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1. Descriptive Tools, Regression, Panel Data
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Model Building in Econometrics

• Parameterizing the model
• Nonparametric analysis
• Semiparametric analysis
• Parametric analysis

• Sharpness of inferences 
follows from the strength of 
the assumptions

A Model Relating (Log)Wage 
to Gender and Experience
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Cornwell and Rupert Panel Data
Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years
Variables in the file are

EXP = work experience
WKS = weeks worked
OCC = occupation, 1 if blue collar, 
IND = 1 if manufacturing industry
SOUTH = 1 if resides in south
SMSA = 1 if resides in a city (SMSA)
MS = 1 if married
FEM = 1 if female
UNION = 1 if wage set by union contract
ED = years of education
LWAGE = log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel 
Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied 
Econometrics, 3, 1988, pp. 149-155. 
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Nonparametric Regression
Kernel regression of y on x

Semiparametric Regression:  Least 
absolute deviations regression of y on x

Parametric Regression:  Least squares –
maximum likelihood – regression of y on x

Application:  Is there a relationship 
between Log(wage) and Education?
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A First Look at the Data
Descriptive Statistics

• Basic Measures of Location and Dispersion
• Graphical Devices

• Box Plots
• Histogram
• Kernel Density Estimator
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Box Plots
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From Jones and Schurer (2011)
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Histogram for LWAGE
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The kernel density 
estimator is a
histogram (of sorts).
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B "bandwidth"  chosen by the analyst
K the kernel function, such as the normal
      or logistic pdf (or one of several others)
x*  the point at which the density is approximated.
This is essentially a histogram with small bins.



[Topic 1-Regression]   13/37

Kernel Density Estimator
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ˆI.e.,f(x*) does not converge to f(x*) at the same rate as a mean
converges to a population mean.



[Topic 1-Regression]   14/37

Kernel Estimator for LWAGE
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From Jones and Schurer (2011)
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Objective: Impact of Education 
on (log) Wage

• Specification: What is the right model 
to use to analyze this association?

• Estimation
• Inference
• Analysis
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Simple Linear Regression
LWAGE  =  5.8388 + 0.0652*ED
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Multiple Regression
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Specification: Quadratic Effect of Experience
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Partial Effects

Education:   .05654
Experience   .04045  - 2*.00068*Exp
FEM              -.38922
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Model Implication: Effect of 
Experience and Male vs. Female
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Hypothesis Test About Coefficients

• Hypothesis
• Null: Restriction on β:   Rβ – q = 0
• Alternative: Not the null

• Approaches
• Fitting Criterion: R2 decrease under the null?
• Wald:  Rb – q close to 0 under the alternative?
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Hypotheses

All Coefficients = 0?

R = [ 0 | I ]  q = [0]

ED Coefficient = 0?

R = 0,1,0,0,0,0,0,0,0,0,0

q =  0

No Experience effect?

R = 0,0,1,0,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0,0,0,0

q = 0
0
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Hypothesis Test Statistics

2
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Subscript 0 = the model under the null hypothesis
Subscript 1 = the model under the alternative hypothesis

1. Based on the Fitting Criterion R

(R -R ) / J              F = =F[J,N-K ]
(1-R ) / (N-K )

2. Bas
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ed on the Wald Distance : Note, for linear models, W = JF.

              Chi Squared = ( - ) s ( ) ( - )Rb q R X X R Rb q
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Hypothesis: All Coefficients Equal Zero

All Coefficients = 0?

R = [0 | I]  q = [0]

R1
2 = .41826

R0
2 = .00000

F    = 298.7 with [10,4154]

Wald  =  b2-11[V2-11]-1b2-11
=  2988.3355

Note that Wald = JF 
= 10(298.7)

(some rounding error)
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Hypothesis: Education Effect = 0

ED Coefficient = 0?

R = 0,1,0,0,0,0,0,0,0,0,0,0

q =  0

R1
2 = .41826

R0
2 = .35265 (not shown)

F    =  468.29

Wald = (.05654-0)2/(.00261)2

= 468.29

Note F = t2 and Wald = F

For a single hypothesis 
about 1 coefficient.
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Hypothesis: Experience Effect = 0
No Experience effect?

R = 0,0,1,0,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0,0,0,0

q = 0
0

R0
2 = .33475, R1

2 = .41826
F    =  298.15

Wald = 596.3 (W* = 5.99)
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Built In Test
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Robust Covariance Matrix

• What does robustness mean?
• Robust to: Heteroscedasticty
• Not robust to:

• Autocorrelation
• Individual heterogeneity
• The wrong model specification

• ‘Robust inference’

 ′ ′ ′  ∑-1 2 -1
i i ii

The White Estimator

Est.Var[ ] = ( ) e ( )b X X x x X X
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Robust Covariance Matrix

Uncorrected
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Bootstrapping
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Estimating the Asymptotic 
Variance of an Estimator

• Known form of asymptotic variance:  Compute 
from known results

• Unknown form, known generalities about 
properties:  Use bootstrapping
• Root N consistency
• Sampling conditions amenable to central limit 

theorems
• Compute by resampling mechanism within the 

sample.
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Bootstrapping
Method:

1.  Estimate parameters using full sample:  b
2.  Repeat R times:

Draw n observations from the n, with replacement
Estimate β with b(r).  

3.  Estimate variance with 
V =  (1/R)Σr [b(r) - b][b(r) - b]’

(Some use mean of replications instead of b.  Advocated 
(without motivation) by original designers of the method.)
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Application: Correlation 
between Age and Education
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Bootstrap Regression - Replications

namelist;x=one,y,pg$               Define X
regress;lhs=g;rhs=x$    Compute and display b
proc                                         Define procedure
regress;quietly;lhs=g;rhs=x$    … Regression (silent)
endproc                                   Ends procedure
execute;n=20;bootstrap=b$   20 bootstrap reps
matrix;list;bootstrp $                   Display replications
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--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  t-ratio  P[|T|>t]   Mean of X
--------+-------------------------------------------------------------
Constant|   -79.7535***      8.67255       -9.196   .0000

Y|     .03692***       .00132       28.022   .0000      9232.86
PG|   -15.1224***      1.88034       -8.042   .0000      2.31661

--------+-------------------------------------------------------------
Completed    20 bootstrap iterations.
----------------------------------------------------------------------
Results of bootstrap estimation of model.
Model has been reestimated    20 times.
Means shown below are the means of the
bootstrap estimates. Coefficients shown
below are the original estimates based
on the full sample.
bootstrap samples have   36 observations.
--------+-------------------------------------------------------------
Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X
--------+-------------------------------------------------------------

B001|   -79.7535***      8.35512       -9.545   .0000     -79.5329
B002|     .03692***       .00133       27.773   .0000       .03682
B003|   -15.1224***      2.03503       -7.431   .0000     -14.7654

--------+-------------------------------------------------------------

Results of Bootstrap Procedure
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Bootstrap Replications

Full sample result

Bootstrapped sample 
results
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Multiple Imputation for Missing Data
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Imputed Covariance Matrix
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Implementation
• SAS, Stata:  Create full data sets with imputed 

values inserted.  M = 5 is the familiar standard 
number of imputed data sets.

• NLOGIT/LIMDEP 
• Create an internal map of the missing values and a 

set of engines for filling missing values
• Loop through imputed data sets during estimation. 
• M may be arbitrary – memory usage and data 

storage are independent of M.
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