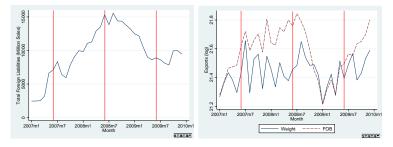
Dissecting the Effect of Credit Supply on Trade: Evidence from Matched Credit-Export Data

Daniel Paravisini, Veronica Rappoport, Philipp Schnabl, and Daniel Wolfenzon

August 2013

Motivation

- What is the role of banks in amplifying economic fluctuations?
 - In the debate since Great Depression
 Friedman and Schwartz (1963), Bernanke (1983),....
 - Do banks propagate international financial shocks? IMF (2009), Cetorelli and Goldberg (2010), Schnabl (2010)
 - Do shocks to banks have real outcome effects?
 Peek and Rosengren (2000), Ashcraft (2005), Kalemli-Ozcan et al (2010)
- · 2008 crisis opened this debate in international trade


 Exports fell 23% in 2009 (WTO) Amiti and Weinstein (2009), Bricongne et al (2009), lacovone and Zavacka (2009), Chor and Manova (2010), Antras and Foley (2011)

Motivation

- When do shocks to banks affect real activity?
 - Banks cannot offset shock with other sources of funding
 - $\rightarrow~$ Negative shock to banks' balance sheet implies drop in lending
 - Firms cannot substitute banks in the short term
 - $\rightarrow~$ Drop in overall credit supply to the firm
 - Firms need external finance in the short term
 - $\rightarrow~$ Increase cost of working capital and/or investment
- Why focus on trade?
 - Interesting in itself
 - Data allow to control for changes in demand
 - $\rightarrow~$ Detailed information on product and destination

This Paper

• Setting: Peru during the 2008 financial crisis

(a) Peruvian Bank Foreign Liabilities

(b) Peruvian Exports

- Peruvian banks not directly affected by U.S. real estate value
- Banks with foreign liabilities adversely affected by capital flow reversals
- Data: customs data matched with credit registry at the firm level

• Empirical Challenge:

How to distinguish the effect of credit supply on exports from changes in credit in response to factors also affecting exports?

- Our Approach:
 - Bank A: large share of foreign liabilities
 - Bank B: low share of foreign liabilities
 - One firm borrows from A, another one borrows from B
 - What if shocks to banks and exports are not orthogonal?

Compare exports of men's cotton overcoats to US by the two firms

- ightarrow Changes in demand for overcoats equally affect both firms
- \rightarrow Changes in US economy (e.g. credit by importers) equally affect both firms
- $\rightarrow\,$ Changes in price of cotton equally affect both firms

Preview of the Results

- · Banks are global players and transmit international shocks
 - Ipp higher share of foreign liabilities resulted in 2.3% drop in credit supply
- Elasticity of exports to credit shocks
 - Intensive margin reacts credit by adjusting frequency of shipments
 - Exit margin reacts to credit
 - Inconclusive on entry margin
 - How much of drop in exports is due to credit?
 - Back-of-the-envelope calculation: 16%
- Assessment of alternative empirical approaches in this literature
 - Comparisons based on firm aggregates without market information
 - Cross-sectoral comparisons ala Rajan and Zingales

Data

- Bank Balance Sheets
- Credit Registry
 - Firm-bank-month panel
 - Outstanding debt every firm with every domestic bank
- Customs Data (SUNAT)
 - Web crawler: download every export document since 1993
 - Product (11 digits), destination, volume, value, price, shipment
 - US\$ 20,252 Millions FOB in 2009 (57% manufactures)

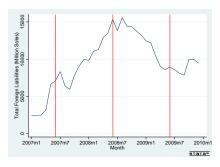
Mining and derivatives	61.0	United States 17.0
Oil and derivatives	10.8	China 15.3
Agriculture	9.2	Switzerland 14.8
Fishing and derivatives	8.3	Canada 8.6
Textile	5.7	Japan 5.2
Metallurgy	3.2	Germany 3.9
Other	5.0	Other 35.3

(c) Main Sectors (%)

(d) Main Destinations (%)

Intensive and Extensive Margins of Exports

$$X_{t} - X_{t-1} = \underbrace{\left(X_{t}^{Cont} - X_{t-1}^{Cont}\right)}_{Intensive Margin} + \underbrace{\left(X_{t}^{Entry} - X_{t-1}^{Out}\right)}_{Extensive Margin}$$


- Firm-product-destination export flows at 4 digits HS
- 2 periods: 12 months before and after July 2008 (*t* = {*Pre*, *Post*})

	Value	Value (FOB)		Volume (kg)	
	t=Pre	t=Pre t=Post		=Pre	t=Post
Total	10.9%	-22.4%		3.2%	-9.6%
Intensive	10.6%	-15.7%		2.1%	-2.2%
Extensive	0.3%	-6.6%		1.2%	-7.4%
Entry	8.4%	8.2%		8.6%	8.3%
Exit	-8.1%	-14.8%	-	7.4%	-15.7%

· How international financial crisis affects domestic banks' balance sheet?

Pank

- Capital flow reversal
- Heterogeneous dependence on foreign liabilities before the crisis
- $\rightarrow\,$ Negative balance sheet shock to banks with foreign liabilities

Bank	For Liabilities / Assets
(top 10)	2007-S2
HSBC	0.177
Mibanco	0.168
Continental	0.122
Citibank	0.103
Interamericano	0.075
Financiero	0.073
Credito	0.062
Wiese	0.060
Interbank	0.055
Santander	0.022
S&L	0.004

Ear Liabilities / Accete

(e) Banking Sector Foreign Liabilities

(f) Foreign Liabilities

Empirical Strategy – Instrumental Variable

- Disproportionately drop in lending by banks with high foreign liabilities
- · Within-firm estimation to account for firm's changes in credit demand

 $\ln(C_{ibPost}) - \ln(C_{ibPre}) = \alpha_i + \beta \cdot FD_b + \gamma \cdot S\&L_b + \nu_{ib}$

- C_{ibt} : firm *i*'s total outstanding credit with bank *b* at time *t*
- FD_b : share of foreign debt of bank b
- $S\&L_b$: dummy for S&Ls negligible in private funding

Dependent Variable:	$\Delta \ln C_{ib}$				
	All Debt	US\$ Debt	Soles Debt		
FD _b	-2.34***	-3.25**	2.85*		
	(1.10)	(1.28)	(1.43)		
S&L _b	-0.33***	-0.64**	0.12		
	(0.12)	(0.25)	(0.20)		
Firm FE	yes	yes	yes		
Observations	10,334	8,433	6,515		
# banks	41	33	39		
# firms	5154	4320	3977		

$$\begin{array}{lll} \textit{intensive} : & \ln(X_{ipdt}) &= & \eta_I \cdot \ln(C_{it}) + \delta_{ipd} + \alpha_{pdt} + \epsilon_{ipdt} \\ \textit{extensive} : & & E_{ipdt} &= & \eta_E \cdot \ln(C_{it}) + \delta_i + \alpha_{pdt} + \epsilon_{ipdt} \end{array}$$

- Instrument for $ln(C_{it})$ with shifter of firm *i*'s credit supply:
 - $F_{it} = (F_i + F_i^2) \cdot Post_t$

$t = \{Pre, Post\}$:	12 months before and after July 2008
F _i	:	weighted exposure to banks' foreign liabilities, $\sum_b \omega_{ib} FD_b$
Post _t	:	1 if $t = Post$

- Match firm-bank may not be random:
 - Control for factors other than finance that can affect the export flow
 - $\delta_{\textit{ipd}}$: firm-product-destination time-invariant factors
 - δ_i : firm time-invariant factors for extensive margin
 - $\alpha_{\it pdt}$: shocks to the product-destination

i:firm, p:product, d:destination, t:time

$$\ln(X_{ipdPost}) - \ln(X_{ipdPre}) = \alpha_{pd} + \eta \cdot \left[\ln(C_{iPost}) - \ln(C_{iPre})\right] + \epsilon_{ipd}$$

Dependent Variable:	$\Delta \ln C_i$	$\Delta \ln$	$\Delta \ln X_{ipd}$	
	FS	OLS	IV	
F _i	8.33***			
	(3.17)			
F_i^2	-119.98***			
	(24.93)			
$\Delta \ln C_i$		0.026**	0.179**	
		(0.010)	(0.071)	
Product-Destination FE	Yes	Yes	Yes	
Observations	14,208	14,208	14,208	

• IV estimate of elasticity is 6 times larger than OLS

 $\rightarrow\,$ Supply side factors explain less than half variation in total credit

$$\ln(Y_{ipdPost}) - \ln(Y_{ipdPre}) = \alpha_{pd} + \eta \cdot \left[\ln(C_{iPost}) - \ln(C_{iPre})\right] + \epsilon_{ipd}$$

Dependent Variable:	$\Delta \ln(ShipFreq_{ipd})$	$\Delta \ln(ShipVol_{ipd})$	$\Delta \ln(\mathit{FracCash}_{\mathit{ipd}})$
$\Delta \ln C_i$	0.108***	0.071	-0.033*
	(0.032)	(0.057)	(0.018)
Product-Destination FE	Yes	Yes	Yes
Observations	14,208	14,208	14,208

- Adjustments in intensive margin induced by credit shock exclusively through number of shipments
 - $\rightarrow~\mbox{Fixed}$ cost of exporting at the shipment level
- Trade credit partially substitutes for bank credit, but very low elasticity

• Change in probability of entry/exit an export market induced by a 1% increase in credit supply

$$E_{ipdt} = \eta_E \cdot \ln(C_{it}) + \delta_i + \alpha_{pdt} + \epsilon_{ipdt}$$

- Entry: E_{ipdt} is 1 if X_{ipdt} > 0 conditional on X_{ipdt-1} = 0
- Exit: E_{ipdt} is 1 if X_{ipdt} = 0 conditional on X_{ipdt-1} > 0
- δ_i: firm-invariant fixed effect

Dependent Variable:	$Pr(X_{ipdt} = 0 X_{ipdt-1} > 0)$	$Pr(X_{ipdt} > 0 X_{ipdt-1} = 0)$	
	Exit	Entry	
ln C _i	-0.033*	-0.006	
	(0.017)	(0.016)	
Prod-Dest-Time FE	Yes	Yes	
Observations	62,386	61,909	

No support for important entry sunk cost

Bank-Firm Selection

 Replicate without accounting for product-destination shocks Amiti and Weinstein (2009), Carvalo et al. (2010), Iyer et al (2010)...

Dependent Variable:	$\Delta \ln X_{ipd}$		
$\Delta \ln C_i$	0.012	0.179**	
	(0.067)	(0.071)	
Prod-Dest FE	No	Yes	

- · Banks specialize in markets: Shocks to banks and firms are not orthogonal
 - Firms borrowing from exposed banks specialize in markets less affected by the international crisis.
- \rightarrow Caution with inferences based on aggregate data during crises

total exports, total sales, investment, default,...

Assessment of Alternative Empirical Approaches

- Are High Finance-Dependence sectors more sensitive to credit shocks?
 - Validity of cross-sectoral comparisons based on Rajan and Zingales Bricogne et al (09), Chor and Manova (10), Levchenko et al (10)

Dep Var:	Intensive	Exit	Entry
$\Delta \ln C_i / \ln C_i$	0.145**	-0.032*	-0.008
	(0.070)	(0.018)	(0.017)
$\Delta \ln C_i / \ln C_i imes HighFinDep_p$	-0.109	0.005	0.012***
	(0.082)	(0.004)	(0.004)
Prod-Dest FE	Yes	Yes	Yes

- High Financial Dependence does not predict export sensitivity to credit
 - Only entry is more elastic in high finance-dependence products
 - Entry margin is negligible share of change in exports in a given year

Results - Identification Tests

- Banks may specialize in different products (undistinguishable at 4 HS)
 - Product defined at 6 digits HS
 - Exports measured in value (US\$ FOB)
 - Control for export unit price
- · Banks may specialize in lending to firms affected through other channels
 - Control for fraction of firm dollar debt, number of products, number of destinations, total exports
 - Pre-existing trends of firms linked to exposed and non-exposed banks (placebo)
- Robustness Tests
 - Alternative IV functional form: dichotomous indicator of exposure
 - Different turning point date: March 2008 (Bearn Stearns)

Conclusions

- · Banks participate in global markets and transmit shocks to related parties
 - Drop in credit explained by share of foreign liabilities: 9.6%
- What can we infer about usage of credit by exporter firms?
 - $\rightarrow\,$ Credit shocks affect variable cost of exporting working capital
 - Credit affects intensive margin (after entry cost is paid): $\eta = 0.179$
 - $\rightarrow\,$ Fixed cost of exporting at the product-destination level
 - Credit affects exit margin: $\eta = -0.033$
 - $\rightarrow\,$ No conclusive evidence on importance of credit on entry margin

		Annual Export Growth (kg)				
	t=Pre	t=Pre t=Post Missing Trade Finance				
Total	3.2%	-9.6%	-12.8%	16%		
Intensive	2.1%	-2.2%	-4.3%	39%		
Extensive	1.2%	-7.4%	-8.6%	3%		

Back of the envelope calculation: