How Monetary Policy Shaped the Housing Boom

Itamar Drechsler¹ Alexi Savov² Philipp Schnabl³

 $^1\text{Wharton}$ and NBER ^{-2}NYU Stern and NBER ^{-3}NYU Stern, CEPR, and NBER

May 2019

Monetary Policy and the Housing Boom

- 1. The role of monetary policy in the housing boom remains unresolved
 - on one side: Taylor (2007) argues that the Fed kept rates "too low for too long," leading to excessive investment in housing
 - on the other side: Bernanke (2010) argues that monetary policy was not too loose. Real culprit was a decline in mortgage lending standards that accompanied the shift from traditional bank portfolio lending to securitized lending
- 2. This debate is unresolved in part because the housing boom actually accelerated from 2003 to 2006, when the Fed *tightened* by 425 bps
 - mortgage spreads narrowed in mid-2003 (Justiniano et al., 2017)
 - lending standards fell and house prices took off

⇒ What impact, if any, did Fed tightening have on the housing boom?

Mortgage lending and the housing boom

- 1. Expansion of mortgage lending was a key driver of the housing boom (e.g., Mian and Sufi, 2009)
- 2. Private-Label Securitization (PLS) and non-bank lending grew disproportionately relative to bank portfolio lending and GSEs
 - areas with more non-banks experienced a bigger housing boom (Mian and Sufi, 2018)
- 3. Relation to monetary policy? "The deposits channel" (Drechsler, Savov, and Schnabl, 2017)
 - $\rightarrow\,$ as the Fed tightens, bank deposits flow out
 - $\rightarrow\,$ banks contract their portfolio lending
 - $\rightarrow\,$ lending shifts to PLS and non-banks?

In this paper we find

- 1. Fed tightening led to large outflows of bank deposits, as predicted by the deposits channel
- 2. This induced a substantial contraction in bank portfolio mortgage lending
- 3. But, it also induced a large shift to PLS, led by non-banks, which largely offset the contraction in bank portfolio lending
 - rate of substitution: 65% of reduced bank portfolio lending came back as PLS (most by non-banks)
 - mortgage market shifted from stable deposit funding to run-prone wholesale funding
- \Rightarrow Fed tightening:
 - was ineffective at curbing mortgage lending
 - accelerated the shift to PLS/non-banks
 - raised exposure of housing market to runs/freezes

Related literature

- 1. Mortgage lending, housing booms, and financial crises: Mian and Sufi (2009); Adelino, Schoar, and Severino (2016); Schularick and Taylor (2012), Jordà, Schularick, and Taylor (2016); Justiniano, Primiceri and Tambalotti (2017)
- Bank lending/deposits channel of monetary policy: Bernanke (1983); Bernanke and Blinder (1988); Kashyap and Stein (1994, 2000); Landier, Sraer, and Thesmar (2013); Scharfstein and Sunderam (2016); Hanson, Shleifer, Stein, and Vishny (2015); Drechsler, Savov and Schnabl (2017)
- Monetary policy and financial stability: Kashyap, Stein, and Wilcox (1993); Stein (1998, 2012); Diamond and Rajan (2012); Greenwood, Hanson, and Stein (2014); Stein and Sunderam (2016); Drechsler, Savov and Schnabl (2018); Xiao (2018)
- Competition between banks and shadow banks: Gennaioli, Shleifer, and Vishny (2013); Sunderam (2014); Moreira and Savov (2017); Xiao (2018); Buchak, Matvos, Piskorski, and Seru (2018)

Private-label securitization (PLS) and Monetary Policy

1. Strong positive co-movement between interest rates and PLS since 2002

- before 2002, PLS share of total securitization was <25%
- mid-2003 to 2006: as Fed tightens, PLS share rises sharply to $\approx 60\%$
- PLS non-existent during ZLB period
- has re-emerged as interest rates rise

Drechsler, Savov, and Schnabl (2018)

The deposits channel (DSS 2017)

- 1. Fed tightening induces outflows of bank deposits
 - banks have market power over retail (core) deposit markets
 - when the Fed funds rate rises, banks charge higher deposit spreads
 - this causes deposits to flow out
- Deposits are the main source of bank funding (77% of liabilities)/ Banks value deposits for their unique stability
 - \Rightarrow deposit outflows induce banks to contract lending

The deposits channel, 2003–2006

- 1. Did Fed tightening shrink deposit supply during the housing boom?
 - identification challenge: Fed tightening also weakens loan demand
- 2. Cross-sectional analysis: deposit spreads should rise more and deposits should flow out more in less competitive areas
 - measure local competition using deposit spread betas: for all branches *b* in county *c*, run

 $\Delta DepositSpread_{b,c,t} = \beta_{c} \Delta FedFunds_{t} + \varepsilon_{b,c,t}$

- β_c captures pricing power of branches in county c (Branch beta)
- estimate β_c 's from prior cycles (pre-2002)
- 3. Control for loan demand by comparing branches of the *same* bank ("within-bank estimation")
 - $\mathop{identifying}$ assumption: a deposit dollar raised at one branch can be lent out at another branch

Branch-level analysis

<u>Data:</u>

- 1. Branch- and product-level deposit rates: Ratewatch (1997-2015)
- 2. Branch-level deposits: FDIC (1994-2015)
- 3. Bank balance sheets: U.S. Call Reports (1986-2015)
- 4. County characteristics: County Business Patterns

Measures:

- 1. Deposit spread = Fed funds rate deposits rate
- 2. Branch betas: estimate using pre-2002 data, use to predict deposit supply during 2003–2006

Distribution of Branch betas

- 1. Branch betas average $0.58 \Rightarrow$ deposit spreads increase on average by 58 bps per 100 bps increase in the Fed funds rate
- 2. There is substantial cross-sectional variation
 - DSS (2017) show that local deposit market power is explained by market concentration, income, education, demographics

Deposit spreads, 2003-2006

 $\Delta DepositSpread_{branch,2003-2006} = \alpha + \gamma BranchBeta_{2002} + \varepsilon$

1. Deposit spreads rose strongly during the 2003-2006 period

2. Pre-2002 branch betas strongly predict the deposit spread changes

Drechsler, Savov, and Schnabl (2018)

Deposit growth, 2003-2006

 $\Delta \text{Log(Deposits)}_{branch, 2003-2006} = \alpha + \gamma BranchBeta_{2002} + \varepsilon$

- 1. Higher branch beta \Rightarrow spread increases more \Rightarrow lower deposit growth
 - ⇒ Fed tightening induces inward shift in deposit *supply* (higher prices, lower quantities)

Drechsler, Savov, and Schnabl (2018)

Deposit growth, 2003–2006, within-bank estimation

 $\Delta \text{Log(Deposits)}_{\textit{branch}, 2003-2006} = \mu_{\textit{bank}} + \gamma \textit{BranchBeta}_{2002} + \varepsilon$

	Panel B: Deposit Growth	
	(1)	(2)
Branch beta	-0.322*** (5.046)	-0.213*** (6.037)
Bank Fixed Effects Observations R ²	N 59,700 0.002	Y 57,497 0.186

- 1. Pre-2002 branch betas predict 2003–2006 deposit growth across different branches of the *same* bank
 - \Rightarrow <u>not</u> driven by differences in loan demand
- \Rightarrow Fed tightening shrank aggregate deposits by 12.4%
 - = -0.213 imes 0.58 (average branch beta)
 - consistent with aggregate time series

Bank-level analysis

- 1. Verify branch-level deposits results aggregate up to bank level
- 2. Extend analysis to asset side of bank balance sheets
- 3. U.S. Call Reports 1986-2015 (6,356 banks)
 - measure deposit market power of bank *B* using its Bank beta β_B :

 $\Delta DepositSpread_{B,t} = \alpha_B + \beta_B \Delta FedFunds_t + \varepsilon_{B,t}$

- estimate β_B (Bank beta) using pre-2002 data
- Bank beta captures a bank's exposure to the deposits channel
- use Bank betas to predict deposit supply and bank assets during 2003–2006

Bank-level deposit supply, 2003-2006

 $= \alpha + \gamma BankBeta_{2002} + \varepsilon$

- \Rightarrow Pre-2002 Bank betas predict deposit spreads and deposit growth during the housing boom
 - verifies branch-level results at the bank level (different datasets)

Bank-level real estate loans and securities

 $\Delta y_{Bank,2003-2006} = \alpha + \gamma BankBeta_{2002} + \varepsilon$

⇒ Fed tightening induced a substantial contraction in banks' holdings of real estate loans and securities through the deposits channel

Bank-level deposits, real estate loans, and securities

	Δ Deposits	Δ Real Estate Loans
	(1)	(2)
Bank Beta	-0.262*** (0.037)	-0.213*** (0.052)
Observations	6,396	6,367
R-squared	0.137	0.054

 $\Delta y_{Bank,2003-2006} = \alpha + \gamma BankBeta_{2002} + \varepsilon$

- 1. Deposits contract by 26% and and real estate loans by 21% at a bank with a beta of 1 (maximally exposed) relative to a bank with a beta of 0 (unexposed)
 - average bank beta is 0.62 \Rightarrow implied aggregate impact is 16.2% contraction in deposits, 13.2% contraction in real estate loans

County-level analysis

- 1. Examine how Fed tightening impacted the level and composition of mortgage lending through the deposits channel
- 2. Construct county-level exposure to deposits channel
 - = average Bank beta in a county, weighted by 2002 portfolio lending shares:

$$CountyBeta_c = \sum_b s_{b,c}BankBeta_b$$

- county beta mean of 0.53; st. dev. of 0.06
- Use County betas to predict mortgage lending during the housing boom, 2003–2006
 - Focus on bank portfolio and PLS-funding loans: financed privately, either held in banks' portfolios or sold through PLS \rightarrow exposed to deposits channel (use GSE loan growth as control)

County-level analysis: empirical strategy

- 1. Identification challenge: local exposure to deposits channel correlated with loan demand over 2003–2006
- 2. Use county and market structure characteristics as controls
 - county: lending, employment, income in 2002
 - market structure: top-4 lender share (Scharfstein and Sunderam 2016), 2002 PLS share (Mian and Sufi 2018), *deposit-weighted county beta* (uses deposit weights to construct beta)
- 3. Control for proxies of loan demand
 - Δ income, employment over 2003–2006
 - Δ GSE lending over 2003-2006 (since GSE segment is not exposed to deposits channel)
- 4. Look at change in PLS and non-bank *share* over 2003-2006 controls for total loan demand by scaling by total lending

Bank portfolio lending, 2003-2006

 $\Delta Log(Bank \text{ portfolio lending})_{county.2003-2006} = \alpha + \gamma CountyBeta + \varepsilon$

 \Rightarrow As Fed tightened, counties more exposed to deposits channel saw less bank portfolio mortgage lending

Bank portfolio lending, 2003-2006

$\Delta y_{county,2003-2006}$	= $\alpha + \gamma$ CountyBeta	$+ \delta X_{county} + \varepsilon$
-------------------------------	--------------------------------	-------------------------------------

	Δ Bank portfolio lending	
	(3)	(4)
County beta	-0.436***	<mark>-0.486***</mark>
	(0.162)	(0.163)
County controls	Y	Y
$\Delta Demand$ controls	Ν	Y
Obs.	2,998	2,750
R^2	0.138	0.176

- 1. Portfolio lending is 48.6% lower in a county with beta of 1 (maximally exposed) than in a county with beta of 0 (unexposed)
- $\Rightarrow\,$ Aggregate reduction due to deposits channel: $-0.486\times0.532=-25.9\%$
- Robust to controls for characteristics (lending, employment, income), market structure (local deposit-weighted beta, PLS share, top-4 lender share), loan demand 2003–06 (ΔGSE lending, ΔIncome, ΔEmployment)

Change in PLS share, 2003-2006

1. Look at market share to control for total loan demand

 Δ PLS share_{county,2003-2006} = $\alpha + \gamma$ CountyBeta + ε

2. As Fed tightens and bank portfolio mortgage lending contracts \to market shifts strongly towards private-label securitization

- intercept $\approx 0 \rightarrow$ no growth in PLS share in unexposed counties

Change in PLS share, 2003–2006

 $\Delta y_{county,2003-2006} = \alpha + \gamma CountyBeta + \delta X_{county} + \varepsilon$

	Δ PLS lending share	
	(1)	(2)
County beta	0.141***	<mark>0.192***</mark>
	(0.046)	(0.043)
County controls	Y	Y
$\Delta Demand$ controls	Ν	Y
Obs.	3,026	2,754
R^2	0.120	0.189

- 1. PLS lending share rises by 19.2% in a county with beta of 1 (maximally exposed) relative to a county with beta of 0 (unexposed)
- 2. Aggregate impact: deposits channel can account for a 10.2% increase in PLS share vs. 11.4% actual increase

Total bank lending, 2003-2006

 Δ Log(Total bank lending)_{county,2003-2006} = $\alpha + \gamma$ CountyBeta + ε

 $\Rightarrow\,$ As Fed tightened, counties more exposed to the deposits channel saw less bank portfolio and total bank mortgage lending

Total bank lending, 2003–2006

	Δ Bank lending	
	(1)	(2)
County beta	-0.368***	-0.267***
,	(0.132)	(0.132)
County controls	Y	Y
$\Delta Demand$ controls	Ν	Y
Obs.	3,018	2,753
R^2	0.176	0.238

 $\Delta y_{county,2003-2006} = \alpha + \gamma CountyBeta + \delta X_{county} + \varepsilon$

1. Total bank lending declines by less than portfolio lending \Rightarrow composition of bank lending shifts to PLS

Change in non-bank share, 2003–2006

 Δ Non-bank share_{county,2002-2006} = $\alpha + \gamma$ CountyBeta + ε

 \Rightarrow Non-banks led the shift to PLS, gaining market share

Drechsler, Savov, and Schnabl (2018)

Change in non-bank share, 2003–2006

	Δ Nonbank lending share	
	(1)	(1)
County beta	0.094**	<mark>0.124***</mark>
	(0.041)	(0.040)
County controls	V	\mathbf{v}
	T NI	T V
	IN	ř
Obs.	3,026	2,754
R^2	0.123	0.159

 $\Delta y_{county,2003-2006} = \alpha + \gamma CountyBeta + \delta X_{county} + \varepsilon$

 \Rightarrow Non-bank share rose 12.4% more in a county with beta of 1 (maximally exposed) than in a county with beta of 0 (unexposed).

Total mortgage lending (non-GSE), 2003-2006

 $\Delta y_{county,2003-2006} = \alpha + \gamma CountyBeta + \delta X_{county} + \varepsilon$

	Δ Total lending	
	(1)	(2)
County beta	-0.206*	<mark>-0.085</mark>
	(0.116)	(0.114)
County controls	Y	Y
$\Delta Demand$ controls	N	Y
Obs.	3,026	2,754
R^2	0.122	0.184

1. Total lending is 8.5% lower (with controls) in a county with beta of 1 (maximally exposed) relative to a county with beta of 0 (unexposed)

- controls for loan demand matter more for total lending

- $\Rightarrow\,$ Implied aggregate contraction in total lending is only 4.52%
 - due to substitution from bank portfolio lending to PLS lending

Substitution and aggregate impact

1. Use the cross-sectional coefficients to estimate the substitution between bank portfolio (BP) and PLS lending.

Total lending TL = BP + PLS \Rightarrow

$$-\frac{dPLS}{dBP} = -\frac{dTL - dBP}{dBP} = \left(\frac{dTL/TL}{dBP/BP} \times \frac{TL}{BP} - 1\right)$$
$$= -\left(\frac{-0.085}{-0.486} \times \frac{1}{1 - 0.497} - 1\right) = 0.652$$

 \Rightarrow PLS offsets 65.2% of the contraction in bank portfolio lending

- 2. Similarly, non-bank lending substitutes 56.8% of the contraction in bank lending.
- ⇒ Impact of Fed tightening was substantially offset by PLS lending, led by non-banks:
 - i bank portfolio lending fell by 25.9%
 - ii but total lending fell by only 4.52%
 - iii due to +16.8% PLS lending, led by +18.8% in non-bank lending

Financial fragility

- 1. Fed tightening induced shift from deposit-funded lending to wholesale-funded PLS lending
- 2. PLS market has no government support, in contrast to GSE market and bank portfolio mortgages
 - GSE mortgages: (quasi-) government guarantee
 - bank portfolio mortgages: funded by government-insured deposits
- $\Rightarrow\,$ PLS-funded mortgage market is much more exposed to runs/freezes
 - such a run/freeze began in 2007 and only ended with government intervention

Takeaways

- 1. We analyze the impact of Fed tightening on mortgage lending during the housing boom through the lens of the deposits channel
- 2. We find that Fed tightening induced outflows of deposits and a contraction in bank portfolio mortgage lending
- 3. This contraction accelerated the shift to private-label securitization (PLS), led by non-banks, which largely undid the contractionary impact of Fed tightening
 - investors' newfound willingness to supply funding for PLS was ultimate driver of boom
- 4. Results closer to Bernanke's (2010) view that tighter supervision would have been more effective than further raising rates