs are highest. This result reinforces

that the unbalanced internalization of retail orders that are more costly to internalize, due to large

price improvements, occurs when wholesalers provide liquidity to institutions willing to incur larger

price impacts to locate liquidity. Panel B provides further evidence of this mechanism, showing

a sharp inverse relationship between institutional trade imbalances and high-sub-penny Mroibvol,

78Unreported results establish that the predictive power of Mroib for short-term future returns is not affected by
the size of sub-penny PI used to construct Mroib with a 0.1¢ threshold. BJZZ classify transactions into those with
small versus large price improvement using a 0.2¢ cutoff. The 0.2¢ threshold assigns over 75% of internalized retail
trades to the “small” sub-penny group, resulting in a noisy Mroib based on “large” PI.
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Figure C.2. Price Impacts, Institutional Trade Imbalances, Intraday Returns, and Overnight Returns
Conditional on the Magnitude of Price Improvement. This figure compares contemporaneous institutional price impacts,
institutional net trade imbalance, intraday returns, and overnight returns when Mroirbvol is constructed using retail trades with
sub-penny price improvements that are low (< .01¢) versus high (≥.01¢). Stocks are first sorted each day into deciles of low-
sub-penny Mroibvol and high-sub-penny Mroibvol. Then, each outcome variable is plotted across the deciles of both Mroibvol
measures. Panel A plots median price impacts (in basis points per million dollars), Panel B plots average net institutional trade
imbalance, Panel C plots average intraday returns, and Panel D plots average overnight returns.
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Panel C : Intraday return Panel D : Overnight return
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highlighting how institutional liquidity demand drives the unbalanced and costly internalization of

retail orders on the opposite side. In contrast, institutional trade imbalance is weakly ∪-shaped

conditional on low-sub-penny Mroibvol. Building on these insights, Panels C and D show that as

high-sub-penny Mroibvol rises, intraday returns fall from 10bps to −30bps while overnight returns

reverse in the opposite direction. That is, high-sub-penny Mroibvol is associated with institutional

price pressure followed by overnight reversals. In contrast, with small-sub-penny Mroibvol, returns

mirror the weak ∪-shaped pattern in institutional trade imbalances.
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D ILM s, Existing Liquidity Measures, and Institutional Price Impacts:

Excluding Low Sub-Penny Volume Stocks

This section establishes that the findings documents by Figure 4 and Table 5 are not driven by

stocks with low levels of trading volumes executed at sub-penny prices.

Table D.1. Institutional Liquidity Measures and Stock Characteristics. The table reports on the cross-sectional
relation between ILMs and (1) three-factor Fama-French betas, (2) book-to-market ratios (BM), (3) natural log of market capi-
talizations (ln(Mcap)), (4) dividend yields (DYD), (5) idiosyncratic volatilities (IdVol), (6) previous month’s returns (RET(−1)),
and (7) preceding returns from the prior 11 months (RET(−12,−2)). Stock characteristics are computed from the prior month.
Each weekly cross-section is sorted into ILM deciles. The average outcome variable is calculated by ILMT decile in each
cross-section before the average of the time-series is calculated. Panels A and B report the results for ILMT and ILMV ,
respectively. The sample includes NMS common shares from January 2010 to December 2019, excluding stocks whose previous
month-end’s closing price is below $2 and stocks falling in the bottom 10% of the share of sub-penny executed volume in total
volume.

Panel A: Trade-based Institutional Liquidity Measures (ILMT s) versus stock characteristics

Weekly ILMT deciles
1 2 3 4 5 6 7 8 9 10

Stock Characteristics:
βmkt 1.02 1.02 1.02 1.01 1.00 0.99 0.97 0.93 0.88 0.82
βhml 0.73 0.73 0.73 0.73 0.74 0.75 0.76 0.77 0.78 0.79
βsmb 0.15 0.15 0.16 0.16 0.17 0.17 0.18 0.20 0.22 0.24
BM 0.64 0.64 0.65 0.65 0.66 0.67 0.68 0.72 0.76 0.80

ln(Mcap) 20.99 20.98 20.95 20.91 20.85 20.76 20.64 20.38 20.05 19.71
DYD 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.015

Id. Vol. 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.022
RET(−1) 0.016 0.018 0.016 0.017 0.016 0.015 0.014 0.015 0.015 0.016

RET(−12,−2) 0.19 0.19 0.19 0.19 0.19 0.18 0.17 0.16 0.15 0.14

Panel B: Volume-based Institutional Liquidity Measures (ILMT s) versus stock characteristics

Weekly ILMV deciles
1 2 3 4 5 6 7 8 9 10

Stock Characteristics:
βmkt 1.07 1.07 1.06 1.04 1.02 1.00 0.94 0.94 0.89 0.73
βhml 0.71 0.71 0.72 0.73 0.73 0.75 0.74 0.79 0.82 0.77
βsmb 0.12 0.12 0.13 0.14 0.15 0.17 0.19 0.21 0.25 0.29
BM 0.62 0.62 0.63 0.63 0.64 0.65 0.70 0.70 0.74 0.87

ln(Mcap) 21.29 21.26 21.19 21.10 20.97 20.81 20.45 20.36 20.01 19.26
DYD 0.015 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.015

Id. Vol. 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.020 0.021 0.021
RET(−1) 0.019 0.018 0.017 0.016 0.016 0.015 0.014 0.014 0.014 0.015

RET(−12,−2) 0.21 0.21 0.20 0.19 0.19 0.18 0.16 0.16 0.15 0.13

A potential concern with ILMs is that these measures do not account for the intensity of trade

execution at sub-penny prices, allowing the effects of low sub-penny volume to be conflated with

high imbalances in internalized retail orders. For example, suppose that 100,000 shares of both

stocks A and B are traded on a given trading day. Also suppose that while stock A, on the same

day, has 1,500 shares of buy retail trades and 1,000 shares of sell retail trades executed at sub-penny
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prices; stock B has 15,000 shares of buy and 10,000 shares of sell retail trades. For both stocks,

|Mroibvol| = 0.2, even though retail trading in stock B is far higher than that in stock A. This leads

us to examine the robustness of our results to excluding stocks whose share of sub-penny executed

volume relative to total trading volume (SPVS) is low. Specifically, Table D.1 and Figure D.1

how that excluding stocks whose SPVS fall in the bottom 10% of each cross-section leaves our

qualitative findings unaffected.

Figure D.1. ILM s, Standard Liquidity Measures, and Future Institutional Price Impacts. The table reports on
the cross-sectional relation between various liquidity measures constructed in month m−2 and realized, post-trade institutional
price impacts, InPrIm, (in bps per $100k) constructed in month m. Liquidity measures include (1) quoted bid-ask spread
(QSP); (2) quoted depth at best prices (Depth); (3) effective spreads (EFSP); (4) realized spreads (RESP); (5) price impacts
(PIMP); (6) Kyle’s lambda estimates (Lambda); (7) Amvist illiquidity measure (AMVST); (8) Roll measure of realized spreads
(ROLL); (9 & 10) close-to-close and open-to-close Amihud measures (ILLIQ & ILLIQ OC); (11 & 12) simple and volume-
weighted trade-time liquidity measures (BBD & WBBD); (13 & 14) trade- and volume-based institutional liquidity measures
(ILMT & ILMV). Each month, stocks are sorted into deciles of liquidity, with decile 1 (10) reflecting the most (least) liquid
stocks, based on a given liquidity measure from month m − 2. Month m InPrIm of the median stock in each liquidity decile
is averaged across months by liquidity decile. This average is plotted against the respective liquidity decile. Panels A and B
report results for liquidity deciles 1 through 5 and 6 through 10, respectively. The sample includes NMS common shares from
January 2010 to December 2019, excluding stocks whose previous month-end’s closing price is below $2 and stocks falling in
the bottom 10% of the share of sub-penny executed volume in total volume.

Panel A: Illiquidity deciles 1–5 Panel B: Illiquidity deciles 6–10
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E Liquidity and Expected Returns: $1 and $5 Share Price Requirements

This section presents estimation results for equation (2) when low-priced stocks are excluded from

the sample based on alternative cutoffs for prior month’s share prices.

Panel A in Tables E.1 and E.2 reports estimation results when liquidity measures are constructed

over one month using samples of stocks with previous month’s minimum closing prices of $1 and

$5, respectively. According to Table E.1, in a more inclusive sample with a less strict (under
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Table E.1. Liquidity and the Cross-Section of Expected Stock Returns: 1-month ILMs. This table reports
on the relation between alternative high-frequency liquidity measures and the cross-section of expected returns. In Panel A,
equation (2) is estimated using liquidity measures (LIQj,m−2) constructed over 1-month horizons. Control variables include
three-factor Fama-French betas (βmkt

j,m−1, β
hml
j,m−1, β

smb
j,m−1), estimated using weekly observations from the two-year period ending

in the final full week of month m− 1, book-to-market ratio, (BMj,m−1), natural log of market capitalization, (ln(Mcapj,m−1)),
dividend yield (DYDj,m−1), defined as total dividends over the past 12 months divided by the share price at the end of
month m − 1, idiosyncratic volatility (IdVolj,m−1), previous month’s return (RET(−1)), and preceding return from the prior
11 months (RET(−12,−2)). Panel B replaces each high-frequency liquidity measure by the residuals of ILMT and ILMV with
respect to each alternative liquidity measure, with residuals calculated separately for each monthly cross-section. Estimates
are from Fama-MacBeth regressions that have Newey-West corrected standard errors with 6 lags. The sample includes NMS
common shares from January 2010 to December 2019, excluding stocks whose previous month-end’s closing price is below $1.
The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10% level,
respectively.

Panel A: Stock liquidity and the cross-section of expected returns

InPrIm QSP ShrDepth EFSP RESP PIMP Lambda AMVST ROLL ILLIQ ILLIQ OC BBD WBBD ILMT ILMV

Constant 2.03 0.93 0.92 0.90 0.93 0.93 0.80 0.91 1.33 0.88 0.56 1.42 1.26 −0.87 −1.65
[1.42] [0.89] [0.92] [0.86] [0.93] [0.93] [0.83] [0.92] [1.36] [0.88] [0.55] [1.41] [1.23] [−0.58] [−1.03]

Liquidity 0.024 −0.023 −0.0000065 0.081 0.025 −0.068 0.034 0.10 −7.04*** 0.018 0.13** 0.18* 0.39** 1.16** 1.36***
[1.31] [−0.16] [−1.51] [0.41] [0.32] [−0.53] [0.50] [0.69] [−3.27] [0.68] [2.20] [1.75] [2.07] [2.57] [3.04]

βmkt −0.059 −0.25 −0.25 −0.25 −0.25 −0.25 −0.24 −0.25 −0.25 −0.25 −0.23 −0.26 −0.25 −0.17 −0.13
[−0.15] [−1.15] [−1.13] [−1.14] [−1.13] [−1.15] [−1.11] [−1.13] [−1.14] [−1.13] [−1.06] [−1.00] [−0.97] [−0.82] [−0.66]

βhml −0.12 −0.080 −0.079 −0.080 −0.079 −0.079 −0.076 −0.079 −0.084 −0.081 −0.079 −0.045 −0.044 −0.091 −0.10
[−0.83] [−0.67] [−0.66] [−0.66] [−0.66] [−0.65] [−0.63] [−0.66] [−0.70] [−0.67] [−0.66] [−0.33] [−0.32] [−0.76] [−0.84]

βsmb 0.046 0.033 0.034 0.034 0.033 0.032 0.036 0.035 0.028 0.033 0.052 0.061 0.067 0.066 0.079
[0.44] [0.44] [0.45] [0.46] [0.44] [0.43] [0.49] [0.47] [0.38] [0.45] [0.74] [0.77] [0.85] [0.91] [1.09]

BM 0.19 0.046 0.046 0.046 0.046 0.045 0.036 0.045 0.049 0.049 0.034 0.065 0.062 0.043 0.043
[1.27] [1.08] [1.10] [1.09] [1.08] [1.06] [0.84] [1.06] [1.18] [1.13] [0.82] [1.29] [1.21] [1.02] [1.03]

ln(Mcap) −0.019 0.026 0.027 0.027 0.027 0.027 0.032 0.027 0.010 0.028 0.043 0.011 0.018 0.093 0.12*
[−0.30] [0.60] [0.64] [0.62] [0.63] [0.63] [0.80] [0.65] [0.24] [0.67] [1.00] [0.25] [0.41] [1.55] [1.89]

DYD 0.16 −0.15 −0.17 −0.15 −0.17 −0.18 −0.18 −0.15 −0.17 −0.19 −0.18 −0.0020 0.0041 −0.23 −0.22
[0.15] [−0.28] [−0.31] [−0.29] [−0.32] [−0.34] [−0.34] [−0.28] [−0.33] [−0.35] [−0.33] [−0.00] [0.01] [−0.46] [−0.44]

Id. Vol. −0.19*** −0.21*** −0.21*** −0.21*** −0.21*** −0.21*** −0.21*** −0.21*** −0.19*** −0.20*** −0.21*** −0.25*** −0.25*** −0.19*** −0.18***
[−2.82] [−4.14] [−4.14] [−4.14] [−4.14] [−4.13] [−4.23] [−4.14] [−3.93] [−4.09] [−4.21] [−4.59] [−4.59] [−3.99] [−3.84]

RET−1 −0.69 −0.082 −0.084 −0.083 −0.068 −0.063 −0.070 −0.069 −0.11 −0.040 −0.080 −0.41 −0.44 −0.15 −0.21
[−0.94] [−0.16] [−0.16] [−0.16] [−0.13] [−0.12] [−0.14] [−0.13] [−0.22] [−0.08] [−0.15] [−0.72] [−0.77] [−0.29] [−0.41]

RET(−12,−2) 0.31* 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.19 0.19 0.21 0.21 0.23

[1.87] [1.04] [1.01] [1.03] [1.04] [1.04] [1.06] [1.03] [1.01] [1.02] [1.26] [1.08] [1.18] [1.29] [1.40]

Observations 131,986† 360,626 360,626 360,626 360,626 360,626 360,066 360,624 360,626 360,624†† 360,624†† 294,284††† 294,284††† 360626 360626

Panel B: Loadings of ILMs in the cross-section of expected returns after orthogonalization relative to other liquidity measures

InPrIm QSP ShrDepth EFSP RESP PIMP Lambda AMVST ROLL ILLIQ ILLIQ OC BBD WBBD ILMT ILMV

ILMT residual 0.18 1.22*** 1.16** 1.17*** 1.18** 1.18** 0.91* 1.16** 1.35*** 1.06** 0.72 0.41 0.29 - -
[0.30] [3.14] [2.58] [2.97] [2.55] [2.59] [1.98] [2.54] [2.96] [2.33] [1.52] [0.81] [0.55]

ILMV residual 0.26 1.45*** 1.33*** 1.40*** 1.36*** 1.38*** 1.10** 1.34*** 1.49*** 1.25*** 0.95** 0.59 0.48 - -
[0.42] [3.79] [3.03] [3.60] [3.00] [3.09] [2.43] [2.97] [3.32] [2.82] [2.05] [1.16] [0.92]

† The number of observations reflects the largest sample of ANcerno data available from 2011-2014.
†† The number of observations reflects the largest sample available for ILLIQ and ILLIQ OC.
††† The number of observations reflects the largest sample available for BBD and WBBD from 2010–2017.

$1) definition of penny stocks, ILMs continue to explain the cross-section of expected returns.

However, reflecting the relevance of alternative liquidity measures for smaller firms, the open-to-

close version of Amihud’s liquidity measure, ILLIQ OC, also explains expected stock returns in

the 2010-2019 period, consistent with Barardehi et al. (2021). In addition, the trade-time liquidity

measures, BBD and WBBD, explain expected stock returns in the 2010–2017 period, consistent

with Barardehi et al. (2019). However, realized institutional price impacts (InPrIM) no longer

explain expected returns, a possible consequence of including stocks that institutional investors are

reluctant or unable to hold.
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In contrast, Table E.2 reports that with a stricter (under $5) definition of penny stocks, which

still excludes stocks held in limited amounts by institutional investors, ILMs and realized institu-

tional price impacts explain the cross-section of returns. In addition, quoted depth has a negative

coefficient, consistent with a characteristic liquidity premium, implying lower depth is associated

with higher expected returns. In contrast, many standard liquidity measures, including spreads,

Amihud, and trade-time measures, load with unexpected negative coefficients, indicating that such

measures are unreliable liquidity measures for stocks more likely to be held by institutional in-

vestors. This reinforces the conclusion that standard liquidity measures are mostly relevant for

small stocks.

Table E.2. Liquidity and the Cross-Section of Expected Stock Returns: 1-month ILMs. This table reports
on the relation between alternative high-frequency liquidity measures and the cross-section of expected returns. In Panel A,
equation (2) is estimated using liquidity measures (LIQj,m−2) constructed over 1-month horizons. Control variables include
three-factor Fama-French betas (βmkt

j,m−1, β
hml
j,m−1, β

smb
j,m−1), estimated using weekly observations from the two-year period ending

in the final full week of month m− 1, book-to-market ratio, (BMj,m−1), natural log of market capitalization, (ln(Mcapj,m−1)),
dividend yield (DYDj,m−1), defined as total dividends over the past 12 months divided by the share price at the end of
month m − 1, idiosyncratic volatility (IdVolj,m−1), previous month’s return (RET(−1)), and preceding return from the prior
11 months (RET(−12,−2)). Panel B replaces each high-frequency liquidity measure by the residuals of ILMT and ILMV with
respect to each alternative liquidity measure, with residuals calculated separately for each monthly cross-section. Estimates
are from Fama-MacBeth regressions that have Newey-West corrected standard errors with 6 lags. The sample includes NMS
common shares from January 2010 to December 2019, excluding stocks whose previous month-end’s closing price is below $5.
The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10% level,
respectively.

Panel A: Stock liquidity and the cross-section of expected returns

InPrIm QSP ShrDepth EFSP RESP PIMP Lambda AMVST ROLL ILLIQ ILLIQ OC BBD WBBD ILMT ILMV

Constant 1.34 1.42 1.31 1.39 1.35 1.39 1.90** 1.37 1.70* 1.52* 1.66* 2.71*** 2.64*** 0.26 −0.46
[1.22] [1.64] [1.55] [1.59] [1.61] [1.64] [2.18] [1.61] [1.98] [1.76] [1.84] [3.01] [2.93] [0.23] [−0.38]

Liquidity 0.027** −0.068 −0.000011** −0.032 0.055 −0.070 −0.17** −0.024 −8.31*** −0.050 −0.25* −0.86*** −1.23*** 0.67* 0.88**
[2.11] [−0.72] [−2.06] [−0.22] [0.69] [−0.68] [−2.37] [−0.33] [−3.80] [−0.91] [−1.88] [−3.62] [−3.21] [1.94] [2.49]

βmkt −0.0056 −0.11 −0.10 −0.11 −0.10 −0.10 −0.12 −0.11 −0.099 −0.11 −0.12 −0.13 −0.13 −0.055 −0.026
[−0.01] [−0.51] [−0.49] [−0.50] [−0.48] [−0.49] [−0.56] [−0.50] [−0.46] [−0.54] [−0.58] [−0.52] [−0.50] [−0.27] [−0.13]

βhml −0.11 −0.11 −0.10 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11 −0.11 −0.057 −0.056 −0.11 −0.12
[−0.74] [−0.81] [−0.78] [−0.81] [−0.81] [−0.81] [−0.80] [−0.81] [−0.87] [−0.81] [−0.82] [−0.38] [−0.37] [−0.85] [−0.92]

βsmb 0.12 0.036 0.035 0.037 0.038 0.036 0.023 0.038 0.039 0.026 0.016 0.00 0.0052 0.065 0.076
[1.21] [0.46] [0.45] [0.47] [0.48] [0.45] [0.29] [0.48] [0.49] [0.34] [0.21] [0.00] [0.06] [0.85] [1.01]

BM 0.12 −0.0050 −0.0045 −0.0048 −0.0047 −0.0060 −0.012 −0.0053 −0.00030 0.000071 0.0013 0.054 0.050 −0.0071 −0.0045
[0.94] [−0.16] [−0.14] [−0.15] [−0.15] [−0.19] [−0.37] [−0.17] [−0.01] [0.00] [0.04] [1.09] [1.02] [−0.23] [−0.14]

ln(Mcap) 0.0049 −0.0015 0.0040 −0.00 0.0015 0.00 −0.022 0.00075 −0.012 −0.0056 −0.012 −0.058 −0.054 0.043 0.069
[0.11] [−0.04] [0.11] [−0.01] [0.04] [0.00] [−0.61] [0.02] [−0.34] [−0.16] [−0.31] [−1.54] [−1.45] [0.97] [1.43]

DYD 0.68 0.24 0.23 0.24 0.22 0.22 0.25 0.22 0.21 0.20 0.20 0.53 0.53 0.19 0.20
[0.61] [0.42] [0.40] [0.42] [0.39] [0.40] [0.44] [0.39] [0.38] [0.35] [0.35] [0.82] [0.83] [0.34] [0.37]

Id. Vol. −0.11 −0.18*** −0.18*** −0.18*** −0.18*** −0.18*** −0.17*** −0.18*** −0.17*** −0.18*** −0.17*** −0.14** −0.14** −0.17*** −0.17***
[−1.52] [−3.47] [−3.48] [−3.47] [−3.48] [−3.47] [−3.21] [−3.44] [−3.34] [−3.30] [−3.18] [−2.22] [−2.26] [−3.47] [−3.44]

RET−1 −0.80 −0.88 −0.87 −0.88 −0.87 −0.87 −0.86 −0.89 −0.89 −0.87 −0.85 −0.84 −0.85 −0.90 −0.92
[−1.12] [−1.49] [−1.47] [−1.49] [−1.46] [−1.46] [−1.46] [−1.49] [−1.52] [−1.47] [−1.44] [−1.24] [−1.26] [−1.50] [−1.54]

RET(−12,−2) 0.38* 0.17 0.17 0.17 0.17 0.17 0.15 0.17 0.18 0.17 0.16 0.13 0.13 0.21 0.23

[1.89] [1.10] [1.10] [1.09] [1.09] [1.11] [1.00] [1.10] [1.16] [1.07] [1.02] [0.68] [0.68] [1.34] [1.45]

Observations 115,759† 297337 297337 297337 297337 297337 296805 297335 297337 297,335†† 297,335†† 242442 242442 297,337††† 297,337†††

Panel B: Loadings of ILMs in the cross-section of expected returns after orthogonalization relative to other liquidity measures

InPrIm QSP ShrDepth EFSP RESP PIMP Lambda AMVST ROLL ILLIQ ILLIQ OC BBD WBBD ILMT ILMV

ILMT residual −0.27 0.73** 0.64* 0.69** 0.64* 0.69** 0.88*** 0.68* 0.84** 0.81** 0.93*** 1.19*** 1.14*** - -
[−0.54] [2.55] [1.90] [2.46] [1.93] [2.04] [2.70] [1.92] [2.46] [2.50] [2.90] [3.02] [2.97]

ILMV residual −0.22 0.96*** 0.84** 0.92*** 0.85** 0.90** 1.03*** 0.88** 1.00*** 0.97*** 1.06*** 1.23*** 1.18*** - -
[−0.47] [3.28] [2.41] [3.20] [2.51] [2.62] [3.14] [2.44] [2.82] [3.04] [3.45] [3.23] [3.20]

† The number of observations reflects the largest sample of ANcerno data available from 2011-2014.
†† The number of observations reflects the largest sample available for ILLIQ and ILLIQ OC.
††† The number of observations reflects the largest sample available for BBD and WBBD from 2010–2017.
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Panel B in Tables E.1 and E.2 highlights the incremental information content of ILMT and

ILMV with respect to each alternative liquidity measure. First, the residuals of each ILM with

respected an alternative measure are calculated using Fama-MacBeth regressions. These residuals

are then used as LIQ in equation (2). For both minimum price filters, with the exception of realized

institutional price impacts (InPrIM), ILM residuals explain the cross-section of two-months-ahead

returns whenever the liquidity measure against which these residuals are calculated does not explain

the cross-section of these returns (with expected sign) in Panel A. As such, our findings provide

unambiguous evidence that ILMs outperform all existing liquidity measures in explaining the

cross-section of expected returns.79

F Portfolio Sorts: Alternative Liquidity Measures

This section employs simple portfolio sorts to compare the economic magnitudes of the premia

associated with all liquidity measures used in our study. We sort each monthly cross-section into

ten portfolios (deciles) of each liquidity measure (LIQ). We then calculate average monthly stock

returns of each portfolio as well as monthly returns associated with four long-short strategies that

buy illiquid stocks and sell liquid stocks. Strategy (1) in long on decile 7 and short on decile

4; strategy (2) is long on decile 8 and short on decile 3; strategy (3) is long on decile 9 and

short on decile 2; and the “traditional” strategy (4) is long on decile 10 and short on decile (1).

Examining these four strategies reveals whether liquidity premia are only attributable to the tails of

the distributions. We obtain three-factor alphas by regressing the time series of portfolio returns as

well as those of the long-short strategies on Fama-French three factors. We conduct three versions

of these analyses based on samples with minimum previous month’s end share price filters of $1,

$2, and $5.80

Table F.1 reports that ILMs are the only measures for which the traditional long-short strategy

(4) consistently produces three-factor liquidity premia of nearly 1% or higher. In addition, ILMV

is the sole liquidity measure for which all four long-short strategies produce significant liquidity

premia. This finding indicates that ILMV identifies economically relevant differences in stock

liquidity even for stocks with intermediate trading costs, highlighting the practical relevance of

79In untabulated results, we verify that the converse is not true.
80Note that the findings regarding ILMT and ILMV match those reported in Panels A–C in Table 10.
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ILMs. Long-short strategies based on dollar quoted, effective, and realized spreads also produce

relatively consistent liquidity premia. However, these measures are impacted by variations in

share price: ceteris paribus, higher share price is associated with wider spreads measures. This

observation is consistent with the finding that long-short strategies based on percentage (relative)

quoted, effective, and realized spreads do not produce significant three-factor alphas. That is, when

adjusted for share price, these spreads-based measures fail to capture liquidity. This interpretation

is reinforced by the regression analyses reported in Tables 8, E.1, and E.2 where controlling for

other stock characteristics, including book-to-market ratio and market-capitalization, renders all

spread-based measures insignificant predictors of expected returns.
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Table F.1. Liquidity Alphas: This table presents three-factor alphas of liquidity measures (LIQj,m−2) from 1-month horizons. Every month, stocks are sorted into
deciles of the respective LIQ. Alphas for four long-short strategies are reported: long decile 7, short decile 4; long decile 8, short decile 3; long decile 9, short decile 2; and
long decile 10, short decile 1. The 118-month time-series of monthly average portfolio returns for each portfolio (net of 1-month T-bill rate) and the long-short strategies are
regressed on the Fama-French three factors to obtain alphas. The sample period is from 2010–2019, excluding stocks with previous month-end’s closing price below $1, $2, and
$5, in Panels A, B, and C, respectively. The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: $1 minimum share price

Liquidity portfolios Long-short strategies

LIQ 1 2 3 4 7 8 9 10 7−4 8−3 9−2 10−1

InPrIm −0.14 0.082 0.058 −0.042 0.064 0.17 0.072 0.014 0.11 0.11 −0.0098 0.15

[−0.58] [0.63] [0.48] [−0.23] [0.54] [1.40] [0.64] [0.07] [0.47] [0.53] [−0.06] [0.91]

QSP −0.45*** −0.48*** −0.24* −0.16* 0.10 0.13 0.37*** 0.40*** 0.26** 0.37*** 0.85*** 0.85***

[−3.17] [−3.73] [−1.94] [−1.80] [1.24] [1.44] [3.87] [3.44] [2.00] [3.72] [5.39] [4.00]

ShrDepth† −0.15* − 0.21*** −0.13 −0.21*** 0.041 0.28* 0.32* 0.78*** 0.25* 0.41** 0.53** 0.93***

[1.79] [2.83] [1.59] [3.26] [−0.34] [−1.89] [−1.78] [−4.07] [−1.76] [−2.11] [−2.52] [−4.03]

EFSP −0.57*** −0.28*** −0.39*** −0.23*** 0.13 0.16* 0.27** 0.47*** 0.35*** 0.56*** 0.56*** 1.05***

[−3.29] [−2.66] [−4.03] [−3.76] [1.36] [1.74] [2.59] [4.40] [3.59] [5.47] [4.19] [4.54]

RESP −0.14 −0.28*** −0.23*** −0.31*** −0.082 0.11 0.30*** 0.37*** 0.23* 0.34*** 0.58*** 0.51***

[−1.03] [−2.90] [−3.07] [−2.99] [−0.86] [1.18] [2.68] [3.14] [1.94] [3.14] [4.02] [2.80]

PIMP −0.62*** −0.33*** −0.32*** −0.27*** 0.16** 0.17** 0.33*** 0.32*** 0.43*** 0.49*** 0.66*** 0.94***

[−3.21] [−2.66] [−3.26] [−3.65] [2.39] [2.50] [3.65] [3.34] [4.91] [4.50] [4.31] [4.87]

Lambda 0.14** −0.016 −0.12* 0.075 0.021 0.046 −0.32* −0.34 −0.054 0.17 −0.30 −0.49

[2.61] [−0.18] [−1.79] [1.15] [0.25] [0.44] [−1.78] [−1.15] [−0.58] [1.20] [−1.52] [−1.60]

AMVST −0.36*** −0.20*** −0.11** −0.17*** 0.013 −0.13 0.29* 0.41** 0.19** −0.015 0.49*** 0.77***

[−3.16] [−2.83] [−2.17] [−2.99] [0.17] [−1.10] [1.91] [2.11] [2.25] [−0.13] [3.06] [3.76]

ROLL −0.16* −0.12 −0.18** 0.085 0.22*** 0.082 −0.20 −0.69*** 0.14 0.26** −0.075 −0.53**

[−1.70] [−1.35] [−2.44] [1.09] [3.64] [0.76] [−1.57] [−2.83] [1.28] [2.28] [−0.55] [−2.45]

ILLIQ 0.040 −0.081 −0.11 0.031 −0.11 −0.26** −0.16 0.32 −0.14 −0.15 −0.078 0.28

[0.82] [−0.88] [−1.34] [0.52] [−1.28] [−2.24] [−0.85] [1.17] [−1.43] [−1.02] [−0.38] [1.03]

ILLIQ OC 0.048 −0.099 −0.089 −0.00036 −0.100 −0.25** −0.065 0.21 −0.099 −0.16 0.034 0.16

[0.94] [−1.09] [−1.03] [−0.01] [−1.08] [−2.31] [−0.36] [0.75] [−0.92] [−1.12] [0.16] [0.57]

BBD 0.049 0.026 −0.13 0.067 0.021 −0.063 −0.013 −0.011 −0.046 0.065 −0.038 −0.059

[1.14] [0.25] [−1.59] [1.38] [0.21] [−0.51] [−0.08] [−0.03] [−0.41] [0.39] [−0.20] [−0.18]

WBBD 0.036 0.030 −0.13* 0.097* 0.015 0.0040 −0.048 0.0014 −0.081 0.14 −0.078 −0.035

[0.80] [0.29] [−1.70] [1.86] [0.16] [0.03] [−0.28] [0.00] [−0.73] [0.80] [−0.40] [−0.11]

ILMT −0.32*** −0.34*** −0.19** −0.17 −0.032 0.089 0.38** 0.64*** 0.14 0.28 0.72*** 0.96***

[−2.77] [−3.82] [−2.13] [−1.58] [−0.30] [0.63] [2.48] [4.25] [0.86] [1.62] [3.72] [4.30]

ILMV −0.63*** −0.44*** −0.25*** −0.25*** −0.027 0.32*** 0.32** 0.64*** 0.22** 0.57*** 0.77*** 1.27***

[−4.28] [−4.40] [−2.88] [−3.56] [−0.28] [2.85] [2.10] [4.76] [2.15] [4.17] [4.28] [5.49]

Continued on next page
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Table F.1 – continued from previous page

Panel B: $2 minimum share price

Liquidity portfolios Long-short strategies

LIQ 1 2 3 4 7 8 9 10 7−4 8−3 9−2 10−1

InPrIm −0.092 0.066 0.12 −0.055 0.053 0.13 0.078 0.23 0.11 0.0077 0.013 0.32**

[−0.42] [0.51] [1.22] [−0.32] [0.44] [1.13] [0.65] [1.10] [0.51] [0.05] [0.08] [2.31]

QSP −0.41*** −0.26** −0.21** −0.21*** 0.098 0.14 0.34*** 0.41*** 0.30** 0.35*** 0.60*** 0.82***

[−3.41] [−2.47] [−1.99] [−2.63] [1.15] [1.64] [3.48] [3.83] [2.54] [3.51] [3.71] [4.28]

ShrDepth† −0.15* −0.19*** −0.14* −0.22*** 0.0090 0.24* 0.29** 0.56*** 0.23 0.38** 0.48*** 0.71***

[1.72] [2.72] [1.68] [3.00] [−0.07] [−1.74] [−2.25] [−4.19] [−1.52] [−2.17] [−2.90] [−3.92]

EFSP −0.47*** −0.21** −0.33*** −0.11* 0.061 0.21** 0.29*** 0.42*** 0.17 0.54*** 0.51*** 0.89***

[−3.16] [−2.06] [−4.44] [−1.70] [0.70] [2.33] [2.99] [3.87] [1.53] [5.71] [3.52] [4.08]

RESP −0.18 −0.23** −0.23*** −0.19** −0.075 0.097 0.33*** 0.42*** 0.12 0.33*** 0.56*** 0.60***

[−1.51] [−2.57] [−3.12] [−2.59] [−0.98] [1.09] [3.11] [3.54] [1.24] [2.91] [4.07] [3.15]

PIMP −0.42*** −0.28** −0.24*** −0.13* 0.15** 0.24*** 0.29*** 0.26*** 0.28*** 0.48*** 0.57*** 0.68***

[−2.68] [−2.57] [−2.68] [−1.72] [2.48] [3.20] [3.15] [2.81] [2.84] [4.44] [3.85] [3.63]

Lambda 0.13** −0.016 −0.14* 0.027 0.090 0.17* −0.20 −0.28 0.063 0.31** −0.18 −0.41

[2.42] [−0.20] [−1.92] [0.36] [1.17] [1.81] [−1.55] [−1.10] [0.67] [2.17] [−1.11] [−1.54]

AMVST −0.37*** −0.20** −0.048 −0.18*** 0.058 0.0034 0.22** 0.43** 0.24** 0.052 0.42*** 0.80***

[−3.12] [−2.57] [−1.05] [−3.33] [0.63] [0.04] [2.10] [2.45] [2.34] [0.55] [3.13] [4.22]

ROLL −0.12 −0.12 −0.19** 0.099 0.31*** 0.14* −0.055 −0.76*** 0.21* 0.33*** 0.063 −0.64***

[−1.34] [−1.54] [−2.58] [1.13] [4.36] [1.90] [−0.50] [−3.91] [1.70] [3.71] [0.59] [−3.20]

ILLIQ 0.040 −0.058 −0.15* 0.030 −0.013 −0.073 −0.050 0.20 −0.043 0.076 0.0081 0.16

[0.81] [−0.67] [−1.85] [0.49] [−0.17] [−0.62] [−0.31] [0.88] [−0.53] [0.47] [0.04] [0.69]

ILLIQ OC 0.041 −0.071 −0.095 −0.036 0.0036 −0.10 0.023 0.14 0.040 −0.0085 0.094 0.10

[0.83] [−0.76] [−1.19] [−0.62] [0.04] [−0.93] [0.16] [0.61] [0.42] [−0.06] [0.51] [0.43]

BBD 0.040 0.057 −0.15* 0.10 −0.072 0.13 0.051 −0.062 −0.18 0.28 −0.0052 −0.10

[0.91] [0.55] [−1.77] [1.56] [−0.83] [0.91] [0.44] [−0.23] [−1.41] [1.45] [−0.03] [−0.38]

WBBD 0.047 0.053 −0.16* 0.090 −0.052 0.16 0.093 −0.11 −0.14 0.31 0.040 −0.16

[1.07] [0.52] [−1.78] [1.40] [−0.59] [1.10] [0.82] [−0.39] [−1.19] [1.64] [0.22] [−0.55]

ILMT −0.30*** −0.33*** −0.21** −0.062 0.023 0.11 0.34** 0.62*** 0.085 0.31* 0.67*** 0.93***

[−2.70] [−4.05] [−2.17] [−0.82] [0.27] [0.92] [2.54] [4.48] [0.72] [1.81] [4.32] [4.33]

ILMV −0.58*** −0.33*** −0.23*** −0.25*** 0.041 0.28*** 0.31** 0.63*** 0.30*** 0.50*** 0.65*** 1.20***

[−3.97] [−3.86] [−2.76] [−3.68] [0.59] [3.37] [2.26] [4.97] [3.10] [4.27] [3.72] [5.09]

Continued on next page
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Table F.1 – continued from previous page

Panel C: $5 minimum share price

Liquidity portfolios Long-short strategies

LIQ 1 2 3 4 7 8 9 10 7−4 8−3 9−2 10−1

InPrIm 0.080 0.21* −0.017 −0.060 0.041 0.17 0.11 0.28** 0.10 0.19 −0.095 0.20

[0.40] [1.77] [−0.14] [−0.33] [0.34] [1.37] [1.01] [2.09] [0.50] [1.00] [−0.58] [1.35]

QSP −0.23*** −0.13 −0.056 −0.019 0.071 0.21** 0.39*** 0.41*** 0.090 0.27** 0.52*** 0.65***

[−2.73] [−1.58] [−0.61] [−0.31] [0.82] [2.55] [4.13] [3.92] [0.86] [2.36] [3.49] [3.98]

ShrDepth† −0.13 −0.23*** −0.18** −0.13** −0.20*** −0.036 0.11 0.18** 0.069 0.14 0.34** 0.31*

[1.31] [3.04] [2.03] [2.00] [3.06] [0.32] [−1.06] [−1.99] [0.72] [−0.99] [−2.39] [−1.88]

EFSP −0.24** −0.11 −0.15** 0.026 0.15* 0.22*** 0.31*** 0.48*** 0.13 0.37*** 0.41*** 0.72***

[−2.12] [−1.30] [−2.58] [0.44] [1.81] [2.74] [3.27] [4.36] [1.26] [3.66] [2.93] [3.79]

RESP −0.10 −0.063 −0.17** −0.080 0.047 0.21** 0.39*** 0.52*** 0.13 0.38*** 0.46*** 0.62***

[−0.95] [−0.96] [−2.57] [−1.25] [0.69] [2.41] [3.53] [4.38] [1.38] [3.26] [3.17] [3.12]

PIMP −0.079 −0.19** −0.044 −0.039 0.15** 0.20*** 0.31*** 0.33*** 0.19* 0.25** 0.50*** 0.41**

[−0.84] [−2.03] [−0.67] [−0.50] [2.31] [2.66] [3.69] [3.16] [1.81] [2.52] [3.87] [2.56]

Lambda 0.14*** 0.0072 −0.15* −0.025 0.15** 0.13 0.32*** 0.011 0.18* 0.28** 0.31** −0.13

[2.71] [0.09] [−1.67] [−0.33] [2.43] [1.60] [3.03] [0.06] [1.85] [2.04] [2.00] [−0.66]

AMVST −0.30** −0.13* 0.043 −0.036 0.057 0.28*** 0.30*** 0.55*** 0.093 0.24** 0.43*** 0.85***

[−2.32] [−1.84] [0.73] [−0.65] [0.86] [3.79] [2.75] [4.69] [1.11] [2.48] [3.26] [4.11]

ROLL −0.058 0.072 0.00013 0.13** 0.26*** 0.27*** 0.049 −0.46*** 0.13 0.27*** −0.023 −0.40***

[−0.82] [1.10] [0.00] [2.12] [4.20] [5.24] [0.55] [−3.61] [1.41] [2.73] [−0.21] [−3.23]

ILLIQ 0.045 −0.039 −0.11 −0.048 0.085 0.12 0.26** 0.44*** 0.13 0.23* 0.30* 0.39**

[0.92] [−0.43] [−1.48] [−0.71] [1.13] [1.31] [2.08] [2.73] [1.23] [1.69] [1.67] [2.13]

ILLIQ OC 0.045 −0.036 −0.093 −0.059 0.11 0.12 0.25** 0.45*** 0.16 0.21 0.28 0.40**

[0.90] [−0.48] [−1.04] [−0.88] [1.28] [1.55] [2.01] [2.74] [1.43] [1.62] [1.65] [2.16]

BBD 0.071* 0.045 −0.12 −0.030 0.12 0.11 0.31** 0.39** 0.15 0.23 0.26 0.32*

[1.67] [0.51] [−1.20] [−0.40] [1.66] [1.20] [2.21] [2.55] [1.27] [1.38] [1.34] [1.96]

WBBD 0.062 0.050 −0.14 −0.015 0.13* 0.16 0.27* 0.42*** 0.14 0.30* 0.22 0.36**

[1.44] [0.56] [−1.38] [−0.21] [1.74] [1.53] [1.91] [2.80] [1.26] [1.67] [1.11] [2.23]

ILMT −0.29*** −0.24*** −0.14* 0.053 0.12 0.28*** 0.38*** 0.65*** 0.067 0.42*** 0.62*** 0.95***

[−2.66] [−2.89] [−1.98] [0.78] [1.25] [2.84] [3.49] [4.73] [0.56] [3.25] [4.39] [4.30]

ILMV −0.43*** −0.21*** −0.14** −0.11 0.19*** 0.37*** 0.43*** 0.68*** 0.30*** 0.51*** 0.64*** 1.10***

[−3.35] [−2.64] [−2.16] [−1.54] [2.86] [4.65] [4.02] [5.32] [3.64] [4.44] [3.92] [4.82]

† For consistency, returns to long-short strategies based on quoted depth (ShrDepth) are multiplied by −1.
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G Portfolio double-sorts

This section provides return differences between stocks falling in different levels of ILM and stock

characteristics. Double sorts based on ILMs and other stock characteristics provide additional

evidence that the 3-factor risk-adjusted portfolio return spreads associated with our liquidity mea-

sures are not concentrated in specific subsets of stocks. These double sorts control for market beta,

market capitalization, book-to-market ratios, past returns, and the share of sub-penny volume.

After excluding stocks priced below $5 at the end of the preceding month, we form an array of

5 × 5 portfolios that first condition on a stock characteristic, and then on an ILM .81 Next, we

estimate monthly portfolio returns as well as return spreads between the most and least liquid stock

portfolios, conditional on the level of each stock characteristic.

Table G.1 documents liquidity premia for high- and low-beta, small and large, growth and value

stocks, past losers and past winners, and stocks with low and high sub-penny executed volume. A

slightly smaller liquidity premia is apparent among large stocks, past winners, and value stocks.

However, reflecting lowered measurement error, the significant liquidity premia grows by nearly six

times as the share of sub-penny executed volume rises from its bottom to its top quintile. Online

Appendix H establishes the robustness of these findings to constructing ILMs over 3-month rolling

windows. Therefore, the liquidity premia associated with ILMs are largely orthogonal to stock

characteristics known to influence expected returns.

Finally, we investigate whether trading costs can explain the returns of anomalies based on

stock characteristics by changing the order of the double sorts—first conditioning on a ILM , and

then on a stock characteristic. Table G.2 reports evidence that low-beta and value premia are

present in both liquid and illiquid stocks. In contrast, momentum’s alpha is only significant among

the 20% least liquid stocks, suggesting that momentum profits do not survive institutional trading

costs (Lesmond et al. (2004); Korajczyk and Sadka (2004)).82

81Our choice of the $5 minimum share price precludes effects attributable to penny stocks, leading to conservative
estimates. Qualitative findings are unaffected by using $1 and $2 share price filters.

82Online Appendix H confirms results are robust to constructing ILMs over 3-month rolling windows.
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Table G.1. Portfolio Alphas: Stock Characteristic and ILM Double-Sorts. This table presents three-factor alphas using CRSP breakpoints. Stocks are first
sorted into stock characteristic quintiles X ∈ {βmkt,Mcap, RET(−12,−2),BM,SPVS}. Within each characteristic quintile, stocks are further sorted into LIQ ∈ {ILMT, ILMV }
quintiles. Monthly 5 × 5 portfolio returns are equally-weighted averages of monthly stock returns in the portfolio. The time-series returns of each portfolio (after subtracting
the 1-month Treasury-bill rate) including the long-short portfolio are then regressed on Fama-French three factors. The resulting intercepts are three-factor alphas. The sample
includes NMS common shares from January 2010 to December 2019, excluding stocks whose previous month-end’s closing price is below $5. The numbers in brackets are
t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: Sequential double sorts on market beta and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
m
a
rk
et

b
et
a

Low 0.23 −0.011 0.41** 0.75*** 0.82*** 0.59*** −0.069 0.19 0.50*** 0.74*** 0.82*** 0.89***

[1.47] [−0.09] [2.58] [5.07] [4.90] [2.74] [−0.41] [1.52] [4.20] [4.58] [5.01] [3.94]

2 0.021 0.32** 0.57*** 0.47*** 0.47*** 0.44*** 0.13 0.32*** 0.45*** 0.47*** 0.49*** 0.37**

[0.20] [2.61] [6.30] [4.91] [3.58] [2.91] [1.11] [3.15] [5.05] [4.40] [3.74] [2.12]

3 0.059 −0.066 0.073 0.30*** 0.30** 0.24 −0.12 0.038 0.079 0.27** 0.39*** 0.50***

[1.08] [−0.72] [0.70] [2.80] [2.40] [1.60] [−1.62] [0.47] [0.84] [2.61] [3.79] [3.90]

4 −0.19* −0.15 −0.011 −0.13 0.14 0.33** −0.34*** −0.10 −0.19* 0.12 0.18 0.52***

[−1.90] [−1.50] [−0.10] [−1.02] [0.84] [1.99] [−3.94] [−1.07] [−1.69] [1.07] [1.08] [3.56]

High −0.78*** −0.54** −0.39** −0.38** −0.22 0.57** −0.86*** −0.39** −0.59*** −0.31** −0.16 0.70**

[−2.99] [−2.55] [−2.39] [−2.23] [−1.34] [2.03] [−2.86] [−2.21] [−2.81] [−2.31] [−1.03] [2.51]

Panel B: Sequential double sorts on market capitalization and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
m
a
rk
et

ca
p
it
a
li
za

ti
o
n Low −0.69*** −0.0053 0.42*** 0.70*** 0.76*** 1.45*** −0.87*** 0.20 0.37** 0.68*** 0.79*** 1.67***

[−2.96] [−0.03] [2.82] [4.08] [4.45] [5.23] [−3.90] [1.07] [2.32] [4.23] [4.61] [6.06]

2 −0.76*** −0.093 0.33*** 0.50*** 0.46*** 1.22*** −0.90*** −0.025 0.31*** 0.54*** 0.51*** 1.41***

[−4.73] [−0.66] [3.16] [3.94] [2.72] [4.92] [−4.85] [−0.18] [3.08] [3.73] [3.18] [5.29]

3 −0.35*** 0.14 0.091 0.25*** 0.28** 0.63*** −0.33** −0.079 0.24** 0.23** 0.35*** 0.68***

[−3.56] [1.41] [0.85] [2.65] [2.48] [3.90] [−2.49] [−0.91] [2.37] [2.14] [3.15] [3.32]

4 −0.35* −0.14 0.14 0.052 0.10 0.45** −0.52** −0.055 0.054 0.059 0.27*** 0.79***

[−1.92] [−1.05] [1.47] [0.55] [1.45] [2.36] [−2.53] [−0.45] [0.65] [0.62] [3.62] [3.82]

High −0.28*** 0.024 0.10* 0.13 0.23*** 0.50*** −0.25** 0.075 0.11 0.052 0.22*** 0.47***

[−2.86] [0.34] [1.71] [1.51] [3.92] [4.78] [−1.98] [1.29] [1.45] [0.50] [2.71] [3.52]

Continued on next page
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Table G.1 – continued from previous page

Panel C: Sequential double sorts on book-to-market ratio and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
b
o
o
k
-t
o
-m

a
rk
et

ra
ti
o Low −0.13 −0.14 0.065 0.012 0.26 0.38 −0.32* −0.029 −0.063 0.14 0.34* 0.65***

[−0.98] [−0.98] [0.40] [0.08] [1.19] [1.52] [−1.92] [−0.25] [−0.53] [0.83] [1.78] [3.27]

2 −0.29** −0.15 0.12 −0.080 0.13 0.42* −0.37*** −0.016 −0.16 0.075 0.19 0.56***

[−2.10] [−1.39] [0.96] [−0.63] [0.94] [1.95] [−2.65] [−0.14] [−1.36] [0.65] [1.58] [2.89]

3 −0.22** −0.057 −0.043 0.11 0.088 0.31* −0.31** −0.13 0.013 0.15 0.15 0.46**

[−2.22] [−0.49] [−0.55] [0.94] [0.62] [1.68] [−2.60] [−1.20] [0.17] [1.12] [1.15] [2.41]

4 −0.36*** 0.053 0.15 0.34** 0.66*** 1.02*** −0.43*** −0.017 0.18** 0.46*** 0.65*** 1.08***

[−3.22] [0.45] [1.35] [2.47] [4.27] [4.48] [−3.36] [−0.13] [2.08] [3.09] [4.21] [4.63]

High −0.32* 0.020 0.26 0.69*** 0.88*** 1.20*** −0.43** 0.11 0.24 0.75*** 0.87*** 1.29***

[−1.90] [0.13] [1.45] [4.41] [5.35] [4.15] [−2.04] [0.76] [1.61] [5.38] [5.33] [4.18]

Panel D: Sequential double sorts on past 11-month return and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
p
a
st

re
tu

rn

Low −0.93*** −0.56*** −0.27 −0.18 −0.038 0.89*** −1.00*** −0.61*** −0.26 −0.025 −0.075 0.93**

[−3.55] [−2.82] [−1.25] [−0.95] [−0.21] [2.70] [−3.22] [−3.14] [−1.60] [−0.15] [−0.40] [2.37]

2 −0.056 −0.12 0.14 0.25* 0.57*** 0.63*** −0.17 0.036 0.11 0.23* 0.57*** 0.74***

[−0.44] [−0.96] [1.05] [1.96] [4.26] [3.22] [−1.46] [0.33] [0.86] [1.87] [4.16] [3.83]

3 −0.081 0.22** 0.30*** 0.34*** 0.93*** 1.01*** −0.085 0.16* 0.15 0.53*** 0.94*** 1.02***

[−1.16] [2.24] [2.77] [2.67] [6.61] [5.81] [−1.08] [1.76] [1.39] [4.18] [6.64] [6.16]

4 −0.022 0.15 0.088 0.35*** 0.74*** 0.76*** 0.013 0.042 0.14 0.44*** 0.68*** 0.67***

[−0.24] [1.51] [0.78] [3.14] [5.23] [4.54] [0.13] [0.34] [1.42] [4.31] [4.59] [3.45]

High −0.21 −0.21 0.0078 0.23 0.40** 0.61*** −0.40* −0.10 −0.18 0.27* 0.63*** 1.03***

[−1.03] [−1.06] [0.05] [1.64] [2.44] [2.90] [−1.92] [−0.53] [−1.08] [1.86] [3.84] [4.21]

Continued on next page
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Table G.1 – continued from previous page

Panel E: Sequential double sorts on share of sub-penny trade volume and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
su

b
-p
en

n
y
v
o
lu
m
e Low 0.033 0.037 0.20** 0.17* 0.38*** 0.35* 0.058 0.029 0.18** 0.14* 0.42*** 0.36**

[0.32] [0.43] [2.39] [1.73] [3.19] [1.98] [0.56] [0.33] [2.36] [1.71] [3.62] [2.01]

2 0.051 0.10 0.11 0.17*** 0.38*** 0.33* −0.013 0.18* 0.087 0.15** 0.41*** 0.42***

[0.59] [0.96] [1.18] [2.65] [3.46] [1.94] [−0.17] [1.88] [1.00] [2.05] [3.25] [2.65]

3 −0.11 −0.084 −0.070 0.10 0.46*** 0.57*** −0.12 −0.11 −0.11 0.15 0.48*** 0.60***

[−1.17] [−0.87] [−0.73] [0.81] [3.70] [3.44] [−1.11] [−1.12] [−1.15] [1.52] [3.92] [3.25]

4 −0.12 −0.15 −0.010 0.27** 0.58*** 0.70*** −0.15 −0.10 −0.0014 0.23* 0.59*** 0.75***

[−1.27] [−1.11] [−0.07] [2.11] [3.14] [2.94] [−1.27] [−0.84] [−0.01] [1.67] [3.81] [3.26]

High −1.17*** −0.64*** −0.053 0.56*** 0.82*** 1.99*** −1.15*** −0.81*** 0.093 0.57*** 0.83*** 1.98***

[−5.07] [−3.55] [−0.32] [2.93] [4.87] [6.20] [−4.94] [−4.91] [0.49] [2.75] [4.88] [6.01]
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Table G.2. Portfolio Alphas: ILM and Stock Characteristic Double-Sorts. This table presents three-factor alphas using CRSP breakpoints. Stocks
are sorted into liquidity quintiles based on LIQ ∈ {ILMT, ILMV }. Within each liquidity quintile, stocks are further sorted into stock characteristic quintiles X ∈
{βmkt,Mcap, RET(−12,−2),BM, }. Monthly 5 × 5 portfolio returns are equally-weighted averages of monthly stock returns in the portfolio. The time-series returns of each
portfolio (after subtracting the 1-month Treasury-bill rate) including the long-short portfolio are then regressed on Fama-French three factors. The resulting intercepts are
three-factor alphas. The sample includes NMS common shares from January 2010 to December 2019, excluding stocks whose previous month-end’s closing price is below $5.
The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: Sequential double sorts on ILMT and stock characteristics

Portfolios of beta Portfolios of market capitalization

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
I
L
M

T

Low 0.048 0.031 −0.11 −0.41*** −0.87*** −0.92** −0.85*** −0.37** −0.053 −0.021 −0.030 0.82***

[0.44] [0.37] [−1.27] [−2.69] [−3.01] [−2.57] [−3.99] [−2.33] [−0.43] [−0.21] [−0.72] [3.77]

2 0.32* 0.18** 0.034 −0.18* −0.57*** −0.89*** −0.33** −0.14 0.029 0.012 0.20*** 0.54***

[1.76] [2.15] [0.35] [−1.73] [−2.79] [−2.66] [−2.24] [−1.17] [0.24] [0.11] [2.95] [3.05]

3 0.14 0.26*** 0.12 −0.051 −0.43** −0.57** −0.34** 0.029 0.15 0.12 0.065 0.40**

[1.34] [2.68] [1.07] [−0.50] [−2.17] [−2.25] [−2.09] [0.27] [1.42] [1.53] [0.82] [2.03]

4 0.26** 0.54*** 0.36*** 0.016 −0.18 −0.44** −0.30 0.47*** 0.30*** 0.37*** 0.16** 0.46*

[2.07] [5.28] [3.47] [0.12] [−1.05] [−1.99] [−1.29] [4.06] [3.39] [3.69] [2.00] [1.74]

High 0.71*** 0.81*** 0.47*** 0.44*** 0.16 −0.56** 0.29 0.80*** 0.59*** 0.45*** 0.46*** 0.18

[3.49] [5.99] [3.24] [3.54] [1.09] [−2.21] [1.41] [4.23] [4.11] [2.74] [3.44] [0.71]

Portfolios of book-to-market ratio Portfolios of past return (R(−12,−2))

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
I
L
M

T

Low −0.11 −0.23** −0.32** −0.27** −0.39*** −0.28 −0.84*** −0.017 −0.075 −0.090 −0.30 0.54

[−0.67] [−2.06] [−2.59] [−2.52] [−3.15] [−1.42] [−3.33] [−0.14] [−1.05] [−0.83] [−1.54] [1.56]

2 0.12 0.036 −0.019 −0.23* −0.13 −0.26 −0.60*** 0.078 0.24** 0.22** −0.17 0.43

[0.68] [0.41] [−0.20] [−1.95] [−0.81] [−0.94] [−2.96] [0.68] [2.61] [2.25] [−0.79] [1.27]

3 −0.059 −0.067 0.041 −0.019 0.13 0.19 −0.35 0.083 0.19* 0.11 −0.012 0.34

[−0.41] [−0.60] [0.37] [−0.20] [0.87] [0.82] [−1.65] [0.63] [1.84] [0.91] [−0.08] [1.09]

4 0.16 0.18** 0.12 0.31*** 0.22 0.068 −0.24 0.14 0.37*** 0.43*** 0.29** 0.52*

[1.04] [2.09] [1.06] [2.94] [1.21] [0.35] [−0.94] [1.20] [2.81] [3.88] [2.06] [1.72]

High 0.18 0.18 0.65*** 0.84*** 0.74*** 0.56** −0.15 0.51*** 0.90*** 0.74*** 0.59*** 0.74***

[0.99] [1.29] [4.18] [5.10] [3.92] [2.07] [−0.80] [3.66] [6.97] [4.96] [4.49] [3.54]

Continued on next page
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Table G.2 – continued from previous page

Panel B: Sequential double sorts on ILMV and stock characteristics

Portfolios of beta Portfolios of market capitalization

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
I
L
M

V

Low −0.0089 −0.050 −0.29*** −0.35** −0.90*** −0.89** −1.02*** −0.49*** −0.039 −0.057 0.0071 1.03***

[−0.06] [−0.69] [−3.68] [−2.57] [−2.79] [−2.12] [−4.23] [−2.85] [−0.31] [−0.69] [0.19] [4.06]

2 0.19 0.099 −0.12 −0.17 −0.63*** −0.82*** −0.65*** −0.13 0.047 0.032 0.071 0.72***

[1.31] [1.55] [−1.18] [−1.32] [−3.65] [−3.08] [−3.86] [−1.18] [0.43] [0.32] [0.87] [3.41]

3 0.10 0.23** 0.15 0.11 −0.45*** −0.55** −0.32** 0.11 0.12* 0.064 0.17* 0.48***

[0.92] [2.07] [1.64] [1.03] [−2.73] [−2.45] [−2.60] [1.00] [1.77] [0.72] [1.83] [2.91]

4 0.47*** 0.50*** 0.45*** 0.13 −0.14 −0.61*** −0.035 0.40*** 0.42*** 0.38*** 0.23** 0.26

[4.84] [5.30] [3.76] [1.09] [−1.02] [−3.57] [−0.16] [3.18] [3.56] [3.89] [2.31] [0.96]

High 0.75*** 0.77*** 0.50*** 0.43*** 0.30** −0.45* 0.33* 0.77*** 0.65*** 0.56*** 0.46*** 0.13

[3.78] [5.70] [3.14] [3.43] [2.25] [−1.88] [1.78] [4.05] [4.62] [3.65] [2.80] [0.51]

Portfolios of book-to-market ratio Portfolios of past return (R(−12,−2))

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
I
L
M

V

Low −0.12 −0.31*** −0.33** −0.38*** −0.46** −0.34 −0.99*** −0.11 −0.14** 0.048 −0.40** 0.59

[−0.64] [−2.78] [−2.59] [−3.07] [−2.27] [−1.18] [−3.05] [−1.00] [−2.10] [0.40] [−1.99] [1.40]

2 −0.12 −0.022 −0.064 −0.28** −0.13 −0.0098 −0.66*** 0.072 0.20* −0.049 −0.19 0.48

[−0.98] [−0.23] [−0.66] [−2.23] [−0.87] [−0.04] [−3.48] [0.62] [1.93] [−0.45] [−1.14] [1.55]

3 0.085 −0.053 0.040 −0.043 0.11 0.024 −0.24 0.14 0.045 0.21* −0.014 0.23

[0.52] [−0.50] [0.45] [−0.39] [0.98] [0.11] [−1.33] [1.09] [0.48] [1.90] [−0.08] [0.72]

4 0.44*** 0.10 0.15 0.38*** 0.33** −0.11 −0.11 0.11 0.47*** 0.54*** 0.40*** 0.51**

[2.69] [0.97] [1.29] [3.21] [2.37] [−0.52] [−0.65] [0.82] [4.09] [4.53] [3.57] [2.29]

High 0.21 0.30** 0.58*** 0.86*** 0.80*** 0.58** −0.070 0.59*** 0.88*** 0.73*** 0.63*** 0.70***

[1.43] [2.34] [3.54] [5.21] [4.54] [2.49] [−0.42] [4.23] [6.60] [4.98] [4.46] [3.69]
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H Three-month ILM s and Expected Returns

This section establishes the robustness of our main asset pricing findings to constructing liquidity

measures over rolling 3-month windows. We first uncover results similar to those in Table 8 using

liquidity measures constructed over rolling 3-month windows. Specifically, LIQj,m−2 averages daily

stock j’s observations from month m − 4 through m − 2. Table H.1 reports that, with a $2

minimum price requirement, ILMT and ILMV explain the cross-section of stock returns in month

m, unlike other liquidity measures. Sample standard deviations for ILMT and ILMV are 0.176 and

0.195, respectively. Thus, a one standard deviation increase in ILMT is associated with estimated

monthly liquidity premium of 0.176× 1.45% = 0.255%, or 3.06% per year. Similarly, the liquidity

premium associated with a one standard deviation increase in ILMV is 0.195× 1.60 = 0.312% per

month or 3.74% per year.

Table H.1. Liquidity and the Cross-Section of Expected Stock Returns: 3-month ILMs. This table reports on
the relation between an array of high-frequency liquidity measures and the cross-section of expected stock returns. Equation (2)
is estimated using liquidity measures (LIQj,m−2) constructed over 3-month horizons. Control variables include three Fama-
French betas (βmkt

j,m−1, βhml
j,m−1, βsmb

j,m−1), estimated using weekly observations from the two-year period ending in the final

full week of month m − 1, book-to-market ratio (BMj,m−1), natural log of market capitalization (ln(Mcapj,m−1)), dividend
yield (DYDj,m−1), defined as total dividends over the past 12 months divided by the share price at the end of month m − 1,
idiosyncratic volatility (IdVolj,m−1), previous month’s return (RET(−1)), and preceding return from the prior 11 months
(RET(−12,−2)). Estimates are from Fama-MacBeth regressions featuring Newey-West corrected standard errors with 6 lags.
The sample includes NMS common shares from January 2010 to December 2019, excluding stocks whose previous month-end’s
closing price is below $2. The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the
1%, 5%, and 10% level, respectively.

InPrIm QSP ShrDepth EFSP RESP PIMP Lambda AMVST ROLL ILLIQ ILLIQ OC BBD WBBD ILMT ILMV

Constant 1.47 0.70 0.71 0.68 0.75 0.71 1.53* 0.96 1.53* 0.92 0.90 1.51* 1.51* −1.62 −2.40
[1.17] [0.76] [0.79] [0.73] [0.84] [0.79] [1.71] [1.12] [1.70] [1.06] [1.00] [1.73] [1.75] [−1.17] [−1.58]

Liquidity 0.060 0.042 −0.00 0.11 −0.095 0.091 −0.18** −0.038 −10.8*** −0.041 −0.057 −0.13 −0.19 1.45*** 1.60***
[1.28] [0.34] [−1.07] [0.64] [−0.77] [0.72] [−2.13] [−0.37] [−4.26] [−1.25] [−0.65] [−0.88] [−0.72] [2.95] [3.26]

βmkt −0.039 −0.21 −0.21 −0.21 −0.22 −0.21 −0.23 −0.18 −0.18 −0.22 −0.22 −0.24 −0.24 −0.12 −0.082
[−0.11] [−1.04] [−1.04] [−1.03] [−1.05] [−1.04] [−1.08] [−0.89] [−0.86] [−1.05] [−1.06] [−1.00] [−0.99] [−0.62] [−0.44]

βhml −0.10 −0.13 −0.13 −0.13 −0.13 −0.13 −0.13 −0.12 −0.12 −0.13 −0.13 −0.10 −0.10 −0.14 −0.16
[−0.69] [−1.07] [−1.06] [−1.07] [−1.06] [−1.06] [−1.05] [−0.97] [−1.03] [−1.06] [−1.06] [−0.72] [−0.73] [−1.19] [−1.27]

βsmb 0.12 0.039 0.037 0.039 0.034 0.036 0.015 0.048 0.044 0.023 0.024 0.022 0.022 0.080 0.093
[1.27] [0.53] [0.50] [0.53] [0.47] [0.49] [0.20] [0.65] [0.60] [0.31] [0.32] [0.25] [0.25] [1.12] [1.31]

BM 0.19 −0.026 −0.026 −0.026 −0.027 −0.027 −0.025 0.00040 0.0057 −0.0095 −0.0100 0.026 0.027 −0.029 −0.027
[1.43] [−0.54] [−0.53] [−0.53] [−0.56] [−0.56] [−0.45] [0.01] [0.12] [−0.19] [−0.20] [0.32] [0.33] [−0.59] [−0.55]

ln(Mcap) 0.0010 0.036 0.036 0.037 0.034 0.036 −0.00043 0.023 −0.00017 0.026 0.027 0.0028 0.0028 0.12** 0.15**
[0.02] [0.96] [0.99] [0.98] [0.93] [0.98] [−0.01] [0.65] [−0.00] [0.74] [0.74] [0.08] [0.08] [2.24] [2.54]

DYD 0.34 −0.096 −0.099 −0.091 −0.10 −0.10 −0.034 −0.067 −0.092 −0.065 −0.084 0.12 0.12 −0.14 −0.14
[0.31] [−0.17] [−0.17] [−0.16] [−0.18] [−0.18] [−0.06] [−0.12] [−0.16] [−0.11] [−0.15] [0.18] [0.18] [−0.26] [−0.25]

Id. Vol. −0.16** −0.23*** −0.23*** −0.23*** −0.23*** −0.23*** −0.22*** −0.23*** −0.22*** −0.23*** −0.23*** −0.22*** −0.23*** −0.21*** −0.20***
[−2.57] [−4.66] [−4.68] [−4.66] [−4.64] [−4.65] [−4.43] [−4.73] [−4.47] [−4.51] [−4.37] [−3.82] [−3.82] [−4.44] [−4.31]

RET−1 −0.84 −0.33 −0.34 −0.34 −0.33 −0.32 −0.29 −0.34 −0.38 −0.35 −0.34 −0.43 −0.43 −0.41 −0.46
[−1.16] [−0.69] [−0.70] [−0.70] [−0.68] [−0.67] [−0.61] [−0.71] [−0.80] [−0.72] [−0.70] [−0.80] [−0.80] [−0.86] [−0.96]

RET(−12,−2) 0.37* 0.21 0.21 0.21 0.21 0.21 0.18 0.21 0.21 0.21 0.21 0.21 0.21 0.28* 0.29*

[1.96] [1.35] [1.34] [1.35] [1.35] [1.35] [1.12] [1.39] [1.35] [1.35] [1.30] [1.07] [1.07] [1.71] [1.81]

Observations 131,828† 327,842 327,842 327,842 327,842 327,842 332,943 337,181 337,185 334,134†† 334,134†† 271,641††† 271,641††† 327,842 327,842
† The number of observations reflects the largest sample available in ANcerno data from 2010–2014.
†† The number of observations reflects the largest sample available for ILLIQ and ILLIQ OC.
††† The number of observations reflects the largest sample available for BBD and WBBD from 2010–2017.
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Second, we present results from various robustness tests when our institutional liquidity mea-

sures are constructed over 3-month rolling windows. Table H.2 reports results similar to those in

Table 9 using ILMs constructed over 3-month rolling windows. While our conclusions otherwise

remain unchanged, the ILM coefficients in value-weighted regressions do become insignificant.

Table H.2. The Cross-Section of Expected Stock Returns and ILM : Robustness Tests. This table reports on the
robustness of the relation between between our institutional liquidity measures and the cross-section of expected stock returns.
Equation (2) is estimated using institutional liquidity measures (LIQj,m−2) constructed over 3-month horizons. Control
variables include three-factor Fama-French betas (βmkt

j,m−1, β
hml
j,m−1, β

smb
j,m−1), estimated using weekly observations from the two-

year period ending in the final full week of month m− 1, book-to-market ratio (BMj,m−1), natural log of market capitalization
(ln(Mcapj,m−1)), dividend yield (DYDj,m−1), defined as total dividends over the past 12 months divided by the share price
at the end of month m − 1, idiosyncratic volatility (IdVolj,m−1), previous month’s return (RET(−1)), and preceding return
from the prior 11 months (RET(−12,−2)). Panel A reports on the robustness of the results to (1) estimating coefficients using
panel regressions with date and stock fixed effects and date-stock double-clustered standard errors, (2) weighting observations
(by size or according to Asparouhova et al. 2010) to correct for microstructure noise, (3) excluding firms with the smallest
20% market capitalization, (4) excluding stocks in the bottom 10% of the ratio of sub-penny volume in total volume; and
(5) excluding stocks in the top or bottom 10% of the respective ILM . Stocks whose previous month-end’s closing price is
below pmin ∈ {$1, $2, $5} are excluded. Panel B reports on the robustness of the estimates in equation (2) to listing exchange.
Observations are weighted according to Asparouhova et al. (2010) after excluding stocks whose previous month-end’s closing
price is below $1 and stocks falling in the bottom 10% of the ratio of sub-penny volume in total volume. Estimates are from
Fama-MacBeth regressions that have Newey-West corrected standard errors with 6 lags. The sample includes NMS common
shares from January 2010 to December 2019. The numbers in brackets are t-statistics with ***, **, and * identifying statistical
significance at the 1%, 5%, and 10% level, respectively.

Panel A: Robustness to estimation method and sample selection

Robustness specification
ILMT ILMV

Price > $1 Price > $2 Price > $5 Price > $1 Price > $2 Price > $5

Panel regressions + stock & date FEs 1.77** 1.56** 0.61 2.24*** 1.89*** 1.04*
+ double-clustered S.E. [2.45] [2.24] [0.90] [3.33] [2.99] [1.78]

Asparouhova et al. (2010)
1.54*** 1.43*** 0.85* 1.74*** 1.57*** 1.14**
[2.77] [2.77] [1.96] [3.10] [3.00] [2.60]

Asparouhova et al. (2010) 1.21** 1.15** 0.83* 1.43*** 1.36*** 1.10**
+ top 80% market capitalization [2.46] [2.40] [1.87] [2.76] [2.77] [2.50]

Asparouhova et al. (2010) 1.68*** 1.62*** 1.07** 1.90*** 1.77*** 1.37***
+ low sub-penny volume stocks excluded [2.96] [3.02] [2.40] [3.32] [3.28] [3.03]

Size-weighted estimation
1.16 1.18 1.20 0.24 0.24 0.22
[1.52] [1.54] [1.51] [0.39] [0.38] [0.34]

Stocks in top and bottom 3.22*** 2.86*** 2.03*** 2.35*** 2.21*** 1.88***
10% of ILM excluded [3.51] [3.78] [3.32] [3.18] [3.32] [3.38]

Panel B: Robustness to estimation by listing exchange

NYSE/AMEX NASDAQ NYSE/AMEX NASDAQ

Asparouhova et al. (2010) 0.81 1.48** 1.35** 1.61***
+ Price > $1 [1.35] [2.45] [2.13] [2.81]

Asparouhova et al. (2010) + Price > $1 1.04 1.57** 1.59** 1.71***
+ low sub-penny volume stocks excluded [1.65] [2.58] [2.43] [2.97]

Third, we report three-factor alphas for long-short trading strategies conditional on ILMs

constructed over 3-month (m− 4 to m− 2) rolling windows. Table H.3 presents results similar to
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those in Table 10. Panel A reports that equal-weighed long-short strategies conditional on 3-month

ILMs are associated with monthly three-factor alphas that range from 0.82% to 1.1% depending on

minimum share price requirements of $1, $2, and $5. Panel B reports three-factor alphas from long-

short strategies based on value-weighted returns calculated after removing stocks with the smallest

20% market capitalization. Alphas range from 0.29% to 0.63% per month, which correspond to

annualized three-factor alphas of 3.48% and 7.56%. These results confirm the robustness of liquidity

premia to constructing ILMs over 3-month rolling windows.

Tables H.4 and H.5 demonstrate the robustness of our double-sort results to the use of ILMs

constructed over 3-month (m − 4 to m − 2) rolling windows. We find significant liquidity premia

in all subsamples (quintiles) of stock characteristics. In contrast, the momentum anomaly becomes

insignificant after controlling for institutional liquidity. The value premium is also more salient

among less liquid stocks.
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Table H.3. ILM Liquidity Alphas: CRSP and NYSE Breakpoints, Equal- and Value-Weighted Returns. This table presents three-factor alphas conditional
on ILM . Panels A, B, and C report results based on NMS-listed common shares using CRSP breakpoints and equally-weighted portfolio returns. Panels D, E, F report results
based on NMS-listed common shares, after first removing stocks with the smallest 20% market capitalization in the prior month, using NYSE breakpoints and value-weighted
portfolio returns. Stocks in each monthly cross-section are sorted into ten portfolios (deciles) conditional on one ILM . Monthly portfolio returns are averages of monthly stock
returns in the portfolio. The time-series features 116 months. The time-series of returns for each portfolio (after subtracting the 1-month Treasury-bill rate) including the
long-short portfolio are then regressed on the Fama-French three factors. The resulting intercepts are three-factor alphas. The sample period is from January 2010 to December
2019, excluding stock’s whose previous month-end’s closing price is below pmin ∈ {$1, $2, $5}. The numbers in brackets are t-statistics with ***, **, and * identifying statistical
significance at the 1%, 5%, and 10% level, respectively.

Panel A: CRSP breakpoints, $1 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.61*** −0.43*** −0.34*** −0.24*** −0.15 −0.054 0.020 0.22** 0.33** 0.57*** 1.18***

[−3.68] [−5.13] [−3.31] [−2.67] [−1.51] [−0.57] [0.24] [2.14] [2.57] [4.02] [4.79]

ILMV −0.32** −0.37*** −0.21** −0.20** −0.13 −0.25* −0.15 0.093 0.28* 0.58*** 0.90***

[−2.34] [−3.80] [−2.60] [−2.22] [−1.18] [−1.91] [−1.21] [0.79] [1.96] [4.11] [3.97]

Panel B: CRSP breakpoints, $2 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.54*** −0.38*** −0.32*** −0.17* −0.058 0.012 0.033 0.31*** 0.27** 0.54*** 1.09***

[−3.49] [−4.78] [−3.59] [−1.92] [−0.65] [0.16] [0.49] [3.05] [2.53] [3.94] [4.41]

ILMV −0.30** −0.35*** −0.23*** −0.11 −0.041 −0.14 −0.032 0.073 0.29** 0.55*** 0.86***

[−2.27] [−4.05] [−2.74] [−1.55] [−0.53] [−1.33] [−0.37] [0.67] [2.18] [4.23] [3.94]

Panel C: CRSP breakpoints, $5 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.45*** −0.26*** −0.15* −0.068 0.025 0.11* 0.15** 0.37*** 0.40*** 0.64*** 1.09***

[−3.23] [−3.59] [−1.77] [−0.71] [0.36] [1.68] [2.16] [3.71] [4.02] [5.20] [4.74]

ILMV −0.28** −0.24*** −0.17** −0.032 0.073 0.11 0.075 0.22** 0.42*** 0.61*** 0.89***

[−2.19] [−2.83] [−2.48] [−0.39] [0.96] [1.33] [1.04] [2.25] [3.75] [5.02] [4.24]

Continued on next page
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Table H.3 – continued from previous page

Panel D: NYSE breakpoints, largest 80% market capitalization, $1 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.15*** 0.088 0.16* 0.085 0.11 0.26** 0.13 0.19 0.23** 0.48*** 0.63***

[−2.72] [1.08] [1.81] [1.00] [1.05] [2.31] [1.15] [1.59] [2.59] [4.14] [5.06]

ILMV −0.078 −0.0055 0.061 0.17** 0.067 0.063 0.24*** 0.32*** 0.33*** 0.29** 0.37***

[−1.39] [−0.07] [0.90] [2.01] [0.74] [0.64] [3.79] [5.13] [2.74] [2.07] [2.62]

Panel E: NYSE breakpoints, largest 80% market capitalization, $2 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.16*** 0.10 0.16* 0.070 0.11 0.30** 0.12 0.20* 0.25*** 0.46*** 0.62***

[−2.86] [1.31] [1.85] [0.83] [0.97] [2.57] [1.11] [1.77] [2.71] [3.97] [4.95]

ILMV −0.076 −0.017 0.064 0.19** 0.057 0.071 0.24*** 0.34*** 0.34*** 0.27* 0.34**

[−1.33] [−0.20] [0.97] [2.23] [0.65] [0.76] [3.57] [5.67] [3.03] [1.87] [2.44]

Panel F: NYSE breakpoints, largest 80% market capitalization, $5 minimum share price

Liquidity portfolios

1 2 3 4 5 6 7 8 9 10 10 − 1

ILMT −0.15*** 0.098 0.13* 0.080 0.095 0.28** 0.15 0.14 0.36*** 0.44*** 0.58***

[−2.66] [1.31] [1.68] [0.96] [0.90] [2.61] [1.37] [0.99] [2.92] [4.39] [5.23]

ILMV −0.065 −0.039 0.073 0.18** 0.092 0.065 0.25*** 0.33*** 0.31*** 0.30** 0.36**

[−1.14] [−0.46] [1.08] [2.18] [0.98] [0.70] [3.27] [4.64] [2.86] [2.02] [2.54]
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Table H.4. Liquidity Alphas: Stock Characteristic and ILM Double-Sorts. This table presents three-factor alphas to ILM using CRSP breakpoints for stock
characteristic quintiles. Stocks are sorted into quintiles of characteristic X ∈ {βmkt,Mcap, RET(−12,−2),BM, SPVS}. Within each quintile of characteristic X, stocks are
further sorted into quintiles of LIQ ∈ {ILMT, ILMV }. Monthly 5× 5 portfolio returns are equally-weighted averages of monthly stock returns in the portfolio. The time-series
of returns for each portfolio (net of 1-month Treasury-bill rate) including the long-short portfolio are then regressed on the Fama-French three factors. The resulting intercepts
are three-factor alphas. The sample includes NMS common shares from January 2010 to December 2019, excluding stocks whose previous month-end’s closing price is below
$5. The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10% level, respectively.

Panel A: Sequential double sorts on market beta and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
m
a
rk
et

b
et
a

Low 0.075 0.15 0.34** 0.67*** 0.75*** 0.68*** −0.054 0.088 0.50*** 0.68*** 0.77*** 0.83***

[0.42] [0.97] [2.33] [4.95] [4.31] [2.88] [−0.32] [0.61] [4.24] [4.82] [4.25] [3.55]

2 0.056 0.34*** 0.50*** 0.48*** 0.52*** 0.46*** 0.14 0.34** 0.43*** 0.44*** 0.55*** 0.41**

[0.57] [2.87] [5.06] [4.03] [4.17] [3.04] [1.30] [2.60] [4.60] [3.98] [4.23] [2.49]

3 −0.11 −0.023 0.23** 0.33*** 0.34*** 0.45*** −0.18** 0.042 0.15 0.36*** 0.39*** 0.57***

[−1.62] [−0.26] [2.29] [3.88] [3.32] [3.43] [−2.42] [0.41] [1.33] [4.82] [3.43] [3.81]

4 −0.17* −0.19* 0.0089 −0.089 0.13 0.30 −0.31*** −0.19* −0.059 0.096 0.14 0.45***

[−1.80] [−1.80] [0.09] [−0.86] [0.70] [1.48] [−2.83] [−1.80] [−0.44] [0.86] [0.95] [2.97]

High −0.78*** −0.45** −0.41** −0.40** −0.23 0.56* −0.85*** −0.54*** −0.27 −0.48*** −0.14 0.71***

[−2.75] [−2.22] [−2.24] [−2.51] [−1.25] [1.78] [−3.10] [−2.80] [−1.52] [−2.70] [−0.85] [2.66]

Panel B: Sequential double sorts on market capitalization and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
m
a
rk
et

ca
p
it
a
li
za

ti
o
n Low −0.70*** −0.20 0.49*** 0.65*** 0.65*** 1.35*** −0.93*** 0.11 0.36** 0.65*** 0.69*** 1.62***

[−3.31] [−0.89] [3.80] [4.64] [3.39] [4.83] [−3.98] [0.47] [2.61] [4.66] [3.72] [5.71]

2 −0.69*** −0.018 0.23* 0.54*** 0.50*** 1.19*** −0.79*** −0.064 0.31*** 0.53*** 0.56*** 1.34***

[−3.72] [−0.16] [1.86] [4.39] [2.80] [4.47] [−3.82] [−0.59] [2.71] [4.05] [3.11] [4.63]

3 −0.33** 0.13 0.19** 0.18** 0.35*** 0.68*** −0.44*** 0.11 0.17 0.31*** 0.36*** 0.79***

[−2.36] [1.23] [2.08] [2.09] [3.01] [3.81] [−3.00] [1.11] [1.60] [2.93] [3.12] [3.99]

4 −0.37* −0.18* 0.011 0.13* 0.23** 0.60** −0.52** −0.093 0.013 0.17* 0.26*** 0.77***

[−1.75] [−1.93] [0.10] [1.92] [2.52] [2.62] [−2.36] [−0.80] [0.16] [1.94] [3.24] [3.30]

High −0.26** −0.00081 0.021 0.17** 0.27*** 0.53*** −0.17 −0.041 0.017 0.19** 0.21** 0.38***

[−2.48] [−0.01] [0.29] [2.18] [4.21] [4.34] [−1.27] [−0.57] [0.21] [2.27] [2.19] [2.94]

Continued on next page
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Table H.4 – continued from previous page

Panel C: Sequential double sorts on book-to-market ratio and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
b
o
o
k
-t
o
-m

a
rk
et

ra
ti
o Low −0.14 −0.21* 0.040 0.17 0.20 0.34 −0.33* −0.21* 0.13 0.26* 0.21 0.54**

[−0.92] [−1.75] [0.34] [0.99] [0.97] [1.45] [−1.70] [−1.80] [1.16] [1.66] [1.06] [2.44]

2 −0.25* −0.25** 0.020 0.13 0.13 0.38* −0.37*** −0.17* −0.0020 0.059 0.26 0.63***

[−1.85] [−2.48] [0.20] [1.09] [0.74] [1.68] [−2.75] [−1.74] [−0.01] [0.54] [1.63] [2.92]

3 −0.22* −0.047 0.071 0.028 0.12 0.34* −0.23* −0.11 0.063 0.035 0.20* 0.43**

[−1.97] [−0.45] [0.93] [0.23] [0.94] [1.71] [−1.73] [−0.91] [0.87] [0.27] [1.68] [2.03]

4 −0.29** −0.040 0.13 0.36*** 0.72*** 1.01*** −0.36*** −0.12 0.19* 0.41*** 0.77*** 1.13***

[−2.19] [−0.34] [0.93] [2.87] [4.82] [4.35] [−2.68] [−0.87] [1.77] [3.12] [4.88] [4.47]

High −0.36** 0.037 0.22 0.58*** 0.81*** 1.17*** −0.48** 0.074 0.25* 0.61*** 0.82*** 1.29***

[−2.00] [0.21] [1.28] [3.63] [5.07] [4.00] [−2.19] [0.45] [1.70] [4.19] [5.44] [4.06]

Panel D: Sequential double sorts on past 11-month return and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
p
a
st

re
tu

rn

Low −0.99*** −0.48** −0.072 −0.20 −0.069 0.92*** −0.92*** −0.65*** −0.25 0.065 −0.071 0.84**

[−3.57] [−2.05] [−0.32] [−1.18] [−0.37] [2.66] [−2.85] [−3.11] [−1.23] [0.35] [−0.44] [2.30]

2 −0.11 −0.037 0.17 0.27** 0.50*** 0.61*** −0.13 −0.022 0.11 0.34** 0.51*** 0.64***

[−0.88] [−0.31] [1.39] [2.06] [3.46] [3.08] [−0.89] [−0.17] [0.91] [2.57] [3.52] [2.79]

3 −0.037 0.088 0.34*** 0.38*** 0.95*** 0.98*** −0.11 0.21* 0.19* 0.44*** 0.98*** 1.09***

[−0.49] [0.76] [3.19] [2.63] [6.65] [5.79] [−1.28] [1.86] [1.74] [3.08] [6.78] [6.65]

4 −0.046 0.15 0.16 0.27** 0.72*** 0.77*** −0.12 0.088 0.24** 0.32*** 0.73*** 0.84***

[−0.57] [1.16] [1.50] [2.37] [5.00] [4.36] [−1.27] [0.82] [1.99] [2.95] [4.90] [4.44]

High −0.34* −0.23 0.028 0.096 0.44*** 0.78*** −0.48** −0.16 −0.087 0.24 0.48*** 0.96***

[−1.68] [−1.15] [0.16] [0.55] [2.86] [3.47] [−2.03] [−0.89] [−0.52] [1.42] [3.07] [3.63]

Continued on next page
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Table H.4 – continued from previous page

Panel E: Sequential double sorts on share of sub-penny trade volume and ILM

Portfolios of ILMT Portfolios of ILMV

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
su

b
-p
en

n
y
v
o
lu
m
e Low 0.078 −0.072 0.29*** 0.12 0.46*** 0.38** 0.046 −0.0051 0.18** 0.18** 0.48*** 0.43**

[0.78] [−0.67] [3.52] [1.29] [3.62] [2.12] [0.51] [−0.05] [2.03] [2.17] [3.55] [2.26]

2 −0.011 0.041 0.22** 0.23*** 0.38*** 0.39** −0.096 0.12 0.19** 0.30*** 0.35*** 0.45***

[−0.11] [0.50] [2.57] [3.12] [3.41] [2.54] [−1.07] [1.12] [2.28] [3.66] [3.16] [2.93]

3 −0.13 −0.10 0.055 0.0026 0.54*** 0.67*** −0.11 −0.21** 0.0068 0.13 0.55*** 0.66***

[−1.29] [−1.28] [0.58] [0.02] [4.20] [4.16] [−0.88] [−2.30] [0.08] [0.97] [3.52] [3.15]

4 −0.19 −0.034 0.057 0.17 0.61*** 0.80*** −0.14 −0.13 −0.012 0.27** 0.64*** 0.78***

[−1.64] [−0.26] [0.37] [1.54] [3.51] [3.27] [−1.12] [−0.91] [−0.07] [2.33] [4.04] [3.20]

High −1.28*** −0.64*** −0.21 0.43*** 0.77*** 2.05*** −1.25*** −0.86*** −0.068 0.44*** 0.81*** 2.05***

[−5.00] [−3.82] [−0.92] [2.89] [4.18] [5.98] [−4.62] [−4.66] [−0.32] [2.75] [4.19] [5.54]
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Table H.5. Liquidity Alphas: ILM and Stock Characteristic Double-Sorts. This table presents three-factor alphas associated with ILMs and stock characteristics
using CRSP breakpoints. Stocks are sorted into quintiles of LIQ ∈ {ILMT, ILMV } constructed over three-month rolling windows. Within each LIQ quintile, stocks are
further sorted into quintiles of characteristic X ∈ {βmkt,Mcap, RET(−12,−2),BM}. Monthly 5 × 5 portfolio returns are equally-weighted averages of monthly stock returns
in the portfolio. The time-series of returns for each portfolio (after subtracting the 1-month Treasury-bill rate) including the long-short portfolio are then regressed on the
Fama-French three factors. The resulting intercepts are three-factor alphas. The sample includes NMS common shares from January 2010 to December 2019, excluding stocks
whose previous month-end’s closing price is below $5. The numbers in brackets are t-statistics with ***, **, and * identifying statistical significance at the 1%, 5%, and 10%
level, respectively.

Panel A: Sequential double sorts on ILMT3 and stock characteristics

Portfolios of beta Portfolios of market capitalization

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
I
L
M

T

Low 0.11 0.013 −0.19* −0.32** −0.79** −0.90** −0.86*** −0.25 −0.096 −0.013 0.027 0.88***

[0.94] [0.16] [−1.80] [−2.10] [−2.51] [−2.39] [−3.38] [−1.63] [−0.72] [−0.14] [0.71] [3.48]

2 0.061 −0.093 −0.19 −0.35* −0.83*** −0.89*** −0.74** −0.33 −0.26 −0.16 0.072 0.81***

[0.30] [−0.55] [−1.21] [−1.79] [−3.03] [−3.18] [−2.56] [−1.64] [−1.64] [−1.07] [0.51] [3.64]

3 0.036 0.17 −0.12 −0.38 −0.64 −0.68** −0.54 −0.35 0.10 −0.19 0.034 0.57**

[0.14] [0.75] [−0.54] [−1.36] [−1.62] [−2.36] [−1.39] [−1.37] [0.41] [−0.81] [0.15] [2.18]

4 0.016 0.30 0.085 −0.28 −0.77** −0.79*** −0.62* −0.071 0.027 0.068 −0.062 0.56**

[0.06] [1.20] [0.35] [−1.09] [−2.11] [−3.55] [−1.75] [−0.24] [0.11] [0.26] [−0.25] [2.18]

High 0.51* 0.46 0.30 0.17 −0.13 −0.64** −0.022 0.44 0.35 0.28 0.26 0.28

[1.69] [1.61] [0.99] [0.60] [−0.39] [−2.54] [−0.07] [1.30] [1.29] [0.92] [0.88] [1.14]

Portfolios of book-to-market ratio Portfolios of past return (R(−12,−2))

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
I
L
M

T

Low −0.14 −0.26** −0.26* −0.17 −0.36** −0.22 −0.77*** −0.0068 −0.052 −0.074 −0.28 0.50

[−0.79] [−2.41] [−1.84] [−1.41] [−2.31] [−1.02] [−2.99] [−0.05] [−0.62] [−0.63] [−1.33] [1.51]

2 −0.10 −0.29 −0.35* −0.31 −0.36* −0.26 −0.79*** −0.13 0.046 −0.061 −0.48 0.31

[−0.53] [−1.60] [−1.89] [−1.52] [−1.75] [−1.31] [−3.06] [−0.68] [0.29] [−0.30] [−1.64] [0.86]

3 −0.049 −0.17 −0.17 −0.34 −0.22 −0.17 −0.54* −0.069 0.0096 −0.099 −0.25 0.28

[−0.17] [−0.78] [−0.63] [−1.09] [−0.68] [−0.81] [−1.67] [−0.29] [0.04] [−0.37] [−0.68] [0.85]

4 −0.14 −0.15 −0.20 −0.066 −0.096 0.040 −0.55* −0.13 0.099 0.044 −0.12 0.43

[−0.46] [−0.63] [−0.79] [−0.22] [−0.32] [0.21] [−1.82] [−0.54] [0.36] [0.15] [−0.39] [1.61]

High 0.034 −0.0019 0.33 0.51 0.43 0.40 −0.42 0.19 0.63** 0.53* 0.38 0.80***

[0.11] [−0.01] [1.06] [1.60] [1.13] [1.29] [−1.36] [0.63] [2.27] [1.78] [1.22] [4.68]

Continued on next page
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Table H.5 – continued from previous page

Panel B: Sequential double sorts on ILMV 3 and stock characteristics

Portfolios of beta Portfolios of market capitalization

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
I
L
M

V

Low −0.024 −0.070 −0.31*** −0.39*** −0.90*** −0.87** −1.08*** −0.55*** −0.077 −0.0088 0.011 1.09***

[−0.17] [−0.95] [−3.10] [−2.74] [−2.91] [−2.22] [−4.50] [−2.88] [−0.64] [−0.10] [0.33] [4.41]

2 0.077 0.050 −0.28* −0.50** −0.76*** −0.84*** −0.81*** −0.40* −0.18 −0.085 0.051 0.87***

[0.37] [0.30] [−1.81] [−2.54] [−2.95] [−2.96] [−3.00] [−1.92] [−1.19] [−0.54] [0.33] [3.93]

3 −0.012 0.076 −0.093 −0.20 −0.81** −0.79*** −0.70* −0.20 −0.025 −0.12 0.0046 0.70***

[−0.05] [0.32] [−0.44] [−0.66] [−2.25] [−2.85] [−1.87] [−0.73] [−0.11] [−0.52] [0.02] [3.21]

4 0.18 0.31 0.060 −0.12 −0.51 −0.69*** −0.42 0.12 0.11 0.17 −0.064 0.35

[0.69] [1.26] [0.23] [−0.44] [−1.45] [−3.66] [−1.06] [0.42] [0.46] [0.64] [−0.25] [1.21]

High 0.52* 0.43 0.24 0.21 −0.067 −0.59** 0.012 0.40 0.38 0.31 0.23 0.22

[1.73] [1.57] [0.81] [0.77] [−0.21] [−2.53] [0.03] [1.26] [1.50] [1.01] [0.77] [0.89]

Portfolios of book-to-market ratio Portfolios of past return (R(−12,−2))

Low 2 3 4 High High−Low Low 2 3 4 High High−Low

P
o
rt
fo
li
o
s
o
f
I
L
M

V

Low −0.28 −0.34*** −0.30* −0.23* −0.54*** −0.25 −1.00*** −0.061 −0.040 −0.077 −0.52** 0.49

[−1.42] [−3.09] [−1.95] [−1.76] [−2.71] [−0.88] [−3.20] [−0.47] [−0.54] [−0.63] [−2.15] [1.14]

2 0.010 −0.40** −0.26 −0.45** −0.32 −0.33* −0.81*** −0.15 −0.030 −0.11 −0.33 0.48

[0.06] [−2.33] [−1.39] [−2.33] [−1.47] [−1.70] [−3.46] [−0.79] [−0.18] [−0.57] [−1.25] [1.59]

3 0.039 −0.15 −0.23 −0.45 −0.24 −0.28 −0.62** −0.023 −0.11 −0.027 −0.26 0.36

[0.14] [−0.71] [−0.85] [−1.54] [−0.82] [−1.42] [−2.05] [−0.10] [−0.47] [−0.10] [−0.74] [1.30]

4 0.035 −0.13 −0.16 0.047 0.13 0.092 −0.24 −0.055 0.13 0.093 −0.016 0.22

[0.11] [−0.56] [−0.60] [0.15] [0.42] [0.54] [−0.76] [−0.22] [0.50] [0.32] [−0.05] [0.73]

High 0.047 0.029 0.37 0.47 0.41 0.36 −0.45 0.23 0.68** 0.50* 0.38 0.83***

[0.19] [0.12] [1.19] [1.49] [1.14] [1.41] [−1.48] [0.79] [2.47] [1.70] [1.30] [5.17]
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Abstract

Retail trading flow is segregated from non-retail flow in U.S. equities, consistent with market

segmentation. We model theoretically two methods of executing segregated retail trades: a)

broker’s routing, whereby brokers evaluate and allocate orders based on each market maker’s

aggregate performance, and b) order-by-order auctions, where market makers bid on each

individual order, a market structure recently proposed by the SEC. We find that order-by-order

auctions improve allocative efficiency among market makers, but a winner’s curse problem in the

auction can reduce retail investor welfare, particularly at times of limited liquidity. Introducing

more market participants who compete for retail orders can harm both total efficiency and

investor welfare if these new market participants have superior information compared to incumbent

wholesalers. Empirical analysis of Retail Liquidity Programs (RLP) currently offered by exchanges

shows that these programs behave similar to order-by-order auctions in our model.
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I. Introduction

Retail order flow in U.S. equities is segregated, with retail brokers routing almost all their

retail customer orders directly to market makers. These market makers assume a best execution

obligation once they receive the order, whether they privately internalize trades off-exchange, or

fill the retail orders from liquidity sourced from other sources, like exchanges or alternative trading

systems (such as “dark pools”). Retail trades are attractive to market makers, either due to lower

adverse selection, as in Battalio and Holden (2001), or due to their trades being less correlated, as

in Baldauf, Mollner, and Yueshen (2022). In both cases market makers are willing to give retail

investors better prices than the exchanges due to greater ability to segregate orders. Recently, the

SEC has proposed a change in market structure with the goal of potentially increasing competition

among market makers.1 While previous academic work has explored whether retail flow should be

segregated and its value, once segregated, the question of how retail flow should be executed is

comparatively unexplored.

We model and evaluate empirically two distinct methods of executing segregated retail trades:

broker’s routing and an order-by-order auction. Our broker’s routing model closely resembles the

current market structure, with retail brokers determining where to route each order to maximize

execution quality. While retail brokers use recent past competing market maker performance to

inform routing decisions, they do not communicate with the market maker prior to routing each

individual order. Our order-by-order auction models the SEC’s proposed Rule 615, which would

mandate auctions for retail trades Securities and Exchange Commission (2022). These auctions

would only be available for retail market orders, but any market participant could bid on each

individual order, yet no one would be required to bid on any given order.

We evaluate both models with a focus on inventory cost and competition. In our model, a

broker receives an order from a retail investor and chooses one market maker to execute the order.

Executing the order incurs (marginal) inventory costs for market makers. We assume that each

market maker i has a private liquidity signal yi, and that inventory cost is affected by both the

market maker’s private signal and the average signal of all market makers. Intuitively, each private

1In remarks before the SIFMA Annual meeting, SEC Chair Gensler stated “I’ve also sought recommendations
around how to instill greater competition for retail market orders on an order-by-order basis, through auctions. With
greater competition, more market participants would have access to these retail market orders.” Gensler (2022).
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signal can be thought of as the inventory position of market maker i, with a market maker’s

willingness to trade depending both on his private inventory and the aggregate liquidity of all

market makers. To obtain the order, market participants submit their spreads simultaneously to

the broker, and the one with the lowest bid can obtain the order. The key difference between

broker’s routing and order-by-order auctions is the market participants’ information set when they

submit their spreads. We solve the market equilibrium under both trading mechanisms and then

identify differences in welfare distribution, inventory-management, and order allocation efficiency

that arise under each of the two market structures.

In the broker’s routing setting, market makers can only observe a noisy version of their liquidity

signals when submitting their spreads. The symmetric equilibrium bid (spread) strategy is monotone

in the noisy signal, which may be different from the true liquidity signal that determines inventory

cost. The broker routes the order to the market maker who submits the lowest spread. This delivers

a highly competitive outcome–with relatively low expected market maker profits–because market

makers’ bidding strategies rely less on their signals, which are just noisy versions of their true

private liquidity signals. This closely mirrors the current system of order routing in equities, where

market makers agree to accept order flow from brokers, but there is no pre-trade communication

on individual orders. Brokers route to a market maker, and the market maker must accept the

order. In practice, evaluation of trades is done on a periodic (e.g., daily, weekly, or monthly) basis,

and market makers compete on the aggregate execution quality they deliver, rather than bidding

against each other on each individual order. This is consistent with our setting that when they

compete, they only observe noisy information about their true liquidity/shocks when receiving the

order, and the spread is less sensitive to their true liquidity cost/positions. The broker’s routing

setting delivers strong competition, but the lack of communication on any specific trade means that

a trade may be routed to a market maker who has observed high ex-post inventory cost, leading to

inefficient order allocation and inventory management.

In the order-by-order auction model, in contrast, brokers bid after observing their true liquidity

signals. This is motivated by the proposal that all retail orders have to be auctioned order

by order, and thus when market makers compete for retail orders, they already have accurate

information about the marginal inventory cost of executing the order. In the auction, market

makers’ symmetric equilibrium bid (spread) is increasing their private signals yi, and thus in
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equilibrium, the participant with the lowest realized inventory cost will always win the auction

with the most aggressive bid, leading to the first best allocative efficiency. The common-value

nature of the auction, however, creates a winner’s curse problem; whichever participant wins

the auction learns that all other participants had higher signals of cost. Consequently, market

participants bid conservatively in the auction, and thus they will earn a positive expected profit

from the auction because of the strategic concern. We show that this effect is more severe in order-

by-order auctions (compared to broker’s routing) when competition happens after market makers

observe more precious liquidity signals. This implies that when the common-value component in

the inventory cost is more important, the welfare effect from the winner’s curse is more significant,

and thus investor’s welfare is more likely to be lower under order-by-order auctions compared to

that under broker’s routing.

We then examine further the welfare comparison between order-by-order auctions and broker’s

routing. The welfare of investors can be lower in the order-by-order auction setting at times

of limited liquidity. Intuitively, market makers compete after observing their signals. When

their signals are more precise about their true liquidity signals, they are more informationally

heterogeneous, and their bidding strategies will rely more on their observed signals. Limited

liquidity leads to less pressure from auction competitors, less aggressive bids, and larger profits

for trading against retail orders. While order-by-order auctions have higher allocative efficiency

than broker’s routing, order-by-order auctions have less competition than broker’s routing.

We then extend our baseline model to include institutional traders, as a key objective of the

SEC proposal is to enable institutional traders to trade directly with retail investors in auctions.

While institutional traders can increase the number of bidders in an auction, they also have

superior information about the fundamental value of the asset. Incumbent wholesalers, who have

an inventory signal but have no information about the fundamental value, respond by bidding more

cautiously in the auction. As a result, the overall welfare of retail investors can further decline in the

switch to order-by-order auctions. Moreover, we also find an interesting market segmentation result

due to asymmetric information. When information asymmetries between institutional investors and

incumbent wholesalers are sufficiently severe, only institutional investors will effectively compete

for high-quality (low-cost) orders, while all market participants compete for low-quality (high-cost)

orders. This leads to heterogeneous impacts of switching to order-by-order auctions on orders with
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different qualities.

We then examine impacts of market design in the cross-section of liquidity. Under broker’s

routing, a broker can evaluate a wholesaler on the performance across all orders, including different

sizes, or stocks of different liquidity. This enables cross-subsidization, where wholesalers may make

losses trading small stocks, compensated by profits trading large stocks. Switching to order-by-

order auctions can substantially decrease market maker incentives to trade small stocks. As a result,

the drop in small-stock liquidity, as well as retail investor welfare, can be particularly precipitous

in smaller, less liquid stocks.

While order-by-order auctions only exist as an SEC proposal, we identify a currently-existing

close empirical analogue of Retail Liquidity Programs (RLP). Exchange RLP’s allow market participants

to provide liquidity to retail orders at will by posting hidden limit orders which are only accessible by

retail investor orders. When there is at least one round lot (100 shares) of RLP interest, exchanges

will disseminate an RPI Flag in the market data indicating the presence of RLP liquidity, though

not revealing the exact size or price of the order. If multiple participants post in an RLP, the

participant with the most aggressively priced order will have first priority for any incoming retail

market order, mirroring the potential competitiveness and allocative efficiency of an order-by-order

auction. Unlike the broker’s routing system, where market makers must accept any flow the broker

routes to them, posting limit orders in a RLP is entirely voluntary: there may be many market

participants posting limit orders, or none at all.

Five exchanges currently offer Retail Liquidity Programs. RLPs have times with high levels of

market participant interest, with at least one-sided interest quoted for 20% of the day in Russell

1000 stocks, and over 50% of the day for our sample of liquid ETFs. The trading volume executed

in RLPs, however, is small, averaging less than 0.3% of total trading volume, despite exchange

trading fees being substantially reduced for trades in the program.

Volume in RLPs is higher in stocks that are tick constrained, consistent with RLPs being

particularly effective in more liquid stocks. Volume in RLPs increases during periods of higher

volatility, while volume for off-exchange sub-penny trading decreases. Under the pecking order

theory of Menkveld, Yueshen, and Zhu (2017), RLPs would rank high in the pecking order of

venues, with market makers already sourcing liquidity from them to the extent that liquidity is

available. Order imbalances during times when the RPI Flag is active are much lower than order
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imbalances during the times when the RPI Flag is not active, providing further support for the

volatility-sensitive nature of voluntary market participant participation in RLP programs. Price

impacts of trades in RLP programs are more sensitive to volatility; when volatility is 1% higher,

exchange sub-penny trades have a price impact ten basis points higher, while off-exchange trades

have a price impact of only two basis points higher. Consistent with our model, market makers

appear to consistently provide stable execution quality, while the RLPs function like order-by-order

auctions in our model, with much more variation in outcomes.

When the RPI Flag is active, mid-quote trading is more common off-exchange as well as on-

exchange. The distribution of sub-penny trades is roughly similar, with most of the shift in volume

coming from at-quote trading switching to mid-quote trading. These mid-quote trades could come

from either retail trading or non-retail hidden liquidity trades; only sub-penny on-exchange trades

are anonymously identifiable as having a retail participant. Quoted bid-ask spreads tend to be

more stable when the retail flag is active, consistent with RLPs supplying liquidity during times

of high liquidity. When the retail flag is not active, quoted bid-ask spreads tend to be much wider

before and after trades.

The SEC notion of an order-by-order auction seeks to “instill greater competition for retail

market orders.” Under the current system of broker’s routing, each order is sent to a single market

maker with no pre-trade communication, and competition is measured by aggregate execution

quality. Switching to an order-by-order auction offers a tempting increase in allocative efficiency,

as the market participant with the most optimistic signal always wins an auction. But this comes

with a drawback, as the participant who wins by outbidding all competitors with less optimistic

signals suffers the auction winner’s curse. Participants scale back their bids, and obtain increased

welfare in the order-by-order system. Retail investor welfare can decrease in the switch to order-

by-order trading, particularly for volatile stocks and stocks with few competing liquidity providers.

II. Literature and Contribution

Several prior papers argue retail segmentation is optimal as a market design. Battalio and

Holden (2001) argue retail investors have lower adverse selection, while Baldauf et al. (2022) argue

retail investors are less correlated. Under both cases, it is optimal to segregate retail flow, but
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different mechanisms for segregating retail flow are not explored. Motivated by the recent SEC call

for order-by-order competition, our paper provides a theoretical analysis into two possible methods

of executing retail trades: the current system of broker’s routing, and a hypothetical order-by-order

system. We show that the proposed order-by-order system would potentially increase allocative

efficiency, but decreases retail investor welfare in less liquid stocks.

Several studies examine how retail participants themselves impact market liquidity. Eaton,

Green, Roseman, and Wu (2022), for example, highlight how retail traders can increase order

imbalances and volatility, while Parlour and Rajan (2003) argue segmentation decreases consumer

welfare, as it leads to a subsidization of retail limit orders. We do not explore the market vs.

limit order trade-off, but instead focus on retail marketable orders. Under the SEC vision, retail

marketable orders would primarily interact with market maker and non-market maker limit orders

through an order-by-order system similar to the current Retail Liquidity Programs. We empirically

analyze these RLP programs and find that they have low liquidity in small stocks and at volatile

times, matching our model prediction of how order-by-order systems would function.

One possible analogue to order-by-order trading exists in the option markets, where a considerable

share of volume executes in auctions. Bryzgalova, Pavlova, and Sikorskaya (2022) show that these

auctions are correlated with retail trading measures, while Ernst and Spatt (2022) present empirical

analysis of specific rules, such as a price-match guarantee and out-sized allocation, which prevent

competition in option auctions. Hendershott, Khan, and Riordan (2022) present a model and

empirical evidence that auctions in option markets are imperfectly competitive.

Several recent studies have looked at payment for order flow and segmentation. Comerton-Forde,

Malinova, and Park (2018) show that a Canadian trade-at rule which decreases retail segmentation

leads to liquidity improvements to lit markets but harms retail trade execution quality. Hu and

Murphy (2022), Jain, Mishra, O’Donoghue, and Zhao (2020), and Schwarz, Barber, Huang, Jorion,

and Odean (2022) all explore variation in execution quality among brokers. Market makers can offer

two possible forms of superior prices: PFOF (payments from market makers to brokers) and price

improvement (payments from market makers directly to retail customers). Brokers may or may not

pass on the total extent of PFOF revenue back to their customers in the form of lower commissions,

as documented in Battalio, Jennings, and Selway (2001), while Schwarz et al. (2022) and Battalio

and Jennings (2022) highlight that brokers prioritize execution quality even along dimensions not
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reflected in SEC 605 reports. In our welfare analysis, we assume that market makers compete

solely on price improvement, akin to PFOF being either zero or entirely passed through to retail

investors. Our focus is not on the revenue split of PFOF vs. price improvement, but rather what

form of market design delivers overall superior or inferior welfare to final retail investors.

Liquidity varies considerably in the cross-section of stocks. Corwin and Coughenour (2008)

argue specialists allocate attention to more liquid stocks during times of market stress, while Foley,

Liu, Malinova, Park, and Shkilko (2020) show how tying DMM assignments in large and small

stocks can lead to substantial increases in liquidity for small stocks with little to no observed harm

for large stocks. In an extension to our model, we show how broker’s routing can enable a similar

cross-subsidization, which is not possible under order-by-order auctions.

Previous studies (Bernhardt and Hughson (1997) and Biais, Martimort, and Rochet (2000))

show that market makers can earn positive profits when competing for orders. Bernhardt and

Hughson (1997) emphasize the importance of order splitting in the duopoly case, while Biais et al.

(2000) study common-value auctions where multiple market makers compete for an informed order.

In both papers, the key friction is the asymmetric information from the liquidity demand side, which

refers to informed traders. Our study also predicts that market makers will earn positive profits in

both the broker’s routing and order-by-order auction settings. However, in contrast to the previous

studies, there is no asymmetric information from the liquidity demand side in our model since

retail orders are typically uninformed. In our model, market makers receive private signals about

their inventory position, which weakens competition and ensures positive profits in equilibrium.

Additionally, we extend our study to institutional traders who can privately obtain signals about

asset quality and compete for order flows, as suggested by the SEC. We show that the additional

adverse selection on the liquidity supply side may exacerbate market inefficiency, leading to a novel

market segmentation prediction.

Our empirical analysis focuses on Retail Liquidity Programs (RLP) offered by several exchanges.

Jain, Linna, and McInish (2021) provide an overview of the NYSE Retail Liquidity Program in

2015. Five exchanges now operate RLPs, and we analyze current RLP data through the lens

of learning about potential execution quality under the SEC’s proposed order-by-order auctions.

RLPs provide a competitive process for both traditional market makers and institutional investors

to enter limit orders which offer potential price improvement to retail trades, but empirically suffer
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from the same winner’s curse problem we identify in our theoretical model.

III. Model

The model consists of only two dates, time 0 and time 1, and there is no discounting. There

are three types of market players: a (retail) investor, a broker, and N > 3 ex-ante identical market

makers indexed by i ∈ {1, 2, ...N}. Our focus is the strategic interactions among market makers,

so we abstract away from agency problems between the investor and the broker, and assume that

the broker’s objective is to maximize the investor’s welfare, which in our model is equivalent to

minimizing the spread.

At time 0, the broker receives a one unit sell order from the investor, and sends it to a market

maker to execute the order by the end of time 0.2 We assume that the retail investor is trading

only for liquidity reasons, so there is no information about asset value contained in the direction

of the order. If market maker i executes the order, it has to hold the position until time 1 which

incurs (marginal) inventory cost ζi. The structure of ζi is specified later in this section. Let si be

the half bid-ask spread offered by market maker i, then the profit that market maker i receives at

time 1 is

si − ζi.

We consider a tractable framework with linear equilibrium in the literature of common-value

auctions (Klemperer (1999), Menezes and Monteiro (2004)). At time 0, each market maker i

receives an i.i.d private liquidity shock yi. For simplicity, we assume that yi is drawn from an

uniform distribution U [−1
2 ,

1
2 ]. The inventory cost ζi has the following structure

ζi = c0 + c1
1

N

N∑
j=1

yj + c2yi,

where c0, c1 and c2 are positive constants. Since each market maker can only observe his own

liquidity shock, the inventory cost ζi is not fully observed by market maker i. The cost function

consists of three components. The first term c0 is the unconditional expected inventory cost of

2The direction of the order does not change our results.
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executing the order, which is the same for all market makers. The second term

c1
1

N

N∑
j=1

yj

represents ζi’s exposure to the aggregate liquidity shock 1
N

∑N
j=1 yj . When c1 is higher, the

inventory cost of executing the order is more sensitive to the aggregate liquidity shock. The third

term

c2yi

represents ζi’s exposure to the individual liquidity shock yi, and the coefficient c2 measures the

sensitivity. In our model, the coefficients (c0, c1, c2) are exogenous, and are determined by stock

characteristics. For example, a stock that is about to announce earnings may have a very high

c1, with market makers very concerned about aggregate inventory imbalances. In contrast, a tick-

constrained stock with low informational asymmetries may have a very low c1 value, with market

makers not very concerned about aggregate inventories.

A. Order-by-order Auction

First, we consider a hypothetical order-by-order auction mechanism. We model the order-by-

order auction as a common-value auction. In order-by-order auctions, each market maker i submits

the spread si after privately observing the realization of signal yi at time 0, and thus it can choose

its spread strategy according to its assessment of inventory cost. The broker observes spreads

offered by all market makers, and sends the order to the winner with the lowest spread at the end

of time 0. If more than one market makers submit the lowest spread, then the winner is chosen

randomly among those who submit the lowest spread. At time 1, all players collect their payoffs.

We focus on symmetric equilibria such that all market makers choose the same strategy.

Intuitively, when observing a higher signal realization yi, the inventory cost ζi tends to be larger

for market maker i, and thus it will submit a higher spread si. We conjecture (and verify later)

that there exists a linear symmetric equilibria where all market makers choose the same strategy

si (y) = s (y) where

s = k0 + k1y.
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We solve the equilibrium using the standard mechanism design approach. Heuristically, suppose

all market makers except market maker i follow the aforementioned equilibrium strategy. We

consider market maker i’s expected profit U (z, y) where y is the private signal observed by market

maker i, and

s̃ = k0 + k1z

is the spread that market maker i submits to the broker. In equilibrium, we must have

∂U (z, y)

∂z

∣∣∣∣
z=y

= 0.

The following proposition summarizes our results.

Proposition 1. In the model of order-by-order auctions, there exists a linear symmetric equilibrium

in which the spread submitted by market maker i ∈ {1, 2, ...N} is

si (yi) = k0 + k1yi,

where

k0 = c0 +
c1
4N

(
N − 1 +

2

N

)
+

c2
2N

and

k1 =
N − 1

N

(
c1
2

N + 2

N
+ c2

)
.

Proof. See Appendix.

First, as we discussed earlier, the equilibrium strategy si (yi) is increasing in yi with sensitivity

k1 =
N − 1

N

(
c1
2

N + 2

N
+ c2

)
.

This sensitivity k1 is increasing in both c1 and c2. When c1 and c2 are increasing, market maker

i’s inventory cost is more sensitive to its private signal yi. As a result, its spread si will also be

more sensitive to the private signal yi. The constant term k0 is an increasing function of all three

constants c0, c1 and c2. Intuitively, k0 is increasing in c0, as a higher expected inventory cost forces
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market makers to bid wider spreads. Furthermore, k0 is also increasing in both c1 and c2. Note that

k0 is the submitted spread when any market maker observes the average signal y = 0. When both

c1 and c2 increase, the variation of inventory cost will be larger among market makers. As a result,

the marginal cost of losing the bid from marginally increasing the spread is lower, which motivates

the market maker to choose a higher spread. Intuitively, when market makers are ex-post more

different from each other, they are consequently willing to choose a more aggressive equilibrium

strategy. The monotonicity of the equilibrium spread also implies that the winner is always the

market maker with lowest signal realization, and thus the lowest inventory cost. Order-by-order

auctions therefore achieve the first-best outcome in terms of efficient allocation of the retail order,

as the retail order is always matched to the market maker with the lowest inventory cost.

B. Broker’s routing

In this section, we consider the market equilibrium under broker’s routing. In our model, we

highlight the key difference between broker’s routing and order-by-order auctions as market makers’

different information sets when choosing spreads. Specifically, under broker’s routing, market

makers do not receive accurate signals about inventory cost when they compete. In practice, brokers

and market makers establish long-term relationships. Market-maker performance is evaluated in

the aggregate but not order-by-order, and market makers do not have a choice in when they want

to accept order flow from the broker; when a broker sends, they must fulfill the order either by

internalizing the order, or paying take fees to fill the order at the exchange. Focusing on this

key difference, we model broker’s routing by assuming that each market maker i only receives a

noisy signal about yi when submitting the spread si, and they are not able to adjust their offered

spreads ex-post. Formally speaking, there is an additional stage, time -1, at which each market

maker i receives a signal wi. The signal wi has the following structure. With probability p0,

wi = yi; and with probability 1 − p0, wi is drawn from a uniform distribution U
[
−1

2 ,
1
2

]
which is

uninformative and is independent of all other variables in the model. Each market maker i does

not know whether wi equals to yi or not, and only understands that wi = yi with probability p0.

Under broker’s routing, all market makers submit their spreads at the end of time -1.

We still focus on symmetric equilibria in this case. In the model of broker’s routing, each market

maker i only observes imperfect signal wi when they submit their spread ti(wi). Similar to our
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discussion in order-by-order auctions, we conjecture (and verify later) that there exists a linear

symmetric equilibria where all market makers choose the same strategy t(w), where

t = K0 +K1w.

We refer readers to the appendix for more details and only present the equilibrium result.

Proposition 2. In the model of broker’s routing, there exists a linear symmetric equilibrium in

which the spread submitted by market maker i ∈ {1, 2, ...N} is

t (wi) = K0 +K1wi,

where

K0 = c0 +
p0
4N2

[(
3 +N2 − p0 −Np0

)
c1 + 2Nc2

]
and

K1 =
N − 1

N

(
c2p0 +

2c1p0
N

+
c1 (N − 2) p0

2N
+

c1 (1− p0) p0
2N

)
.

Proof. See Appendix.

While we model broker’s routing as a form of auction, it can also be natural to consider quantity

competition in broker’s routing (Kyle (1985), Baldauf et al. (2022)). Our goal here is to set up

a comparable benchmark for order-by-order auctions which feature price competition, we likewise

consider price competition for the broker’s routing system.

We highlight the key difference between order-by-order auctions and broker’s routing as the

different information environment when they compete. In our model of broker’s routing, if p0 = 1,

it becomes the model of order-by-order auctions. At the other extreme when p0 = 0, market makers

are homogeneously uninformed when they submit their spreads, as they have not yet observed their

private signals. As a result, Bertrand competition obtains, and all market makers will earn zero

expected profit in equilibrium. Therefore, the unique symmetric equilibrium spread in this case

must be

ti = E (ci) = E

c0 + c1
1

N

N∑
j=1

yj + c2yi

 = c0

13



for all i ∈ {1, 2, ...N}.

Although all market makers earn a non-negative expected profit, their ex-post profit can be

positive or negative, depending on the realized inventory cost. In other words, market makers will

lose money on some trades. In contrast, the realized profit in order-by-order auctions must be

non-negative for all market makers for all trades. Second, under broker’s routing, the order will be

obtained by the market maker with lowest signal wi, who may not be the one with lowest inventory

cost as wi is just a noisy signal of yi. As a result, welfare loss incurs due to inefficient inventory

management in equilibrium. We present more detailed welfare analysis in the next subsection.

C. Welfare analysis: Order-by-order auctions vs. broker’s routing

In our model, the retail order is always executed, but inventory cost and equilibrium spreads

differ between order-by-order auctions and broker’s routing. We denote WM , WI and Wtotal as the

market makers’ expected profit, the investor’s expected profit and the total welfare, respectively:

1. The expected total profit of all market makers WM : the expected equilibrium spread minus

the incurred inventory cost;

2. The expected total profit of the retail investor WI : the expected negative equilibrium spread;

3. The total welfare Wtotal: the expected negative incurred inventory cost, which is Wtotal =

WM +WI .

Under order-by-order auctions, the market maker with the lowest signal realization executes the

order in equilibrium, so the expected total profit of all market makers is

WOBO
M = E

E

k0 + k1r − c0 − c1
1

N

N∑
j=1

yj − c2r|min
i

yi = r

 .

The investor’s expected profit is

WOBO
I = −E

{
E
[
k0 + k1r|min

i
yi = r

]}
,
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and the total welfare is

WOBO
total = E

E

−c0 − c1
1

N

N∑
j=1

yj − c2r|min
i

yi = r

 .

Total welfare is the sum of the welfare of market makers and investors: WOBO
total = WOBO

M +WOBO
I .

Based on our equilibrium results, we obtain the following Lemma.

Lemma 1. Under order-by-order auctions, the welfare outcomes of the equilibrium characterized

by Proposition 1 are

WOBO
M =

1

N + 1

( c1
N

+ c2

)
,

WOBO
I = −

[
c0 +

1

N(N + 1)
c1 −

N − 3

2(N + 1)
c2

]
,

WOBO
total = −

(
c0 −

N − 1

N + 1

c2
2

)
.

Proof. See Appendix.

Order-by-order auctions implement the first best allocation, and the total welfare is

WOBO
total = −

(
c0 −

N − 1

N + 1

c2
2

)
.

WOBO
total is decreasing in the expected inventory cost c0. Total welfare under order-by-order auctions

WOBO
total is increasing in c2, because c2 determines the variation of inventory cost among all market

makers. When c2 is higher, the expected lowest inventory cost will be lower, and thus the total

welfare is higher. WOBO
total is independent of c1, because the aggregate component

c1
1

N

N∑
j=1

yj

in the inventory cost always has zero mean. That is, aggregate contribution of the second component

in the inventory cost is always zero, no matter how large is c1.

Costs incurred from the parameter c0 are borne exclusively by the investor and do not factor

into market makers’ welfare. An increase in the aggregate liquidity parameter c1 leads to an

improvement in market makers’ welfare as each market maker’s private information becomes more
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relevant in the calculation of inventory costs, resulting in a more diverse bidding strategy. This,

in turn, leads to market makers earning a higher information rent from the auction. Since c1 has

no impact on total welfare, when c1 increases, investor welfare will decrease due to market makers

earning higher information rents. On the other hand, an increase in c2 has the same impact on

both the investor’s and market makers’ welfare. Both parties benefit from an increase in c2 as it

reduces the correlation in market makers’ inventory costs, leading to an overall improvement in

total welfare, which is shared between the investor and market makers.

Under broker’s routing, all welfare calculations are similar, except that market makers only

observe noisy signals about yi. For simplicity of exposition, we skip the intermediate steps and

only present the final results.

Lemma 2. Under broker’s routing, the welfare outcomes of the equilibrium characterized by Proposition

2 are

WBR
M =

p0 (2c1 − p0c1 +Nc2)

N (1 +N)
,

WBR
I = −

[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
,

WBR
total = WBR

M +WBR
I = −

(
c0 − p0

N − 1

N + 1

c2
2

)
.

Proof. See Appendix.

Having solved for welfare outcomes in the model of broker’s routing setting and order-by-order

auctions, we next compare welfare between the two systems in the following proposition.

Proposition 3. WBR
total < WOBO

total ; W
BR
M < WOBO

M ; WBR
I < WOBO

I if and only if c2
c1

> 2(1−p0)
N(N−3) .

Proof. See Appendix.

Proposition 3 is a direct result of Lemma 2. Note that the only aggregate welfare loss in this

setting is from inefficient inventory management. The total welfare improvement

WOBO
total −WBR

total = (1− p0)
N − 1

N + 1

c2
2
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is increasing in N and decreasing in p0. Intuitively, when the ex-ante signal is less noisy (p0 is

higher), the order is more likely to be obtained by the market maker with the lowest inventory

cost, and thus the welfare loss will be lower. The magnitude of welfare improvement also depends

on the number of market makers. When there are more maker makers, the first best allocation

will be more efficient as their inventory costs are not perfectly correlated. Order-by-order auctions

implement the first best outcome, while the outcome of broker’s routing depends on the precision of

the ex-ante signal, and is less sensitive to the number of market makers. Consequently, the welfare

improvement from broker’s routing to order-by-order auctions is higher when there are more market

makers. Lastly, the welfare improvement is also increasing in c2, as it determines the importance

of allocative efficiency gain from routing the order to the lowest-cost dealer. The broker’s routing

system, in contrast, is less sensitive to c2, as it also depends on the noise from the ex-ante signal.

Market maker profit WM is higher under order-by-order auctions, and the difference is:

WOBO
M −WBR

M =
1

N + 1

(
(1− p0)

2 c1
N

+ (1− p0)c2

)
.

The difference in market-maker welfareWOBO
M −WBR

M is increasing in c1 and c2. When c1 and c2 are

higher, the private signals that market makers observe become more important in their inventory

cost. Market makers are, effectively, more different ex-post. The ex-post heterogeneity generates

the expected positive profit they earn under order-by-order auctions. The difference WOBO
M −WBR

M

is also increasing in (1 − p0), as the precision of the noisy signal in the model of broker’s routing

determines the competitiveness of the market. When the signal is noisier, i.e., (1 − p0) is higher,

the market under broker’s routing is more competitive, resulting in a lower expected equilibrium

spread, and thus the difference in spreads under these two mechanisms will be larger.

The contrast between WBR
I and WOBO

I depends on the level of c1
c2
, reflecting the trade-off

between more efficient inventory management and higher rent earned by market makers. Since

there is a common-value component in the inventory cost, and market participants’ information is

independent, they bid conservatively in equilibrium due to the strategic concern of the winner’s

curse problem. This gives market participants positive expected profit in equilibrium, which in

turn hurts the investor’s welfare. This effect is more severe when market participants’ information
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is closer to the true liquidity signal, as verified by the following result:

∂2WBR
I

∂c1∂p0
= − 2(1− p0)

N(1 +N)
< 0.

When the parameter of the common-value component c1 increases, the investor’s welfare will

decrease. The above result shows that this effect is more severe when the precision p0 is higher.

Note that our order-by-order auction model is equivalent to the broker’s routing model when p0 = 1,

this implies that when c1 is higher, investor’s welfare is more likely to be lower under order-by-order

auctions, which is our prediction in Proposition 3.

A direct result from Proposition 3 is that switching to order-by-order auctions has heterogeneous

impacts on stocks with different inventory cost structures. Compared to small, illiquid stocks, large,

liquid stocks usually can be executed by the market makers and thus rely less on the interdealer

market.3 As a result, c2
c1

will be relatively larger for large liquid stocks and the smaller stock is

more likely to breach the threshold 2(1−p0)
N(N−3) . Order-by-order auctions are therefore more likely to

harm investor welfare in small illiquid stocks compared to large liquid stocks.

We do not directly model the endogenous entry of market makers, but our model gives implications

for how market competition and liquidity provision change welfare outcomes in partial equilibrium

analysis. Proposition 3 implies that when the number of market makers N is small, the investor’s

welfare is likely lower upon switching to order-by-order auctions. Here N measures the number

of active market makers who provide liquidity. During time periods when market makers are not

willing to provide liquidity (for example, due to market uncertainty or high inventory cost), our

model predicts that switching to order-by-order auctions will be more likely to hurt investors. If

investor protection is more important during market distress, our result highlights the unintended

negative effect of order-by-order auctions during time periods when liquidity provision is limited.

D. The role of institutional traders

In the order-by-order proposal released by the SEC, the entry of institutional traders has been

highlighted as a key feature of order-by-order auctions.4 The SEC hopes that, relative to the

3See a microfoundation of this intuition in the appendix.
4As the SEC chairman Gary Gensler mentioned, “...individual investors don’t necessarily get the best prices that

they could get if institutional investors, like pension funds, could systematically and directly compete for their orders.”
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current broker’s routing system, order-by-order auctions will allow institutional traders to increase

competition for retail trades.5 This hope, however, ignores the fact that institutional traders usually

have superior information about asset quality compared to wholesalers (eg. Glosten and Milgrom

(1985)). Allowing institutional traders to compete for retail orders may increase informational

asymmetry among bidders in order-by-order auctions, and lead to a less efficient equilibrium

outcome. In this section, we build a model to examine this extension and show that the entry

of institutional investors brings in more adverse selection, can harm market outcomes.

To extend our model to include institutional traders, we make two (minimal) changes in the

baseline model. First, apart from the N wholesalers6 who always provide market-making service,

there are N0 ≥ 2 institutional traders who can also provide liquidity only in order-by-order auctions.

This is consistent with the market design suggested in the SEC proposal, in which institutional

investors are absent in the current broker’s routing system, but can be active and provide more

competition in order-by-order auctions. We assume that institutional traders i ∈ {1, 2, ...N0} also

receive i.i.d private signals yi at time 0, which follows uniform distribution U
[
−1

2 ,
1
2

]
. The private

signal yi plays a similar role as that for wholesalers, as discussed later in the model.

Second, we consider the following (new) inventory cost structure

ζ̃i = c̃0 + c1
1

Ñ

Ñ∑
j=1

yj + c2yi, (1)

where c̃0 is a random variable that can be c0 − δc or c0 + δc
7 with equal probabilities, and Ñ is

the number of active market makers. In broker’s routing, we only have wholesalers competing for

retail orders, so Ñ = N ; and in order-by-order auctions, both wholesalers and institutional traders

can compete for retail orders, so Ñ = N + N0 in this case. Note that E (c̃0) = c0, that is, the

unconditional expectation of inventory cost remains the same in this extension.

Institutional traders have an information advantage over wholesalers. Specifically, all institutional

traders can observe the realization of c̃0 at time 0, while wholesalers only know the distribution

Gensler (2021)
5A “wholesaler is often chosen by a formula that depends on past execution quality of the wholesaler, its

relationship with the broker-dealer, and other factors. In addition, the bilateral nature of the wholesaler business
model not only restricts contemporaneous competition among wholesalers, it also restricts opportunities for other
market participants” Securities and Exchange Commission (2022).

6These are the market makers in our baseline model.
7Without loss of generality, we assume δc ≥ 0.
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of c̃0. This implies that when competing for retail orders, institutional traders can condition their

bids on the realization of c̃0, while wholesalers can only use distributional information of c̃0.
8

This information asymmetry captures the nature that institutional traders are more informed of

the characteristics of assets traded, market conditions or future price movement, and can change

wholesalers’ behavior in equilibrium due to concern about the adverse selection problem.

Let’s first consider the market equilibrium in the broker’s routing system. Since institutional

investors are absent in broker’s routing, the only difference between this extension and our baseline

model is the structure of inventory cost. The additional randomness in the inventory cost (1) has

no impact on market equilibrium, because all wholesalers are risk neutral and thus only care about

the expectation of the c̃0. Recall that E (c̃0) = c0, which is the same as in the baseline model.

Proposition 4. With inventory cost structure (1), under broker’s routing, the equilibrium bidding

strategies and welfare outcomes are the same as characterized by Proposition 2 and Lemma 2.

The market equilibrium is unchanged under broker’s routing, thus we view it as a suitable

benchmark of the (new) model with institutional traders. However, the equilibrium does change

under order-by-order auctions due to the entry of institutional traders. First, consider the case

when δc = 0, when institutional traders have no informational advantage compared to wholesalers.

In this case, the only effect is enhanced the competition in order-by-order auctions, which is a

direct result of the increased number of bidders competing for the retail order. With Proposition

1 obtained in our baseline model, to obtain the new market equilibrium, we simply replace the

number of bidders N in the baseline model with (N +No), because institutional traders are ex-ante

identical to wholesalers in this special case. The following Proposition characterizes the equilibrium

strategies.

Proposition 5. When there are N0 institutional traders and δc = 0, under order-by-order auctions,

there exists a linear symmetric equilibrium in which the spread submitted by wholesaler or institutional

trader i is

s̃i (yi) = k̃0 + k̃1yi

8We can also interpret ±δc as private information of asset quality, and keep the inventory cost structure unchanged.
This will not change our model outcomes.
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where

k̃0 = c0 +
c1

4 (N +N0)

(
N +No − 1 +

2

N +N0

)
+

c2
2 (N +N0)

and

k̃1 =
N +N0 − 1

N +N0

(
c1
2

N +N0 + 2

N +N0
+ c2

)
.

We consider the total welfare W̃OBO
total , the investor’s welfare W̃OBO

I , and wholesalers’ welfare

W̃OBO
W . Institutional traders’ welfare W̃OBO

IT satisfies

W̃OBO
IT = W̃OBO

total − W̃OBO
I − W̃OBO

W .

Denote the total welfare, the investor’s welfare, and wholesalers’ welfare under broker’s routing as

W̃BR
total, W̃

BR
I , and W̃BR

W , respectively. We then compare welfare outcomes under broker’s routing

and order-by-order auctions in this extension.

Proposition 6. When there are N0 institutional traders and δc = 0, we have the following results

on welfare comparison:

1. W̃BR
total < W̃OBO

total ;

2. W̃BR
W < W̃OBO

W if and only if N(N+1)
(N+N0)(N+N0+1) > p0 and

c2
c1

> − 1
N+N0

N(N+1)
(N+N0)(N+N0+1)

−p0
(N+N0)(2−p0)

N

N(N+1)
(N+N0)(N+N0+1)

−p0
;

3. W̃BR
I < W̃OBO

I if and only if c2
c1

>
1

(N+N0)(1+N+N0)
− p0(2−p0)

N(N+1)

N+N0−3
2(N+N0+1)

− p0(N−3)
2(N+1)

.

When institutional traders provide liquidity in order-by-order auctions but have no informational

advantage, the total welfare unambiguously improves when switching from broker’s routing to

order-by-order auctions. Since the order is always obtained by the market maker with the lowest

ex-post inventory cost under order-by-order auctions and their inventory costs are not perfectly

correlated, having institutional traders in order-by-order auctions always makes the order allocation

more efficient. The effect on investor’s welfare is ambiguous, which is higher under order-by-order

auctions if and only if c2
c1

is greater than a threshold

1
(N+N0)(1+N+N0)

− p0(2−p0)
N(N+1)

N+N0−3
2(N+N0+1) −

p0(N−3)
2(N+1)

,
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qualitatively similar to the Proposition 3 in the baseline model. If

1

(N +N0) (1 +N +N0)
− p0 (2− p0)

N (N + 1)
< 0, (2)

the threshold is always negative, and the investor’s welfare always improve under order-by-order

auctions, irrespective of the level of c2
c1
. Condition (2) concerns the number of new institutional

traders providing liquidity under order-by-order auctions. Under the joint assumption that institutional

traders have no informational advantage when they compete for retail orders (i.e., when δc = 0)

and that order-by-order auctions can attract sufficiently many institutional traders, investors

will unambiguously benefit from switching to order-by-order auctions, as the benefit of efficient

inventory management will dominate any decreases in competition. This is precisely the intuition

motivating the SEC’s proposal on order-by-order auctions, and our above results highlight the

underlying assumptions required for it to hold.

After switching to order-by-order auctions, the wholesalers’ welfare is increasing if and only

if two conditions are satisfied. First, the number of new institutional investors N0 has to be low

enough, i.e.,

N (N + 1)

(N +N0) (N +N0 + 1)
> p0.

Unconditionally, all wholesalers and institutional traders can obtain the order with equal probabilities.

When there are sufficiently many institutional investors, the wholesalers’ welfare mechanically

decreases due to the competition. When there are sufficiently many new institutional traders in

order-by-order auctions, the wholesalers will surely be worse off.

Second, c2
c1

must exceed the threshold:

c2
c1

>
− 1

N+N0

(
N

N+N0

1
N+N0+1 − p0

(1+N)
(2−p0)(N+N0)

N

)
N

N+N0

1
N+N0+1 − p0

1+N

. (3)

Note that wholesalers’ welfare unambiguously improves from broker’s routing to order-by-order

auctions in our baseline model. However, with the entry of institutional traders, the wholesalers’

welfare increases only when

c2
c1
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is sufficiently high, because the entry of new institutional traders also decreases the total welfare of

all market makers (wholesalers and institutional traders). When c2
c1

is sufficiently high, the market

makers’ inventory cost will be more heterogeneous ex-post, creating more information rent for them.

So the wholesalers’ welfare is higher under order-by-order auctions only when c2
c1

is sufficiently high.

We next consider the case when institutional investors have at least some informational advantage,

that is, when δc > 0. We still focus on symmetric linear strategies where all institutional traders

choose the same linear strategy and all wholesalers choose the same linear strategy. When δc > 0,

institutional traders can condition their bids on the realization of c̃0. Intuitively, when observing

c̃0 = c0 − δc, institutional traders will submit lower bids, and when c̃0 = c0 + δc, they will submit

higher bids. In contrast, wholesalers cannot condition their spreads on the realizations of c̃0, but

just the distributional information c0. Wholesalers are more likely to win auctions when c̃0 = c0+δc

than when c̃0 = c0 − δc, as institutional traders will bid more aggressively in the latter case. This

leads to adverse selection for wholesalers, as they are more likely to win auctions when c̃0 > E(c̃0). A

winner’s curse argument implies that wholesalers will submit more conservative bids in equilibrium.

When δc is sufficiently large, the winner’s curse concern becomes so severe, such that all wholesalers

will be completely out of competition for high-quality (low-cost) stocks, and can only obtain the

retail order when c̃0 = c0 + δc. Consequently, when c̃0 = c0 − δc, institutional traders will face no

competition from wholesalers, which can reduce retail investor welfare. The following proposition

formalizes this intuition:

Proposition 7. Let s̃− (y; δc) and s̃+ (y; δc) be two bidding strategies, where

s̃− (y; δc) = k̃−0 (δc) + k̃−1 (δc) yi

with

k̃−0 (δc) = c0 − δc +
c1
4N0

(
No − 1 +

2

N0

)
+

c2
2N0

k̃−1 (δc) =
N0 − 1

N0

(
c1
2

N0 + 2

N0
+ c2

)
,

and

b̃+ (y; δc) = k̃+0 (δc) + k̃+1 (δc) y
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with

k̃+0 (δc) = c0 + δc +
c1

4 (N +N0)

(
N +N0 − 1 +

2

N +N0

)
+

c2
2 (N +N0)

k̃+1 (δc) =
N +N0 − 1

N +N0

(
c1
2

N +N0 + 2

N +N0
+ c2

)
.

When there are N0 institutional traders, there exists a threshold δ > 0, such that when δc > δ, there

exists an equilibrium of order-by-order auctions in which

1. the wholesalers always choose bidding strategy s̃+ (y; δc);

2. institutional traders choose bidding strategy s̃+ (y; δc) when observing c0 + δc and s̃− (y; δc)

when observing c0 − δc.

The threshold δ satisfies the following condition

k̃−0 + k̃−1
1

2
< k̃+0 − k̃+1

1

2
.

This implies that when the true state is c̃0 = c0 − δc, the highest possible spread offered by

institutional traders is still lower than the lowest possible spread offered by wholesalers, and thus

wholesalers will never obtain the order in this case, irrespective of their signal realizations. When

the true state is c̃0 = c0+δc, wholesalers and institutional traders will choose the symmetric bidding

strategy b̃+ (y; δc), and thus all players will obtain the order with equal probabilities in this case.

If we interpret the random variable c̃0 as the heterogeneous quality of stocks, then in equilibrium,

institutional traders compete effectively only for retail orders of high-quality stocks, while all market

makers compete for orders of low-quality stocks. The market for low-quality stocks becomes more

competitive due to an increase in the number of bidders, while the market for high-quality stocks

may become less competitive as institutional traders are the only effective bidders. The presence

of adverse selection can weaken competition and potentially harm total welfare, as our following

proposition illustrates.

Proposition 8. When there are N0 institutional traders and δc > δ, we have the following results

on welfare comparison:

1. W̃BR
total < W̃OBO

total if and only if N0 > N0, where N0 is a constant solved in appendix by (B6);
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2. W̃BR
W < W̃OBO

W if and only if p0 <
1
2

N
N+N0

1+N
N+N0+1 and c2

c1
>

− 1
N+N0

(
1
2

N
N+N0

1
N+N0+1

− p0
(1+N)

(2−p0)(N+N0)
N

)
1
2

N
N+N0

1
N+N0+1

− p0
1+N

;

3. W̃BR
I < W̃OBO

I if and only if p0 <
1− 2

N+N0+1
− 2

N0+1

1− 4
N+1

and c2
c1

>
1

(N+N0)(N+N0+1)
+ 1

N0(N0+1)
− 2p0(2−p0)

N(1+N)

1−p0+
4p0
N+1

− 2
N+N0+1

− 2
N0+1

.

The comparison of total welfare between broker’s routing and order-by-order auctions is complicated

by the presence of adverse selection. The transition from broker’s routing to order-by-order auctions

results in an improvement in total welfare only when there is a sufficient number of institutional

traders providing liquidity. However, the absence of wholesalers can result in a decrease in market

competitiveness for high quality stocks, leading to an inefficient outcome for their trading. While

low quality stocks may experience an increase in market competitiveness, this gain may not be

enough to offset the welfare loss from the trading of high quality stocks.

In accordance with Proposition 6, the welfare effects on both investors and wholesalers are

similar. Both parties are likely to benefit from stocks with a high c2
c1
. As previously noted in our

baseline model (and appendix), stocks with a high c2
c1

tend to be large and highly liquid, leading to

welfare losses for small, illiquid stocks.9

E. Heterogeneous stocks and cross-subsidization

In our baseline model, we consider a unit order from a single stock, and the equilibrium and

welfare outcomes depend on parameters (c0, c1, c2). In this section, we extend our baseline model

to heterogeneous stocks with different characteristics (c0, c1, c2). For order-by-order auctions, this

extension is straightforward, as the stock characteristics (c0, c1, c2) is publicly observable when

market makers compete. Then the market equilibrium (spread, allocation, and welfare outcomes)

can still be captured by our baseline model. The extension, however, is less straightforward for

broker’s routing. This is because broker’s routing features the long-term relationship between

brokers and market makers, and thus the competition among market makers happens before the

order actually arrives and the order characteristics are observed. As a result, market outcomes

among heterogeneous stocks under broker’s routing will be less differentiated compared to that

under order-by-order auctions. Our model predicts that compared to order-by-order auctions,

there is less variation in equilibrium spreads among stocks under broker’s routing. Based on

9This is also in line with the concerns expressed by practitioners, who generally believe that the transition to
order-by-order auctions may negatively impact small and illiquid stocks.
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this observation, we can also highlight a cross-subsidization effect: under broker’s routing, the

equilibrium spreads of high-cost stocks are relatively low (compared to that under order-by-order

auctions), while the equilibrium spreads of low-cost stocks are relatively high. This cross-subsidization

effect implies that switching from broker’s routing to order-by-order auctions not only changes the

retail investors’ total welfare, but also changes the welfare distribution when retail investors have

different portfolio holdings.

To capture this idea, we consider a pool of orders characterized by a joint cumulative distribution

G (c0, c1, c2), and the realization of (c0, c1, c2) is independent of all other variables in the model.

For simplicity, we assume that G has full support on (0,∞)× (0,∞)× (0,∞), and is continuously

differentiable everywhere. We consider a model with the following timeline:

1. At time -1, the cumulative distribution function G (c0, c1, c2) becomes public information, and

each market maker i observes his private noisy signal wi;

2. At time 0, an order with characteristics (c0, c1, c2) is drawn from distribution G, and each

market maker i observes his private signal yi. The broker then sends the order (c0, c1, c2) to

one market maker which is determined by the allocation mechanism;

3. At time 1, all random variables are realized and all market participants collect their payoffs.

As we discussed in the baseline model, under broker’s routing, market makers compete and submit

their spreads at time -1, while under order-by-order competition, they submit their spreads at time

0. Let’s first introduce the following variables

c̄0 =

∫∫∫
c0dG (c0, c1, c2) = E(c0),

c̄1 =

∫∫∫
c1dG (c0, c1, c2) = E(c1),

c̄2 =

∫∫∫
c2dG (c0, c1, c2) = E(c2).

Under order-by-order auctions, since order characteristics (c0, c1, c2) are public, the equilibrium

and welfare outcomes are the same as characterized by Lemma 1 and Lemma 2 in our baseline

model.
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Under broker’s routing, since only distributional information G is available when market makers

compete at time -1, the equilibrium strategy will only depend on the distributional information

G but not the specific order characteristics (c0, c1, c2). The new equilibrium of broker’s routing is

characterized by the following Proposition.

Proposition 9. In the extension of heterogeneous stocks, under broker’s routing, there exists an

equilibrium in which every market maker who observes signal w chooses to submit spread

T̄ (w) = K̄0 + K̄1w

where

K̄0 = c̄0 +
p0
4N2

[(
3 +N2 − p0 −Np0

)
c̄1 + 2Nc̄2

]
and

K̄1 =
N − 1

N

(
c̄2p0 +

2c̄1p0
N

+
c̄1 (N − 2) p0

2N
+

c̄1 (1− p0) p0
2N

)
.

Since all market makers are risk neutral and the equilibrium is linear in the baseline model, we

still obtain a linear equilibrium in this extension. Consider K0 and K1 in the baseline model as

functions of (c0, c1, c2), the equilibrium strategy in this extension satisfies

T̄ (w) = E (t (w)) = E (K0 +K1w) = K̄0 + K̄1w.

Then market makers choose an average bidding strategy in this extension. Note that both K0 and

K1 are increasing functions of c0, c1 and c2, this result implies that, compared to our baseline model

results, the equilibrium spread in this extension is relatively low for stocks with high inventory cost

characteristics, and high for stocks with low inventory cost characteristics.

The welfare impacts impacts are also heterogeneous. To be specific, we consider the welfare

outcomes for any specific order with characteristics (c0, c1, c2). The following Lemma summarizes

our results.

Lemma 3. In the equilibrium characterized by Proposition 9, the investor’s welfare W̄BR
I , the total
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welfare W̄BR
total and market makers’ welfare W̄BR

M are

W̄BR
heter,I = −

[
c̄0 + p0

2 (2− p0) c̄1 − (N − 3)Nc̄2
2N (1 +N)

]
,

W̄BR
heter,total = −

(
c0 − p0

N − 1

N + 1

c2
2

)
,

W̄BR
heter,M = W̄BR

heter,total − W̄BR
heter,I

= (c̄0 − c0) +
p0

2 (N + 1)
[(N − 1) c2 − (N − 3) c̄2] + p0

(2− p0) c̄1
N (1 +N)

.

The total welfare in Lemma 3 is the same as that in the baseline model. Note that in our

model, the total welfare is only determined by inventory cost but not the equilibrium spread, as

the spread is just a transfer between market makers and the investor. Since the order is always

obtained by the market maker with the lowest signal wi, and introducing heterogeneity in stocks

does not change allocative efficiency, we conclude that the total welfare is the same as that in the

baseline model for any order (c0, c1, c2) in this extension. However, the equilibrium spread does

change. Specifically, now the investor’s welfare (which is the negative expected equilibrium spread)

becomes

−
[
c̄0 + p0

2 (2− p0) c̄1 − (N − 3)Nc̄2
2N (1 +N)

]
which only depends on the average levels (c̄0, c̄1, c̄2) but not order characteristics (c0, c1, c2). Note

that under order-by-order auctions, the investor’s welfare is

−
[
c0 +

1

N(N + 1)
c1 −

N − 3

2(N + 1)
c2

]

which depends on order characteristics (c0, c1, c2). Then investors will be worse off after switching to

order-by-order auctions if c0 is high, c1 is high, or c2 is low. This highlights our cross-subsidization

effect under broker’s routing that market makers charge low equilibrium spreads for high-cost stocks

and high equilibrium spreads for low-cost stocks. This cross-subsidization effect also implies that

switching from broker’s routing to order-by-order auctions may have unintended effects on retail

investors’ welfare distribution. For example, investors who mainly trade small, illiquid stocks with
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high average inventory cost c0 will be worse off after switching to order-by-order auctions, while

those who trade large, liquid stocks with low average inventory cost c0 will be better off.

The market maker’s welfare is

(c̄0 − c0) +
p0

2 (N + 1)
[(N − 1) c2 − (N − 3) c̄2] + p0

(2− p0) c̄1
N (1 +N)

which depends on the difference between order characteristics (c0, c1, c2) and the average levels

(c̄0, c̄1, c̄2). Under order-by-order auctions, the market maker welfare is

1

N + 1

( c1
N

+ c2

)

which is always positive. However, under broker’s routing, marker makers make more profit from

stocks with relatively low inventory cost, and incur loss from stocks with high average inventory

cost, and the welfare (or net profit) from executing a specific order may be negative. This is

consistent with our observation that under the current broker’s routing system, market makers

sometimes lose by providing liquidity for small, illiquid stocks but they can make a profit from

executing large liquid stocks. On average, they can make positive expected profit from market

making. Our result implies that, after switching to order-by-order auctions, market makers will

only submit spreads that are high enough such that they can earn a positive expected profit on

every individual order.

IV. Retail Liquidity Programs

Several exchanges have developed retail liquidity programs (RLP). These programs enable

market makers to enter hidden limit orders which improve on the NBBO but are only accessible to

retail orders. These hidden limit orders can be priced in any one-tenth of a cent increment, with

the exception of the IEX RLP which only allows pricing at the mid-quote. While the orders are

hidden, if there is more than one round lot of interest at a price which improves the NBBO, the

exchange will disseminate an indicative flag highlighting that there is a resting limit order, but it

will not indicate the price or size of the order.

Retail Liquidity Programs offer the closest existing analogue to the contemplated order-by-
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order competition system for retail orders.10 If multiple market makers place limit orders, for

example, the market maker with the best priced limit order will win any incoming retail market

order. In approving RLPs, the SEC itself has frequently highlighted the same objectives that it has

for proposing order-by-order competition, namely to increase the number of market participants

interacting with retail orders. These RLP limit orders are only accessible to incoming market

orders from retail investors, preserving the segmentation of retail investors, but also having entirely

voluntary participation: market makers may chose to stop bidding for incoming orders at any time.

We analyze RLPs as a way to gain insight into how the order-by-order system would function, and

identify similarities between our model and the current utilization of RLP programs.

A. Program Details

NYSE was the first to operate a RLP, on August 1, 2012.11 The NYSE RLP was initially

approved as a pilot and given several temporary pilot extensions until permanent approval on

February 15, 2019. Any NYSE member can submit a Retail Price Improvement Order (RPI). An

RPI order can be submitted in $0.001 increments, and must improve the best bid or offer on the

NYSE or NYSE Arca book by at least $0.001. The size and exact price of resting RPI orders are

non-displayed, but the orders do trigger indicative messages on the SIP and NYSE proprietary data

feeds indicating whether there is any RPI interest at the ask, any RPI interest at the bid, or any RPI

interest at both. Incoming marketable retail orders can trade against resting RPI orders. Incoming

retail orders will first trade against the best-priced orders; if there is a non-displayed order which

is not RPI at the mid-quote, the retail order would trade against the mid-quote interest before

trading against any RPI orders priced between the mid-point and near side. Retail marketable

orders can be set to only trade against RPI and non-displayed orders, or to trade against any RPI

and non-displayed orders and then subsequently against the displayed best quotes up to the limit

price.

10Bishop (2022) notes: “Exchanges already have ways for retail orders to be identified and treated specially by
market makers, called retail liquidity programs (RLPs). The details differ across exchanges, but they typically allow
market participants (including market makers and institutional investors) to submit orders that will interact solely
or distinctly with retail-identified orders. Such orders operate on the continuous books of the exchanges, rather than
executing via auctions. It seems that such existing mechanisms can deliver a similar benefit to retail investors through
order-by-order competition among market makers and institutional investors.”

11The introduction of the data field for the RLP led to the $400 million trading glitch at Knight Capital Group on
the first day that the new data field was active.
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The NYSE Retail Liquidity Program charges no trading fee to qualifying retail market orders.

The NYSE RLP program also pays $0.0003 credit to a Retail Liquidity Provider whenever their

RPI limit order fills a retail market order. To qualify as a Retail Liquidity Provider on the NYSE,

a firm must maintain a resting RPI order which improves the best bid or offer for at least 5% of

the trading day.

This 5% rule distinguishes the NYSE Retail Liquidity Program from those offered by NASDAQ

and BATS, with both competing programs being developed shortly after the NYSE program. The

BATS program was approved as a pilot on November 27, 2012, while the NASDAQ program

was approved as a pilot on February 15, 2013. Both programs have no requirement to provide

liquidity for a certain percentage of the trading day, and are therefore potentially more accessible

to non-market-making firms. In approving the NASDAQ RLP, the SEC notes that ”the Program

might also create a desirable opportunity for institutional investors to interact with retail order

flow that they are not able to reach currently. Today, institutional investors often do not have

the chance to interact with marketable retail orders that are executed pursuant to internalization

arrangements. Thus, by submitting RPI Orders, institutional investors may be able to reduce

their possible adverse selection costs by interacting with retail order flow” SEC (2013). The SEC

identifies the same desirable feature, that of more potential counter parties for retail trades, that

are highlighted in a potential move to order-by-order competition.

The Investors Exchange (IEX) offers a retail liquidity program whereby retail liquidity providers

can enter hidden mid-point peg limit orders which are only available to retail market orders. All

mid-point peg orders enter the same time priority queue, whether or not they are only available to

retail investors, and both have queue priority over the IEX D-limit order, which is the discretionary

limit order which takes advantage of the IEX speed bump to reprice when it detects a crumbling

quote. The IEX RLP only takes mid-point orders, and disseminates a RLP indicative flag when

there is at least one round lot of RLP interest. All eligible retail orders have no trading fees, either

for the retail broker or the retail liquidity provider.

The IEX RLP is the most recent program, first offering the RLP trading functionality on

October 1, 2019. IEX initially had no RLP indicators, but added indicators on October 13, 2021.

Unlike other retail liquidity programs, the IEX program only allows mid-quote prices. Therefore,

while the size available is hidden, an advertised RLP indicator from IEX confirms that at least 100
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shares are available at the specific price of the mid-quote. To offer RLP indicators, the program

required an approved exemption from SEC Rule 242.602, as the RPI would indicate a specific price

and a minimum quantity of shares, but would not be accessible to non-retail marketable orders.

The Members Exchange MEMX applied to create an RLP program, but was denied by the SEC

on February 14, 2022. The MEMX proposal differed from previous proposals in the determination

of price-time priority. Under the MEMX proposal, incoming retail market orders first interact with

hidden RPI orders before interacting with hidden non-RPI orders, even if the hidden non-RPI are

at the same price level and have time priority. MEMX argued that because hidden RPI orders do

contribute to the dissemination of the RPI interest indicator, they should have priority over hidden

non-RPI orders at each price level, analogous to standard practice of non-hidden orders having

priority over hidden orders at each price level. The SEC disagreed, and ruled that the change in

priority would violate Section (6)(b)(5) and Section 11A of the Exchange Act.12

B. Data and Summary Statistics

We obtain NYSE TAQ (Trade and Quote) data from January 1, 2019 to May 30, 2022. We

examine all securities in the Russell 3000 index, as well as the 100 most frequently traded ETFs,

provided these securities are priced above $1 per share. To exclude fractional shares, as documented

by Bartlett, McCrary, and O’Hara (2022), we exclude any orders for exactly 1 share, as these may

be orders for a fractional share which rounds up to 1 share.

Retail Liquidity Program (RLP) Indicators are distributed through the SIP, and are available

in TAQ Data. As indicators may be disseminated even when an exchange’s visible posted best bid

or offer (BBO) is not at the official NBBO, we obtain retail indicator flags from the TAQ Quotes

file. For each trade occurring at an exchange with an RLP, we check whether the trade occurred

with an active RPI Flag by matching the RLP quotes for that exchange using the participant

timestamp. We also construct an indicator for whether any RLP from the five different programs

is active at any point in time, and match this to both on-exchange and off-exchange trades using

the participant timestamps.

12Ironically, in the Order-by-Order proposal from the SEC, auctions would be required to give auction responses
higher priority than hidden limit orders (Securities and Exchange Commission (2022), Proposed Rule 615 Section IV
C.5.) In other words, MEMX’s RLP was denied because it proposed giving resting RPI orders priority over hidden
resting limit orders, but auctions would be required to give auction responses priority over hidden resting limit orders.
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Retail Liquidity Programs have indicative interest for a large portion of the trading day. Figure

1 plots the percentage of time, by asset, that there is at least one-sided RPI interest. ETFs often

have resting RPI orders for 50 to 75% of the trading day. For stocks of the Russell 1000, NYSE,

CBOE, and NASDAQ have resting RPI orders for over 20% of the day. For stocks of the Russell

2000, both CBOE and NASDAQ have resting RPI orders for over 20% of the day. While some of

the differences in RPI shares across assets may come from the different rules, as outlined in section

V.A, there is also a considerable listing-exchange advantage. NYSE Arca’s retail liquidity program,

for example, has RPI interest for less than 20% of the trading day for Russell 1000 or Russell 2000

stocks, but has RPI interest for over 75% of the trading day for ETFs in our sample.

Figure 1. Time Share of Retail Liquidity Programs. We plot the average time that an RPI
indicator is active, measured as percentage of time active out of the total trading day. Our sample
can be divided into three groups: stocks in the Russell 1000 index, stocks in the Russell 2000
index, and ETFs from our sample. We provide a fourth (overlapping) group, “Tick Constrained”,
comprised of any stock or ETF which meets the criteria of having a quoted bid-ask spread of one
penny at least 50% of the day for at least one-third of the days of our sample.
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While the percentage of the trading day with RPI interest is considerable, the volumes executed

through RPI programs are diminutive. Figure 2 depicts the trading volume split of trades when the

exchange’s RPI Flag is active, and the trading volume split when it is not. Sub-penny executions

are less than 1% of total trading volume at exchanges, even when the RPI Flag is active. On-

exchange mid-quote trading volume is considerably higher when the RPI Flag is active, but still

represents less than 5% of total trading volume. Furthermore, this mid-quote volume is a mixture
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of both retail interest, including from the IEX RLP which only allows retail RPI orders to be

priced at mid-quote, and non-RLP program hidden mid-quote liquidity. The vast majority of mid-

quote and sub-penny trading occurs off-exchange. When RPI Flags are active, a larger share of

off-exchange volume occurs at sub-penny or mid-quote prices. Table I presents the exact total

volumes in our sample executed when RPI programs are active, and when they are not. Note that

exchange sub-penny volume when there is no RPI Flag is small but non-zero. This sub-penny

volume when there is no RPI Flag can arise from hidden RLP liquidity of less than one round lot,

as the RPI Flag is only disseminated when there is at least one round lot of interest. Another

possible explanation for this discrepancy is inaccuracy in the timestamp-based matching of the sort

described by Schwenk-Nebbe (2021), who show that the exchange processing and dissemination of

quotes is typically several microseconds faster than that of trades.

There is a considerable discrepancy between the share of time that retail liquidity programs

have RPL flags active, and the share of trading volume which executes in RLP. Figure 3 highlights

that RPI interest is much lower in the morning, and increases throughout the day for most RLP

programs. Across each time interval, the IEX RLP is active for a notably smaller percentage of time

relative to any competing RLPs, as the IEX RLP requires orders to be placed at mid-quote, while

competitor programs only require a minimum of 10 mils of improvement relative to the NBBO.

The RLP flags also display no indication of the size available, with the flag only indicating whether

there is at least one round lot.

The total volume share of Retail Liquidity Programs is stable during our sample period. As

Panel A of Figure 4 depicts, on-exchange sub-penny retail trades are consistently less than 0.2%

of total volume for the Russell 1000 and Russell 2000 stocks in our sample. The volume share

of ETFs and tick-constrained stocks is slightly higher, at around 0.2% to 0.5% of total trading

volume. We define a stock as tick-constrained if it has a one penny bid-ask spread for at least

50% of the trading day for at least one-third of the trading days in our sample. For these stocks,

competition for a marketable order is potentially larger due to the tick constraint, with increased

interest in providing liquidity in an RLP. In Panel B of Figure 4, we plot the volume of any exchange

sub-penny or mid-quote executions while the RPI Flag is active. While this will include some non-

retail hidden liquidity, it also captures retail interest at mid-quote, which is crucial as the IEX RLP

only allows pricing retail price improvement at mid-quote. For ETFs and tick-constrained stocks,
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Table I: Summary Volumes By Each Price Increment. This table presents summary total
trading volume (in billions of dollars) in our sample for each sub-penny category of trade: at-quote,
mid-quote, and sub-penny. Panel A of Figure presents volume for exchange trades. We define an
RPI Flag as active if there is contemporaneous RLP interest at the exchange where trade occurs.
Panel B presents the volume for off-exchange trades. Note that Panel B is off-exchange trades only,
and we define the RPI Flag as active if there is contemporaneous RLP interest at any exchange
with an RLP program.
Our sample can be divided into three asset groups: stocks in the Russell 1000 index, stocks in the
Russell 2000 index, and ETFs from our sample. We provide a fourth (overlapping) asset group,
“Tick Constrained”, comprised of any stock or ETF which meets the criteria of having a quoted
bid-ask spread of one penny at least 50% of the the day for at least one-third of the days of our
sample.

Panel A: Exchange Trades

RLP Volume Percent
Asset Class Flag Mid-quote At Quote Sub-penny Mid-quote At Quote Sub-penny

ETF Active 2259 35868 414 3.2 51 0.6
ETF None 317 9160 55 0.5 13 0.1
Russell 1000 Active 3162 60890 235 1.7 32 0.1
Russell 1000 None 1933 50111 99 1.0 27 0.1
Russell 2000 Active 283 5376 13 1.5 28 0.1
Russell 2000 None 306 6012 2.6 1.6 31 0.01
TickConstrained Active 2767 40510 400 3.3 48 0.5
TickConstrained None 676 12773 67 0.8 15 0.1

Panel B: Off-Exchange Trades

RLP Volume Percent
Asset Class Flag Mid-quote At Quote Sub-penny Mid-quote At Quote Sub-penny

ETF Active 3626 9070 5751 5.2 13 8.2
ETF None 537 1909 1134 0.8 2.7 1.6
Russell 1000 Active 8638 20795 10127 4.6 11 5.4
Russell 1000 None 5895 16953 8756 3.1 9.0 4.7
Russell 2000 Active 743 2161 822 3.8 11 4.2
Russell 2000 None 723 2107 833 3.7 11 4.3
TickConstrained Active 4740 9643 6456 5.6 12 7.7
TickConstrained None 1257 3079 1869 1.5 3.7 2.2
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Figure 2. Volume Share of Venues. We plot the percentage of volume which executes either at
the quote, at the mid-quote, or at a sub-penny price for both on-exchange and off-exchange venues.
On both types of venues, a higher percentage of volume occurs at the quote when there is no RPI
Flag active, and a higher share of volume executes at sub-penny and mid-quote prices when the
RPI Flag is active.
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exchange sub-penny and mid-quote volume when the RPI Flag is active is around 0.5% to 1.0% of

trading volume. While this is a small share of total trading volume, it represents a much larger

fraction of retail-only trading volume.
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Figure 3. Intra-day Time Share. We plot the average share of time that the RPI Flag is active
throughout the trading day on January 3, 2022. For each exchange, we divide the trading day into
30-minute intervals and calculate the average across stocks of the percentage of time for which the
RPI Flag is active. One-sided liquidity is the percentage of time for which there is a quote on either
the bid, the ask, or both, and therefore includes the time for which there is two-sided liquidity (i.e.,
a flag indicating RPI interest on both the bid and ask at the same time).
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Figure 4. Volume Share of Sub-penny Retail Liquidity Programs. For each day, we plot
the share of volume which executes in a retail liquidity program, out of total volume. Our sample
can be divided into three groups: stocks in the Russell 1000 index, stocks in the Russell 2000
index, and ETFs from our sample. We provide a fourth (overlapping) group, “Tick Constrained”,
comprised of any stock or ETF which meets the criteria of having a quoted bid-ask spread of one
penny at least 50% of the day for at least one-third of the days of our sample. Panel A presents
the volume share of only exchange sub-penny executions while a RLP indicator is active, while
Panel B presents the volume share of all exchange sub-penny or mid-quote executions while a RLP
indicator is active.
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C. RLP Program Usage and Market Conditions

Under the current broker’s routing structure, market makers must accept order flow from

brokers. Market makers do have a choice in where to execute the trade, either by internalizing

the trade, or sourcing liquidity from an external venue like an exchange or dark pool. The choice

to externalize, however, is not without cost: market makers will fail to capture the spread on any

trades they externalize, must pay PFOF if the broker charges PFOF, and will have to pay any

trading fees associated with trading on an external venue. For marketable orders, these fees are

generally positive. In the model of order-by-order competition, in contrast, bidding is entirely at

will. After observing their signal, market makers can post liquidity when they desire to do so, and

may withdraw their quotes when they do not.

The current structure of exchange retail liquidity programs has this same at-will feature of

liquidity provision, with liquidity-providing participants in the program under no obligation to

guarantee execution of retail trades.13 As a result, exchange retail programs offer insight into the

potential workings of an order-by-order model, where market makers are under no obligation to

participate for all orders. While many market makers may wish to provide liquidity for orders in

large stocks during periods of low volatility, our model suggests this does not hold true for smaller

or less liquid stocks. Motivated by this reasoning, we estimate the following regression.

REGRESSION 1: For each asset i:

RPI Volume Sharei = α0 + α1Percent T ime At Minimum Spreadi + α2Market Capi

+ α3Average V olumei + ϵijkt

Results of Regression 1 are presented in Table II. We estimate volume as a percentage of total

volume, and as a percentage of total sub-penny volume. Exchange RLP volume is considerably

larger when assets spend a larger percentage of the day at the minimum bid-ask spread, is considerably

larger for larger market-cap stocks, and is considerably larger for stocks with higher average trading

volume. That small, less liquid stocks have little volume in RLP programs is consistent with the

13We note that the NYSE RLP does have a requirement that retail liquidity providers provide price-improving RPI
limit orders for at least 5% of the trading day on a certain fraction of trading days to qualify for superior trading fee
/ rebate pricing. As Figure 1 makes clear, this threshold is low compared to the percentage of time that RPI orders
are active.
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model prediction that small, less liquid stocks would struggle in the auction format.

Table II: Cross-Sectional Variation in Volume Shares. This table estimates Regression
1 with sub-penny volume, measured as a percentage of all volume, and as a percentage of sub-
penny priced volume. For stock i on date t, Percent T ime At Minimum Spreadit measures the
percentage of the trading day with a quoted bid-ask spread of one penny, V olatilityit measures the
standard deviation of 15-minute returns, Market Cap measures the market capitalization of the
stock in billions, and Average Volume measures the average trading volume in billions. Observations
are at the stock (or ETF) level for the sample of securities described in Section VB.

Dependent variable:

Percentage of Percentage of Only
All Volume Sub-penny Volume

(1) (2)

Market Cap 0.120∗∗∗ 0.926∗∗

(0.035) (0.417)

Percent Time at 0.001∗∗∗ 0.013∗∗∗

Minimum Spread (0.0001) (0.001)

Average Volume 0.041∗∗∗ 0.380∗∗∗

(0.004) (0.042)

Constant 0.058∗∗∗ 0.931∗∗∗

(0.002) (0.030)

Observations 2,590 2,590
R2 0.159 0.108

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Retail investors placing market orders may arrive at any time in the day, including during

periods of stress. Even under the generous assumption that their orders are uncorrelated with

aggregate institutional order flow, half their order flow would be in the same direction as aggregate

institutional order flow. To investigate the relationship between retail liquidity program volume and

price movements, we estimate Regression 2 with volume and price impacts, with fixed effects for each

stock and date, and present the results in Table III. We directly compare on-exchange sub-penny

trades with off-exchange sub-penny trades, as these off-exchange trades are the closest analogue

to on-exchange trades. Barardehi, Bernhardt, Da, and Warachka (2022) document, however, that

sub-penny trading may be driven not by the activity of retail investors, but the extent to which

better improvement opportunities (such as mid-quote trading) are not available.
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REGRESSION 2: For each asset i on date t:

VolumeShareit = α0 + α1Percent T ime At Minimum Spreadit + α2V olatilityit

+ α3Average V olumei + α4Absolute Intraday Returnit +X + ϵit

Retail liquidity programs offer less price improvement on average than off-exchange wholesalers.

Retail liquidity programs average an improvement of around 10% of the spread. Sub-penny off-

exchange trades offer an average improvement of roughly 20% of the spread, while Dyhrberg,

Shkilko, and Werner (2022) use SEC Rule 605 reports to estimate that wholesalers offer, on average,

price improvement of 40% of the spread. Under the pecking-order theory of Menkveld et al. (2017),

investors target low-cost-low-immediacy venues first, and if they fail to find liquidity, they access

higher-cost-higher-immediacy venues, particularly at times of market stress or volatility. Consistent

with this prediction, we find that on-exchange trading in RLP programs is very sensitive to intra-

day volatility, with larger volatility being associated with more exchange sub-penny trading. For

off-exchange trading, the opposite is true, with larger volatility associated with less off-exchange

sub-penny trading.

While the Retail Liquidity Programs are the only way that on-exchange trades can be priced in

sub-penny increments, retail trades can trade in a variety of methods, with Barber, Huang, Jorion,

Odean, and Schwarz (2022) estimating that less than 35% of retail trading takes place at sub-penny

prices. Figure 5 depicts the distribution of order sizes for on-exchange and off-exchange sub-penny

orders, as a fraction of the NBBO. While a large fraction of sub-penny trades in both venues are

odd-lot trades, a far larger share of off-exchange sub-penny trades are for a quantity of shares larger

than available at the best bid or offer. Over 2.1% of off-exchange sub-penny trades are for more

than 5 times the available shares than the respective national best bid or offer, while only 0.7% of

on-exchange sub-penny are for larger than the respective national best bid or offer.

In the economic analysis for the proposed Order-by-Order Competition Rule, the SEC argues

that orders with lower price impact are equivalent to lower adverse selection risk: ”Marketable

orders internalized by wholesalers feature lower price impacts, i.e., have lower adverse selection

risk.” Securities and Exchange Commission (2022) As one measure of adverse selection, we explore

the pattern of order imbalances for on-exchange RLP trades and off-exchange sub-penny trades,
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Table III: Panel Variation in Volume and Price Impact. This table estimates Regression
2 with sub-penny volume, expressed as a percentage of total trading volume, and price impact,
measured in basis points 30 seconds after trade. Observations are at the stock-day level. Volatility
measures the standard deviation of 15-minute price changes. Percent time at Minimum Spread
measures the percentage of time the stock spread is a single tick, while absolute intraday return
measures the absolute value of the intraday return. We include a fixed effect for each stock and
date, and cluster standard errors by stock and by date. Note that Price Impact cannot be calculated
when there is zero volume, thus Columns 4, 5, and 6 differ in the number of stock-days with zero
volume in each category.

Dependent Variable:

Volume Price Impact

Venue: Exchange Off Off Exchange Off Off
RPI Active: TRUE TRUE FALSE TRUE TRUE FALSE

(1) (2) (3) (4) (5) (6)

Percent Time At 0.001 −0.028∗∗∗ 0.027∗∗∗ 0.021 0.050 −0.072∗

Minimum Spread (0.010) (0.005) (0.009) (0.021) (0.038) (0.037)

Volatility 6.592∗∗∗ −2.464∗∗∗ −4.128∗∗∗ 9.520∗∗ 2.281∗∗∗ 1.221
(0.510) (0.261) (0.471) (4.582) (0.381) (0.745)

Absolute Intraday 1.324∗∗∗ −0.819∗∗∗ −0.505∗∗∗ −0.650 0.251 −0.162
Return (0.041) (0.034) (0.032) (0.662) (0.306) (0.127)

Observations 1,965,888 1,965,888 1,965,888 682,727 1,771,969 1,885,905
R2 0.417 0.248 0.380 0.013 0.002 0.003
Residual Std. Error 38.068 27.755 31.363 392.416 403.481 438.930

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 5. Size Distribution. We plot the distribution of order sizes, as a percentage of the
NBBO, for all sub-penny trades occurring in the stocks of our sample on January 3, 2022. We
truncate the distribution of orders at 5 times the NBBO. Of all sub-penny trades, 2.1% of all
off-exchange sub-penny trades are larger than five times the NBBO, while 0.7% of on-exchange
sub-penny trades are larger than five times the NBBO.
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depicted in Figure 6. When the retail flag is active, order imbalances are tightly clustered around a

near-zero imbalance, with as many buys arriving as sells. When the retail flag is not active, order

imbalances have a distribution with a much larger variance, with a much greater likelihood of large

positive or negative order imbalances. This is consistent with the entirely discretionary nature of

the RLPs. The SEC views the opportunity for ”institutional investors to interact with retail flow”

as desirable14, but it is important to note that institutional investors may be eager to buy from

retail investors at times, or sell to retail investors at times, but unlikely to want to stand ready to

buy or sell to retail investors at any time on demand.

We also investigate the interaction between RLP trading volume and prior or subsequent quoted

bid-ask spreads, both when the RPI Flag is active and inactive. Figure 7 presents the ratio of quoted

spreads before and after trades. We first divide trading volume into on-exchange and off-exchange

trades, and then further divide volume into sub-penny, mid-quote, and at-quote bins. For each

individual stock, we observe the quoted bid-ask spread qt+i, where i can be ±30 seconds, ±3

milliseconds, or ±1 milliseconds. We then calculate the average spread q̄t+i separately for when

14See SEC (2013).
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Figure 6. Distribution of Order Imbalances. For each stock-day observation, we calculate
the total order imbalance among trades occurring when the RPI Flag is active, and the total order
imbalance among trades occurring when the RPI Flag is not active. For stock i on date t with

flag j, imbalance is calculated as Imbalanceijt =
∑

Buyijt−
∑

Sellijt∑
Buyijt+

∑
Sellijt

. We plot the distribution of

imbalances, with the tails truncated to an imbalance of ±50%. Panel A presents the imbalance
distribution for ETFs, Panel B for stocks in the Russell 1000 Index, Panel C for stocks of the
Russell 2000 Index, and Panel D for stocks and ETFs which are tick-constrained, defined as having
at a one-penny bid-ask spread least 50% of the trading day for at least one-third of the trading
days in our sample.
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the RPI Flag is or is not active, and plot the ratio q̄i
q̄ . When the retail flag is active, off-exchange

spreads are very stable, with the same bid-ask spread before and after a trade. When the retail

flag is not active, off-exchange spreads before and after a trade tend to be around 2 to 4% wider

44



on average, for all categories of pricing. The large discrepancy in quoted spread ratios before and

after a trade provides additional suggestive evidence for the pecking order of Menkveld et al. (2017).

The discrepancy in spread ratios around the timing of on-exchange mid-quote and sub-penny trades

occur at a momentarily liquid time, when quoted spreads are narrow. In contrast with on-exchange

trading, the off-exchange trading spread ratios are far more consistent, with the quoted spread

width at the time of trades being very similar to the quoted spread width before or after the trade.
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Figure 7. Spread Ratios Around Trades. We plot the change in spreads around the timing of
a trade, separately for trades occurring when the RPI Flag is active, and trades occurring when it
is not active. For trades occurring at time t, we calculate the quoted spread qt as well as the quoted
spread qt+i occurring at a time-offset of i. We then calculate the mean quoted spreads q̄ and q̄+i,
and plot their ratio r = q̄i

q̄ . We consider time offsets of 30 seconds prior to trade, 3 milliseconds
prior to trade, 1 millisecond prior to trade, 1 millisecond after trade, 3 milliseconds after trade, and
30 seconds after trade.
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D. SEC Proposal And Current RLP Usage

The SEC’s economic analysis of the Proposed Rule 615 suggests that under the new auction

format, institutional traders would give retail traders better trade prices.15 While the SEC’s

analysis uses CAT data, the IEX RLP offers an alternative method for estimation of the interest of

institutions in trading with retail at mid-quote. The IEX RLP allows market participants to post

limit orders priced at the mid-quote which are only available to retail traders.

Figure 3 shows that the IEX RLP has, on average, any interest less than 20% of the trading

day. Furthermore, the IEX RLP has two-sided interest less than 5% of the trading day. Figure 8

plots mid-quote trading volume at IEX; total hidden mid-quote orders at IEX (both RLP-only and

traditional hidden orders) comprise around 1% to 1.5% of total U.S. equity trading volume, with

no obvious change in this volume around the time the IEX RLP is created on October 1, 2019. The

IEX RLP began distributing an indicator message when RLP volume is available on October 13,

2021. We note that of the mid-quote volume occurring at IEX, the share of mid-quote orders which

are retail orders trading with RLP liquidity is only around 0.05% to 0.10% of total U.S. equities

trading volume.16

The SEC analysis of CAT data finds that there are many institutional dark orders priced at

mid-quote during the time retail investors are active. The suggestion in the SEC economic analysis

that these institutional traders will trade with retail at mid-quote in auctions raises the question

of why these institutional traders so infrequently seek to trade with retail in the IEX RLP. One

possible explanation is that institutions are seeking other large institutions, and do not view the

value of trading with retail as worth the risk of information leakage, and switching to auctions

would not change the general economics of this calculation.17 Another possibility is that posting

15The SEC reports that “On average, 51% of the shares of individual investor marketable orders internalized by
wholesalers are executed at prices less favorable than the NBBO midpoint (Wholesaler Pct Exec Shares Worse Than
Midpoint). Out of these individual investors shares that were executed at prices less favorable than the midpoint, on
average, 75% of these shares could have hypothetically executed at a better price against the non-displayed liquidity
resting at the NBBO midpoint on exchanges and NMS Stock ATSs.” Securities and Exchange Commission (2022)

16From the TAQ data, it is impossible to determine the exact portion of orders that are retail orders in the IEX
RLP program, but we can estimate an upper and lower bound. For the upper bound, we count all mid-quote
orders which occur when the IEX retail flag is active, though some of this volume may include non-retail mid-quote
orders interacting with hidden mid-quote liquidity. For the lower bound, we measure mid-quote volume which has
a simultaneous message update for the RLP program; this measures only retail orders which consume the available
RLP liquidity (necessitating an updated RLP message), but will miss retail orders which do not consume all available
RLP liquidity and therefore send no update message.

17The switch to auctions could potentially make the information leakage problem worse. When trading at mid-
quote, no trade direction is identified. In auctions, the trade direction of the incoming retail order would be identified,

47



in the IEX RLP does not enable trading with retail at mid-quote. We investigate this claim by

looking at the distribution of trade prices as a function of the IEX RLP status.

FINRA Rule 5310 requires broker-dealers to route to the best market for a security under

prevailing market conditions. To the extent that RLPs offer improvement, wholesalers are already

required to route to them; to the extent that RLPs offer inferior price or size improvement, however,

wholesalers and brokers would be required to not route to them, provided they can obtain favorable

price improvement or size improvement off-exchange. In the proposed auctions, wholesalers could

internalize orders at mid-quote without routing to an auction. In the current market system,

wholesalers can internalize at mid-quote without routing to the IEX RLP.

We investigate whether wholesalers ever fill retail investor orders at prices worse than mid-quote

when the IEX RLP has potentially better prices available. We plot the distribution of sub-penny

prices for a single trading day in Figure 9. For both on-exchange and off-exchange trades, there is

more mid-quote volume when the IEX RPI Flag is active compared to when there is no active RPI

Flag, and there is more mid-quote volume when the flag is two-sided (interest in both buying and

interest in selling at the mid-quote) than when it is one-sided. While there are off-exchange sub-

penny fills at prices worse than mid-quote, Battalio, Jennings, Saglam, and Wu (2022) document

that many sub-penny trades are non-retail. For exchange trades, we note that there is precisely

zero activity in non-IEX Retail Liquidity Programs when the IEX RLP has two-sided liquidity.

Exchange RLP trades are guaranteed to be only retail, so the the complete absence of exchange

RLP trades is suggestive evidence that broker-dealers follow FINRA Rule 5310, and route to the

IEX RLP if there is active mid-quote interest and are unwilling to either internalize the order at

mid-quote or are unable to find an alternative source of mid-quote liquidity.

so that a mid-quote fill would indicate whether the non-retail auction bid was on the buy side or sell side.
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Figure 8. IEX Midquote Volume and Key RLP Rule Changes. The IEX Retail Liquidity
Program was introduced on October 1, 2019, with only hidden discretionary midpoint-peg orders.
On October 13, 2021, the Retail Liquidity Program changed the RLP order type to a midpoint-peg
order and began dissemination of an indicator of whether there was RLP interest. On November
22, 2021, the requirement that retail traders submit no more than 390 orders per day was lifted.
We plot total midquote volume on IEX (as a percentage of total equities trading volume) with the
solid red line. We plot midquote volume which occurs during the time that the IEX RLP is active
with the dotted green line. We plot the total midquote volume which occurs simultaneously with
an RLP message with the dashed blue line.
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Figure 9. Volume Share of Off-Exchange Sub-Penny Prices. For each possible sub-penny
price increment, we plot the volume occurring at this price increment, as a percentage share of
all volume occurring on that venue. We use data from trades occurring on January 3, 2022, and
separate trade volume into three categories: trades occurring when the IEX RLP has no interest,
trades occurring when the IEX RLP has one-sided interest, and trades occurring when the IEX
RLP has two-sided interest. Panel A presents the distribution of trades for off-exchange trades.
Panel B presents the distribution of trades for on-exchange trades. Note that on-exchange sub-
penny trades can only occur in increments of tenths of a cent.
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V. Conclusion

In the current market structure, retail brokers set up relationships with market makers, and send

individual orders to individual market makers. While market makers are evaluated on the aggregate

execution quality they deliver, there is no pre-trade communication over individual orders. The

SEC concept for order-by-order auctions would require each individual order to be exposed in a

bidding process.

Our model shows that a switch to order-by-order auctions comes with trade-offs. Allocative

efficiency is improved, as order-by-order auctions ensure that an incoming retail market order is

always routed to the market maker who has observed the lowest cost signal. Given the common-

value nature of the auction, however, there is a winner’s curse. Market makers obtain higher

profits in the auction relative to the broker’s routing system. Retail investors can be worse off in

the switch to order-by-order auctions, particularly in illiquid stocks or at times when interest in

voluntary liquidity provision is low, as market participants could opt not to provide any liquidity

in the auction.

Our model focuses on inventory cost and competition, and abstracts away from asymmetric

information. In bidding in order-by-order auctions, market makers only worry about aggregate

inventories. In practice, some market participants bidding in order-by-order auctions may be

seeking to trade directionally based on asset price information; this behavior would amplify the

winner’s curse problem in auctions. We also leave out a consideration of the trade correction and

execution guarantees that market makers provide to brokers, which order-by-order auctions would

not have.

We empirically evaluate Retail Liquidity Programs (RLPs) to gain insight into how an order-

by-order auction would function. Much like the proposed order-by-order auctions, these RLPs

allow any market participant to bid potential price improvement to incoming retail market orders.

While these RLPs offer potential price improving liquidity, this liquidity is very rarely offered in less

liquid stocks, and disappears in times of volatility. As in our theoretical model of order-by-order

auctions, observed trades in RLP programs tend to occur at times of lower volatility, on one side

of the market, and times when order imbalances are smaller.
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Appendix A. A microfoundation of inventory cost structure ζi

In our baseline model, we assume that the marginal inventory cost for market maker i to execute

a sell order is

ζi = c0 + c1
1

N

N∑
j=1

yj + c2yi.

In this section, we provide a microfoundation of this formulation, and illustrate the relations between

stock liquidity and cost parameters c0, c1 and c2.

We consider a one-period framework, with time t = 0, 1. There are N market makers labeled

by i = 1, 2..N . For any market maker i, if its total net long position is zi from time 0 to time 1,

then it incurs a total inventory cost

1

2
γz2i

during this time period, and thus the marginal cost of executing the sell order is γzi.
18 We assume

that at the beginning of time 0, each market maker i’s net long position is yi. The sell order is

then assigned to one of the N market makers according to a trading mechanism (broker’s routing

or order-by-order auctions). If market maker i obtains the sell order, it has to execute the order

by internalizing it, routing it to other market makers (inter-dealer market), or sending it to the

exchange. Right after market maker i receives the sell order, with probability α ∈ (0, 1), an

inventory shock arrives, the market maker can not internalize the order, and has to either send the

order to the exchange or execute it through the inter-dealer market. With probability η, there is

active trading of the stock on the exchange, and market maker i can send the order to the exchange

and close the position at cost s̄. With probability (1− η), the market maker i can only send the

order (randomly) to another market maker j. In this case, the cost is

γ0 + γyj

where γ0 is the fixed cost of connecting to another market maker and γyj is the price charged

by market maker j. For simplicity, we assume that market maker j offers competitive price γyj

which is its marginal inventory cost. For simplicity, we make two implicit assumptions here. First,

s̄ is large enough, so it’s always optimal for the market maker to internalize the order when the

18This quadratic cost structure is commonly used in the literature (eg. Baldauf Mollner and Yuezhen 2022).
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inventory shock is absent, and second, γ0 is large enough so it’s always optimal for the market

maker to send the order to the exchange but not other market makers if possible.

Then the expected (marginal) cost of market maker i obtaining the sell order is

(1− α) γyi + α

ηs̄+ (1− η)
1

N − 1

∑
j ̸=i

(γ0 + γyj)

 .

The above cost can be rewritten as

[αηs̄+ (1− η) γ0] +
1

N

(
α (1− η) γN

N − 1

)∑
j

yj +

(
(1− α) γ − α (1− η) γ

N − 1

)
yi.

Let

c0 = αηs̄+ (1− η) γ0,

c1 =
α (1− η) γN

N − 1
,

and

c2 = (1− α) γ − α (1− η) γ

N − 1
,

then the marginal cost for market maker i to execute the sell order is

c0 + c1
1

N

N∑
j=1

yj + c2yi.

Stock liquidity is linked to the parameter η in our microfoundation. When a stock is more liquid,

it’s more likely to have active trading on the exchange at that moment, and thus η will be larger.

As a result, the ratio

c2
c1

=
N − 1

αγN

(
(1− α)

γ

1− η
− αγ

N − 1

)
will be larger. We utilize this interpretation in our discussions of model implications.

56



Appendix B. Proofs

Proof of Proposition 1

Consider any i ∈ {1, 2...N} and (x, y) ∈
[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
, let

G (x|y) = Prob

[
min
−i

y−i ≤ x|yi = y

]

and

g (x|y) = dG (x|y)
dx

.

It’s easy to show

G (x|y) = 1−
(
1

2
− x

)N−1

,

g (x|y) = (N − 1)

(
1

2
− x

)N−2

.

Let

v (x, y) = E
[
ci|min

−i
y−i = x, yi = y

]

= c0 + c1E

 1

N

N∑
j=1

yj |min
−i

y−i = x, yi = y

+ c2E
[
yi|min

−i
y−i = x, yi = y

]

= c0 +
( c1
N

+ c2

)
y +

c1
N

x+ c1
N − 2

N

1

2

(
1

2
+ x

)
=

(
c0 + c1

N − 2

4N

)
+

c1
2
x+

( c1
N

+ c2

)
y.

We focus on symmetric equilibria. Suppose market maker i’s opponents use a continuous,

increasing strategy β (y) at time 0. And suppose market maker i observes signal y and reports

signal z, its expected profit is

Ui (z, y) = Prob

(
z ≤ min

−i
y−i|y

)[
β (z)− E

(
c|z ≤ min

−i
y−i, yi = y

)]
= [1−G (z|y)]

[
β (z)− 1

1−G (z|y)

∫ 1
2

z
g (x|y) v (x, y) dx

]

= [1−G (z|y)]β (z)−
∫ 1

2

z
g (x|y) v (x, y) dx.
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Market maker i’s optimization condition (necessary condition) is

∂Ui (z, y)

∂z

∣∣∣∣
z=y

= 0.

This is

−g (y|y)β (y) + (1−G (y|y))β′ (y) + g (y|y) v (y|y) = 0.

Simplifying the condition, we get

−β (y) +

(
1−G (y|y)
g (y|y)

)
β′ (y) + v (y|y) = 0. (B1)

Let’s conjecture that β (y) is linear, i.e., there exist k0, k1 such that

β (y) = k0 + k1y.

Substitute this into (B1), we have

− (k0 + k1y) +
1
2 − y

N − 1
k1 +

(
c0 + c1

N − 2

4N

)
+

c1
2
y +

( c1
N

+ c2

)
y = 0.

Then k0,k1 are solved by

−k0 +
1
2k1

N − 1
+ c0 + c1

N − 2

4N
= 0,

−k1 −
k1

N − 1
+

c1
2

+
c1
N

+ c2 = 0.

Then we get

k1 =
N − 1

N

(
c1
2

N + 2

N
+ c2

)
,

k0 = c0 +
c1
4N

(
N − 1 +

2

N

)
+

c2
2N

.

It’s easy to check that

∂Ui (z, y)

∂z

∣∣∣∣
z=y

= 0

is also the sufficient condition in the optimization problem in this linear equilibrium because of the

linearity of the equilibrium.
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Proof of Proposition 2

Consider any i ∈ {1, 2...N} and (x,w) ∈
[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
, let

G0 (x|w) = Prob

[
min
−i

w−i ≤ x|wi = w

]

and

g0 (x|w) =
dG (x|w)

dx
.

It’s easy to show

G (x|w) = 1−
(
1

2
− x

)N−1

,

g (x|w) = (N − 1)

(
1

2
− x

)N−2

.

Let

v (x,w) =E
[
ζi|min

−i
w−i = x;wi = w

]
=p0E

[
ζi|min

−i
w−i = x;wi = w;∃j ̸= i, wj = yj = x

]
+ (1− p0) p0E

[
ci|min

−i
w−i = x;wi = y;∄j ̸= i, wj = yj = x

]

=p0

c0 + c1

x+ (N − 2) p0
1
2
+x

2 + p0w

N

+ c2p0w


+ (1− p0)

c0 + c1

(N − 1) p0
1
2
+x

2 + p0w

N

+ c2p0w


=c0 + c1


(
p0x+ (1− p0) p0

1
2
+x

2

)
+ (N − 2) p0

1
2
+x

2 + p0w

N

+ c2p0w.

We focus on symmetric equilibria. Suppose all of market maker i’s opponents use a continuous,

increasing bid strategy

B (w) = K0 +K1w
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at time 0. When market maker i observes signal w and reports signal z, its expected profit is

Ui (z, w) = Prob

(
z ≤ min

−i
w−i|wi = w

)[
B (z)− E

(
ζi|z ≤ min

−i
w−i, wi = w

)]
= [1−G (z|w)]

[
B (z)− 1

1−G (z|w)

∫ 1

z
g (x|w) v (x,w) dx

]
= [1−G (z|w)]B (z)−

∫ 1

z
g (x|w) v (x,w) dx.

Market maker i’s marginal incentive is characterized by

∂Ui (z, w)

∂z
= −g (z|w)B (z) + (1−G (z|w))B′ (z) + g (z|w) v (z|w)

= g (z|w)
[
−B (z) +

(
1−G (z|w)
g (z|w)

)
B′ (z) + v (z|w)

]

= g (z|w)


−K0 −K1z +

1
2
−z

N−1K1 + c0

+c1

(
p0z+(1−p0)p0

1
2+z

2

)
+(N−2)p0

1
2+z

2
+p0w

N

+ c2p0w

 .

Let’s conjecture that in equilibrium we have

∂Ui (z, w)

∂z

∣∣∣∣
z=w

= 0. (B2)

This implies

− (K0 +K1w)+
1
2 − w

N − 1
K1+c0+c1


(
p0w + (1− p0) p0

1
2
+w

2

)
+ (N − 2) p0

1
2
+w

2 + p0w

N

+c2p0w = 0.

Since the above condition holds for all w, then K0,K1 are solved by

−K0 +
1
2K1

N − 1
+ c0 + c1

N − 2

4N
p0 +

c1 (1− p0) p0
4N

= 0,

−K1 −
K1

N − 1
+ c2p0 +

2c1p0
N

+
c1 (N − 2) p0

2N
+

c1 (1− p0) p0
2N

= 0.
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Then we get

K1 =
N − 1

N

(
c2p0 +

2c1p0
N

+
c1 (N − 2) p0

2N
+

c1 (1− p0) p0
2N

)
, (B3)

K0 = c0 +
p0
4N2

[(
3 +N2 − p0 −Np0

)
c1 + 2Nc2

]
. (B4)

We also need to verify that condition (B2) is a sufficient condition for optimization. Note that

g (z|w) > 0 and

−K0 −K1z +
1
2 − z

N − 1
K1 + c0 + c1


(
p0z + (1− p0) p0

1
2
+z

2

)
+ (N − 2) p0

1
2
+z

2 + p0w

N

+ c2p0w

is linear in z, then it’s clear that with (B3) and (B4), we must have that for all w,

∂Ui (z, w)

∂z
< 0 ⇐⇒ z > w,

confirming that (B2) is a sufficient condition for optimization.

Proof of Lemma 1

First let’s introduce the random variable

r = min
i

yi ∈
[
−1

2
,
1

2

]

and its CDF

H (r) = 1−
(
1

2
− r

)N

and PDF

h (r) = N

(
1

2
− r

)N−1

.

61



Then the total expected profit of market makers is

WOBO
M =E

E

k0 + k1r − c0 − c1
1

N

N∑
j=1

yj − c2r|min
i

yi = r


=E

{
k0 + k1r − c0 − c1

(
r + (N − 1)

(
1
2 + r

)
1
2

N

)
− c2r

}

=E

{(
1
2 − r

)
(c1 + c2N)

N2

}

=

∫ 1
2

− 1
2

(
1
2 − r

)
(c1 + c2N)

N2
N

(
1

2
− r

)N−1

dr

=
1

N + 1

( c1
N

+ c2

)
.

The expected total profit of investors WI is

WOBO
I = −E

[
k0 + k1r|min

i
yi = r

]
= −

∫ 1
2

− 1
2

(k0 + k1r)N

(
1

2
− r

)N−1

dr

= −
[
c0 +

1

N(N + 1)
c1 −

N − 3

2(N + 1)
c2

]

and the total welfare Wtotal is

WOBO
total = E

E

−c0 − c1
1

N

N∑
j=1

yj − c2r|min
i

yi = r


= WOBO

M +WOBO
I

= −
(
c0 −

N − 1

N + 1

c2
2

)
.

Proof of Lemma 2

let’s introduce the random variable

r = min
i

wi ∈
[
−1

2
,
1

2

]
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and its CDF

H (r) = 1−
(
1

2
− r

)N

and PDF

h (r) = N

(
1

2
− r

)N−1

.

Then the total expected profit of market makers is

WBR
M =E

E

t (r)− c0 − c1
1

N

N∑
j=1

yj − c2yi|wi = min
j

wj = r


=E

{
K0 +K1r − c0 − c1

(
p0r + (N − 1) p0

(
1
2 + r

)
1
2

N

)
− c2p0r

}

=E
{ p0
4N2

[2Nc2 (1− 2r) + c1 (3− p0) (1− 2r) + c1N (1− p0) (1 + 2r)]
}

=

∫ 1
2

− 1
2

p0
4N2

[2Nc2 (1− 2r) + c1 (3− p0) (1− 2r) + c1N (1− p0) (1 + 2r)]N

(
1

2
− r

)N−1

dr

=
p0 (2c1 − p0c1 +Nc2)

N (1 +N)
.

The expected total profit of investors WI is

WBR
I = −E

[
K0 +K1r|min

i
wi = r

]
= −

∫ 1
2

− 1
2

(K0 +K1r)N

(
1

2
− r

)N−1

dr

= −
[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
,

and the total welfare Wtotal is

WBR
total = E

E

−c0 − c1
1

N

N∑
j=1

yj − c2yi|wi = min
j

wj = r


= −

(
c0 − p0

N − 1

N + 1

c2
2

)
.
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Proof of Proposition 3

Both WBR
total < WOBO

total and WBR
M < WOBO

M are obvious. And

WBR
I < WOBO

I

⇐⇒−
[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
< −

[
c0 +

1

N(N + 1)
c1 −

N − 3

2(N + 1)
c2

]
⇐⇒c2

c1
>

2(1− p0)

N(N − 3)
.

Proof of Proposition 4

Since wholesalers are not able to observe the realization of c̃0, they can condition their strategies

only on the distributional information about c̃0. We still focus on symmetric equilibria in this case,

and let’s conjecture that all wholesalers uses the same bidding strategy

β̃ (y) = k̃0 + k̃1y,

with k̃1 > 0. Similar to our baseline model, the wholesaler with lowest signal realization obtains

the order in equilibrium. We follow the proof of Proposition 2, notably, the function ṽ (x,w) =

E
[
ζ̃i|min−iw−i = x;wi = w

]
now becomes

ṽ (x,w) =E
[
ζ̃i|min

−i
w−i = x;wi = w

]
=p0E

[
ζ̃i|min

−i
w−i = x;wi = w;∃j ̸= i, wj = yj = x

]
+ (1− p0) p0E

[
ζ̃i|min

−i
w−i = x;wi = y; ∄j ̸= i, wj = yj = x

]

=p0

c0 + c1

x+ (N − 2) p0
1
2
+x

2 + p0w

N

+ c2p0w


+ (1− p0)

c0 + c1

(N − 1) p0
1
2
+x

2 + p0w

N

+ c2p0w


=c0 + c1


(
p0x+ (1− p0) p0

1
2
+x

2

)
+ (N − 2) p0

1
2
+x

2 + p0w

N

+ c2p0w,
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which implies that

ṽ (x,w) = v (x,w) .

The rest of the proof follows the proof of Proposition 2. So the equilibrium strategy is the same as

that in the baseline model.

Similarly, note that

E (c̃0) = c0,

the proof of welfare computation follows our proof of Lemma 2, and thus all welfare outcomes are

the same as that in our baseline model.

Proof of Proposition 5

When δc = 0, the institutional traders and wholesalers receive i.i.d signals, and they are

symmetric. Let’s conjecture that all market makers choose the same linear equilibrium strategy

β̃i (yi; δc = 0) = k̃0 (δc = 0) + k̃1 (δc = 0) yi.

The number of market makers is N+N0. We follow the proof of Proposition 1, the function v (x, y)

now becomes

ṽ (x, y) = E
[
ζ̃i|min

−i
y−i = x, yi = y

]

= c0 + c1E

 1

N

N+N0∑
j=1

yj |min
−i

y−i = x, yi = y

+ c2E
[
yi|min

−i
y−i = x, yi = y

]

= c0 +

(
c1

N +N0
+ c2

)
y +

c1
N +N0

x+ c1
N +N0 − 2

N +N0

1

2

(
1

2
+ x

)
=

(
c0 + c1

N +N0 − 2

4 (N +N0)

)
+

c1
2
x+

(
c1

N +N0
+ c2

)
y,

which is the v (x, y) function with (N +N0) wholesalers. For the rest of the proof, we follow the

proof of Proposition 1, and we can show that the equilibrium strategy is equivalent to that in

Proposition 1 with the number of wholesalers being N +N0.
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Proof of Proposition 6

Since the equilibrium of broker’s routing is the same as that in the baseline model, we have

W̃BR
total = −

(
c0 − p0

N − 1

N + 1

c2
2

)
,

W̃BR
I = −

[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
,

and

W̃BR
W =

p0 (2c1 − p0c1 +Nc2)

N (1 +N)
.

For order-by-order auctions, the welfare outcomes are

W̃OBO
total = −

(
c0 −

N +N0 − 1

N +N0 + 1

c2
2

)
,

W̃OBO
I = −

[
c0 +

1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2

]
,

and

W̃OBO
W =

N

N +N0

1

N +N0 + 1

(
c1

N +N0
+ c2

)
.

First, it’s obvious that

W̃OBO
total > W̃BR

total,

because p0 ∈ (0, 1) and N0 > 1. Second,

W̃BR
W < W̃OBO

W

⇐⇒p0 (2c1 − p0c1 +Nc2)

N (1 +N)
<

N

N +N0

1

N +N0 + 1

(
c1

N +N0
+ c2

)

⇐⇒
p0

(
2− p0 +N c2

c1

)
N (1 +N)

<
N

N +N0

1

N +N0 + 1

(
1

N +N0
+

c2
c1

)
⇐⇒p0 (2− p0)

N (1 +N)
+

p0
1 +N

c2
c1

<
N

N +N0

1

N +N0 + 1

(
1

N +N0
+

c2
c1

)
⇐⇒

(
N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> −
(

N

(N +N0)
2

1

N +N0 + 1
− p0 (2− p0)

N (1 +N)

)
⇐⇒

(
N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> − 1

N +N0

(
N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N

)
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Since

N

N +N0

1

N +N0 + 1
− p0

1 +N
>

N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N
,

we know that

(
N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> − 1

N +N0

(
N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N

)

is equivalent to

N

N +N0

1

N +N0 + 1
− p0

1 +N
> 0 ⇐⇒ p0 <

N

N +N0

1 +N

N +N0 + 1

and

c2
c1

>
− 1

N+N0

(
N

N+N0

1
N+N0+1 − p0

(1+N)
(2−p0)(N+N0)

N

)
N

N+N0

1
N+N0+1 − p0

1+N

.

Finally,

W̃BR
I < W̃OBO

I

⇐⇒−
[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
< −

[
c0 +

1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2

]
⇐⇒p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

>
1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2

⇐⇒p0
2 (2− p0)− (N − 3)N c2

c1

2N (1 +N)
>

1

(N +N0) (N +N0 + 1)
− N +N0 − 3

2 (N +N0 + 1)

c2
c1

⇐⇒
(

N +N0 − 3

2 (N +N0 + 1)
− p0

(N − 3)

2 (1 +N)

)
c2
c1

>
1

(N +N0) (N +N0 + 1)
− p0

(2− p0)

N (1 +N)

⇐⇒c2
c1

>

1
(N+N0)(N+N0+1) −

p0(2−p0)
N(1+N)

N+N0−3
2(N+N0+1) − p0

(N−3)
2(1+N)

.

The last inequality holds because we always have N+N0−3
2(N+N0+1) − p0

(N−3)
2(1+N) > 0.

Proof of Proposition 7

We need to verify that this is indeed an equilibrium. Let δ = max {δc1, δc2} where δc1 is defined

by (??) and δc2 is defined by (B5).
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Let δc1 be the value that satisfies

k−0 + k−1 · 1
2
= k+0 − k+1 · 1

2
,

i.e.,

c0 − δc1 +
c1
4N0

(
N0 − 1 +

2

N0

)
+

c2
2N0

+
N0 − 1

N0

(
c1
2

N0 + 2

N0
+ c2

)
1

2

=c0 + δc1 +
c1

4 (N +N0)

(
N +N0 − 1 +

2

N +N0

)
+

c2
2 (N +N0)

− N +N0 − 1

N +N0

(
c1
2

N +N0 + 2

N +N0
+ c2

)
1

2
.

Then when δc > δc1,

[
k−0 − k−1 · 1

2
, k−0 + k−1 · 1

2

]
∪
[
k+0 − k+1 · 1

2
, k+0 + k+1 · 1

2

]
= ∅.

This implies that the under the equilibrium conjectured, when c̃0 = c0 − δc, only institutional

traders can obtain the order no matter what signals market participants observe.

Let’s first verify that it’s optimal for any institutional trader to choose s̃− (y; δc) if observing

c0 + δc , giving other market participants’ strategies. When c̃0 = c0 − δc, it’s clear that s̃
− (y; δc) is

an equilibrium if we only have N0 institutional traders in the market, as suggested by Proposition 1.

This is essentially the baseline model of order-by-order auctions with N0 bidders and unconditional

expected inventory cost being c0 − δc. This means that it’s optimal for any institutional trader

to choose s̃− (y; δc) if there are only N0 − 1 other institutional traders who also choose s̃− (y; δc)

and no wholesalers in the market. Adding N wholesalers choosing s̃+ (y; δc) does not change this

optimality, because given other institutional traders’ choice s̃− (y; δc), the N wholesalers will never

obtain any order in any state when c̃0 = c0 − δc.

Then let’s verify that it’s optimal for any institutional trader to choose s̃+ (y; δc) if observing

c0 + δc, given other market participants’ strategies. Following our Proposition 1 in the baseline

model of order-by-order auctions, s̃+ (y; δc) is an equilibrium with N + N0 market makers and

unconditional expected inventory cost being c0 + δc. So it’s optimal for any institutional trader to

choose s̃+ (y; δc) if there are other N +N0 − 1 market makers also choosing s̃+ (y; δc).

Finally, let’s verify that it’s optimal for any wholesaler i to choose s̃+ (y; δc), given other market
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participants’ strategies. Suppose the wholesaler i observes a signal yi, then the wholesaler’s utility

is

Ui =
1

2
U1 (si) +

1

2
U2 (si) ,

where U1 (U2) is wholesaler i’s profit when the state is c0 − δc (c0 + δc). It’s clear that for any yi,

we have

s̃+ (yi; δc) = arg max
si∈(k−0 +k−1 · 1

2
,∞)

Ui,

this is because when si ∈
(
k−0 + k−1 · 1

2 ,∞
)
,

[
k−0 − k−1 · 1

2
, k−0 + k−1 · 1

2

]
∪
[
k+0 − k+1 · 1

2
, k+0 + k+1 · 1

2

]
= ∅,

and thus we always have

U1 (si) = 0.

And

s̃+ (yi; δc) = arg max
si∈(k−0 +k−1 · 1

2
,∞)

U2.

It’s also clear that wholesaler will never choose si < k−0 −k−1 · 12 , as any si < k−0 −k−1 · 12 is dominated

by si = k−0 − k−1 · 1
2 . Suppose that wholesaler choose

si ∈
[
k−0 − k−1 · 1

2
, k−0 + k−1 · 1

2

]
.

Note that

k−0 + k−1 · 1
2
−
[(
c0 − δc

)
− c1 + c2

2

]
> 0,

and the upper bound of the profit in the case c0 − δc is

k−0 + k−1 · 1
2
−
[(
c0 − δc

)
− c1 + c2

2

]

because k−0 + k−1 · 12 is the highest spread in si ∈
[
k−0 − k−1 · 1

2 , k
−
0 + k−1 · 1

2

]
and

(
c0 − δc

)
− c1+c2

2 is

the lowest inventory cost. Besides, in the case c0 + δc, the wholesaler i will obtain the order with
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probability one. And the maximal profit is

k−0 + k−1 · 1
2
−
[(
c0 + δc

)
− c1 + c2

2

]
.

Then

U1 ≤ k−0 + k−1 · 1
2
−
[(
c0 − δc

)
− c1 + c2

2

]
.

And

U2 ≤ k−0 + k−1 · 1
2
−
[(
c0 + δc

)
− c1 + c2

2

]
.

Then

Ui ≤
1

2
U1 +

1

2
U2 ≤ k−0 + k−1 · 1

2
−
[
c0 −

c1 + c2
2

]
.

Then

Ui < 0 ⇐= k−0 + k−1 · 1
2
−
[
c0 −

c1 + c2
2

]
< 0 ⇐⇒ δc < δc2,

where

δc2 =
c1

4
(
Ñ −N

) ((Ñ −N
)
− 1 +

2

Ñ −N

)
+

c2

2
(
Ñ −N

) + k−1 · 1
2
+

c1 + c2
2

. (B5)

Then when

δc > δ = max {δc1, δc2} ,

we have

s̃+ (yi; δc) = k+0 + k+1 yi = arg max
si∈(−∞,∞)

Ui.

This implies that it’s optimal for any wholesaler i to choose s̃+ (y; δc), given other market participants’

strategies.
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Proof of Proposition 8

Since the equilibrium of broker’s routing is the same as that in the baseline model, we have

W̃BR
total = −

(
c0 − p0

N − 1

N + 1

c2
2

)
,

W̃BR
I = −

[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
,

and

W̃BR
W =

p0 (2c1 − p0c1 +Nc2)

N (1 +N)
.

For order-by-order auctions, the welfare outcomes are

W̃OBO
total =− 1

2

(
c0 + δc −

N +N0 − 1

N +N0 + 1

c2
2

)
− 1

2

(
c0 − δc −

N0 − 1

N0 + 1

c2
2

)
=− c0 +

1

2

(
N +N0 − 1

N +N0 + 1
+

N0 − 1

N0 + 1

)
c2
2
,

W̃OBO
I =− 1

2

[
c0 + δc +

1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2

]
− 1

2

[
c0 − δc +

1

N0 (N0 + 1)
c1 −

N0 − 3

2 (N0 + 1)
c2

]
=− c0 −

1

2

[
1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2 +

1

N0 (N0 + 1)
c1 −

N0 − 3

2 (N0 + 1)
c2

]

and

W̃OBO
W =

1

2

N

N +N0

1

N +N0 + 1

(
c1

N +N0
+ c2

)
.

First,

W̃OBO
total > W̃BR

total

⇐⇒− c0 +
1

2

(
N +N0 − 1

N +N0 + 1
+

N0 − 1

N0 + 1

)
c2
2

> −
(
c0 − p0

N − 1

N + 1

c2
2

)
⇐⇒1

2

(
N +N0 − 1

N +N0 + 1
+

N0 − 1

N0 + 1

)
c2
2

> p0
N − 1

N + 1

c2
2
.
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Then LHS of the above condition is increasing in N0, let N0 be the solution of

1

2

(
N +N0 − 1

N +N0 + 1
+

N0 − 1

N0 + 1

)
c2
2

= p0
N − 1

N + 1

c2
2
, (B6)

then

N0 > N0 ⇐⇒ W̃OBO
total > W̃BR

total.

Second,

W̃BR
W < W̃OBO

W

⇐⇒p0 (2c1 − p0c1 +Nc2)

N (1 +N)
<

1

2

N

N +N0

1

N +N0 + 1

(
c1

N +N0
+ c2

)

⇐⇒
p0

(
2− p0 +N c2

c1

)
N (1 +N)

<
1

2

N

N +N0

1

N +N0 + 1

(
1

N +N0
+

c2
c1

)
⇐⇒p0 (2− p0)

N (1 +N)
+

p0
1 +N

c2
c1

<
1

2

N

N +N0

1

N +N0 + 1

(
1

N +N0
+

c2
c1

)
⇐⇒

(
1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> −
(
1

2

N

(N +N0)
2

1

N +N0 + 1
− p0 (2− p0)

N (1 +N)

)
⇐⇒

(
1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> − 1

N +N0

(
1

2

N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N

)
.

Since

1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N
>

1

2

N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N
,

we know that

(
1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N

)
c2
c1

> − 1

N +N0

(
1

2

N

N +N0

1

N +N0 + 1
− p0

(1 +N)

(2− p0) (N +N0)

N

)

is equivalent to

1

2

N

N +N0

1

N +N0 + 1
− p0

1 +N
> 0 ⇐⇒ p0 <

1

2

N

N +N0

1 +N

N +N0 + 1
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and

c2
c1

>
− 1

N+N0

(
1
2

N
N+N0

1
N+N0+1 − p0

(1+N)
(2−p0)(N+N0)

N

)
1
2

N
N+N0

1
N+N0+1 − p0

1+N

.

Finally,

W̃BR
I < W̃OBO

I

⇐⇒−
[
c0 + p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

]
< −c0 −

1

2

[
1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2 +

1

N0 (N0 + 1)
c1 −

N0 − 3

2 (N0 + 1)
c2

]
⇐⇒p0

2 (2− p0) c1 − (N − 3)Nc2
2N (1 +N)

>
1

2

[
1

(N +N0) (N +N0 + 1)
c1 −

N +N0 − 3

2 (N +N0 + 1)
c2 +

1

N0 (N0 + 1)
c1 −

N0 − 3

2 (N0 + 1)
c2

]
⇐⇒p0

2 (2− p0)− (N − 3)N c2
c1

N (1 +N)

>
1

(N +N0) (N +N0 + 1)
− N +N0 − 3

2 (N +N0 + 1)

c2
c1

+
1

N0 (N0 + 1)
− N0 − 3

2 (N0 + 1)

c2
c1

⇐⇒p0
2 (2− p0)

N (1 +N)
− p0

(
1− 4

N + 1

)
c2
c1

>
1

(N +N0) (N +N0 + 1)
− 1

2

(
1− 4

N +N0 + 1

)
c2
c1

+
1

N0 (N0 + 1)
− 1

2

(
1− 4

N0 + 1

)
c2
c1

⇐⇒
(
1− p0 +

4p0
N + 1

− 2

N +N0 + 1
− 2

N0 + 1

)
c2
c1

>
1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
− 2p0 (2− p0)

N (1 +N)
.

(B7)

We want to show that if

1− p0 +
4p0

N + 1
− 2

N +N0 + 1
− 2

N0 + 1
≤ 0,

we must have

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
− 2p0 (2− p0)

N (1 +N)
> 0.

Since N > 3, then both

1− p0 +
4p0

N + 1
− 2

N +N0 + 1
− 2

N0 + 1
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and

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
− 2p0 (2− p0)

N (1 +N)
> 0

are decreasing in p0 ∈ (0, 1). Then it’s sufficient to show the above argument holds when p0 = 1,

i.e., we need to show that if

1

N +N0 + 1
+

1

N0 + 1
≥ 2

N + 1
,

we must have

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
>

2

N (1 +N)
.

Note that

1

N +N0 + 1
+

1

N0 + 1
≥ 2

N + 1
⇐⇒ 1

N0 + 1
− 1

N + 1
≥ 1

N + 1
− 1

N +N0 + 1

⇐⇒ N −N0

(N0 + 1) (N + 1)
≥ N0

(N + 1) (N +N0 + 1)
,

and

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
>

2

N (1 +N)

⇐⇒ 1

N0 (N0 + 1)
− 1

N (1 +N)
>

1

N (1 +N)
− 1

(N +N0) (N +N0 + 1)

⇐⇒ 1

N0 (N0 + 1)
− 1

N (N0 + 1)
+

1

N (N0 + 1)
− 1

N (1 +N)

>
1

N (1 +N)
− 1

N (N +N0 + 1)
+

1

N (N +N0 + 1)
− 1

(N +N0) (N +N0 + 1)

⇐⇒ N −N0

N0N (N0 + 1)
+

1

N (N0 + 1)
− 1

N (1 +N)
>

1

N (1 +N)
− 1

N (N +N0 + 1)
+

N0

N (N +N0) (N +N0 + 1)
.

We already know that

1

N (N0 + 1)
− 1

N (1 +N)
≥ 1

N (1 +N)
− 1

N (N +N0 + 1)
,

then it’s sufficient to show

N −N0

N0N (N0 + 1)
>

N0

N (N +N0) (N +N0 + 1)
⇐⇒ N −N0

N0 (N0 + 1)
>

N0

(N +N0) (N +N0 + 1)
.
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Since

N −N0

(N0 + 1) (N + 1)
≥ N0

(N + 1) (N +N0 + 1)
,

we have

N −N0

N0 (N0 + 1)
≥ 1

N0

N0 (1 +N)

(N + 1) (N +N0 + 1)
=

1

(N +N0 + 1)
>

N0

(N +N0) (N +N0 + 1)
.

Then we show that for the condition (B7), if the LHS

1− p0 +
4p0

N + 1
− 2

N +N0 + 1
− 2

N0 + 1
≤ 0,

the RHS

1

(N +N0) (N +N0 + 1)
+

1

N0 (N0 + 1)
− 2p0 (2− p0)

N (1 +N)

must be positive. Then the solution to the condition (B7) is

1− p0 +
4p0

N + 1
− 2

N +N0 + 1
− 2

N0 + 1
> 0 ⇐⇒ p0 <

1− 2
N+N0+1 − 2

N0+1

1− 4
N+1

,

and

c2
c1

>

1
(N+N0)(N+N0+1) +

1
N0(N0+1) −

2p0(2−p0)
N(1+N)

1− p0 +
4p0
N+1 − 2

N+N0+1 − 2
N0+1

.

Proof of Proposition 9

Consider any i ∈ {1, 2...N} and (x,w) ∈
[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
, let

G0 (x|w) = Prob

[
min
−i

w−i ≤ x|wi = w

]

and

g0 (x|w) =
dG (x|w)

dx
.

It’s easy to show

G (x|w) = 1−
(
1

2
− x

)N−1

,

g (x|w) = (N − 1)

(
1

2
− x

)N−2

.

75



Let

v (x,w) =E
[
ζi|min

−i
w−i = x;wi = w

]
=p0E

[
ζi|min

−i
w−i = x;wi = w;∃j ̸= i, wj = yj = x

]
+ (1− p0)E

[
ci|min

−i
w−i = x;wi = y;∄j ̸= i, wj = yj = x

]

=p0

E (c0) + E (c1)

x+ (N − 2) p0
1
2
+x

2 + p0w

N

+ E (c2) p0w


+ (1− p0)

c0 + c1

(N − 1) p0
1
2
+x

2 + p0w

N

+ c2p0w


=c̄0 + c̄1


(
p0x+ (1− p0) p0

1
2
+x

2

)
+ (N − 2) p0

1
2
+x

2 + p0w

N

+ c̄2p0w.

We focus on symmetric equilibria. Suppose all of market maker i’s opponents use a continuous,

increasing bid strategy

B̄ (w) = K̄0 + K̄1w

at time 0. When market maker i observes signal w and reports signal z, its expected profit is

Ui (z, w) = Prob

(
z ≤ min

−i
w−i|wi = w

)[
B̄ (z)− E

(
ζi|z ≤ min

−i
w−i, wi = w

)]
= [1−G (z|w)]

[
B̄ (z)− 1

1−G (z|w)

∫ 1

z
g (x|w) v (x,w) dx

]
= [1−G (z|w)] B̄ (z)−

∫ 1

z
g (x|w) v (x,w) dx.
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Market maker i’s marginal incentive is characterized by

∂Ui (z, w)

∂z

=− g (z|w) B̄ (z) + (1−G (z|w)) B̄′ (z) + g (z|w) v (z|w)

=g (z|w)
[
−B̄ (z) +

(
1−G (z|w)
g (z|w)

)
B̄′ (z) + v (z|w)

]

=g (z|w)

−K̄0 − K̄1z +
1
2 − z

N − 1
K̄1 + c0 + c1


(
p0z + (1− p0) p0

1
2
+z

2

)
+ (N − 2) p0

1
2
+z

2 + p0w

N

+ c2p0w

 .

Let’s conjecture that in equilibrium we have

∂Ui (z, w)

∂z

∣∣∣∣
z=w

= 0. (B8)

This implies

−
(
K̄0 + K̄1w

)
+

1
2 − w

N − 1
K̄1+c̄0+c̄1


(
p0w + (1− p0) p0

1
2
+w

2

)
+ (N − 2) p0

1
2
+w

2 + p0w

N

+c̄2p0w = 0.

Since the above condition holds for all w, then K̄0,K̄1 are solved by

−K̄0 +
1
2K̄1

N − 1
+ c0 + c1

N − 2

4N
p0 +

c1 (1− p0) p0
4N

= 0

−K̄1 −
K̄1

N − 1
+ c2p0 +

2c1p0
N

+
c1 (N − 2) p0

2N
+

c1 (1− p0) p0
2N

= 0

Then we get

K̄1 =
N − 1

N

(
c̄2p0 +

2c̄1p0
N

+
c̄1 (N − 2) p0

2N
+

c̄1 (1− p0) p0
2N

)
, (B9)

K0 = c̄0 +
p0
4N2

[(
3 +N2 − p0 −Np0

)
c̄1 + 2Nc̄2

]
. (B10)

We also need to verify that condition (B8) is a sufficient condition for optimization. Note that
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g (z|w) > 0 and

−K̄0 − K̄1z +
1
2 − z

N − 1
K̄1 + c0 + c1


(
p0z + (1− p0) p0

1
2
+z

2

)
+ (N − 2) p0

1
2
+z

2 + p0w

N

+ c2p0w

is linear in z, then it’s clear that with (B9) and (B10), we must have that for all w,

∂Ui (z, w)

∂z
< 0 ⇐⇒ z > w,

confirming that (B8) is a sufficient condition for optimization.

Proof of Lemma 3

Let’s introduce the random variable

r = min
i

wi ∈
[
−1

2
,
1

2

]

and its CDF

H (r) = 1−
(
1

2
− r

)N

and PDF

h (r) = N

(
1

2
− r

)N−1

.

First, we know that in our baseline model of broker’s routing, the total welfare is

WBR
total = −

(
c0 − p0

N − 1

N + 1

c2
2

)
.

The total welfare only depends on inventory allocation but not equilibrium spread, as the equilibrium

spread is just a transfer between market makers and investors. In our extension of heterogeneous

stocks, it is still the market maker with lowest liquidity signal realization y that obtains the order,

so the order allocation is the same as that in our baseline model for any stocks (c0, c1, c2). Then
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the total welfare is this extension satisfies

WBR
heter,total = WBR

total = −
(
c0 − p0

N − 1

N + 1

c2
2

)
.

Since the equilibrium bidding strategy is

T (w) = K̄0 + K̄1w,

the investor’s welfare is

WBR
heter,I = −E

[
K̄0 + K̄1r|min

i
wi = r

]
= −

∫ 1
2

− 1
2

(
K̄0 + K̄1r

)
N

(
1

2
− r

)N−1

dr

= −
[
c̄0 + p0

2 (2− p0) c̄1 − (N − 3)Nc̄2
2N (1 +N)

]
.

By

WBR
heter,M = WBR

heter,total −WBR
heter,I ,

we know

WBR
heter,M = −

(
c0 − p0

N − 1

N + 1

c2
2

)
+

[
c̄0 + p0

2 (2− p0) c̄1 − (N − 3)Nc̄2
2N (1 +N)

]
= (c̄0 − c0) +

p0
2 (N + 1)

[(N − 1) c2 − (N − 3) c̄2] + p0
(2− p0) c̄1
N (1 +N)

.
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Less Is More

Abstract

We show in a model of over-the-counter trading that customers in equilibrium may choose to con-
tact very few dealers to incentivize maximum liquidity provision—“less is more.” This happens when
dealers’ liquidity supply is sufficiently elastic to competition. This mechanism is orthogonal to con-
ventional concerns, such as contacting or search cost, private information, and relationship. A social
planner would mandate even fewer contacts than the market outcome, where customers induce ex-
cessive dealer competition. The model predicts endogenous market power, yields implications for
regulation and design of electronic platforms, and speaks to customers’ search behavior and their ex-
ecution quality.

Keywords: over-the-counter markets, dealers, trading connections, request-for-quote

(There are no competing financial interests that might be perceived as influencing the analysis, discussion, and/or results
of this article.)



1 Introduction

In over-the-counter (OTC) markets, customers approach dealers for their service of liquidity provision.

A well-known and robust empirical feature is that customers do not reach out to all available dealers.

This is true for both conventional phone-based OTC trading and electronic request-for-quote (RFQ)

platforms.¹

At first glance, it might seem beneficial for a liquidity-seeking customer to always contact more

dealers: they have larger aggregate capacity to provide more liquidity and are likely to compete more

fiercely in price. So what prevents customers from reaching out to all dealers? The literature has

pointed to several considerations, for example, search or contact costs, information leakage, and rela-

tionship with dealers. (The related literature is reviewed later on p. 5.) This paper turns these channels

off and proposes a mechanism that sheds new light on customer-dealer interactions, examines market

design implications, and generates testable empirical predictions.

The premise is that it is costly for dealers to provide service (liquidity) to customers. Therefore,

dealers strategically choose their service,² trading off the marginal service cost and the marginal ex-

pected trading gain. One key determinant of a dealer’s trading gain is competition—the number of

other dealers that the customer is contacting: more competitors, less trading gain, and lower willing-

ness to provide service. A customer thus chooses only a small number of dealers to shield them from

too much competition, leaving just enough rent on the table to induce their quality service. In sum,

¹ For example, Hendershott et al. (2020) document that in the corporate bond market, one-third of the customers in
their sample contact only one dealer. O’Hara, Wang, and Zhou (2018) show that a customer trades with between one and
19 dealers per bond per year, with at least three-quarters of them trading only with one dealer. In the foreign exchange
forward market, Hau et al. (2021) show that an average customer trades only with 1.8 dealers (out of more than 200), and
in a later sample, Collin-Dufresne, Hoffmann, and Vogel (2022) find that a customer trades with about three to 13 dealers
per month (again, out of more than 200). Evidence specifically regarding RFQ platforms includes: Riggs et al. (2020)
report that when trading index credit default swaps (CDS), customers on average query about 4.1 dealers, while the upper
bound is 5 on Bloomberg Swap Exchange Facility (SEF) and unrestricted on Tradeweb SEF. Allen andWittwer (2021) cite
annual reports from CanDeal, a multi-dealer platform in Canada, that more than 40% of RFQ auctions did not exhaust the
maximum number of dealers allowed.

² Dealer service can be thought of as how attentive a dealer is to customers’ requests, how much effort they spend in
finding inventories for customers, the effectiveness in providing quotes timely and firmly, etc. See, e.g., Bessembinder,
Spatt, and Venkataraman (2020) for a review of fixed-income markets and dealers’ role and service.
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contacting fewer dealers can secure more liquidity provision—“less is more.”

Section 2 studies a baseline model, where dealers’ service cost is exogenous, to make concrete the

above less-is-more mechanism. Section 2.1 sets up the model, and Section 2.2 characterizes the equi-

librium. Section 2.3 pinpoints the trade-off that a customer faces: Contacting more dealers positively

improves the customer’s expected trading gain because there is better matching—it is more likely that

at least one dealer is able to provide (sufficient) liquidity (timely). However, facing more competition,

every dealer expects less trading profit and, consequently, lowers her service to the customer accord-

ing to the marginal service cost. This novel negative service effect hurts the customer, who therefore

wants to reduce her dealer contacts.

The analysis further shows that the magnitude of the service effect is governed by dealers’ “compe-

tition elasticity.” In the model, a dealer strategically chooses her service to the customer, wary of how

aggressive her competitors are. Intuitively, if more service is provided by others, then less expected

trading gain is left, and the dealer reduces her own service by walking down the marginal service cost

function. The competition elasticity essentially measures the speed of the “walking down.” The larger

this elasticity is, the more sensitive are the dealers to each other’s service, and the more severe is the

negative service effect.

Indeed, in equilibrium, the customer refrains from reaching out to all dealers only if the competi-

tion elasticity is sufficiently large. Contacting one more dealer is too costly in this case, because the

additional competition from this dealer would significantly reduce the customer’s overall service from

all dealers. Avoiding such a liquidity drought, the customer optimally contacts only few dealers.³

Section 3.1 shows that the novel service effect works only if the dealers observe the number of

competitors, i.e., the customer’s dealer contacts. The reason is that if they do not observe this informa-

tion, dealers will not be able to react to each others’ service competition—the competition elasticity

³ Although we motivate our model from customer-dealer trades, the less-is-more mechanism can also play a role in
inter-dealer trades, and therefore echos the empirical finding that most dealers only trade with very few connected dealers
in core–periphery networks. See Maggio, Kermani, and Song (2017), Hollifield, Neklyudov, and Spatt (2017), and Li and
Schurhoff (2019) for empirical evidence.
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would become zero, thus shutting down the negative service effect. The customer would then see only

the matching benefit of more dealers and, contrary to real data, would exhaust all dealers.

Assuming the observability of customers’ outside options (the number of the customer’s other

dealers) is realistic. Private conversations with practitioners suggest that dealers typically know their

customers’ outside options from, e.g., repeated interactions, due diligence processes, and/or fulfill-

ing compliance requirements. In electronic OTC trading, the number of contacted dealers is directly

communicated to the dealers on many RFQ platforms (Riggs et al., 2020). In fact, the model analysis

further reveals that customers have an incentive to commit to contacting a subset of dealers.

Section 3.2 studies the regulation and the optimal design of OTC markets. Consider a social plan-

ner who can mandate how many dealers a customer should contact. Under mild regularity conditions,

the planner always mandates (weakly) fewer dealers than chosen by the customer. In particular, the

customer ignores—but the planner accounts for—the intensified dealer competition, which makes the

dealers worse off overall. This negative externality concern lends theoretical support for the popular

RFQ market design that restricts the maximum number of dealers a customer can contact in each in-

quiry. Summarizing the above, Section 3.3 makes two specific market design recommendations for

RFQ platforms: (i) dealers should always be able to observe how many other dealers a customer is

contacting, and (ii) in general it is desirable to constrain customers’ dealer contacts, especially if such

constraints are made contingent on the customer’s proposed trade size.

Section 4.1 enriches the baseline model by introducing multiple, possibly heterogeneous, cus-

tomers and by endowing dealers with certain limited resources (e.g., time, attention, labor, etc.) needed

to serve customers. Section 4.2 shows that, in equilibrium, when choosing her service to a particular

customer, a dealer trades off the expected trading gain against the opportunity cost of spending the

limited resources on this customer (as opposed to on other customers). Such an endogenous oppor-

tunity cost thus replaces the exogenous service cost in the baseline. In other words, dealers’ resource

constraint can microfound the premise that dealer service is costly.

Such limited resources are particularly relevant during a short period when, for example, dealers’
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infrastructure and hiring are fixed. The model extension, therefore, is well-suited for studying how

sudden market stress shocks—such as downgrades of corporate bonds, the volatility in March 2020

due to COVID-19, and themarket turmoil caused byUK’s “mini-Budget,”—affect customers’ behavior

in contacting dealers and, in turn, dealers’ service to customers. To do so, Section 4.3 considers

two groups of customers, non-urgent versus urgent, and examines different forms of stress shocks by

varying the total number of customers, the composition of non-urgent and urgent types, and the degree

of urgency.

One robust finding is that non-urgent customers always reduce their dealer contacts as the stress

shock exacerbates. In fact, it is possible that they completely drop out of trading if the stress becomes

severe enough. Intuitively, this is because dealers find it more profitable to allocate their limited re-

sources to serving urgent customers, for they are willing to pay more to trade, and even more so as

the market stress shock amplifies their urgency. In other words, non-urgent customers are increasingly

“crowded out” by the urgent ones as market stress exacerbates.

Perhaps surprisingly, all customers, not just the non-urgent type, might contact fewer dealers when

the market is under stress. This happens when under the stress, more customers become urgent: Fac-

ing more urgent customers, dealers understand that their limited resources should earn higher trading

gain; that is, each unit of the resource becomes more expensive, bearing a higher opportunity cost.

To incentivize dealers to provide such increasingly more expensive service, customers then have to

sacrifice further by contacting fewer of them—that is, less is more.

Empirical findings seem to support the above prediction. For example, O’Hara and Zhou (2021)

document that when corporate bonds are under fire sell, trading volume via electronic RFQ platforms

drops relative to voice trading. That is, consistent with the prediction, when under market stress, cus-

tomers overall contact fewer dealers by moving away from RFQ platforms, where they simultaneously

contact multiple dealers, to conventional voice trading, where it is more difficult and costly to reach

multiple dealers.
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Contribution and related literature

The paper primarily contributes to the theoretical models that study how customers choose their dealers

in OTC trading. The literature has examined several important considerations:

• First, there is exogenous search or contact costs that prevent customers from reaching all dealers.

This is seen in early theoretical searchmodels such as Stigler (1961) and applied to OTCmarkets

as in Duffie, Dworczak, and Zhu (2017) and Riggs et al. (2020), among others.

• Second, customers’ private information influences how they contact dealers. On the one hand,

they may want to use more dealer “connections” to hide their private information, as evidenced

by Kondor and Pintér (2022). They may refrain from using too many dealers if the concern

of information leakage is dire, as discussed and analyzed by Burdett and O’Hara (1987), Liu,

Vogel, and Zhang (2017), Baldauf and Mollner (2022), and Pinter, Wang, and Zou (2022).

• Third, customer-dealer relationship, often modeled in a repeated trading game, can play an im-

portant role. For example, Bernhardt et al. (2005) show that relationship endogenously arises

and sustains price improvement for the customer, who thus remains with the dealer. Desgranges

and Foucault (2005) show that relationship, as in repeated trading, can shield a dealer from being

adversely selected by a customer, who, in equilibrium, trades with the dealer only when unin-

formed. Hendershott et al. (2020) develop a steady-state equilibrium model, where customers

choose the number of dealers (i.e., the network size), by trading off the execution speed (the

intensity of finding a counterparty) against an exogenous relationship utility flow.

The less-is-more mechanism differs from the above, as there is no exogenous contact cost and no

information asymmetry in the one-period trading game.⁴

The paper further contributes to the theory of electronic RFQ platforms. Vogel (2019) studies a

hybrid OTC market, with both conventional voice trading and electronic RFQ trading, where both the

⁴ Despite the static nature of the model, the less-is-more mechanism helps establish the customer-dealer relationship
as well as customers’ dealer networks. To see this, one can cast the one-period game in this paper as one in a steady-state
equilibrium. The endogenous dealer number, identified by the less-is-more mechanism, then corresponds to the “dealer
network size” choice in Hendershott et al. (2020), effectively endogenizing their exogenous relationship utility flows.
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dealer number and their response rate (service) are exogenous. In a search setting, Glebkin, Yueshen,

and Shen (2022) endogenize dealers’ response rate by determining it jointly with the equilibrium asset

allocation but keep the number of dealer contacts exogenous. This paper endogenizes both the number

of contacts and the response rate. The model suggests novel channels to consider when designing or

regulating RFQ platforms, such as whether dealers should be allowed to see how many other dealers

customers are contacting, whether an upper bound on the number of contacts should be imposed, etc.

Additionally, positive predictions from the model echo existing empirical evidence on RFQ platforms,

for example, from Hendershott and Madhavan (2015) and O’Hara and Zhou (2021).

In an independent work,Wang (2022) explores a setting similar to a special case of Levin and Smith

(1994) (when the asset value is common knowledge) and finds that customers only want to contact as

few dealers as possible in RFQ platforms. This is because, in both works, auction bidders (dealers)

incur a fixed entry (trading) cost, which implies an infinitely large competition elasticity (as shown

in Example 3 in Section 2.3). As a result, the negative service effect becomes extreme, pushing the

customer to choose the fewest possible dealers—a corner solution. With a more general service cost

function, however, this paper shows that customers’ dealer choices can be interior, echoing empirical

evidence as seen in, e.g., Riggs et al. (2020) and Allen and Wittwer (2021). Our work thus further

contributes to the literature on auctions with endogenous entry (e.g., Levin and Smith, 1994; Menezes

and Monteiro, 2000) by highlighting the importance of bidders’ competition elasticity.

Existing studies that endogenize dealers’ expertise acquisition, such as Glode and Opp (2020) and

Li and Song (2021), show that a concentrated market structure (like an OTC market) can incentivize

dealers to acquire more expertise to produce valuable information, thus improving social welfare (un-

der certain information structures), compared to amore competitivemarket structure (like a centralized

exchange). Notably, Glode and Opp (2020) share a similar prediction with the less-is-more mecha-

nism that a concentrated OTC market might supply more liquidity to investors than a seemingly more

competitive exchange market. Abstracting away from any form of information asymmetry, instead,

this paper obtains this result via dealers’ costly participation. We explicitly characterize the condition
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under which the service effect alone can induce the less-is-more outcome.

The model has additional implications for the execution quality in OTCmarkets. Following Duffie,

Gârleanu, and Pedersen (2005), a large volume of the literature determines the trading price in OTC

markets via exogenous Nash bargaining-power parameters. In the current paper, the customer effec-

tively runs a first-price auction among dealers, whose endogenous service in turn determines not only

the equilibrium price but also dealers’ response rates, trading probability, and trading gain splits—that

is, there is endogenous bargaining power. The model, therefore, yields rich predictions regarding the

execution quality in OTC markets. Notably, O’Hara, Wang, and Zhou (2018) argue that “interacting

with a smaller network of dealers can make the [customer] more important to those dealers and hence

elicit more favorable executions” (p. 324), and the less-is-more mechanism effectively formalizes this

idea. The endogenous dealer response rate and trading probability further speak to Hendershott et al.

(2022a), who study the “true cost of immediacy” by accounting also for failed trades.

2 A model of costly dealer service

2.1 Model setup

Agents. There are 𝑚̂ homogeneous risk-neutral dealers, indexed by 𝑖 ∈ {1, ..., 𝑚̂}, where 𝑚̂ ≥ 2 is

an integer. In this section, we consider one customer, labeling her as customer 𝑗 (to be consistent with

Section 4). We assume that the customer wants to trade one asset. Her trade size is normalized to one

unit, and, without loss of generality, we assume that she wants to buy. Her reservation value for the

unit is denoted by 𝜋 𝑗 (> 0), while the dealers value it at 0, thus ensuring positive trading gain.

Timing of events.

1. The customer reaches out to a set D 𝑗 ⊂ {1, ..., 𝑚̂} of dealers, with whom she is “in business.”

Since the dealers are homogeneous, the choice ofD 𝑗 simplifies to randomly selecting𝑚 𝑗 dealers
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out of {1, ..., 𝑚̂}, where 0 ≤ 𝑚 𝑗 ≤ 𝑚̂. Below we refer to𝑚 𝑗 as the customer’s “dealer choice.”⁵

2. Every business dealer 𝑖 ∈ D 𝑗 observes the customer’s type 𝜋 𝑗 and her dealer choice𝑚 𝑗 . Dealer 𝑖

then privately chooses her “service” for the customer 𝑗 . We write such service as 𝜃𝑖 𝑗 with a

normalized support of ∈ [0, 1]. Such service is costly: The dealer incurs a cost of 𝜁 (𝜃𝑖 𝑗 ) for

serving each customer 𝑗 . We assume that 𝜁 (·) is convexly increasing, from 𝜁 (0) = 0, and is

thrice differentiable, with the first- and the second–order derivatives denoted by ¤𝜁 (·) and ¥𝜁 (·),

respectively. We show in Appendix A that assuming a convex 𝜁 (·) is without loss of generality.

3. Nature makes independent Bernoulli draws {𝐴𝑖 𝑗 }𝑖∈D𝑗 with respective success rates {𝜃𝑖 𝑗 }𝑖∈D𝑗 .

We say a dealer 𝑖 is “ready” for the customer 𝑗 if 𝐴𝑖 𝑗 = 1. Only when ready can a dealer 𝑖

respond to the customer 𝑗 , by making a take-it-or-leave-it offer (TIOLIO) at price 𝑝𝑖 𝑗 . No dealer

observes whether others are ready.

4. The customer 𝑗 then compares all available TIOLIOs and chooses the best price 𝑝 𝑗 , i.e.,

𝑝 𝑗 = argmin
𝑝∈{𝑝𝑖 𝑗 |𝐴𝑖 𝑗=1 }

𝑝(1)

to trade with the quoting dealer. If there are multiple dealers quoting the same best price, the

customer randomly chooses one to trade with. If there is no offer, there is no trade.

Equilibrium. The equilibrium is characterized by three sets of endogenous objects: (i) the cus-

tomer’s dealer choice𝑚 𝑗 ; (ii) the dealers’ service {𝜃𝑖 𝑗 }; and (iii) the dealers’ quotes 𝑝𝑖 𝑗 (when𝐴𝑖 𝑗 = 1).

All agents maximize their respective expected trading profits. The analysis below focuses on symmet-

ric equilibria in which the homogeneous dealers choose the same (ii) and (iii).

Remarks

Remark 1 (Customer’s reservation value). By normalizing the homogeneous dealers’ reservation value

to zero, the customer’s reservation value 𝜋 𝑗 is the expected gains from trade. Such trading gains can

arise from, for example, the customer’s urgency to trade (willingness to trade), hedging need, and

⁵ We assume away costs associated with the dealer choice. This differentiates our model from, e.g., Riggs et al. (2020).
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sentiment.

Remark 2 (Dealers’ learning about clients). We assume that each dealer 𝑖 ∈ D 𝑗 perfectly observes both

𝜋 𝑗 and𝑚 𝑗 of the customer 𝑗 , because of the non-anonymity of OTC markets. For example, a dealer

needs to do her due diligence, e.g., to “know your customers (KYC).” Alternatively, dealers can also

learn about {𝜋 𝑗 ,𝑚 𝑗 } from repeated interactions (which we do not explicitly model) with the customer.

The assumption that dealers can perfectly observe {𝜋 𝑗 ,𝑚 𝑗 } is not as restrictive as meets the eye: For 𝜋 𝑗 ,

what matters is the expected gains from trade, and we only need to assume such an expectation exists.

For 𝑚 𝑗 , as will be shown in Section 3.1, the customer, in fact, has incentive to truthfully reveal this

information to her dealers (and commit to it).

Remark 3 (Dealers’ costly service and readiness). Dealers serve their customers by providing timely

trading opportunities, for example, by arranging the inventory that the customer wants (or providing in-

ventory space when the customer seeks to sell). We model the quality of such service via 𝜃𝑖 𝑗 ∈ [0, 1], a

higher value of which indicates, for example, more effort by the dealer to arrange the inventory wanted.

Only when the inventory is successfully arranged (i.e., when 𝐴𝑖 𝑗 = 1) is the dealer “ready” to quote to

the customer. Thus 𝜃𝑖 𝑗 also reflects the timeliness and the firmness of a dealer’s quote. Such effort to

arrange inventory is costly. There is labor costs, like hiring professionals to cover trading desks day and

night, doing risk management and due diligence, and fulfilling regulatory compliance requirements.

In addition, serving timely and firm quotes means commitments to trade, implying costly margins and

collaterals for arranging inventories and for clearing. These service costs are summarized in 𝜁 (𝜃𝑖 𝑗 ),

which we later endogenize in Section 4 via dealers’ resource constraints. Since such service or effort

is a dealer’s hidden action, we assume that 𝜃𝑖 𝑗 is unobservable by other dealers.

Remark 4 (RFQ trading). Our setup closely matches many electronic trading platforms that adopt

the RFQ protocol. In such platforms, a customer endogenously chooses 𝑚 𝑗 , the number of dealers

from whom she requests a quote. In doing so, the customer’s intended trade size and side, as well as

her identity, are revealed to the dealers (Riggs et al., 2020; O’Hara and Zhou, 2021), who can thus

observe (or estimate) the trading gain 𝜋 𝑗 . However, depending on the platform,𝑚 𝑗 may or may not be
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observed by dealers. For example, “dealers observe how many other dealers a customer contracts” on

Bloomberg SEF and Tradeweb SEF (p. 858, Riggs et al., 2020); but on MarketAxess, “[t]he dealers

do not know the number or identities of the other dealers contacted” (p. 370, O’Hara and Zhou, 2021).

We discuss this contrast in the market design through the lens of a welfare analysis in Sections 3.1–3.2.

Remark 5 (Voice trading). Our setup also speaks to conventional voice trading in OTC markets. Such

voice trading is typically modeled as bilateral meetings between a customer and a dealer (when they

are matched), as in, e.g., Duffie, Gârleanu, and Pedersen (2005). We argue that a customer can instead

approach multiple dealers, especially when she seeks to execute a trade in a timely fashion. A case

in point is the Public Sector Purchase Program (PSPP) by European Central Bank: when purchasing

a bond, the executing central bank approaches multiple dealers to seek quotes and then trades at the

best price (Hammermann et al., 2019), effectively running a first-price auction among selected dealers

as in our model. Breckenfelder, Collin-Dufresne, and Corradin (2022) study the PSPP via a similar

first-price auction model.

2.2 Equilibrium analysis

We analyze the equilibrium backwards. Section 2.2.1 first solves dealers’ quoting strategy {𝑝𝑖 𝑗 } (if they

are ready to quote), assuming symmetric service to the same customer 𝑗 ; that is, 𝜃𝑖 𝑗 = 𝜃 𝑗 for all 𝑖 ∈ D 𝑗 .

Section 2.2.2 then looks for a Nash equilibrium, where the symmetric service𝜃 𝑗 is a function of dealers’

information {𝑚 𝑗 , 𝜋 𝑗 } about the customer 𝑗 . Finally, Section 2.2.3 studies the customer 𝑗’s optimal

dealer choice𝑚 𝑗 .

2.2.1 Dealers’ quoting

Consider a dealer 𝑖 ∈ D 𝑗 , i.e., a business dealer of the customer 𝑗 , who is ready to quote (𝐴𝑖 𝑗 = 1). The

dealer would like to capture the full surplus by quoting 𝑝𝑖 𝑗 ↑ 𝜋 𝑗 , just below the customer’s reservation

value. However, she faces (𝑚 𝑗 − 1) potential competitors, as their quotes (ask prices) might be lower
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than 𝑝𝑖 𝑗 . Yet, each competitor 𝑖′ ∈ D 𝑗 (and 𝑖′ ≠ 𝑖) is able to quote only probabilistically (when𝐴𝑖′ 𝑗 = 1).

That is, the dealers in D 𝑗 engage in a price competition against unknown number of competitors.

Such price competition differs from the standard Bertrand competition, in which every dealer

quotes her reservation price of 𝑝𝑖 𝑗 = 0 and the customer gets the full surplus 𝜋 𝑗 . Here, every dealer 𝑖 ∈

D 𝑗 has the incentive to charge a higher price, 𝑝𝑖 𝑗 = 𝛼𝑖 𝑗𝜋 𝑗 for some 𝛼𝑖 𝑗 ∈ (0, 1]. This is because she

might actually be the only dealer who is ready, in which case her TIOLIO at 𝑝𝑖 𝑗 is the only available

offer to the customer. As long as 𝛼𝑖 𝑗 ≤ 1, the customer 𝑗 will accept it and the dealer 𝑖 pockets the

profit of 𝑝𝑖 𝑗 = 𝛼𝑖 𝑗𝜋 𝑗 . In a Nash equilibrium, however, the fraction 𝛼𝑖 𝑗 cannot be deterministic, as

the undercutting argument of Bertrand competition will drive 𝛼𝑖 𝑗 ↓ 0, and yet, in this case, it would

be strictly better off to quote some 𝛼𝑖 𝑗 > 0. This heuristic discussion is formalized in the proof and

summarized by the following lemma.

Lemma1 (Mixed-strategy quoting). Suppose the dealers inD 𝑗 have followed a symmetric strategy

to provide service 𝜃𝑖 𝑗 = 𝜃 𝑗 (> 0) to the customer 𝑗 . Then there exists a unique mixed-strategy

equilibrium, in which each dealer 𝑖 with 𝐴𝑖 𝑗 = 1 quotes 𝑝𝑖 𝑗 = 𝛼𝑖 𝑗𝜋 𝑗 , where 𝛼𝑖 𝑗 is a random variable,

i.i.d. across 𝑖, with c.d.f. 𝐹 (𝛼𝑖 𝑗 ;𝜃 𝑗 ,𝑚 𝑗 ) := 1
𝜃 𝑗
−

(
1
𝜃 𝑗
− 1

)
𝛼
− 1
𝑚𝑗 −1

𝑖 𝑗 , distributed on 𝛼 ∈
[
(1 − 𝜃 𝑗 )𝑚 𝑗−1, 1

]
.

Note that when𝑚 𝑗 = 1, 𝐹 (·) degenerates to a single probability mass at the maximum 𝛼𝑖 𝑗 = 1. We can

then use the above lemma to compute dealer and customer’s respective expected trading gains.

Lemma 2 (Endogenous split of trading gain). Under Lemma 1, a dealer 𝑖 who is ready to quote

(𝐴𝑖 𝑗 = 1) expects a revenue of (
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗(2)

when quoting to the customer 𝑗 . Furthermore, the customer 𝑗 expects a trading gain of

𝜋c
𝑗 :=

(
1 − (1 − 𝜃 𝑗 )𝑚 𝑗 −𝑚 𝑗𝜃 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1)𝜋 𝑗 .(3)

These expressions can be interpreted as follows. Under the mixed strategy given in Lemma 1, a dealer

who is ready to quote (𝐴𝑖 𝑗 = 1) must be indifferent from choosing any price in the relevant support.
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In particular, if she chooses 𝑝𝑖 𝑗 ↑ 𝜋 𝑗 , then she wins the price competition, earning 𝜋 𝑗 , only if all her

competitors are absent, which happens with probability (1 − 𝜃 𝑗 )𝑚 𝑗−1. Note that unconditionally, the

dealer therefore expects 𝜃𝑖 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 , which is monotone increasing in the dealer’s service 𝜃𝑖 𝑗 .

This is consistent with the evidence fromHendershott et al. (2022b) that more active dealers have more

order flow. In Section 2.2.2, we use this expression to derive dealers’ optimal service choice 𝜃 𝑗 .

As given in (3), the customer 𝑗 expects a fraction of the total trading gain 𝜋 𝑗 . This fraction is less

than 1, for two reasons: (i) with probability (1 − 𝜃 𝑗 )𝑚 𝑗 , none of her𝑚 𝑗 dealers is ready and there is

no trade; and (ii) each of the 𝑚 𝑗 dealers is ready with probability 𝜃 𝑗 and, in that case, expects (2).

This fraction is strictly positive, implying that even though the customer only faces TIOLIOs, she

has endogenous bargaining power, due to the above price competition among dealers. Section 2.2.3

uses (3) to derive the customer’s optimal dealer choice𝑚 𝑗 .

2.2.2 Dealers’ service to the customer

Consider a dealer 𝑖 ∈ D 𝑗 . She knows that the number of competing dealers is𝑚 𝑗 −1. She also takes as

given these competing dealers’ symmetric service choice of 𝜃𝑖′ 𝑗 = 𝜃 𝑗 , ∀𝑖′ ∈ D 𝑗 and 𝑖′ ≠ 𝑖. Using (2),

before 𝐴𝑖 𝑗 realizes, dealer 𝑖 expects a payoff of 𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 , where 𝜃𝑖 𝑗 is her service to client 𝑗 .

In Appendix A, we show that it suffices to consider only a pure strategy of 𝜃𝑖 𝑗 , thanks to the convexity

of the service cost 𝜁 (·). Therefore, dealer 𝑖’s problem is

max
𝜃𝑖 𝑗∈[0,1]

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜁
(
𝜃𝑖 𝑗

)
(4)

Its solution is characterized by the following proposition.

Proposition 1 (Dealers’ symmetric service). In a symmetric-strategy equilibrium, every dealer 𝑖 ∈

D 𝑗 chooses the same service 𝜃𝑖 𝑗 = 𝜃 𝑗 for customer 𝑗 :

𝜃 𝑗 = 1{𝜋 𝑗> ¤𝜁 (0)}𝑔
(
𝑚 𝑗 , 𝜋 𝑗

)
,

where 𝑔(·) is an implicit function of 𝜃 𝑗 , given by
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 = ¤𝜁 (𝜃 𝑗 ), and 1{·} is an indicator.

12



We provide some intuition here and leave the formal proof to the appendix. The implicit func-

tion 𝑔(·) is defined by the first-order condition of (4) with respect to 𝜃𝑖 𝑗 :(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃 𝑗 ) = 0,(5)

with the symmetric 𝜃𝑖 𝑗 = 𝜃 𝑗 . In words, 𝑔(·) solves the symmetric 𝜃 𝑗 that equates the marginal benefit

and cost: The marginally higher probability to win the price competition and earn (2) must break even

with the marginal cost of ¤𝜁 (𝜃 𝑗 ). The solution 𝑔(·), however, might be constrained by the requirement

of 𝜃 𝑗 ∈ [0, 1]. In particular, we show in the proof that only the lower bound 𝜃 𝑗 ≥ 0 might bind, hence

the indicator function in the proposition.

An important implication of Proposition 1 is that the optimal service 𝜃 𝑗 decreases in𝑚 𝑗 . Assum-

ing𝑚 𝑗 as a nonnegative real number,⁶ then the following derivative is well-defined:

d𝜃 𝑗
d𝑚 𝑗

= 1{𝜋 𝑗> ¤𝜁 (0)} ·
(1 − 𝜃 𝑗 ) ln(1 − 𝜃 𝑗 )

𝑚 𝑗 − 1 + (1 − 𝜃 𝑗 ) ¥𝜁 (𝜃 𝑗 )/ ¤𝜁 (𝜃 𝑗 )
≤ 0.(6)

Indeed, if there are too many potential competitors (large𝑚 𝑗 ), doing business with the customer is not

going to be very profitable, and there is no point providing much costly service to her.

2.2.3 The customer’s choice of dealers

The customer 𝑗 , before trading starts, chooses 𝑚 𝑗 dealers to maximize her ex-ante expected trading

gain 𝜋c
𝑗 , given by (3), subject to dealers’ optimal service 𝜃 𝑗 (Proposition 1).

Proposition 2 (Customers’ dealer choice). If 𝜋 𝑗 ≤ ¤𝜁 (0), the customer will not trade and is in-

different to choosing any 𝑚 𝑗 ∈ [0, 𝑚̂]. If 𝜋 𝑗 > ¤𝜁 (0), there always exists some 𝑚 𝑗 ∈ (1, 𝑚̂] that

maximizes the customer’s ex-ante payoff 𝜋c
𝑗 , as given in (3).

Several features of the proposition are worth highlighting. First, only if the customer is “large” enough

will she approach dealers initially—that is, if the trading gain 𝜋 𝑗 is too small (≤ ¤𝜁 (0)), no dealer will

⁶ While it is natural to think of𝑚 𝑗 as an integer (number of dealers), for simplicity, we treat it as a nonnegative real
number. That is, we allow the customer to contact, for example,𝑚 𝑗 = 4.7 dealers, with the rough interpretation that she
plays a mixed strategy between choosing 4 and 5 dealers.
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serve her (𝜃 𝑗 = 0, Proposition 1) and, knowing this, this customer 𝑗 would not bother to open accounts

with dealers. (More precisely, she is indifferent to contacting any dealer or not, as none will serve her.)

Second, there is a lower bound of 𝑚 𝑗 > 1 (if 𝜋 𝑗 > ¤𝜁 (0)). Intuitively, doing business with only

one dealer effectively waives the dealer from competition with others. As such, the dealer extracts

all the trading gain, and the customer expects 𝜋c
𝑗 = 0, following (3) with𝑚 𝑗 = 1. Instead, choosing

any𝑚 𝑗 > 1 induces at least some competition among dealers, capturing some 𝜋c
𝑗 > 0.

Third, the proposition is only about the existence of the optimal𝑚 𝑗 . Such existence readily follows

the fact that the support of𝑚 𝑗 is bounded by [0, 𝑚̂] and that the objective 𝜋c
𝑗 is continuous in𝑚 𝑗 . We

provide a more detailed characterization of the optimal𝑚 𝑗 in Section 2.3, where we discuss when𝑚 𝑗

is interior or cornered and when it is unique.

2.2.4 Summary of equilibrium

In summary, the equilibrium is as follows:

(i) The customer 𝑗 chooses𝑚 𝑗 dealers for her D 𝑗 , where𝑚 𝑗 is given in Proposition 2.

(ii) Every dealer 𝑖 ∈ D 𝑗 provides symmetric service 𝜃𝑖 𝑗 = 𝜃 𝑗 as given in Proposition 1.

(iii) If 𝐴𝑖 𝑗 = 1, then dealer 𝑖 ∈ D 𝑗 quotes an ask price 𝑝𝑖 𝑗 according to Lemma 1.

For the subsequent analysis to be meaningful, we focus on the case of a large customer with 𝜋 𝑗 > ¤𝜁 (0)

in the rest of Section 2, for otherwise there is no trading (Proposition 2).

2.3 When less is more

One key result of ourmodel is that customers do not always exhaust the available dealers; that is, they do

business with fewer dealers to maximize their expected trading gains—less is more. Mathematically,

this requires the optimal dealer choice𝑚 𝑗 to be interior, 1 < 𝑚 𝑗 < 𝑚̂. To study when this happens,

we decompose the effects of a marginally larger 𝑚 𝑗 on the customer’s expected trading gain 𝜋c
𝑗 by

examining the derivative of 𝜋c
𝑗 with respect to𝑚 𝑗 .
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Lemma 3 (Customer’s tradeoff). Suppose 𝜋c
𝑗 , as given by (3), is differentiable in𝑚 𝑗 . Then

d𝜋c
𝑗

d𝑚 𝑗
=

𝜕𝜋c
𝑗

𝜕𝑚 𝑗︸︷︷︸
≥0, direct effect

+

≤0, indirect effect︷    ︸︸    ︷
𝜕𝜋c

𝑗

𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

,

where the direct effect is always positive and the indirect effect is always negative.

That is, by chain rule, we see a pair of opposing effects:

• Matching effect: A larger 𝑚 𝑗 helps the customer reach more dealers, who will more likely

be able to serve her when she needs to trade and will compete more fiercely to provide better

quotes. This is the direct effect of
𝜕𝜋c

𝑗

𝜕𝑚 𝑗
, and it is always positive, inducing the customer to contact

as many dealers as possible.

• Service effect: On the other hand, as𝑚 𝑗 increases, dealers know that they face more competition

and expect less revenue. Hence, the lowered expected revenue drives them to reduce their service

to the customer. This novel indirect service effect is always negative, because dealers reduce

their service facing more competition, following (6).

A key determinant in the net effect of
d𝜋c

𝑗

d𝑚 𝑗
is dealers’ “competition elasticity,” defined as

𝜀 :=
d
(
ln

(
1 − 𝜃𝑖 𝑗

) )
−d

(
ln

(
1 − 𝜃 𝑗

)𝑚 𝑗−1
) .(7)

In words, 𝜀 (> 0) captures how sensitive a dealer 𝑖 is to competition: If the competing dealers serve

more to customer 𝑗 (reducing their no-service probability by d
(
ln

(
1 − 𝜃 𝑗

)𝑚 𝑗−1
)
), dealer 𝑖 will serve

less (increasing her own no-service probability by d
(
ln

(
1 − 𝜃𝑖 𝑗

) )
). The larger (more positive) 𝜀 is, the

more aggressively dealer 𝑖 reduces her service. In other words, the competition elasticity (7) effectively

measures the strength of the service effect. If 𝜀 is sufficiently large, the service effect dominates, thus

making the customer unwilling to reach out to more dealers.

Under the optimal symmetric service 𝜃 𝑗 given by Proposition 1, the competition elasticity can be

simplified. In particular, for 𝜋 𝑗 > ¤𝜁 (0), dealer 𝑖’s first-order condition (5) holds with 𝜃𝑖 𝑗 = 𝜃 𝑗 > 0.
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Substituting the (5)-implied
(
1 − 𝜃 𝑗

)𝑚 𝑗−1 = ¤𝜁 (𝜃 𝑗 )/𝜋 𝑗 into the denominator of (7), we obtain

𝜀 (𝜃 𝑗 ) =
1

1 − 𝜃 𝑗

¤𝜁 (𝜃 𝑗 )
¥𝜁 (𝜃 𝑗 )

, for 𝜃 𝑗 ∈ (0, 1).(8)

That is, given the dealers’ optimal service (Proposition 1), the competition elasticity depends only on

the shape of the service cost 𝜁 (·). Belowwe study 𝜀 (·) to characterize when the customer’s equilibrium

choice of𝑚 𝑗 is interior and when it is unique.

2.3.1 Interior solution with sufficiently many dealers

To examine when𝑚 𝑗 is interior, we first relax the customer’s dealer choice from𝑚 𝑗 ∈ [1, 𝑚̂] to𝑚 𝑗 ∈

[1,∞). This avoids the “mechanical” corner solution when 𝑚̂ is too small—for example, if 𝑚̂ = 1,

then a corner solution of𝑚 𝑗 = 𝑚̂ = 1 always arises. A sufficient condition for𝑚 𝑗 < ∞ is given below.

Proposition 3 (Not using infinitely many dealers𝑚 𝑗 ). When there are sufficiently many dealers

(𝑚̂ → ∞), the customer 𝑗’s optimal dealer choice𝑚 𝑗 is finite if

𝜀 (0) > 2.(9)

Furthermore, 𝜀 (𝜃 𝑗 ) > 2 at this optimal𝑚 𝑗 , where 𝜃 𝑗 is the optimal dealer service given by Proposi-

tion 1.

Intuitively, condition (9) effectively requires the competition elasticity 𝜀 to be sufficiently large, so

that the negative service effect is severe enough to deter the customer from reaching out to too many

dealers.

Belowwe introduce a general class of service cost functions, which can ensure sufficiently large 𝜀 (0)

as required by (9):

𝜁 (𝜃 ) =


𝑎

1−𝑏

(
1 − (1 − 𝜃 )1−𝑏

)
+ 𝑐𝜃, if 𝑏 ≠ 1; and

−𝑎 ln(1 − 𝜃 ) + 𝑐𝜃, if 𝑏 = 1.

(10)

The competition elasticity, under this class of 𝜁 (·), can be found as 𝜀 (0) = 𝑎+𝑐
𝑎𝑏 , and it satisfies (9) for

various parameter values of {𝑎, 𝑏, 𝑐}. In particular, (10) nests the following special cases.
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Example 1 (Constant competition elasticity). If the parameters satisfy 𝑎 > 0, 𝑏 > 0, and 𝑐 = 0, then

this class of 𝜁 (·) is convexly increasing and satisfies 𝜁 (0) = 0, as assumed in Section 2.1. Furthermore,

the competition elasticity is constant, 𝜀 (𝜃 ) = 1/𝑏, satisfying (9) if 𝑏 < 1
2 . Such a cost function 𝜁 (·) is

reminiscent of constant relative risk aversion (CRRA) utility functions.

Example 2 (Linearly decreasing competition elasticity). If 𝑎 > 0, 𝑏 = 1, and 𝑐 > 0, it can be seen that

the resulting 𝜁 (·) is also convexly increasing and satisfies 𝜁 (0) = 0, as assumed in Section 2.1. The

competition elasticity becomes 𝜀 (𝜃 ) = 1 + 𝑐
𝑎 (1 − 𝜃 ) and satisfies (9) if 𝑐 > 𝑎.

Example 3 (Infinitely large competition elasticity). If 𝑎 = 0, the cost function becomes 𝜁 (𝜃 ) = 𝑐𝜃 .

This linear service cost can be seen as the result of dealers paying a fixed cost of 𝑐 > 0 only when

ready (𝐴𝑖 = 1), for example, due to regulatory compliance, clearing requirements, or risk management.

Jovanovic and Menkveld (2022) assume such a cost function to study quote dispersion in limit order

markets. In particular, the constant competition elasticity becomes 𝜀 ↑ ∞, satisfying (9). Wang (2022)

also assumes such a cost function and, because of the infinite competition elasticity, finds that the

customer only wants to contact as few dealers as possible.

Example 4 (Quadratic service cost). If 𝑏 = −1, then the cost function becomes 𝜁 (𝜃 ) = −𝑎
2𝜃

2+ (𝑎+𝑐)𝜃 .

It is also convexly increasing and satisfies 𝜁 (0) = 0, as assumed in Section 2.1, if 𝑎 < 0 and 𝑎 + 𝑐 > 0.

The implied competition elasticity is 𝜀 (𝜃 ) = − 𝑐
𝑎

1
1−𝜃 − 1 and satisfies (9) if 𝑐 > −3𝑎.

2.3.2 Interior solution with finite dealers

We now return to the more realistic setting of finite dealers, i.e., 𝑚̂ < ∞. To facilitate subsequent

analyses, we impose a regularity condition to ensure that 𝜋c is quasi-concave in𝑚 𝑗 .

Lemma 4 (A sufficient condition for uniqueness). It is sufficient to assume that

d𝜀 (𝜃 )
d𝜃

≤ 0 for all 𝜃 ∈ [0, 1](11)

to ensure that 𝜋c
𝑗 is quasi-concave on𝑚 𝑗 ∈ (1,∞).
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To see the intuition, note that the benefit of increasing𝑚 𝑗—the positive matching effect—always di-

minishes with𝑚 𝑗 .⁷ On the cost side, the service loss exacerbates with𝑚 𝑗 . This is because when𝑚 𝑗

is small (large), each dealer knows that she faces low (high) competition and will provide a lot of (lit-

tle) service to the customer, i.e., 𝜃 𝑗 is high (low). The monotone decreasing 𝜀 (·) then implies that an

increase in𝑚 𝑗 reduces a large (small) amount of service 𝜃 𝑗 when𝑚 𝑗 is large (small). In other words,

the negative service effect, following d𝜀
d𝜃 ≤ 0, is more severe when𝑚 𝑗 is large—the customer’s cost of

losing service exacerbates with𝑚 𝑗 . Combining the diminishing benefit and the exacerbating cost, the

quasi-concavity guarantees that the optimal𝑚 𝑗 is unique.

It is worth emphasizing that the condition (11) is sufficient but not necessary for the optimal𝑚 𝑗 to

be unique in the support of [1, 𝑚̂]. In Example 4, for instance, 𝜀 (𝜃 ) is monotone increasing in 𝜃 , thus

not satisfying (11), but it can still be shown that the customer’s objective 𝜋c
𝑗 remains quasi-concave.

(Examples 1–3 clearly satisfy (11).)

With the help of (9) and (11), we can now obtain additional useful comparative statics and, further,

refine the equilibrium characterization of𝑚 𝑗 given earlier in Proposition 2.

Corollary 1 (When less is more). Assume (9) and (11). Then the customer 𝑗’s optimal dealer

choice𝑚 𝑗 is unique. Further, both𝑚 𝑗 and the dealers’ optimal service 𝜃 𝑗 are (weakly) increasing

in 𝜋 𝑗 . In particular, the customer chooses fewer dealers than available, i.e.,𝑚 𝑗 < 𝑚̂, if and only if

𝜋 𝑗 <
¤𝜁 (𝜃 )

(1 − 𝜃 )𝑚̂−1
,(12)

where 𝜃 ∈ (0, 1) is a unique exogenous threshold given by (B.4) in the proof.

Intuitively, dealers compete more fiercely for larger customers; that is, all else being equal, a customer

with larger 𝜋 𝑗 receives more service 𝜃 𝑗 . Hence, increasing𝑚 𝑗 induces more service from all dealers

for a customer with larger 𝜋 𝑗 . Further, under (11), the competition elasticity 𝜀 is (weakly) lower with

more service 𝜃 𝑗 , thus weakening the negative service effect of increasing𝑚 𝑗 . Therefore, both of these

⁷ Recall from (6) that𝑚 𝑗 and 𝜃 𝑗 are negatively related. Therefore, when𝑚 𝑗 is small, 𝜃 𝑗 is large, and a marginal increase
in𝑚 𝑗 increases the trading probability significantly by such a large 𝜃 𝑗 . If𝑚 𝑗 has become very large, each of the dealers
provides very low 𝜃 𝑗 , as does the marginal additional dealer, adding very little to the trading probability.
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Figure 1: A customer’s dealer choice and dealers’ service to her. This figure plots the equilibrium𝑚 𝑗 (solid
line, left axis) and 𝜃 𝑗 (dashed line, right axis) as functions of customer type 𝜋 𝑗 , varying in 𝜋 𝑗 ∈ [100, 102] on the
horizontal axis (log scale). Dealers’ service cost function 𝜁 (·) is parameterized as in Example 1, with 𝑎 = 3.0
and 𝑏 = 0.44. The total number of dealers is set at 𝑚̂ = 10.

effects incentivize a larger customer (larger 𝜋 𝑗 ) to reach out to more dealers.⁸

Figure 1 illustrates the patterns. The customer’s 𝜋 𝑗 is plotted on the horizontal axis in log scale.

The solid line (left axis) shows that she only reaches out to𝑚 𝑗 > 0 dealers if she is “large enough,”

i.e., when 𝜋 𝑗 > ¤𝜁 (0). As 𝜋 𝑗 increases, she does business with more dealers, until she exhausts all

of them, i.e., 𝑚 𝑗 = 𝑚̂ for 𝜋 𝑗 > ¤𝜁 (𝜃 )/(1 − 𝜃 )𝑚̂−1. Dealers’ symmetric service 𝜃 𝑗 , the dashed line

(right axis), also increases with 𝜋 𝑗 as, intuitively, dealers are willing to provide more service for larger

customers. Notably, however, its initially increase is slower than later, when𝑚 𝑗 is capped at 𝑚̂. This

is because initially there are new, competing dealers introduced by the customer’s increasing𝑚 𝑗 , and

such competition on the extensivemargin dampens the existing dealers’ incentive to serve the customer.

Once 𝑚 𝑗 = 𝑚̂ is capped, such an extensive-margin competition stops, allowing 𝜃 𝑗 to increase faster

with 𝜋 𝑗 .

⁸ Note also that (12) can be equivalently rewritten as 𝑚̂ > 1 + ln( ¤𝜁 (𝜃 )/𝜋 𝑗 )
ln(1−𝜃 ) . That is, it is essentially a variation of

“sufficiently many dealers” as studied in Section 2.3.1. In other words, because of (11), the requirement of a sufficiently
large 𝑚̂ can be translated into a requirement of small 𝜋 𝑗 to ensure interior𝑚 𝑗 .
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3 Market design implications

A key assumption in the model is that every dealer of a customer 𝑖 observes the customer’s dealer

choice 𝑚 𝑗 . In conventional OTC trading, such observability can arise from dealers’ due diligence

exercises and/or repeated interactions with the customer. On RFQ platforms, such observability is a

market design choice—indeed, some, but not all, RFQ platforms reveal𝑚 𝑗 to dealers (see Remark 4).

This section studies related market design issues for RFQ platforms. To set the stage, Section 3.1 first

studies the observability of𝑚 𝑗 . Section 3.2 then examines welfare implications. Finally, Section 3.3

makes concrete market design suggestions.

3.1 The observability of the customer’s dealer choice

To illustrate the idea, this subsection considers an RFQ platform where the customer can choose,

before trading starts, whether to reveal her choice𝑚 𝑗 to her dealers. If she chooses to reveal so, the

equilibrium characterized in Sections 2.2–2.3 applies.

What will happen if she does not reveal𝑚 𝑗? The customer still chooses𝑚 𝑗 ∈ [0, 𝑚̂] to maximize

her expected payoff 𝜋c
𝑗 as given by (3). However, her dealers’ (symmetric) service 𝜃 𝑗 can no longer be

a function of the unobservable𝑚 𝑗 . Assuming differentiability, therefore,

d𝜋c
𝑗

d𝑚 𝑗
=

𝜕𝜋c
𝑗

𝜕𝑚 𝑗︸︷︷︸
≥0, direct effect

+

=0, indirect effect︷    ︸︸    ︷
𝜕𝜋c

𝑗

𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

=
𝜕𝜋c

𝑗

𝜕𝑚 𝑗
≥ 0.

Compared to the decomposition in Lemma 3, it can be seen that the indirect negative service effect,

which used to balance the direct positive matching effect, is no longer in effect, because d𝜃 𝑗
d𝑚 𝑗

= 0.

With
d𝜋c

𝑗

d𝑚 𝑗
> 0, the customer 𝑗 will then contact as many dealers as possible, i.e.,𝑚 𝑗 = 𝑚̂.

Consequently, the dealers in equilibrium also know that𝑚 𝑗 = 𝑚̂. Their symmetric optimal service

choice 𝜃 𝑗 is then a special case of Proposition 1, with𝑚 𝑗 = 𝑚̂. Recall from (6) that d𝜃 𝑗
d𝑚 𝑗

≤ 0. Therefore,
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the customer, in fact, gets the lowest service of

𝜃 𝑗 := 1{𝜋 𝑗> ¤𝜁 (0)}𝑔(𝑚̂, 𝜋 𝑗 ).

Intuitively, this is because the customer always contacts all dealers, intensifying their competition and

driving down their profit, which no longer justifies any quality service. In turn, this lowest service 𝜃 𝑗

makes the customer (weakly) worse off.

Proposition 4 (Truthful revelation of 𝑚 𝑗 ). Assume (9) and (11). Every customer 𝑗 individually

(weakly) prefers truthfully revealing her dealer choice𝑚 𝑗 . That is, 𝜋c
𝑗 (𝑚 𝑗 ) ≥ 𝜋c

𝑗 (𝑚̂), where𝑚 𝑗 is the

equilibrium outcome given in Corollary 1; and the inequality is strict if ¤𝜁 (0) < 𝜋 𝑗 < ¤𝜁 (𝜃 )/(1−𝜃 )𝑚̂−1.

Proposition 4 also shows that a sufficiently large customer (𝜋 𝑗 ≥ ¤𝜁 (𝜃 )/(1 − 𝜃 )𝑚̂−1) is indifferent about

revealing her𝑚 𝑗 or not. This is because the dealers are okay with not observing her𝑚 𝑗 , as they know

that such a large customer does business with all dealers no matter what.

3.2 Welfare and customers’ dealer choice

The above analysis shows that customers weakly prefer that the RFQ platform directly reveals their

dealer choices𝑚 𝑗 to the contacted dealers. Do dealers also benefit from the observability of𝑚 𝑗? Is

trading more efficient overall? In this subsection, we study how welfare is affected by 𝑚 𝑗 , before

continuing with concrete market design suggestions in Section 3.3.

A general expression of welfare. Suppose the customer 𝑗 contacts 𝑚 𝑗 dealers and receives an

amount of 𝜃𝑖 𝑗 service from dealer 𝑖 ∈ D 𝑗 . The trading gain of 𝜋 𝑗 is realized as long as at least one

dealer out of𝑚 𝑗 is ready, i.e., with probability 1 −∏
𝑖∈D𝑗

(1 − 𝜃𝑖 𝑗 ). To provide such service, a dealer 𝑖

incurs a cost of 𝜁 (𝜃𝑖 𝑗 ). Therefore, welfare is calculated as

𝑤 = ©­«1 −
∏
𝑖∈D𝑗

(1 − 𝜃𝑖 𝑗 )ª®¬𝜋 𝑗 −
∑
𝑖∈D𝑗

𝜁 (𝜃𝑖 𝑗 ).(13)
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For example, if dealer service is symmetric, 𝜃𝑖 𝑗 = 𝜃 𝑗 , then welfare becomes

𝑤 =
(
1 − (1 − 𝜃 𝑗 )𝑚 𝑗

)
𝜋 𝑗 −𝑚 𝑗𝜁 (𝜃 𝑗 ) .(14)

Social plannermandating𝑚 𝑗 . Belowwe study how a social planner mandates the customer’s dealer

choice 𝑚 𝑗 to maximize welfare and compare the result with the above market outcome.⁹ The man-

date 𝑚 𝑗 is understood also by the dealers. That is, dealers effectively observe 𝑚 𝑗 , and they still en-

dogenously choose their symmetric service 𝜃 𝑗 according to Proposition 1. Hence, for the rest of this

section, we examine only the case of 𝜋 𝑗 > ¤𝜁 (0) to ensure that there is trading. Then the planner’s

objective function, the welfare expression 𝑤 , remains as given in (14), subject to the symmetric 𝜃 𝑗 ,

implied by (5). Denote by 𝑚P
𝑗 the planner’s optimal choice. To compare, denote by 𝑚M

𝑗 the market

outcome of customer 𝑗’s dealer choice, as given in Corollary 1.

Proposition 5 (Planner’s mandate of𝑚 𝑗 ). Assume (9) and (11). Then, welfare𝑤 is quasi-concave

in 𝑚 𝑗 , and the planner’s optimal choice 𝑚P
𝑗 is unique in [1, 𝑚̂] and is always (weakly) lower than

the market outcome: 𝑚P
𝑗 ≤ 𝑚M

𝑗 . Specifically, let ℎ(𝜃 ) := −(1 − 𝜃 ) ln(1 − 𝜃 ) ¤𝜁 (𝜃 ) − 𝜁 (𝜃 ). Then,

if lim𝜃↑1 ℎ(𝜃 ) < 0, the planner always chooses 𝑚P
𝑗 = 1. If instead lim𝜃↑1 ℎ(𝜃 ) ≥ 0, there exists a

unique threshold 𝜃 ∗ ∈ (0, 1] such that ℎ(𝜃 ∗) = 0 and

(i) if ¤𝜁 (0) < 𝜋 𝑗 ≤ ¤𝜁 (𝜃 ∗), then𝑚P
𝑗 = 1 < 𝑚M

𝑗 ;

(ii) if ¤𝜁 (𝜃 ∗) < 𝜋 𝑗 < ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1, then 1 < 𝑚P
𝑗 = 1 + ln( ¤𝜁 (𝜃∗)/𝜋 𝑗 )

ln(1−𝜃∗) < 𝑚M
𝑗 ≤ 𝑚̂; and

(iii) if 𝜋 𝑗 ≥ ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1, then𝑚P
𝑗 =𝑚M

𝑗 = 𝑚̂.

We provide a heuristic discussion on why 𝑚P
𝑗 ≤ 𝑚M

𝑗 . For simplicity, consider case (ii) above,

where both 𝑚P
𝑗 and 𝑚M

𝑗 are interior, so that we can make use of the first-order derivatives to build

intuition. The welfare expression (14) is the sum of the customer’s trading gain and those of the𝑚 𝑗

dealers: 𝑤 = 𝜋c
𝑗 +𝑚 𝑗𝜋

d
𝑗 , where 𝜋d

𝑗 = 𝜃 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜁
(
𝜃 𝑗

)
follows (4). The planner’s first-order

⁹ We believe that mandating𝑚 𝑗 is the most realistic and plausible policy intervention. In an electronic RFQ platform,
mandating the𝑚 𝑗 choice can be achieved by stipulating how many dealers a customer can reach in one “click.” Although
it does not happen in equilibrium, if a customer only chooses fewer dealers than stipulated, the platform could randomly
select other dealers to fill the difference.
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derivative is then

d𝑤
d𝑚 𝑗

=
d𝜋c

𝑗

d𝑚 𝑗
+ 𝜋d

𝑗 +𝑚 𝑗

d𝜋d
𝑗

d𝑚 𝑗
.

The first component,
d𝜋c

𝑗

d𝑚 𝑗
, reflects the customer’s consideration, as studied in Section 2.2.3. In partic-

ular, when choosing her optimal𝑚 𝑗 = 𝑚M
𝑗 , unlike the planner, the customer does not internalize the

following two effects on the dealers:

• The second term 𝜋d
𝑗 , which is positive, reflects the marginal dealer’s additional trading gain.

• The third term 𝑚 𝑗
d𝜋d

𝑗

d𝑚 𝑗
, which, rather intuitively, is always negative,¹⁰ reflects the intensified

competition among the dealers.

While the two effects are in opposite directions in general, we show in the proof that at the market

outcome 𝑚M
𝑗 , the negative competition effect dominates, i.e., 𝜋d

𝑗 + 𝑚 𝑗
d𝜋d

𝑗

d𝑚 𝑗
< 0. Intuitively, this is

because at the customer’s optimal 𝑚M
𝑗 , the dealers’ competition elasticity 𝜀 (𝜃 𝑗 ) is necessarily very

severe (Proposition 3), limiting their profit 𝜋d
𝑗 . Not accounting for such dealer losses, the customer

chooses a large optimal𝑚M
𝑗 to satisfy her first-order condition

d𝜋c
𝑗

d𝑚 𝑗
= 0. Therefore, d𝑤 𝑗

d𝑚 𝑗

���
𝑚 𝑗=𝑚M

𝑗

< 0, and

the planner always wants to (locally) reduce her dealer choice𝑚P
𝑗 below the market outcome𝑚M

𝑗 .

Social planner mandating both 𝑚 𝑗 and {𝜃𝑖 𝑗 }. The social planner can also mandate dealers’ ser-

vice {𝜃𝑖 𝑗 }. Such regulations, though, might appear rather “invasive” as the planner has to interfere

with how dealers run their businesses, and we do not consider such policies realistic. Nevertheless,

for completeness, we briefly discuss this case below.

Note that from the planner’s perspective, asking a customer not to contact certain dealers is the

same as asking those dealers not to provide service to the customer. For example, if the planner wants

customer 𝑗 not to contact dealer 𝑖, forcing 𝑖 ∉ D 𝑗 is equivalent to requiring 𝜃𝑖 𝑗 = 0. The planner’s

¹⁰ Indeed,
d𝜋d

𝑗

d𝑚 𝑗
=

𝜕𝜋d
𝑗

𝜕𝑚 𝑗
+ 𝜕𝜋d

𝑗

𝜕𝜃 𝑗

d𝜃 𝑗

d𝑚 𝑗
, but

𝜕𝜋d
𝑗

𝜕𝜃 𝑗
= 0 by the envelope theorem (as dealers choose their optimal 𝜃 𝑗 ). Hence,

d𝜋d
𝑗

d𝑚 𝑗
=

𝜕𝜋d
𝑗

𝜕𝑚 𝑗
= 𝜃 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 ln(1 − 𝜃 𝑗 ) < 0.
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problem can then be rewritten as

max
{𝜃𝑖 𝑗 }

(
1 −

𝑚̂∏
𝑖=1

(1 − 𝜃𝑖 𝑗 )
)
𝜋 𝑗 −

𝑚̂∑
𝑖=1

𝜁 (𝜃𝑖 𝑗 ).

We say that a customer is effectively in business with𝑚P
𝑗 =

∑𝑚̂
𝑖=1 1{𝜃𝑖 𝑗>0} dealers.

Proposition 6 (Planner’s mandate of both𝑚 𝑗 and {𝜃𝑖 𝑗 }). Assume (9) and (11). Further, if 𝜀 (𝜃 ) >

1 for all 𝜃 ∈ [0, 1], then the social planner chooses𝑚P
𝑗 = 1, so that each customer is effectively in

business with at most one dealer.

Intuitively, when the competition elasticity is sufficiently high, choosing additional dealers results in

all of them significantly reducing their service and lowering the trading probability. To avoid such

inefficiency, the planner therefore chooses𝑚P
𝑗 = 1.

3.3 Market design recommendations

The above welfare analysis suggests that the market outcome is in general inefficient. In particular,

since customers do not internalize dealers’ competition cost, from a social planner’s point of view,

they reach out to “too many” dealers, whose lowered profitability can be socially costly. Allowing

dealers to observe the customer’s number of dealer contacts mitigates the excessiveness (𝑚M
𝑗 ≤ 𝑚̂) but

does not fully address the issue (𝑚P
𝑗 ≤ 𝑚M

𝑗 ). Following Proposition 5, we now make two qualitative

recommendations regarding the design of RFQ platforms.

First, the platform should make observable the number of dealers chosen by the customer.

Corollary 2 (Dealer competition observability). Following Proposition 5, welfare is weakly

higher when dealers observe customers’𝑚 𝑗 choice than when there is no such observability.

Proposition 4 has shown that customers are better off with such observability (𝜋c
𝑗 (𝑚M

𝑗 ) ≥ 𝜋c
𝑗 (𝑚̂)). So

are the contacted dealers, because with the observability, the customers contact fewer dealers (𝑚M
𝑗 ≤

𝑚̂), reducing their competition. The 𝑚̂−𝑚M
𝑗 uncontacted dealers are worse off (because they no longer

participate in trading), but they also no longer need to provide the costly service. Corollary 2 effectively

shows that netting the above effects, welfare is always improved by the observability.
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Figure 2: Social planner’s welfare-maximizing dealer choice𝑚P
𝑗 vs. the market outcome𝑚M

𝑗 . This figure
plots the planner’s welfare-maximizing choice of𝑚P

𝑗 (solid line, left axis) and the customer’s choice𝑚M
𝑗 (dashed

line, right axis) as functions of the customer type 𝜋 𝑗 , varying in 𝜋 𝑗 ∈ [3 × 100, 104] on the horizontal axis (log
scale). Dealers’ service cost function 𝜁 (·) is parameterized as in (10), with 𝑎 = 1.0, 𝑏 = 2.5, and 𝑐 = 10.0. The
total number of dealers is set at 𝑚̂ = 5.

Second, the platform should restrict a customer’s maximum number of dealer contacts, because

the welfare-maximizing𝑚P
𝑗 is typically smaller than the market outcome𝑚M

𝑗 . Notably, different cus-

tomers’ trades should be subject to different restrictions:

Corollary 3 (Number of dealers and trade size). Following Proposition 5, thewelfare-maximizing

dealer choice𝑚P
𝑗 is weakly increasing in the trading gain size 𝜋 𝑗 .

Intuitively, since dealer service is (socially) costly, only large customers can justify the service costs

from contacting more dealers. In practice, some RFQ platforms do impose a cap on the number of

dealers a customer can contact: 5 on Bloomberg SEF (Riggs et al., 2020) and 4 on CanDeal (Allen and

Wittwer, 2021). However, our model questions such a one-size-fits-all approach. Figure 2 illustrates

the idea. The blue solid line indicates𝑚P
𝑗 , the socially optimal number of dealer contacts, while the red

dashed line indicates the market outcome 𝑚M
𝑗 . Following Proposition 5, 𝑚P

𝑗 is always weakly lower

than𝑚M
𝑗 , thus supporting the contact caps imposed by Bloomberg SEF and CanDeal. However, as the
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trading gain size 𝜋 𝑗 increases, so does𝑚P
𝑗 , suggesting that if a customer enters a large trade size in the

RFQ protocol, she should be allowed to contact more dealers. This is the market design idea implied

by Corollary 3: A customer should be allowed to contact more dealers only if she wants to execute a

sufficiently large position. If the trade size is small, the platform should limit her contact to contain

the otherwise excessive dealer competition (and the socially wasteful dealer service cost).

It can be seen that both recommendations above aim to curb customers’ excessive dealer contacting,

which lowers dealers’ expected profit. While in our model dealers’ ex-ante participation 𝑚̂ is exoge-

nous, in more realistic settings, the lowered dealer profit can reflect in, for example, their reluctance in

joining in RFQ platforms. This could contribute to the sluggish growth of electronic OTC trading, as

evidenced by O’Hara and Zhou (2021). Our recommendations can alleviate the negative externality

from customers to dealers, thus encouraging the latter’s participation and improving efficiency.¹¹

4 Endogenizing dealers’ service cost

The previous analysis has assumed an exogenous dealer service cost 𝜁 (·). One natural source of such

a cost is dealers’ capacity constraints, like their computational power, limited labor force, and funding

and inventory constraints, under which they will have to optimally allocate their limited capacity to

serve different customers. This section studies such a model extension: Section 4.1 sets up the model,

Section 4.2 characterizes the equilibrium, and Section 4.3 provides model predictions regarding dealer

and customer behavior when the market is under stress.

¹¹ It should be noted, however, that the welfare improvement of our second recommendation is achieved at the cost
of customers, whose endogenous participation in electronic platforms might be discouraged in a richer model environ-
ment. Transfers from dealers to customers, e.g., in the form of rebate to customers, can therefore offset such distributional
inefficiency.
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4.1 Model setup

We extend the setting of Section 2.1 by (i) introducing multiple customers and (ii) imposing a resource

constraint on dealers’ service. The details are discussed below.

Agents. We maintain the total number of homogeneous dealers as 𝑚̂, the same as in Section 2.1.

We then consider a continuum of customers of mass 𝑛 (> 0), indexed by 𝑗 ∈ [0, 𝑛]. Their types 𝜋 𝑗 ,

reflecting the total trading gains, can vary across 𝑗 .

Finding dealers. Each customer 𝑗 makes a dealer choice𝑚 𝑗 as in Section 2.1.

Remark 6 (A continuum of customers). Since the dealers are homogeneous, each customer 𝑗 randomly

chooses to do business with𝑚 𝑗 of them. Assuming a continuum of customers therefore helps ensure

that every dealer receives almost surely the same amount of customers, so that dealers remain homoge-

neous. The customers can differ in their types 𝜋 𝑗 , reflecting different customers’ urgency (willingness)

to trade, the asset classes they specialize in, and/or their sophistication.

Dealers’ service. Denote a dealer 𝑖’s customers by C𝑖 ⊂ [0, 𝑛]. As before, each dealer 𝑖 observes

both her customers’ types 𝜋 𝑗 and their dealer choices𝑚 𝑗 , for all 𝑗 ∈ C𝑖 . The dealer 𝑖 then chooses her

service 𝜃𝑖 𝑗 ∈ [0, 1] to every customer 𝑗 ∈ C𝑖 , subject to a resource constraint of∫
𝑗∈C𝑖

𝜉 (𝜃𝑖 𝑗 )d 𝑗 ≤ 1,(15)

where 𝜉 (·) translates the service 𝜃𝑖 𝑗 to the limited resource, and we normalize the endowment of this

resource to be one unit. We assume that 𝜉 (·) is convexly increasing, starting from 𝜁 (0) = 0, and thrice

differentiable, with the first- and the second-order derivatives denoted, respectively, by ¤𝜉 (·) and ¥𝜉 (·).

Remark 7 (Dealers’ resource constraint). A dealer’s resource constraint Equation (15) can arise for

various reasons. First and foremost, time is limited. For example, it takes specifically trained traders

to run time-consuming simulations to assess complicated structural products. If no pricing is obtained

in time, the client might walk away for other options. Second, labor force is also limited. Experienced

traders are few and maybe even fewer for the specific asset class that the client is interested. Risk
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management staff are also important, as they approve or reject trades based on, for example, clients’

creditworthiness, riskiness of trades, and the dealer’s balance sheet. The back office is costly but

necessary to run, owing to the heavy compliance and regulatory requirements. Third, the dealer’s

balance sheet capacity is limited. If inventory or capital has already been exhausted to facilitate other

trades, a dealer will have to decline a client’s request to trade.

Remark 8 (Cost functions 𝜁 (·) vs. 𝜉 (·)). Previously in Section 2, a dealer pays a cost of 𝜁 (𝜃𝑖 𝑗 ), in

dollars, to provide service 𝜃𝑖 𝑗 to customer 𝑗 . In this section, there is no dollar cost in serving customers.

Instead, each dealer is endowed with one unit of certain resource (e.g., time and/or labor), using which

she can serve customers. The function 𝜉 (·) translates the amount of service 𝜃𝑖 𝑗 into such limited

resources. While 𝜉 (𝜃𝑖 𝑗 ) is not costly per se, as will be shown in Section 4.2.2, it implies a shadow cost

to the dealer when the resource constraint binds. Such a shadow cost thus endogenizes the exogenous

cost 𝜁 (·) assumed in Section 2.

Trading. The trading process remains as in Section 2.1.

Equilibrium. The three sets of equilibrium objects remain as in Section 2.1. In particular, we still

focus on equilibria in which the homogeneous dealers use symmetric strategies, both in quoting to

their customers and in choosing service 𝜃𝑖 𝑗 for a same customer 𝑗 . The only difference is that now

dealers need to account for the resource constraint (15) in optimizing their services {𝜃𝑖 𝑗 }.

4.2 Equilibrium analysis

As in Section 2.2, we analyze the equilibrium backwards. Much of the analysis remains the same as

before, except that in studying dealers’ service (Section 4.2.2), we will explicitly derive how dealers’

resource constraint endogenizes the previously exogenous service cost 𝜁 (·).
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4.2.1 Dealers’ quoting

Given a symmetric service strategy, where every dealer 𝑖 ∈ D 𝑗 provides the same service 𝜃𝑖 𝑗 = 𝜃 𝑗

to her customer 𝑗 , the equilibrium quoting strategy in Section 2.2.1 remains the same. In particular,

Lemmas 1 and 2 still hold.

4.2.2 Dealers’ service to customers

Consider a dealer 𝑖. She observes {𝑚 𝑗 , 𝜋 𝑗 } for 𝑗 ∈ C𝑖 and takes as given the competing dealers’

symmetric service of 𝜃𝑖′ 𝑗 = 𝜃 𝑗 , ∀𝑖′ ∈ D 𝑗 . Using (2), therefore, the dealer 𝑖’s problem is

max
𝜃𝑖 𝑗∈[0,1], ∀𝑗∈C𝑖

∫
𝑗∈C𝑖

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗d 𝑗, subject to
∫
𝑗∈C𝑖

𝜉
(
𝜃𝑖 𝑗

)
d 𝑗 ≤ 1.

We assume for now that the capacity constraint will bind in equilibrium, i.e.,
∫
𝑗∈C𝑖 𝜉

(
𝜃𝑖 𝑗

)
d 𝑗 = 1, and

later provide the necessary and sufficient condition in Section 4.2.4 for this assumption. The dealer’s

problem then has the following equivalent Lagrangian∫
𝑗∈C𝑖

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗d 𝑗 − 𝜅 ·
(∫

𝑗∈C𝑖
𝜉
(
𝜃𝑖 𝑗

)
d 𝑗 − 1

)
,(16)

where𝜅 (> 0) is the shadow cost implied by the capacity constraint. Belowwe take𝜅 as given and solve

for dealers’ symmetric service 𝜃 𝑗 , until later in Section 4.2.4, where 𝜅 is pinned down in Lemma 5.

Endogenous cost 𝜁 (·). It can be seen from (16) that, additively, each customer 𝑗 ∈ C𝑖 contributes[
𝜃𝑖 𝑗 ·

(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜅𝜉
(
𝜃𝑖 𝑗

) ]
d 𝑗(17)

to dealer 𝑖’s objective function. That is, in choosing the optimal service 𝜃𝑖 𝑗 to customer 𝑗 , dealer 𝑖 sepa-

rately solves maximization problems for all 𝑗 ∈ C𝑖 , exactly as the problem (4) studied in Section 2.2.2.

The only difference is that the previously exogenous service cost 𝜁 (·) now becomes

𝜁
(
𝜃𝑖 𝑗

)
= 𝜅𝜉

(
𝜃𝑖 𝑗

)
,(18)
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with the endogenous resource shadow cost 𝜅. Taking 𝜅 as given, dealers’ symmetric service 𝜃 𝑗 is still

characterized by Proposition 1, with the cost function 𝜁 (·) given by (18).

4.2.3 Customers’ choices of dealers

Taking the shadow cost 𝜅 (> 0) as given, then a customer 𝑗’s optimization problem is exactly the same

as in Section 2.2.3, with the cost function specified as in (18). Proposition 2 then holds, guaranteeing

the existence of the optimal 𝑚 𝑗 ∈ [0, 𝑚̂]. Note that using (18), the competition elasticity 𝜀 (·), as

defined in (8), now becomes

𝜀 (𝜃 𝑗 ) =
1

1 − 𝜃 𝑗

𝜅 ¤𝜉 (𝜃 𝑗 )
𝜅 ¥𝜉 (𝜃 𝑗 )

=
1

1 − 𝜃 𝑗

¤𝜉 (𝜃 𝑗 )
¥𝜉 (𝜃 𝑗 )

.

That is, following Section 2.3, as the key determinant of when the optimal𝑚 𝑗 ∈ (1, 𝑚̂), 𝜀 (𝜃 𝑗 ) remains

fully characterized by the exogenous function 𝜉 (·), independent of 𝜅. In particular, we shall continue

to assume (9) and (11), so that Corollary 1 holds for those 𝜋 𝑗 > ¤𝜁 (0) = 𝜅 ¤𝜉 (0). (As before, if 𝜋 𝑗 <

¤𝜁 (0) = 𝜅 ¤𝜉 (0), this customer 𝑗 never receives any service and is indifferent to choosing any𝑚 𝑗 .)

4.2.4 Dealers’ resource shadow cost

To summarize, thus far we have characterized the dealer’s quoting strategies (in Section 4.2.1), their

optimal symmetric service 𝜃 𝑗 (in Section 4.2.2), and customers’ optimal dealer choice 𝑚 𝑗 (in Sec-

tion 4.2.3), taking as given dealers’ resource shadow cost 𝜅 (> 0). To characterize the equilibrium,

therefore, it remains to determine 𝜅.

To do so, consider a dealer 𝑖. Since a customer 𝑗 ∈ [0, 𝑛] chooses to do business with𝑚 𝑗 random

dealers, the probability that 𝑖 and 𝑗 form a business pair is P[ 𝑗 ∈ C𝑖] =𝑚 𝑗/𝑚̂. The dealer then provides

service 𝜃 𝑗 to customer 𝑗 by spending 𝜉 (𝜃 𝑗 ) resources. Therefore, the dealer’s resource constraint is∫
𝑗∈C𝑖

𝜉 (𝜃𝑖 𝑗 )d 𝑗 =
∫ 𝑛

0

𝑚 𝑗

𝑚̂
𝜉 (𝜃𝑖 𝑗 )d 𝑗 ≤ 1.(19)

The following lemma gives the exact parameter condition under which the above resource constraint
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binds, so that 𝜅 > 0, as previously assumed in Section 4.2.2.

Lemma 5 (Shadow cost). Assume (11). Dealers’ resource constraint (19) binds if and only if

𝑛𝜉 (1) > 1,(20)

under which the equality version of (19) uniquely determines the resource shadow cost 𝜅 (> 0).

To intuitively understand (20), note that if resource is unconstrained, then dealers will always provide

maximum service 𝜃𝑖 𝑗 = 1 for all customers, and every customer will choose the maximum number

of 𝑚̂ dealers. From the left-hand side of (19), the total resource spent in this case is 𝑛𝜉 (1). Therefore,

(20) simply ensures that the endowed unit of resource is insufficient for such maximum uses.

4.2.5 Summary of equilibrium

Summarily, assuming (9), (11), and (20) in this model extension, a dealer’s service cost function 𝜁 (·)

becomes 𝜅𝜉 (·), where 𝜅 (> 0) is dealers’ symmetric resource shadow cost and is uniquely determined

by the binding resource constraint (19). The equilibrium is characterized by:

(i) every customer 𝑗 contacts𝑚 𝑗 dealers, where𝑚 𝑗 is given in Corollary 1;

(ii) every dealer 𝑖 provides symmetric service 𝜃𝑖 𝑗 = 𝜃 𝑗 as given in Proposition 1; and

(iii) every dealer 𝑖, if ready for customer 𝑗 , quotes an ask price 𝑝𝑖 𝑗 according to Lemma 1.

As discussed in Section 2.2.4, the equilibrium is unique up to all trading customers, i.e., those who

have 𝜋 𝑗 > ¤𝜁 (0) = 𝜅 ¤𝜉 (0).

4.3 Predictions: Market in stress

To sharpen empirical predictions of the model, we examine, through the lens of our model, market

stresses, such as downgrades of corporate bonds, the volatility in March 2020 due to COVID-19, and

the market turmoil caused by UK’s “mini-Budget,” for example. To model such stress shocks, we

consider the following parametrization of customer types {𝜋 𝑗 }: A fraction 𝑓ℎ ∈ [0, 1] of the mass-

𝑛 customers are high-type with 𝜋ℎ, and the rest 𝑓𝑙 = 1 − 𝑓ℎ are low-type (0 <) with 𝜋𝑙 < 𝜋ℎ. We

31



interpret the high-type as more urgent customers, hence with larger trading gain, than the low-type.

The parametrization allows us to examine three different forms of market stress: larger 𝑛 (more cus-

tomers, lower per-capita dealer resource), higher 𝑓ℎ (larger fraction of urgent customers), and higher 𝜋ℎ

(higher relative urgency). Although these shocks can all be thought of as market stress events, their

implications can be rather different.

4.3.1 Larger 𝑛: More customers wanting to trade

One source of market stress is that increasingly more customers want to trade, especially in a short

time frame, during which dealers’ resource capacity cannot be easily adjusted and, hence, the resource

available to each customer becomes smaller. We model such a shock via an exogenous increase in 𝑛,

the total size of customers, and focus on the effects on the two sets of endogenous variables, the dealers’

service allocation {𝜃ℎ, 𝜃𝑙 }, and the customers’ dealer choices {𝑚ℎ,𝑚𝑙 }. The results are summarized in

the following proposition.

Proposition 7 (Market stress: Increased customer size,𝑛). As the customer size𝑛 increases, both

dealer service 𝜃 𝑗 and customers’ dealer choice𝑚 𝑗 (weakly) decreases.

Figure 3(a)–(b) illustrate the patterns. It can be seen that dealers always provide less service to the

low-type customers than to the high-type (𝜃𝑙 < 𝜃ℎ); and, knowing so, the low-type customers do

business with fewer dealers than do the high-type (𝑚𝑙 ≤ 𝑚ℎ). Further, as 𝑛 increases, the lower per-

capita resource limits dealers’ service; hence, both 𝜃ℎ and 𝜃𝑙 decrease with 𝑛. Notably, the low-type

customers’ service first drops to zero, at around𝑛 ≈ 20, when the dealers find that their limited resource

is too scarce to serve the less-profitable low-type customers. Consistently, from then on,𝑚𝑙 = 0—the

low-type customers are “crowded out” for sufficiently large 𝑛.

Due to such a crowding-out effect, our model yields a novel empirical prediction that, during

market stress times, the number of realized trades can be non-monotone in the severity of the stress.

This result might be counterintuitive at first glance: Should customers not trade more aggressively

when under stress, especially when there are more of them (larger 𝑛)? Our model highlights that,
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Figure 3: Market stress due to increased customer size, 𝑛. This figure plots how the customer size 𝑛, varying
from 𝑛 = 1 to 𝑛 = 103, affects dealers’ service in Panel (a), customers’ dealer choice in (b), the number of trades
in (c), and customers’ execution quality in (d). There are two types of customers. A fraction of 𝑓ℎ = 0.2 of them
have higher urgency to trade, with 𝜋ℎ = 1, and the rest 𝑓𝑙 = 0.8 of them have 𝜋𝑙 = 0.1. There is a total of 𝑚̂ = 10
dealers, and their service cost function 𝜉 (·) is parameterized as in Example 1, with 𝑎 = 1.0 and 𝑏 = 0.45.
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when dealers’ service is constrained, not all customers will be served equally and some might be

crowded out, creating nonmonotonicity.¹² The pattern is illustrated in Figure 3(c), where the number

of low-type trades (the “//” patched area) initially increases with 𝑛 but then quickly drops to zero (at

around𝑛 ≈ 20), thus creating a hump in the total number of trades. In contrast, the number of high-type

trades (the “\\” patched area) increases with 𝑛, as the high-type is always served.

Figure 3(d) depicts customers’ execution quality, measured as their expected trading gain as a

percentage of the total trading gain, i.e., 𝜋c
𝑗 /𝜋 𝑗 for a type- 𝑗 customer, where 𝜋c

𝑗 follows (3) for 𝑗 ∈

{𝑙, ℎ}. The measure is inspired by O’Hara, Wang, and Zhou (2018), who examine the execution quality

of OTC trading by comparing the realized trading prices, and by Hendershott et al. (2022a), who

demonstrate the importance of accounting for the probability of trading failure in measuring execution

quality. Our measure nests both aspects, as reflected in (3). Consistent with the evidence fromO’Hara,

Wang, and Zhou (2018), our model predicts better execution quality for a more active customer (type-

ℎ, higher urgency), comparing the solid line with the dashed line. Further, as the stress exacerbates,

the difference in the execution quality widens (until the low-types drop out).

4.3.2 Higher 𝜋ℎ: Relative urgency to trade

Market stress can alternatively take the form of an urgency shock on some customers. That is, some

of the originally homogeneous customers might become more eager to trade, as reflected in their in-

creased 𝜋ℎ (> 𝜋𝑙 ). Such a shock makes dealers more willing to spend their limited resource on serving

the high-type customers, and, knowing this, the high-type customers also choose to do business with

more dealers. Receiving the lower residual service, the low-type customers then contact fewer dealers.

¹² We recognize that the specific assumption of 𝜋 𝑗 matters for this effect. For example, if, instead, 𝜋 𝑗 is a smooth function
of 𝑗 , then the crowding out of the low-type customers will be smooth as well, and there will be no kink in Figure 3(c).
However, the key underlying mechanism remains: certain low-type customers might be crowded out as dealers’ resource
constraint tightens.
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Figure 4: Market stress due to higher relative urgency, 𝜋ℎ/𝜋𝑙 . This figure plots how the urgency of high-
type customers 𝜋ℎ, relative to the low-type 𝜋𝑙 , varying from 𝜋ℎ/𝜋𝑙 = 1 to 𝜋ℎ/𝜋𝑙 = 103, affects dealers’ service
in Panel (a), customers’ dealer choice in (b), number of trades in (c), and customers’ execution quality in (d).
There are two types of customers, with total mass 𝑛 = 10. A fraction of 𝑓ℎ = 0.2 of them have higher urgency
to trade, with 𝜋ℎ, and the rest 𝑓𝑙 = 0.8 of them have 𝜋𝑙 = 1. There is a total of 𝑚̂ = 10 dealers, and their service
cost function 𝜉 (·) is parameterized as in Example 1, with 𝑎 = 1.0 and 𝑏 = 0.45.
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Proposition 8 (Market stress: Higher relative urgency, 𝜋ℎ/𝜋𝑙 ). As 𝜋ℎ/𝜋𝑙 increases, the high-type

(low-type) customers receive more (less) service and their dealer choices increase (decrease).

Figure 4(a)–(b) illustrate the patterns. Unlike the market stress seen in Figure 3 (increasing 𝑛), the

relative urgency makes trading with the high-type customers more profitable, but less with the low-

type less, for the dealers. Therefore, they cater to serving the high-types, who receive more service

from and also reach out to more dealers (higher 𝜃ℎ and𝑚ℎ). In fact, if the relative profitability of the

high-types becomes high enough (𝜋ℎ/𝜋𝑙 ≈ 250), the low-type customers completely drop out.

Figure 4(c) further illustrates that the crowding out of the low-type customers can be so severe

that the overall trading can be hampered—less trading in more stressed times: The total number of

trades (the sum of the “//” and the “\\” areas) decreases, at least initially, with the relative urgency 𝜋ℎ/𝜋𝑙 .

Consistent with the above, Figure 4(d) shows that the high-type customers’ execution quality continues

to improve, at the cost of the low-types’.

4.3.3 More urgent customers, 𝑓ℎ

Yet another form of market stress is a shock that makes more customers feel urgent to trade, that is,

an increase in the fraction 𝑓ℎ of high-type customers. Figure 5 illustrates the effects of such a shock.

Notably, like the shock of an increase in 𝜋ℎ, the low-type customers are crowded out—they receive

less service 𝜃𝑙 and also choose fewer dealers𝑚𝑙—because dealers turn to serving the more profitable

high-type customers. New to the shock in 𝑓ℎ, the high-type customers also receive less service and,

hence, reach out to fewer dealers, i.e., both 𝜃ℎ and 𝑚ℎ drop with 𝑓ℎ. This is because the high-type

customers also compete against each other for dealers’ limited resources. In other words, there is not

only the inter-type crowding-out effect seen before, but also an intra-type crowding-out effect.

Proposition 9 (Market stress: A larger fraction of urgent customers, 𝑓ℎ). As 𝑓ℎ increases, both

the high-type and the low-type customers receive less service and their dealer choices decrease.

Figure 5(c) illustrates the implication for trading activity. As more customers become high-type

(more urgent to trade), the remaining low-type customers achieve fewer and fewer trades, not only
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Figure 5: Market stress due to a larger fraction of urgent customers, 𝑓ℎ. This figure plots how the fraction of
urgent customer 𝑓ℎ, varying from 𝑓ℎ = 0 to 𝑓ℎ = 1, affects dealers’ service in Panel (a), customers’ dealer choice
in (b), number of trades in (c), and customers’ execution quality in (d). There are two types of customers, with a
total mass of 𝑛 = 10. A fraction of 𝑓ℎ of them have higher urgency to trade, with 𝜋ℎ = 1, and the rest 𝑓𝑙 = 1 − 𝑓ℎ
of them have 𝜋𝑙 = 0.1. There is a total of 𝑚̂ = 10 dealers, and their service cost function 𝜉 (·) is parameterized
as in Example 1, with 𝑎 = 1.0 and 𝑏 = 0.45.
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because 𝑓𝑙 = 1 − 𝑓ℎ decreases, but also because both 𝜃𝑙 and 𝑚𝑙 are lower. On the other hand, the

high-type customers in total trade more: Despite the fact that both 𝜃ℎ and𝑚ℎ decrease, making each of

them less likely to trade, there are more of them as 𝑓ℎ increases. Together these two opposing effects

generate the V-shaped pattern in aggregate.

Figure 5(d) shows that as the fraction of high-type customers increases, both types’ execution

quality deteriorates. This is again because of the crowding-out effect, both across types and within

the ℎ-type. Compared to the case of a relative urgent shock shown in Figure 4(d), it can be seen that

depending on the nature of the market stress, the more urgent customers’ execution quality can either

improve or worsen with the severity of the stress.

5 Conclusion

This paper studies how customers choose their dealers in OTC trading. Muting the existing consid-

erations (e.g., search costs, information concerns, and relationships), we develop a model and show

that customers still refrain from exhausting all available dealers. The key friction lies in dealers’

costly service to customers. Dealers then trade off such costs against the expected profit from trading,

which is negatively affected by their competitors, i.e., the number of other dealers whom customers

are contacting. Because of such a negative “service effect”—a novel mechanism emphasized in this

paper—customers in equilibrium choose not to reach out to too many dealers. The model further

speaks to regulation and market design issues in OTC trading. More over, model-implied empirical

predictions speak to customer and dealer behavior during market stress periods.

Appendix

A Dealers’ convex service cost
Section 2 assumes that the cost of dealer’s service 𝜁 (·) is convex. This appendix shows that this
assumption is without loss of generality: any 𝜁 (·) can be naturally “convexified” in our setting (and so
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is the 𝜉 (·) in Section 4).
Consider a dealer 𝑖 ∈ D 𝑗 , who needs to choose her service 𝜃𝑖 𝑗 to customer 𝑗 . In doing so, she

incurs a service cost of 𝜁 (𝜃𝑖 𝑗 ) : [0, 1] → R+, which may or may not be convex. The dealer can play a
mixed strategy with c.d.f. 𝐺𝑖 𝑗 (𝜃𝑖 𝑗 ) for 𝜃𝑖 𝑗 ∈ [0, 1].

Suppose all other dealers inD 𝑗 play a symmetric strategy (possibly mixed) of𝐺 𝑗 (·) with mean 𝜃 𝑗 ∈
[0, 1]. It is easy to see that the analysis in Section 2.2.1 still goes through, and, in particular, both
Lemma 1 and 2 hold: This is because a dealer 𝑖 who is ready only cares about other dealers’ probability
of being ready, i.e., 𝜃 𝑗 , the expectation of their possibly mixed strategy 𝜃𝑖′ 𝑗 (𝑖′ ∈ D 𝑗 and 𝑖′ ≠ 𝑖).

Therefore, with the mixed strategy𝐺𝑖 𝑗 (·), dealer 𝑖’s problem (4) becomes

max
𝐺𝑖 𝑗 (·)

𝜃𝑖 𝑗
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 −
∫ 1

0
𝜁 (𝜃𝑖 𝑗 )d𝐺𝑖 𝑗 (𝜃𝑖 𝑗 ),

where

𝜃𝑖 𝑗 := E[𝜃𝑖 𝑗 ] =
∫ 1

0
𝜃𝑖 𝑗d𝐺𝑖 𝑗 (𝜃𝑖 𝑗 )

is the dealer’s expected amount of service under the mixed strategy𝐺𝑖 𝑗 (·). To solve the above problem,
the dealer can proceed in the following two steps. First, she chooses a mixed strategy 𝐺𝑖 𝑗 (·) to solve
the following cost minimization problem, fixing any arbitrary expected service 𝜃𝑖 𝑗 ∈ [0, 1]:

𝜁 (𝜃𝑖 𝑗 ) := min
𝐺𝑖 𝑗 (·)

∫ 1

0
𝜁 (𝜃𝑖 𝑗 )d𝐺𝑖 𝑗 (𝜃𝑖 𝑗 ), s.t.

∫ 1

0
𝜃𝑖 𝑗d𝐺𝑖 𝑗 (𝜃𝑖 𝑗 ) = 𝜃𝑖 𝑗 .

The minimized 𝜁 (𝜃𝑖 𝑗 ) is the effective cost function of providing an expected amount of service 𝜃𝑖 𝑗 .
Note that 𝜁 (·) is by definition the lower boundary of the convex hull of the graph of 𝜁 (·) and therefore
is a convex function in 𝜃 .¹³ Note also that, while we began the analysis assuming the dealer is serving
a specific customer 𝑗 , the indirect cost 𝜁 (·) does not depend on 𝑗 .

Then in the second step, the dealer solves

max
𝜃𝑖 𝑗∈[0,1]

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜁 (𝜃𝑖 𝑗 ),

which is identical to (4) studied in Section 2.2.2. Effectively, the above analysis shows that whatmatters
is the “convexified” dealers’ service cost 𝜁 (·), and, hence, it is without loss of generality to assume
that 𝜁 (·) is convex in the first place. Moreover, it follows immediately from the above analysis that
when 𝜁 (·) is convex, it suffices to focus on pure strategies in 𝜃𝑖 𝑗 .

¹³ The definition of 𝜁 (·) is similar to the concept of concavification in ? and is closely related to the notion of a
biconjugate function in convex analysis (?).
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B Proofs

Lemma 1
Proof. Consider first the trivial case of𝑚 𝑗 = 1. There is then only one dealer in D 𝑗 , who will always
quote the highest possible price, i.e., the customer’s reservation value 𝜋 𝑗 . This can be viewed as a
degenerate mixed strategy with c.d.f. 𝐹 (𝛼) converging to a unity probability mass at 𝛼 = 1, as stated
in the proposition.

Next consider 𝑚 𝑗 ≥ 2. Without loss of generality, a dealer’s strategy can be written as 𝛼𝜋 𝑗 by
choosing 𝛼 ∈ [0, 1]. Suppose 𝛼 has a c.d.f. 𝐹 (𝛼) with possible realizations [0, 1] (some of which
might have zero probability mass). The following four steps pin down the specific form of 𝐹 (·) so that
it sustains a symmetric equilibrium.
Step 1: There are no probability masses in the support of 𝐹 (·). If at 𝛼∗ ∈ (0, 1] there is some non-zero
probability mass, then any dealer has an incentive to deviate to quoting with the same probability mass
but at a level infinitesimally smaller than 𝛼∗. In this way, she converts the strictly positive probability
of tying with others at 𝛼∗ to winning over them. (The undercut costs no expected revenue as it is
infinitesimally small.) If at 𝛼∗ = 0 there is non-zero probability mass, again, any dealer who is ready
will deviate, this time to an 𝛼 just slightly above zero. This is because allocating probability mass at
zero brings zero expected profit. Deviating to a slightly positive 𝛼 , therefore, brings strictly positive
expected profit. Taken together, there cannot be any probability mass in 𝛼 ∈ [0, 1]. Note that this rules
out any pure symmetric-strategy equilibria.
Step 2: The support of 𝐹 (·) is connected. The support is not connected if there is (𝛼1, 𝛼2) ⊂ [0, 1] on
which there is zero probability assigned and there is probability density on 𝛼1. If this is the case, then
any dealer will deviate by moving the probability density on 𝛼1 to any 𝛼 ∈ (𝛼1, 𝛼2). Such a deviation
is strictly more profitable because doing so does not affect the probability of winning (if one wins at
bidding 𝛼1, she also wins at any 𝛼 > 𝛼1) and because 𝛼 > 𝛼1 is selling at a higher price.
Step 3: The upper bound of the support of 𝐹 (·) is 1. The logic follows Step 2. Suppose the upper
bound is 𝛼∗ < 1. Then, allocating the probability density at 𝛼∗ to 1 is a profitable deviation: It does
not affect the probability of winning and upon winning sells at a higher price.
Step 4: Deriving the c.d.f. 𝐹 (·). Consider a specific dealer called 𝑖. Suppose all other dealers in D 𝑗 ,
who are ready, quote according to some same distribution 𝐹 (·). Quoting 𝛼𝜋 𝑗 , 𝑖 gets to trade with the
customer if, and only if, such a quote is the best. The customer examines all quotes received. For each
of the𝑚 𝑗 − 1 contacts, with probability 1−𝜃 𝑗 the dealer is not ready and in this case 𝑖’s quote beats the
no-quote. With probability 𝜃 𝑗 , the contacted dealer is indeed ready and quotes at 𝛼′. Then, only with
probability P(𝛼 < 𝛼′) = 1 − 𝐹 (𝛼) will 𝑖’s quote win. Taken together, for each of the𝑚 𝑗 − 1 potential
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competitor, 𝑖 wins with probability
(
1 − 𝜃 𝑗

)
+𝜃 𝑗 · (1−𝐹 (𝛼)), and he needs to win all these𝑚 𝑗−1 times to

capture the trading gain of 𝛼𝜋 𝑗 . That is, 𝑖 expects a profit of
(
1 − 𝜃 𝑗𝐹 (𝛼)

)𝑚 𝑗−1𝛼𝜋 𝑗 . In particular, at the
highest possible 𝛼 = 1, the above expected profit simplifies to

(
1 − 𝜃 𝑗

)𝑚 𝑗−1Δℎ𝑑 , because 𝐹 (1) = 1. In a
mixed-strategy equilibrium, 𝑖 must be indifferent to quoting any values of 𝛼 in the support. Equating
the two expressions above and solving for 𝐹 (·), one obtains the c.d.f. stated in the proposition. It can
then be easily solved that the lower bound of the support must be at

(
1 − 𝜃 𝑗

)𝑚 𝑗−1, where 𝐹 (·) reaches
zero. This completes the proof. □

Lemma 2
Proof. Given the mixed-strategy equilibrium, a dealer who is ready is indifferent to quoting any
price 𝑝𝑖 𝑗 = 𝛼𝑖 𝑗𝜋 𝑗 when 𝛼𝑖 𝑗 is in the support. In particular, by setting 𝛼𝑖 𝑗 = 1, the expression in (2)
is obtained. Since there are𝑚 𝑗 such dealers, who each has a probability 𝜃 𝑗 to be ready, they in total
expect𝑚 𝑗𝜃 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 . The probability of trading is 1 − (1 − 𝜃 𝑗 )𝑚 𝑗−1. Therefore, the customer
expects the residual (3). □

Proposition 1
Proof. The first-order derivative of (4) with respect to 𝜃𝑖 𝑗 is

(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃𝑖 𝑗 ), which, by sym-
metry of 𝜃 𝑗 = 𝜃𝑖 𝑗 , becomes

(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃 𝑗 ) and is monotone decreasing in 𝜃 𝑗 ∈ [0, 1], owing
to the assumed convexity of 𝜁 (·). Therefore, at the lower bound 𝜃 𝑗 = 0, if the derivative is still neg-
ative, i.e., if 𝜋 𝑗 ≤ ¤𝜁 (0), the optimal symmetric solution is 𝜃 𝑗 = 0. At the upper bound 𝜃 𝑗 = 1, the
derivative evaluates to be − ¤𝜁 (1) < 0, implying that the optimal symmetric 𝜃 𝑗 is never constrained
from above. Hence, as long as 𝜋 𝑗 > ¤𝜁 (0), the first-order condition of

(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃 𝑗 ) implies a
unique solution of 𝜃 𝑗 = ℎ(𝑚 𝑗 , 𝜋 𝑗 ). □

Proposition 2
Proof. Following Proposition 1, customers with 𝜋 𝑗 ≤ ¤𝜁 (0) will only receive 𝜃 𝑗 = 0. Hence, they
are indifferent in their choices of 𝑚 𝑗 . Below we consider customers with 𝜋 𝑗 > ¤𝜁 (0), in which
case dealers’ first-order condition (5) holds and their optimal symmetric service 𝜃 𝑗 = 𝑔(𝑚 𝑗 , 𝜋 𝑗 ),
following Proposition 1. Note that the customer’s objective 𝜋c

𝑗 , as given in (3), is a function of
both 𝑚 𝑗 and 𝜃 𝑗 . Substituting 𝜃 𝑗 = 𝑔(𝑚 𝑗 , 𝜋 𝑗 ), we then obtain a univariate optimization problem of
max𝑚 𝑗∈[1,𝑚̂] 𝜋

c
𝑗 (𝑚 𝑗 , 𝜃 𝑗 = 𝑔(𝑚 𝑗 , 𝜋 𝑗 )). Given the bounded support [1, 𝑚̂], an optimal 𝑚 𝑗 that maxi-

mizes 𝜋c
𝑗 always exists. The optimal𝑚 𝑗 > 1 because at𝑚 𝑗 = 1, 𝜋c

𝑗 = 0 (as, intuitively, the monopolist
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dealer extracts all trading gain). By increasing to some𝑚 𝑗 > 1, instead, the customer expects non-zero
trading gain. □

Lemma 3
Proof. Directly evaluating the direct effect gives

𝜕𝜋c
𝑗

𝜕𝑚 𝑗
= −(1 − 𝜃 𝑗 )𝑚 𝑗−1 (𝜃 𝑗 + (1 − 𝜃 𝑗 +𝑚 𝑗𝜃 𝑗 ) ln(1 − 𝜃 𝑗 )

)
𝜋 𝑗 .(B.1)

Note that𝑚 ≥ 1 and that ln(1−𝜃 ) ≤ 0. Hence, the above is no smaller than−(1−𝜃 𝑗 )𝑚 𝑗−1(𝜃 𝑗+ln(1−𝜃 𝑗 )).
Note further that 𝜃 𝑗 ≤ − ln(1 − 𝜃 𝑗 ) for all 𝜃 𝑗 ∈ [0, 1). Therefore, the direct effect is weakly positive.
Directly evaluating the indirect effect gives

𝜕𝜋c
𝑗

𝜕𝜃 𝑗

𝜕𝜃 𝑗

𝜕𝑚 𝑗
= (𝑚 𝑗 − 1)𝑚 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−2𝜃 𝑗 ·

d𝜃 𝑗
d𝑚 𝑗

,

which is weakly negative, because𝑚 𝑗 ≥ 1, 𝜃 𝑗 ∈ [0, 1], and d𝜃 𝑗
d𝑚 𝑗

≤ 0 following (6). □

Proposition 3
Proof. We first show that if there is an interior solution of𝑚 𝑗 < ∞, then 𝜀 (𝜃 𝑗 ) > 2. In this case, the
customer’s first-order condition

d𝜋c
𝑗

d𝑚 𝑗
= 0 holds, i.e., following the analysis in the proof of Proposition 2,

(𝑚 𝑗 − 1) (𝜃 𝑗 + (1 − 𝜃 𝑗 ) ln(1 − 𝜃 𝑗 ))
𝜃 𝑗 + (1 − 𝜃 𝑗 +𝑚 𝑗𝜃 𝑗 ) ln(1 − 𝜃 𝑗 )

+ 1
𝜀 (𝜃 𝑗 )

= 0.(B.2)

Define 𝑣 (𝑥) := −𝑥 ln(1− 𝑥)/(𝑥 + (1− 𝑥) ln(1− 𝑥)), which is increasing in 𝑥 ∈ (0, 1) from 𝑣 (0) = 2 to
lim𝑥↑1 𝑣 (𝑥) = ∞. Then rearrange (B.2) to get 𝜀 (𝜃 𝑗 ) = (𝑣 (𝜃 𝑗 )𝑚 𝑗 −1)/(𝑚 𝑗 −1) > (2𝑚 𝑗 −1)/(𝑚 𝑗 −1) > 2,

where the first inequality follows 𝑣 (𝜃 𝑗 ) > 𝑣 (0) = 2.
Consider now the sufficiency of 𝜀 (0) > 2. In the limit of𝑚 𝑗 → ∞, the 𝜃 𝑗 implied by (5) converges

to 𝜃 𝑗 → 0. Then the left-hand side of (B.2) converges to −1
2 + 1/𝜀 (𝜃 𝑗 ) < 0. That is, in the limit

of𝑚 𝑗 → ∞, 𝜋c
𝑗 is decreasing. Therefore, there must exist some𝑚 𝑗 < ∞ that maximizes 𝜋c

𝑗 . □

Lemma 4
Proof. Following Proposition 1, customers with 𝜋 𝑗 ≤ 𝜅 ¤𝜁 (0) will only receive 𝜃 𝑗 = 0. Hence, 𝜋𝑐

𝑗 = 0 for
any𝑚 𝑗 . Belowwe consider customerswith 𝜋 𝑗 > 𝜅 ¤𝜁 (0). Evaluating the first-order derivative of (3) with
respect to𝑚 𝑗 yields that its sign is the same as the left-hand side of (B.2). Recall from dealers’ first-
order condition (5) and (6) that 𝜃 𝑗 is a monotone decreasing function in𝑚 𝑗 . Therefore, the left-hand
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side of (B.2) can be seen as a function 𝑓 (𝜃 𝑗 (𝑚 𝑗 ),𝑚 𝑗 )). Hence, at any stationary point𝑚∗
𝑗 ∈ (1, +∞)

(if exists), then sign
[
d2𝜋𝐶
d𝑚2

𝑗

] ���
𝑚 𝑗=𝑚∗

𝑗

= sign
[
𝜕𝑓
𝜕𝑚 𝑗

+ 𝜕𝑓
𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

] ���
𝑚 𝑗=𝑚∗

𝑗

, where

𝜕𝑓

𝜕𝑚 𝑗
=

(𝜃 𝑗 + ln(1 − 𝜃 𝑗 )) (𝜃 𝑗 + (1 − 𝜃 𝑗 ) ln(1 − 𝜃 𝑗 ))
(𝜃 𝑗 + (1 − 𝜃 𝑗 +𝑚 𝑗𝜃 𝑗 ) ln(1 − 𝜃 𝑗 ))2

< 0,

for the numerator is negative (see the proof of Lemma 3); and

𝜕𝑓

𝜕𝜃 𝑗
=

𝑚 𝑗 (𝑚 𝑗 − 1) (𝜃 2𝑗 − (1 − 𝜃 𝑗 )(ln(1 − 𝜃 𝑗 ))2)
(1 − 𝜃 𝑗 )(𝜃 𝑗 + (1 − 𝜃 𝑗 +𝑚 𝑗𝜃 𝑗 ) ln(1 − 𝜃 𝑗 ))2

− 1
𝜀 (𝜃 𝑗 )2

d𝜀 (𝜃 𝑗 )
d𝜃 𝑗

.

It can be shown that 𝜃 2𝑗 − (1 − 𝜃 )(ln(1 − 𝜃 𝑗 ))2 is positive. Therefore, if d𝜀
d𝜃 𝑗 < 0, then 𝜕𝑓

𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

< 0 and
𝜋c
𝑗 is strictly concave at any stationary point. That is, 𝜋c

𝑗 is a quasi-concave function in𝑚 𝑗 . □

Corollary 1
Proof. Existence and uniqueness. The existence of the customer’s optimal𝑚 𝑗 follows Proposition 2.
Under (11), 𝜋c

𝑗 is quasi-concave in𝑚 𝑗 , thus guaranteeing the uniqueness.
Monotonicity of𝑚 𝑗 and 𝜃 𝑗 in 𝜋 𝑗 . Accounting for the cap of 𝑚̂, following the analysis in the proof of
Proposition 3, the optimal𝑚 𝑗 as a function of 𝜃 𝑗 ∈ [0, 1] can be written as

𝑚 𝑗 =𝑚(𝜃 𝑗 ) := min

{
𝑚̂, 1 +

𝑣 (𝜃 𝑗 ) − 1

𝜀 (𝜃 𝑗 ) − 𝑣 (𝜃 𝑗 )

}
.(B.3)

which is (weakly) increasing in 𝜃 𝑗 . We now obtain two conditions, (5) and (B.3), for the two equilib-
rium objects {𝜃 𝑗 ,𝑚 𝑗 }. Substituting (B.3) into (5) yields (1 − 𝜃 𝑗 )𝑚(𝜃 𝑗 )−1𝜋 𝑗 = ¤𝜁 (𝜃 𝑗 ). The left-hand side
is monotone decreasing, while the right-hand side is increasing in 𝜃 𝑗 , thus yielding a unique solution
of 𝜃 𝑗 ∈ (0, 1). Clearly, the implied 𝜃 𝑗 is increasing in 𝜋 𝑗 . Therefore, the equilibrium𝑚 𝑗 = 𝑚(𝜃 𝑗 ) is
also increasing in 𝜋 𝑗 . Recall from (B.3) that𝑚 𝑗 is (weakly) increasing in 𝜃 𝑗 . Hence, 𝜃 𝑗 is also (weakly)
increasing in 𝜋 𝑗 .
When 𝑚 𝑗 is interior. Following (B.3), 𝑚 𝑗 increases with 𝜃 𝑗 but is capped by 𝑚̂. By continuity,
therefore, there is a unique threshold 𝜃 ∈ (0, 1) at which𝑚 𝑗 = 𝑚̂:

𝑚̂ = 1 + 𝑣 (𝜃 ) − 1

𝜀 (𝜃 ) − 𝑣 (𝜃 )
.(B.4)

That is, the optimal𝑚 𝑗 = 𝑚̂ if and only if the equilibrium 𝜃 𝑗 ≥ 𝜃 , at which (5) becomes (1−𝜃 )𝑚̂−1𝜋 𝑗 =
¤𝜁 (𝜃 ). Using the monotonicity above, therefore,𝑚 𝑗 < 𝑚̂ if and only if 𝜋 𝑗 < ¤𝜁 (𝜃 )/(1 − 𝜃 )𝑚̂−1. □
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Proposition 4
Proof. Following Proposition 2, if 𝜋 𝑗 ≤ ¤𝜁 (0), then it does not matter whether the customer reveals𝑚 𝑗

or not, as she never gets any service; i.e., 𝜋c
𝑗 (𝑚 𝑗 ) = 𝜋c

𝑗 (𝑚̂) = 0. Now suppose 𝜋 𝑗 > ¤𝜁 (0). Fol-
lowing Corollary 1, if the equilibrium 𝑚 𝑗 = 𝑚̂, then 𝜋c

𝑗 (𝑚 𝑗 ) = 𝜋c
𝑗 (𝑚̂). If instead the endogenous

optimal𝑚 𝑗 < 𝑚̂, then it follows that 𝜋c
𝑗 (𝑚 𝑗 ) > 𝜋c

𝑗 (𝑚̂). □

Proposition 5
Proof. The shape of 𝑤 (𝑚 𝑗 ). Welfare 𝑤 as a function of𝑚 𝑗 is given by (14). For now we ignore the
constraint of𝑚 𝑗 ≤ 𝑚̂ and examine the whole support of𝑚 𝑗 ∈ [1,∞) to characterize the shape of 𝑤 .
The first-order derivative is given by the ℎ(·) function stated in the proposition:

d𝑤
d𝑚 𝑗

=
𝜕𝑤

𝜕𝑚 𝑗
+ 𝜕𝑤

𝜕𝜃 𝑗

d𝜃 𝑗
d𝑚 𝑗

= −(1 − 𝜃 𝑗 )𝑚 𝑗 ln(1 − 𝜃 𝑗 )𝜋 𝑗 − 𝜁 (𝜃 𝑗 ) = ℎ(𝜃 𝑗 ),

where the second equality holds because 𝜕𝑤
𝜕𝜃 𝑗

= 𝑚 𝑗 ·
(
(1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 − ¤𝜁 (𝜃 𝑗 )

)
= 0 following dealers’

first-order condition (5); and the third equality makes use of (5) again by substituting (1 − 𝜃 𝑗 )𝑚 𝑗−1𝜋 𝑗 .
The second-order derivative then becomes d2𝑤 𝑗

d𝑚2
𝑗
= ¤ℎ(𝜃 𝑗 ) d𝜃 𝑗

d𝑚 𝑗
, where d𝜃 𝑗

d𝑚 𝑗
< 0 following (6) and

¤ℎ(𝜃 𝑗 ) = ¤𝜁 (𝜃 𝑗 ) ln
(
1 − 𝜃 𝑗

)
− (1 − 𝜃 𝑗 ) ¥𝜁 (𝜃 𝑗 ) ln

(
1 − 𝜃 𝑗

)
= − ln

(
1 − 𝜃 𝑗

) ¤𝜁 (𝜃 𝑗 ) ( 1
𝜀 (𝜃 𝑗 )

− 1

)
.

It follows that d2𝑤 𝑗

d𝑚2
𝑗
> 0 if and only if 𝜀 (𝜃 𝑗 ) > 1. In particular, (5) implies that as 𝑚 𝑗 increases, 𝜃 𝑗

eventually drops to lim𝑚 𝑗→∞ 𝜃 𝑗 = 0, at which (9) ensures that 𝜀 (0) > 2 > 1. Also, lim𝑚 𝑗→∞
d𝑤
d𝜃 𝑗 =

lim𝜃 𝑗→0
d𝑤
d𝜃 𝑗 = 0. Therefore, for sufficiently large𝑚 𝑗 , 𝑤 must be convexly decreasing. Then, follow-

ing (11), for small 𝑚 𝑗 , 𝑤 may be concave initially, before becoming convexly decreasing. In other
words, 𝑤 is quasi-concave in𝑚 𝑗 . The quasi-concavity implies that the optimal𝑚 𝑗 is uniquely deter-
mined by the first-order condition of d𝑤

d𝑚 𝑗
= 0, or ℎ(𝜃 𝑗 ) = 0, if a non-zero solution of it exists.¹⁴

Suppose ℎ(𝜃 𝑗 ) = 0 has a non-zero solution. Given the quasi-concavity, in this case, the non-zero
solution uniquely maximizes𝑤 . Denote by 𝜃 ∗ ∈ (0, 1] the unique non-zero solution to ℎ(𝜃 𝑗 ) = 0. Note
that such a threshold 𝜃 ∗ is determined only by the shape of the service cost 𝜁 (·). Then following (5),
the unconstrained optimal𝑚 𝑗 is given by𝑚∗ = 1 + ln( ¤𝜁 (𝜃∗)/𝜋 𝑗 )

ln(1−𝜃∗) . However, the planner’s optimal𝑚P
𝑗 is

subject to the constraint of𝑚 𝑗 ∈ [1, 𝑚̂]. We then have two potential corners:
• If𝑚∗ ≤ 1, which is equivalent to 𝜋 𝑗 < ¤𝜁 (𝜃 ∗), then𝑚P

𝑗 = 1.
• If𝑚∗ ≥ 𝑚̂ (> 1), which is equivalent to 𝜋 𝑗 > ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1, then𝑚P

𝑗 = 𝑚̂.

¹⁴ The first-order condition ℎ(𝜃 𝑗 ) = 0 has a trivial solution of 𝜃 𝑗 = 0. But 𝜃 𝑗 = 0 produces the minimum welfare of zero
(no dealer service) and, hence, cannot be optimal. We ignore this welfare-minimizing root to the first-order condition.
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These two corners correspond to the cases (i) and (iii) in the proposition. Otherwise, i.e., when 1 <

𝑚∗ < 𝑚̂, then𝑚P
𝑗 =𝑚∗ is interior, as stated in (ii).

Suppose ℎ(𝜃 𝑗 ) = 0 has no non-zero solution. It is possible that ℎ(𝜃 𝑗 ) = 0 does not have non-zero
solution. In this case, the quasi-concavity, together with the fact that 𝑤 decreases for sufficiently
large𝑚 𝑗 , implies that𝑤 is monotone decreasing in𝑚 𝑗 , and, therefore, the optimal choice is𝑚P

𝑗 = 1.
When does ℎ(𝜃 𝑗 ) = 0 have no non-zero solution? Note that under (9) and (11), ℎ(𝜃 𝑗 ) initially
decreases and may eventually increase in 𝜃 𝑗 . Also, ℎ(0) = 0. Therefore, there is no solution toℎ(𝜃 ) = 0

if and only if lim𝜃↑1 ℎ(𝜃 ) < 0.
Comparison between𝑚P

𝑗 and𝑚M
𝑗 . It remains to compare𝑚P

𝑗 with the market outcome𝑚M
𝑗 . To do so,

we examine the marginal value of increasing𝑚 𝑗 in the customer’s problem and the planner’s problem.
Letting 𝜋d

𝑗 =
1
𝑚 𝑗

(𝑤 𝑗 − 𝜋c
𝑗 ) be the expected profit of each dealer, we have

d(𝑚 𝑗𝜋
d
𝑗 )

d𝑚 𝑗
=

d𝑤 𝑗

d𝑚 𝑗
−

d𝜋c
𝑗

d𝑚 𝑗
= ¤𝜁 (𝜃 𝑗 )

[
𝜃 𝑗 −

𝜁 (𝜃 𝑗 )
¤𝜁 (𝜃 𝑗 )

+𝑚 𝑗𝜃 𝑗 ln(1 − 𝜃 𝑗 )
1/𝜀 (𝜃 𝑗 )

𝑚 𝑗 − 1 + 1/𝜀 (𝜃 𝑗 )

]
.

We evaluate
d(𝑚 𝑗𝜋

d
𝑗 )

d𝑚 𝑗
at the planner’s unconstrained optimal choice of𝑚P

𝑗 (i.e., the𝑚 𝑗 implied (5) at 𝜃 𝑗 =
𝜃 ∗). From the previous analysis, the corresponding 𝜃 ∗ satisfies −(1 − 𝜃 ∗) ¤𝜁 (𝜃 ∗) ln(1 − 𝜃 ∗) − 𝜁 (𝜃 ∗) = 0.
Further, at 𝜃 ∗,𝑤 must be locally concave and, hence, 𝜀 (𝜃 ∗) < 1. Thus,

d(𝑚𝜋d
𝑗 )

d𝑚 𝑗

���
𝑚 𝑗=𝑚P

𝑗

= ¤𝜁 (𝜃 ∗)
[
𝜃 ∗ + (1 − 𝜃 ∗) ln(1 − 𝜃 ∗) +𝑚P

𝑗 𝜃
∗ ln(1 − 𝜃 ∗) 1/𝜀 (𝜃 ∗)

𝑚P
𝑗 − 1 + 1/𝜀 (𝜃 ∗)

]
< ¤𝜁 (𝜃 ∗) [𝜃 ∗ + (1 − 𝜃 ∗) ln(1 − 𝜃 ∗) + 𝜃 ∗ ln(1 − 𝜃 ∗)] = ¤𝜁 (𝜃 ∗) [ln(1 − 𝜃 ∗) + 𝜃 ∗] < 0.

This shows that at the planner’s unconstrained optimal mandate𝑚P
𝑗 , the customer has positive marginal

value of increasing 𝑚 𝑗 . Therefore, the customer always chooses 𝑚M
𝑗 weakly greater than 𝑚P

𝑗 , with
𝑚M

𝑗 > 𝑚P
𝑗 when𝑚P

𝑗 < 𝑚̂. □

Proposition 6
Proof. We prove the statement by contradiction. Suppose customer 𝑗 is effectively in business with at
least two dealers in the solution to the planner’s problem. Let dealers 1 and 2 have 𝜃1 𝑗 > 0 and 𝜃2 𝑗 > 0.
Note that it is never optimal for the planner to mandate any dealer to provide full service (𝜃𝑖 𝑗 = 1) and
another dealer to provide positive service, since the planner can save cost without reducing expected
trading gains by only keeping the dealer with full service. Therefore, both 𝜃1 𝑗 and 𝜃2 𝑗 are interior in
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(0, 1), and they must satisfy the planner’s first-order conditions, for 𝑖 ∈ {1, 2}:
𝜕𝑤

𝜕𝜃𝑖 𝑗
=

∏
𝑘≠𝑖

(
1 − 𝜃𝑘 𝑗

)
𝜋 𝑗 − ¤𝜁 (𝜃𝑖 𝑗 ) = 0.

Nowwe verify the second-order condition with respect to 𝜃1 𝑗 and 𝜃2 𝑗 by examiningwhether the Hessian
matrix evaluated at 𝜃1 𝑗 and 𝜃2 𝑗 is negative (semi-)definite. We write down the sub-matrix and simplify
it using the FOCs as follows,

𝜕2𝑤 𝑗

𝜕𝜃21𝑗

𝜕2𝑤 𝑗

𝜕𝜃1𝑗 𝜕𝜃2𝑗
𝜕2𝑤 𝑗

𝜕𝜃1𝑗 𝜕𝜃2𝑗

𝜕2𝑤 𝑗

𝜕𝜃22𝑗

 =

[
− ¥𝜁 (𝜃1 𝑗 ) −Π𝑘>2(1 − 𝜃𝑘 𝑗 )𝜋 𝑗

−Π𝑘>2(1 − 𝜃𝑘 𝑗 )𝜋 𝑗 − ¥𝜁 (𝜃2 𝑗 )

]
,

=

[
− ¥𝜁 (𝜃1 𝑗 ) − ¤𝜁 (𝜃1 𝑗 )/(1 − 𝜃2 𝑗 )

− ¤𝜁 (𝜃2 𝑗 )/(1 − 𝜃1 𝑗 ) − ¥𝜁 (𝜃2 𝑗 )

]
.

Next we calculate the determinant of the matrix,������
𝜕2𝑤 𝑗

𝜕𝜃21𝑗

𝜕2𝑤 𝑗

𝜕𝜃1𝑗 𝜕𝜃2𝑗
𝜕2𝑤 𝑗

𝜕𝜃1𝑗 𝜕𝜃2𝑗

𝜕2𝑤 𝑗

𝜕𝜃22𝑗

������ = ¥𝜁 (𝜃1 𝑗 ) ¥𝜁 (𝜃2 𝑗 ) −
¤𝜁 (𝜃1 𝑗 ) ¤𝜁 (𝜃2 𝑗 )

(1 − 𝜃1 𝑗 ) (1 − 𝜃2 𝑗 )
= ¥𝜁 (𝜃1 𝑗 ) ¥𝜁 (𝜃2 𝑗 )

[
1 − 𝜀 (𝜃1 𝑗 )𝜀 (𝜃2 𝑗 )

]
< 0.

The last inequality holds because ¥𝜁 (·) > 0 and 𝜀 (·) > 1 for any 𝜃 ∈ (0, 1). The negative determinant
indicates that the matrix is not negative semi-definite. Thus, 𝜃1 𝑗 and 𝜃2 𝑗 do not satisfy the second-order
condition, and therefore cannot form a local maximum. The contradiction shows that there is at most
one dealer providing service to the customer if the planner mandates both {𝜃𝑖 𝑗 } and𝑚 𝑗 . □

Corollary 2
Proof. Given (9) and (11), Proposition 5 shows that: a) welfare 𝑤 𝑗 is quasi-concave in 𝑚 𝑗 and b)
𝑚𝑃

𝑗 ≤ 𝑚𝑀
𝑗 ≤ 𝑚̂. It follows immediately that welfare is weakly decreasing in𝑚 𝑗 between𝑚𝑃

𝑗 and 𝑚̂.
Therefore, the welfare at𝑚 𝑗 =𝑚𝑀

𝑗 (when𝑚 is observable) is weakly higher than the welfare at𝑚 𝑗 = 𝑚̂

(when𝑚 is unobservable). □

Corollary 3
Proof. This is a direct implication of Proposition 5. When ¤𝜁 (0) < 𝜋 𝑗 ≤ ¤𝜁 (𝜃 ∗),𝑚P

𝑗 = 1. When ¤𝜁 (𝜃 ∗) <
𝜋 𝑗 < ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1,𝑚P

𝑗 = 1 + ln( ¤𝜁 (𝜃∗)/𝜋 𝑗 )
ln(1−𝜃∗) increases from 1 to 𝑚̂. When 𝜋 𝑗 ≥ ¤𝜁 (𝜃 ∗)/(1 − 𝜃 ∗)𝑚̂−1,

𝑚P
𝑗 = 𝑚̂. □
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Lemma 5
Proof. Monotonicity of𝑚 𝑗 and 𝜃 𝑗 in 𝜅. Given 𝜅, dealer 𝑖 chooses

{
𝜃𝑖 𝑗

}
to maximize

𝜃𝑖 𝑗 ·
(
1 − 𝜃 𝑗

)𝑚 𝑗−1𝜋 𝑗 − 𝜅𝜉
(
𝜃𝑖 𝑗

)
,

and customer 𝑗 chooses𝑚 𝑗 to maximize

𝜋c
𝑗 :=

(
1 − (1 − 𝜃 𝑗 )𝑚 𝑗 −𝑚 𝑗𝜃 𝑗 · (1 − 𝜃 𝑗 )𝑚 𝑗−1)𝜋 𝑗 .

Note that if we replace 𝜋 𝑗 with 𝜋 𝑗/𝜅 and 𝜅 with 1, the optimal𝑚 𝑗 and 𝜃 𝑗 remains the same. Therefore,
The effect of an increase in𝜅 on𝑚 𝑗 and 𝜃 𝑗 is isomorphic to a decrease in 𝜋 𝑗 . In the proof of Corollary 1,
we have shown that 𝑚 𝑗 and 𝜃 𝑗 continuously increases in 𝜋 𝑗 . This implies that that both 𝑚 𝑗 and 𝜃 𝑗

( 𝑗 = ℎ, 𝑙) continuously decrease in 𝜅.
Uniqueness of 𝜅. When (19) binds, it implies at most one solution of 𝜅. This is because, given that
both𝑚 𝑗 and 𝜃 𝑗 are monotone decreasing in 𝜅, so is the left-hand side of (19).
Existence of 𝜅. Next, we characterize when a solution of 𝜅 > 0 exists. On the one hand, in the upper
limit of 𝜅 ↑ ∞, there is clearly no service from any dealer 𝑖 for any customer 𝑗 , i.e., 𝜃𝑖 𝑗 = 0: dealers’
first-order condition (16) fails for any 𝜃 𝑗 > 0. Then 𝜁 (𝜃 𝑗 ) → 𝜁 (0) = 0 and

∫ 𝑛

0
𝑚 𝑗

𝑚̂ 𝜉 (𝜃𝑖 𝑗 )d 𝑗 → 0 < 1,
for any 𝑛 > 0 (because𝑚 𝑗 < 𝑚̂ < ∞). On the other hand, if 𝜅 ↓ 0, then (5) implies 𝜃 𝑗 ↑ 1 > 𝜃 ,𝑚 𝑗 ↑ 𝑚̂
(Proposition 2), and hence,

∫ 𝑛

0
𝑚 𝑗

𝑚̂ 𝜉 (𝜃𝑖 𝑗 )d 𝑗 → 𝑛𝜁 (1). Therefore, there is a unique solution of 𝜅 > 0 if
and only if 𝑛𝜁 (1) > 1. □

Proposition 7
Proof. Under the parametrization in Section 4.3, the dealers’ resource constraint (19) becomes∫

𝑗∈C𝑖
𝜉 (𝜃𝑖 𝑗 )d 𝑗 =

𝑛

𝑚̂
[𝑓ℎ𝑚ℎ𝜉 (𝜃ℎ) + 𝑛𝑓𝑙𝑚𝑙𝜉 (𝜃𝑙 )] = 1.(B.5)

In the proof of Lemma 5, we have shown that both 𝑚 𝑗 and 𝜃 𝑗 are decreasing in 𝜅. Thus, the left-
hand side of (B.5) is decreasing in 𝜅. To sustain the resource constraint (B.5), an increase in 𝑛 must
correspond to an increase in the dealers’ shadow cost 𝜅, and thus both𝑚 𝑗 and 𝜃 𝑗 decrease, 𝑗 ∈ {𝑙, ℎ}.

□

Proposition 8
Proof. In the proof of Lemma 5 we have shown that both 𝑚 𝑗 and 𝜃 𝑗 increase in 𝜋 𝑗/𝜅. Therefore, if
we focus on the two-type parametrization, the binding resource constraint (B.5) implies that 𝜋ℎ/𝜅 and
𝜋ℎ/𝜅 must move in different directions when 𝜋ℎ/𝜋𝑙 increases. Note that 𝜋ℎ/𝜋𝑙 = (𝜋ℎ/𝜅)/(𝜋𝑙/𝜅). It

47



follows immediately that an increase in 𝜋ℎ/𝜋𝑙 leads to an increase in 𝜋ℎ/𝜅 and a decrease in 𝜋ℎ/𝜅, and
thus an increase (decrease) in𝑚ℎ and 𝜃ℎ (𝑚𝑙 and 𝜃𝑙 ). □

Proposition 9
Proof. We have already shown that the left-hand side of (B.5) is decreasing in 𝜅 (Proposition 7). Also
note that the left-hand side of (B.5) is increasing in 𝑓ℎ. To keep the resource constraint (B.5) hold, an
increase in 𝑓ℎ must correspond to an increase in the dealers’ shadow cost 𝜅, and thus a decrease in both
𝑚 𝑗 and 𝜃 𝑗 ( 𝑗 = ℎ, 𝑙). □
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