

10. Censoring, Tobit and Two Part Models

Censoring and Corner Solution Models

Censoring model:

$$y = T(y^*) = 0$$
 if $y^* \le 0$
 $y = T(y^*) = y^*$ if $y^* > 0$.

• Corner solution:

y = 0 if some exogenous condition is met; y = g(x)+e if the condition is not met.

We then model P(y=0) and E[y|x,y>0].

• Hurdle Model:

y = 0 with P(y=0|z)Model E[y|x,y > 0]

The Tobit Model

$$y^* = \mathbf{x}'\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

$$y = Max(0, y^*),$$

$$\boldsymbol{\varepsilon} \sim N[0, \sigma^2]$$

Variation: Nonzero lower limit Upper limit Both tails censored

Easy to accommodate. (Already done in major software.)

Log likelihood and Estimation. See Appendix.

(Tobin: "Estimation of Relationships for Limited Dependent Variables," *Econometrica*, 1958. Tobin's probit?)

Conditional Mean Functions

 $y^{*} = \mathbf{x}\mathbf{\beta} + \varepsilon, \ \varepsilon \sim N[0,\sigma^{2}], \ y = Max(0, y^{*})$ $E[y^{*} | \mathbf{x}] = \mathbf{x}'\mathbf{\beta}$ $E[y|\mathbf{x}] = Prob[y=0|\mathbf{x}] \times 0 + Prob[y>0|\mathbf{x}]E[y|y>0,\mathbf{x}]$ $= Prob[y^{*}>0|\mathbf{x}] \ E[y^{*} | y^{*}>0,\mathbf{x}]$ $= \Phi\left[\frac{\mathbf{x}\mathbf{\beta}}{\sigma}\right] \times \left[\mathbf{x}\mathbf{\beta} + \sigma\frac{\phi(\mathbf{x}\mathbf{\beta}/\sigma)}{\Phi(\mathbf{x}\mathbf{\beta}/\sigma)}\right]$ $= \Phi(\mathbf{x}\mathbf{\beta}/\sigma)\mathbf{x}'\mathbf{\beta} + \sigma\phi(\mathbf{x}'\mathbf{\beta}/\sigma)$ $\lambda = \frac{\phi(\mathbf{x}\mathbf{\beta}/\sigma)}{\Phi(\mathbf{x}\mathbf{\beta}/\sigma)} = "Inverse Mills ratio"$

$$E[\mathbf{y}|\mathbf{x},\mathbf{y}\mathbf{\beta} \cdot \mathbf{\Theta}] = \mathbf{x}' \qquad \sigma \frac{\phi(\mathbf{x}\mathbf{\beta} / \sigma)}{\Phi(\mathbf{x}\mathbf{\beta} / \sigma)}$$

Conditional Means

Predictions and Residuals

- What variable do we want to predict?
 - y*? Probably not not relevant
 - y? Randomly drawn observation from the population
 - y | y>0? Maybe. Depends on the desired function
- What is the residual?
 - y prediction? Probably not. What do you do with the zeros?
 - Anything $\mathbf{x}\beta$? Probably not. $\mathbf{x}\beta$ is not the mean.
- What are the partial effects? Which conditional mean?

OLS is Inconsistent - Attenuation

$E[y | \mathbf{x}] \boldsymbol{\beta} \quad \Phi(\mathbf{x} \boldsymbol{\beta} \neq \sigma) \quad \mathbf{x} \boldsymbol{\beta} \quad \sigma \phi(\ ' \ / \sigma)$

Nonlinear function of **x**.

What is estimated by OLS regression of y on x? Slopes of the linear projection are approximately equal to the derivatives of the conditional mean evaluated at the means of the data.

$$\frac{\partial \mathsf{E}[\mathsf{y} \mid \mathsf{x}]}{\partial \mathsf{x}} = \Phi(\mathsf{x}\boldsymbol{\beta} / \sigma) \times \boldsymbol{\beta}$$

Note the **attenuation**; $0 < \Phi(\mathbf{x\beta} / \sigma) < 1$

Partial Effects in Censored Regressions

For the latent regression: $E[y^*|\mathbf{x}] = \boldsymbol{\beta} \mathbf{x}^* ; \frac{\partial E[y^*|\mathbf{x}]}{\partial \mathbf{x}} \boldsymbol{\beta} =$ $E[y|\mathbf{x}] = \mathbf{\beta} \Phi \left(\frac{\mathbf{x}'\mathbf{\beta}}{\sigma}\right) \mathbf{x}' \qquad \sigma \phi \left(\frac{\mathbf{x}'\mathbf{\beta}}{\sigma}\right); \mathbf{\beta} \frac{\partial E[y|\mathbf{x}]}{\partial \mathbf{x}} = \Phi \left(\frac{\mathbf{x}'\mathbf{\beta}}{\sigma}\right)$ $\mathsf{E}[\mathbf{y}|\mathbf{x},\mathbf{y} > \mathbf{\beta} + \mathbf{x}' \quad \sigma \left| \phi \left(\frac{\mathbf{x}' \mathbf{\beta}}{\sigma} \right) / \Phi \left(\frac{\mathbf{x}' \mathbf{\beta}}{\sigma} \right) \right|$ $= \mathbf{x'}\boldsymbol{\beta} + \sigma\lambda\left(\frac{\mathbf{x'}\boldsymbol{\beta}}{\sigma}\right) = \mathbf{x'}\boldsymbol{\beta} + \sigma\lambda(\mathbf{a})$ $\frac{\partial \mathsf{E}[\mathbf{y}|\mathbf{x},\mathbf{y}>0]}{\partial \mathbf{x}} = \mathbf{\beta}[1-\lambda(a)(a+\lambda(a))]$

Application: Fair's Data

Fair's (1977) Extramarital Affairs Data, 601 observations. Psychology Today. Source: Fair (1977) and http://fairmodel.econ.yale.edu/rayfair/pdf/1978ADAT.ZIP. Several variables not used are denoted X1, ..., X5.

y = Number of affairs in the past year,

- (0,1,2,3,4-10=7, more=12, mean = 1.46. (Frequencies 451, 34, 17, 19, 42, 38)
- z1 = Sex, 0=female; mean=.476

z2 = Age, mean=32.5

- z3 = Number of years married, mean=8.18
- z4 = Children, 0=no; mean=.715
- z5 = Religiousness, 1=anti, ...,5=very. Mean=3.12
- z6 = Education, years, 9, 12, 16, 17, 18, 20; mean=16.2
- z7 = Occupation, Hollingshead scale, 1,...,7; mean=4.19
- z8 = Self rating of marriage. 1=very unhappy; 5=very happy

Fair, R., "A Theory of Extramarital Affairs," *Journal of Political Economy*, 1978. Fair, R., "A Note on Estimation of the Tobit Model," Econometrica, 1977.

Fair's Study

- Corner solution model
- Discovered the EM method in the Econometrica paper
- Used the tobit instead of the Poisson (or some other) count model
- Did not account for the censoring at the high end of the data

Estimated Tobit Model

			Tobit		Probit	Truncated Regression		
	Least		Marginal	Scaled			Marginal	
	Squares	Estimate	Effect	<i>by 1/σ</i>	Estimate	Estimate	Effect	
Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Constant	5.61	8.18		0.991	0.997	8.32		
	(0.797)	(2.74)		(0.336)	(0.361)	(3.96)		
Z2	-0.0504	-0.179	-0.042	-0.022	-0.022	-0.0841	-0.0407	
	(0.0221)	(0.079)	(0.184)	(0.010)	(0.102)	(0.119)	(0.0578)	
Z3	0.162	0.554	0.130	0.0672	0.0599	0.560	0.271	
	(0.0369)	(0.135)	(0.0312)	(0.0161)	(0.0171)	(0.219)	(0.106)	
<i>Z</i> 5	-0.476	-1.69	-0.394	-0.2004	-0.184	-1.502	-0.728	
	(0.111)	(0.404)	(0.093)	(0.484)	(0.0515)	(0.617)	(0.299)	
Z7	0.106	0.326	0.0762	0.0395	0.0375	0.189	0.0916	
	(0.0711)	(0.254)	(0.0595)	(0.0308)	(0.0328)	(0.377)	(0.182)	
Z_8	-0.712	-2.29	-0.534	-0.277	-0.273	-1.35	-0.653	
	(0.118)	(0.408)	(0.0949)	(0.0483)	(0.0525)	(0.565)	(0.273)	
σ	3.09	8.25				5.53		
log L			-705.5762		-307.2955	-329.7103		

Discarding the Limit Data

$$y^{*} = \mathbf{x}\mathbf{\beta} + \varepsilon$$

$$y = y^{*} \text{ if } y^{*} > 0, \text{ y is unobserved if } y^{*} \leq 0.$$

$$f(y|\mathbf{x}) = f(y^{*}|\mathbf{x}, y^{*} > 0) = \text{Truncated (at zero) normal}$$

$$f(y^{*}|\mathbf{x}, y^{*} > 0) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(\frac{-(y - \mathbf{x}\mathbf{\beta})^{2}}{2\sigma^{2}}\right) \frac{1}{\text{Prob}[y^{*} > 0|\mathbf{x}]}$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(\frac{-(y - \mathbf{x}\mathbf{\beta})^{2}}{2\sigma^{2}}\right) \frac{1}{\Phi(\mathbf{x}\mathbf{\beta} / \sigma)}$$

ML is not OLS

Regression with the Truncated Distribution

$$E[\mathbf{y}_{i}|\mathbf{x}_{i},\boldsymbol{\beta}_{i}>0] = \mathbf{x}_{i}' + \sigma \frac{\phi(\mathbf{x}\boldsymbol{\beta} / \sigma)}{\Phi(\mathbf{x}\boldsymbol{\beta} / \sigma)}$$
$$= \mathbf{x}\boldsymbol{\beta} + \sigma\lambda_{i}$$

OLS will be inconsistent:

Plim **b
$$\beta$$**-+ plim $\left(\frac{\mathbf{X'X}}{n}\right)^{-1} \times \text{plim} \frac{1}{n} \sum_{i=1}^{n} \mathbf{\lambda}_{i}$

A left out variable problem.

Approximately: plim **b** $\beta \approx$ plim(1 - $\overline{a}\overline{\lambda} - \overline{\lambda}^2$) $\overline{a} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x} \boldsymbol{\beta} \boldsymbol{j} \sigma, \ \overline{\lambda} = \lambda(\overline{a})$

General result: Attenuation

Estimated Tobit Model

		Tobit			Probit	Truncated Regression	
	Least		Marginal	Scaled			Marginal
	Squares	Estimate	Effect	<i>by 1/σ</i>	Estimate	Estimate	Effect
Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Constant	5.61	8.18		0.991	0.997	8.32	
	(0.797)	(2.74)		(0.336)	(0.361)	(3.96)	
Z2	-0.0504	-0.179	-0.042	-0.022	-0.022	-0.0841	-0.0407
	(0.0221)	(0.079)	(0.184)	(0.010)	(0.102)	(0.119)	(0.0578)
Z3	0.162	0.554	0.130	0.0672	0.0599	0.560	0.271
	(0.0369)	(0.135)	(0.0312)	(0.0161)	(0.0171)	(0.219)	(0.106)
<i>Z</i> 5	-0.476	-1.69	-0.394	-0.2004	-0.184	-1.502	-0.728
	(0.111)	(0.404)	(0.093)	(0.484)	(0.0515)	(0.617)	(0.299)
Z7	0.106	0.326	0.0762	0.0395	0.0375	0.189	0.0916
	(0.0711)	(0.254)	(0.0595)	(0.0308)	(0.0328)	(0.377)	(0.182)
Z_8	-0.712	-2.29	-0.534	-0.277	-0.273	-1.35	-0.653
	(0.118)	(0.408)	(0.0949)	(0.0483)	(0.0525)	(0.565)	(0.273)
σ	3.09	8.25				5.53	
log L			-705.5762		-307.2955	-329.7103	

Two Part Specifications

Tobit Log Likelihood $\log L = \sum_{i=1}^{n} d\log f(y \mid y > 0) + (1 - d) \log P(y = 0)$ $=\sum_{i=1}^{n} dlogf(y | y > 0) - dlogP(y > 0)$ $+ d \log P(y>0) + (1-d) \log P(y=0)$ = IOgL_{Truncated Regression} + IOgL_{Probit} = logL for the model for y when y > 0 +logL for the model for whether y is = 0 or > 0. A two part model: Treat the model for quantity differently from the model for whether quantity is positive or not. = > A probit model and a separate truncated regression.

Doctor Visits (Censored at 10)

Two Part Hurdle Model

Variable -	TOB	[T	PROE	BIT	TRUNC	
	Estimate	t ratio	Estimate	t ratio	Estimate	t ratio
Constant AGE EDUC INCOME FEMALE MARRIED PUBLIC Sigma Log-L Log-L	-1.84453 .06969 04965 83239 1.28128 09756 .61614 4.33603	-7.487 27.503 -3.631 -4.937 22.491 -1.431 6.440 171.556 	46071 .01470 00918 08445 .35068 .00727 .13814 1744 -1801	-6.836 20.326 -2.451 -1.803 21.911 .382 5.329 5.329	-2.40442 .08958 08582 -2.06645 .89914 38544 .77983 4.67560	-4.313 17.189 -2.910 -5.707 7.750 -2.801 3.667 72.744

|-> calc;list;spectest=2*(ltrunc+lprobit-ltobit)\$ [CALC] SPECTEST= 117.2424688

Critical chi squared [7] = 14.1. The tobit model is rejected.

Panel Data Application

- Pooling: Standard results, incuding "cluster" estimator(s) for asymptotic covariance matrices
- Random effects
 - Butler and Moffitt same as for probit
 - Mundlak/Wooldridge extension group means
 - Extension to random parameters and latent class models
- Fixed effects: Some surprises (Greene, Econometric Reviews, 2005)

Neglected Heterogeneity

 $y_{it}^{*} = \mathbf{x}\mathbf{\beta} + (c_{i} + \varepsilon_{it}) \text{ assuming } c_{i} \perp \mathbf{x}_{it}$ $\text{Prob}[y_{it}^{*} = 0 \mid \mathbf{x}_{it}] = \Phi\left(\frac{\mathbf{x}\mathbf{\beta}}{\sigma_{\varepsilon}^{2} + \sigma_{c}^{2}}\right)$

MLE estimates $\boldsymbol{\beta}$ / ($\sigma_{\epsilon}^{2} + \sigma_{c}^{2}$) => Attenuated for $\boldsymbol{\beta}$

Partial effects are
$$\left[\mathbf{\beta} / (\sigma_{\epsilon}^{2} + \sigma_{c}^{2}) \right] \Phi \left(\frac{\mathbf{x} \mathbf{\beta}}{\sigma_{\epsilon}^{2} + \sigma_{c}^{2}} \right)$$

Consistently estimated by ML even though β is not. (The standard result.)

Fixed Effects MLE for Tobit

Table 3. Tobit Model. Effect of Group Size on Estimates ^a								
Estimate	T=2	T=3	T=5	T=8	T=12	T=15	T=20	
β	0.67	0.53	0.50	0.29	0.098	0.082	0.047	
δ	0.33	0.90	0.57	0.54	0.32	0.16	0.14	
σ	-36.14	-23.54	-13.78	-8.40	-5.54	-4.43	-3.30	
ME _x	15.83	8.85	3.65	1.30	0.44	0.22	0.081	
ME_d	19.67	11.85	5.08	2.16	0.89	0.46	0.27	
S.E.(β)	-32.92	-19.00	-11.30	-8.36	-6.21	-4.98	0.63	
S.E.(δ)	-32.87	-22.75	-12.66	-7.39	-5.56	-6.19	0.25	
R ²	0.785	0.774	0.761	0.751	0.744	0.740	0.736	
Censoring	0.413	0.410	0.408	0.406	0.405	0.404	0.403	
Correlation	0.650	0.531	0.411	0.325	0.265	0.237	0.206	

No bias in slopes. Large bias in estimator of $\boldsymbol{\sigma}$

APPENDIX: TOBIT MATH

Estimating the Tobit Model

Log likelihood for the tobit model for estimation of $\boldsymbol{\beta}$ and $\boldsymbol{\sigma}$:

$$\begin{split} & \text{logL} = \sum_{i=1}^{n} \left[(1\text{-}d_i) \log \Phi \left(\frac{-\mathbf{x} \boldsymbol{\beta}}{\sigma} \right) + d_i \log \left(\frac{1}{\sigma} \phi \left(\frac{y_i - \mathbf{x} \boldsymbol{\beta}}{\sigma} \right) \right) \right] \\ & d_i = 1 \text{ if } y_i > 0, \text{ 0 if } y_i = 0. \text{ Derivatives are very complicated,} \\ & \text{Hessian is nightmarish. Consider the Olsen transformation*:} \\ & \theta = 1/\sigma, \gamma = -\boldsymbol{\beta}/\sigma. \text{ (One to one; } \sigma = 1/\theta, \ \boldsymbol{\beta} = -\gamma / \theta.) \\ & \text{logL} = \sum_{i=1}^{n} \left[(1\text{-}d_i) \log \Phi \left(\mathbf{x}'_i \gamma \right) + d_i \log \left(\theta \phi \left(\theta y_i + \mathbf{x}'_i \gamma \right) \right) \right] \\ & \sum_{i=1}^{n} \left[(1\text{-}d_i) \log \Phi \left(\mathbf{x}'_i \gamma \right) + d_i (\log \theta + (1/2) \log 2\pi - (1/2) \left(\theta y_i + \mathbf{x}'_i \gamma \right)^2 \right) \right] \\ & \frac{\partial \log L}{\partial \gamma} = \sum_{i=1}^{n} \left[(1\text{-}d_i) \frac{\phi \left(\mathbf{x}'_i \gamma \right)}{\Phi \left(\mathbf{x}'_i \gamma \right)} - d_i e_i \right] \mathbf{x}_i \\ & \frac{\partial \log L}{\partial \theta} = \sum_{i=1}^{n} d_i \left(\frac{1}{\theta} - e_i y_i \right) \end{split}$$

*Note on the Uniqueness of the MLE in the Tobit Model," Econometrica, 1978.

Hessian for Tobit Model

$$\begin{split} \log L &= \sum_{i=1}^{n} \log \left[(1 - d_{i}) \log \Phi \left(\mathbf{x}_{i}' \gamma \right) + d_{i} (\log \theta + (1/2) \log 2\pi - (1/2) \left(\theta y_{i} + \mathbf{x}_{i}' \gamma \right)^{2}) \right] \\ &\frac{\partial \log L}{\partial \gamma} = \sum_{i=1}^{n} \left[(1 - d_{i}) \frac{\phi \left(\mathbf{x}_{i}' \gamma \right)}{\Phi \left(\mathbf{x}_{i}' \gamma \right)} - d_{i} e_{i} \right] \mathbf{x}_{i} \qquad \frac{\partial \log L}{\partial \theta} = \sum_{i=1}^{n} d_{i} \left(\frac{1}{\theta} - e_{i} y_{i} \right) \\ &\frac{\partial^{2} \log L}{\partial \gamma \partial \gamma'} = \sum_{i=1}^{n} \left[(1 - d_{i}) \left(-(\mathbf{x}_{i}' \gamma) \frac{\phi \left(\mathbf{x}_{i}' \gamma \right)}{\Phi \left(\mathbf{x}_{i}' \gamma \right)} - \left(\frac{\phi \left(\mathbf{x}_{i}' \gamma \right)}{\Phi \left(\mathbf{x}_{i}' \gamma \right)} \right)^{2} \right) - d_{i} \right] \mathbf{x}_{i} \mathbf{x}_{i}' \\ &\frac{\partial^{2} \log L}{\partial \gamma \partial \theta} = \sum_{i=1}^{n} \left[-d_{i} \right] \mathbf{x}_{i} \mathbf{y}_{i} \\ &\frac{\partial^{2} \log L}{\partial \theta \partial \theta} = \sum_{i=1}^{n} - d_{i} \left(\frac{1}{\theta^{2}} \right) \\ &\left[-d_{i} \right] \mathbf{y}_{i} \mathbf{y}_{i} \end{split}$$

Simplified Hessian

$$\begin{split} \frac{\partial^{2} \log L}{\partial \gamma \partial \gamma'} &= \sum_{i=1}^{n} \left[(1 - d_{i}) \left(-(\mathbf{x}_{i}' \gamma) \frac{\phi(\mathbf{x}_{i}' \gamma)}{\Phi(\mathbf{x}_{i}' \gamma)} - \left(\frac{\phi(\mathbf{x}_{i}' \gamma)}{\Phi(\mathbf{x}_{i}' \gamma)} \right)^{2} \right) - d_{i} \right] \mathbf{x}_{i} \mathbf{x}_{i} \\ \frac{\partial^{2} \log L}{\partial \gamma \partial \theta} &= \sum_{i=1}^{n} \left[-d_{i} \right] \mathbf{x}_{i} \mathbf{y}_{i} \\ \frac{\partial^{2} \log L}{\partial \theta \partial \theta} &= \sum_{i=1}^{n} -d_{i} \left(\frac{1}{\theta^{2}} \right) & \left[-d_{i} \right] \mathbf{y}_{i} \mathbf{y}_{i} \\ \frac{\partial^{2} \log L}{\partial (\gamma' - \theta)} &= \sum_{i=1}^{n} \left[\frac{((1 - d_{i})\delta_{i} - d_{i})\mathbf{x}_{i}\mathbf{x}_{i}' - d_{i}\mathbf{x}_{i}\mathbf{y}_{i}}{-d_{i}(1 / \theta^{2} + \mathbf{y}_{i}^{2})} \right] \\ a_{i} &= \mathbf{x}_{i}' \gamma, \lambda_{i} = \phi(a_{i}) / \Phi(a_{i}), \ \delta_{i} &= -\lambda_{i}(a_{i} + \lambda_{i}) \end{split}$$

Recovering Structural Parameters

$$\begin{pmatrix} \boldsymbol{\beta}(\boldsymbol{\gamma},\boldsymbol{\theta}) \\ \boldsymbol{\sigma}(\boldsymbol{\gamma},\boldsymbol{\theta}) \end{pmatrix} = \begin{pmatrix} -\frac{1}{\theta}\boldsymbol{\gamma} \\ \frac{1}{\theta} \end{pmatrix}$$

Use the delta method to estimate Asy.Var $\begin{pmatrix} \hat{\boldsymbol{\beta}}(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\theta}}) \\ \hat{\boldsymbol{\sigma}}(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\theta}}) \end{pmatrix}$

$$\frac{\partial \begin{pmatrix} \boldsymbol{\beta}(\boldsymbol{\gamma}, \boldsymbol{\theta}) \\ \boldsymbol{\sigma}(\boldsymbol{\gamma}, \boldsymbol{\theta}) \end{pmatrix}}{\partial (\boldsymbol{\gamma}' \ \boldsymbol{\theta})} = \begin{pmatrix} \frac{-1}{\boldsymbol{\theta}} \mathbf{I} & \frac{1}{\boldsymbol{\theta}^2} \boldsymbol{\gamma} \\ \mathbf{0'} & \frac{-1}{\boldsymbol{\theta}^2} \end{pmatrix} = \frac{-1}{\boldsymbol{\theta}^2} \begin{pmatrix} \boldsymbol{\theta} \mathbf{I} & -\boldsymbol{\gamma} \\ \mathbf{0'} & 1 \end{pmatrix} = \mathbf{G}(\boldsymbol{\gamma}, \boldsymbol{\theta})$$

Est.Asy.Var $\begin{pmatrix} \hat{\boldsymbol{\beta}}(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\theta}}) \\ \hat{\boldsymbol{\sigma}}(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\theta}}) \end{pmatrix} = \mathbf{G}(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\theta}}) \times \text{Est.Asy.Var} \begin{pmatrix} \hat{\boldsymbol{\gamma}} \\ \hat{\boldsymbol{\theta}} \end{pmatrix} \times \mathbf{G}(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\theta}})^{\mathsf{T}}$