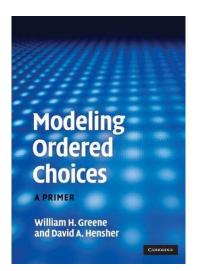
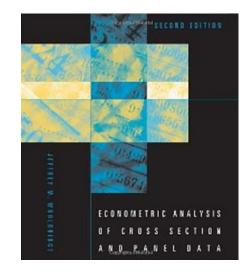
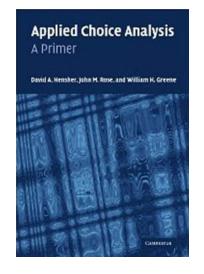

Topics in Microeconometrics

William Greene Department of Economics Stern School of Business







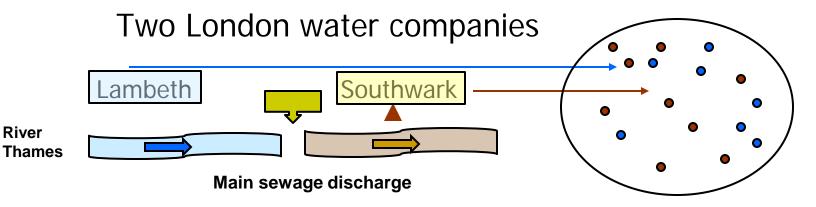
WILLIAM H. GREENE

Part 2: Endogenous Variables in Linear Regression

[Topic 2-Endogeneity] 2/33

Endogeneity

- $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$,
- Definition: $E[\varepsilon|\mathbf{x}] \neq 0$
- Why not?
 - Omitted variables
 - Unobserved heterogeneity (equivalent to omitted variables)
 - Measurement error on the RHS (equivalent to omitted variables)
 - Structural aspects of the model
 - Endogenous sampling and attrition
 - Simultaneity (?)


Instrumental Variable Estimation

- One "problem" variable the "last" one
- $y_{it} = \beta_1 x_{1it} + \beta_2 x_{2it} + \dots + \beta_K x_{Kit} + \varepsilon_{it}$
- $E[\varepsilon_{it}|x_{Kit}] \neq 0.$ (0 for all others)
- There exists a variable z_{it} such that
 - $E[x_{Kit} | x_{1it}, x_{2it}, ..., x_{K-1,it}, z_{it}] = g(x_{1it}, x_{2it}, ..., x_{K-1,it}, z_{it})$ In the presence of the other variables, z_{it} "explains" x_{it}
 - $E[\epsilon_{it}| x_{1it}, x_{2it}, ..., x_{K-1,it}, z_{it}] = 0$ In the presence of the other variables, z_{it} and ϵ_{it} are uncorrelated.
- A projection interpretation: In the projection $X_{Kt} = \theta_1 x_{1it} + \theta_2 x_{2it} + \dots + \theta_{k-1} x_{K-1,it} + \theta_K z_{it}, \\ \theta_K \neq 0.$

The First IV Study: Natural Experiment (Snow, J., On the Mode of Communication of Cholera, 1855) http://www.ph.ucla.edu/epi/snow/snowbook3.html

Str. Services

- London Cholera epidemic, ca 1853-4
- Cholera = $f(Water Purity,u) + \varepsilon$.
 - 'Causal' effect of water purity on cholera?
 - Purity=f(cholera prone environment (poor, garbage in streets, rodents, etc.). Regression does not work.

Paul Grootendorst: A Review of Instrumental Variables Estimation of Treatment Effects... http://individual.utoronto.ca/grootendorst/pdf/IV_Paper_Sept6_2007.pdf

IV Estimation

- Cholera=f(Purity,u)+ε
- Z = water company
- Cov(Cholera,Z) = δ Cov(Purity,Z)
- Z is randomly mixed in the population (two full sets of pipes) and uncorrelated with behavioral unobservables, u)
- Cholera= $a + \delta$ Purity+u+ ϵ
 - Purity = Mean+random variation+ λ u
 - Cov(Cholera,Z) = δ Cov(Purity,Z)

Cornwell and Rupert Data

Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years Variables in the file are

EXP	= work experience
WKS	= weeks worked
000	= occupation, 1 if blue collar,
IND	= 1 if manufacturing industry
SOUTH	= 1 if resides in south
SMSA	= 1 if resides in a city (SMSA)
MS	= 1 if married
FEM	= 1 if female
UNION	= 1 if wage set by union contract
ED	= years of education
LWAGE	= log of wage = dependent variable in regressions

These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied Econometrics, 3, 1988, pp. 149-155. See Baltagi, page 122 for further analysis. The data were downloaded from the website for Baltagi's text.

Specification: Quadratic Effect of Experience

Ordinary LHS=LWAGE Regressic Residual Total Fit Model tes	No. of obser on Sum of Squar Sum of Squar Sum of Squar Standard err R-squared	6. 37 51 88	67635 46151 4165 0.955 5.950 6.905 35243 41826 66153	DegFreedom 10 4154 4164 Root MSE R-bar square Prob F > F*		
LWAGE	Coefficient	Standard Error	z	Prob z >Z		nfidence erval
Constant ED	5.24547 *** 05654 ***	.07170	73.15	. 0000		5.38600 06166
EXP EXP*EXP	.04045 *** 00068 ***	.00217 .4783D-04	18.61 -14.24	.0000	00077	.04471 00059
WKS OCC SOUTH SMSA	.00449*** 14053*** 07210*** 13901***	.00109 .01472 .01249 .01207	4.12 -9.54 -5.77 11.51	.0000 .0000 .0000		.00662 11167 04762 16267
MS FEM	.06736 *** 38922 ***	.02063 .02518	3.26 -15.46	.0011	.02692 43857	.10779 33987
	.09015*** xx or D+xx => mul * ==> Significa				.06488	. 11542

The Effect of Education on LWAGE

B. SPILLING

LWAGE = $\beta_1 + \beta_2$ **EDUC** + β_3 **EXP** + β_4 **EXP**² + ...**&** What is ϵ ? Ability, Motivation, ... + everything else **EDUC** = f(**GENDER**, **SMSA**, **SOUTH**, Ability, Motivation,...)

What Influences LWAGE?

- **LWAGE** = $\beta_1 + \beta_2$ **EDUC**(**X**, Ability, Motivation,...) + β_3 **EXP** + β_4 **EXP**² + ...
 - ε(Ability, Motivation

Increased Ability is associated with increases in **EDUC(X**, Ability, Motivation,...) and ε (Ability, Motivation) What looks like an effect due to increase in **EDUC** may be an increase in Ability. The estimate of β_2 picks up the effect of **EDUC** and the hidden effect of Ability.

An Exogenous Influence

B. SPICTOR

LWAGE = $\beta_1 + \beta_2$ **EDUC**(**X**, **Z**, Ability, Motivation,...)

 $+ \beta_3 \textbf{EXP} + \beta_4 \textbf{EXP}^2 + \dots$

ε(Ability, Motivation

Increased Z is associated with increases in

EDUC(**X**, **Z**, Ability, Motivation,...) and not ε(Ability, Motivation)

An effect due to the effect of an increase Z on EDUC will

only be an increase in **EDUC**. The estimate of β_2 picks up

the effect of **EDUC** only.

Z is an Instrumental Variable

Instrumental Variables

- Structure
 - LWAGE (ED, EXP, EXPSQ, WKS, OCC, SOUTH, SMSA, UNION)
 - ED (MS, FEM)
- Reduced Form: LWAGE[ED (MS, FEM), EXP,EXPSQ,WKS,OCC, SOUTH,SMSA,UNION]

Two Stage Least Squares Strategy

Reduced Form: LWAGE[ED (MS, FEM,X), EXP,EXPSQ,WKS,OCC, SOUTH,SMSA,UNION]

- Strategy
 - (1) Purge ED of the influence of everything but MS, FEM (and the other variables). Predict ED using all exogenous information in the sample (X and Z).
 - (2) Regress LWAGE on this prediction of ED and everything else.
 - Standard errors must be adjusted for the predicted ED

OLS

1.1.1.1.1.1

Ordinary LHS=LWAGE Regression Residual Total Fit Model test	Sum of Square Sum of Square Standard erro R-squared	6. - 29 59 88	67635 46151 4165 1.042 5.863 6.905 37865 32815 74283	DegFreedom 8 4156 4164 Root MSE R-bar square Prob F > F*		
LWAGE	Coefficient	Standard Error	z	Prob z >Z		nfidence erval
	4.97986*** .04308*** 00070*** .00760*** 11578*** 08207*** .09885*** .12891*** .06365*** n.D-xx or D+xx = **, * ==> Sigr				.03853 00080 .00532 14672 10835 .07367 .10197 .05818	5.12549 .04764 00060 .00988 08485 05578 .12403 .15584 .06911

-

Instrument ONE	Mean Standard devi Number of obs Parameters Degrees of fi	= iation = servs. = reedom = es = pr of e = = uuared =	6.	e <o< th=""><th></th><th>The weird results for the coefficient on ED happened because the instruments, MS and FEM are dummy variables. There is not enough variation in these variables.</th></o<>		The weird results for the coefficient on ED happened because the instruments, MS and FEM are dummy variables. There is not enough variation in these variables.
OCC LWAGE	SOUTH SMSA Coefficient	UNION Standard Error		Prob. z >Z*	95% Confidence Interval	
Constant EXP EXP*EXP WKS OCC SOUTH SMSA UNION ED	-4.38670*** .06447*** 00058*** .01533*** 1.71424*** .31274*** 13695** .37025*** .65029***	1.40197 .00852 .00018 .00413 .27473 .07394 .05588 .05879 .05879	-3.13 7.56 -3.32 3.72 6.24 4.23 -2.45 6.30 7.48	.0018 .0000 .0009 .0002 .0000 .0000 .0142 .0000 .0142	-7.13451 -1.63889 .04777 .08117 0009300024 .00725 .02342 1.17578 2.25270 .16782 .45767 2464702744 .25502 .48548 .48000 .82059	4.97986*** .04308*** 00070*** .00760*** 11578*** 08207*** .09885*** .12891*** .06365***

100

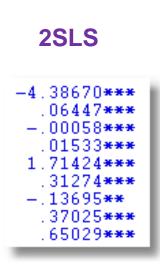
10.00

Source of Endogeneity

 LWAGE = f(ED, EXP,EXPSQ,WKS,OCC, SOUTH,SMSA,UNION) + ε
ED = f(MS,FEM, EXP,EXPSQ,WKS,OCC, SOUTH,SMSA,UNION) + U

Remove the Endogeneity

- LWAGE = $f(ED, \leftarrow EXP, EXPSQ, WKS, OCC, \\ SOUTH, SMSA, UNION) + U + \varepsilon$
- LWAGE = $f(ED, \\ EXP, EXPSQ, WKS, OCC, \\ SOUTH, SMSA, UNION) + u + \varepsilon$
- Strategy
 - Estimate u
 - **Δ** Add u to the equation. ED is uncorrelated with ε when u is in the equation.


Auxiliary Regression for ED to Obtain Residuals

Ordinary LHS=ED Regression Residual Total Fit Model test	Sum of Squares Sum of Squares - Standard erro: R-squared	12. 2. 14 18 32 2.	84538 78800 4165 162.8 203.6 366.4 09312 43758 18746	DegFreedom 9 4155 4164 Root MSE R-bar square Prob F > F*		
ED	Coefficient	Standard Error	z	Prob z >Z		nfidence erval
Constant MS FEM EXP EXP*EXP WKS OCC SOUTH SMSA UNION	16.0756*** .27698** 46653*** 04189*** 00014 01810*** -3.12102*** 65003*** .46655*** 47323***	.34520 .12245 .14937 .01290 .00028 .00647 .07282 .07349 .07134 .07621	46.57 2.26 -3.12 -3.25 50 -2.80 -42.86 -8.85 6.54 -6.21	.0000 .0237 .0018 .0012 .6181 .0051 .0000 .0000 .0000	15.3990 .03698 75929 06716 00070 03078 -3.26376 79407 .32672 62260	16.7521 .51698 17376 01661 .00042 00543 -2.97829 50599 .60638 32385

OLS with Residual (Control Function) Added

A THE

LWAGE Standard Coefficient Standard Error Prob. 95% Confidence Interval Constant -4.38670*** .38395 -11.43 .0000 -5.13923 -3.63417 Constant -06447*** .00233 27.62 .0000 .05990 .06904 EXP .00058*** .4810D-04 -12.13 .0000 00068 00049 WKS .01533*** .00113 13.57 .0000 .01312 .01755 OCC 1.71424*** .07524 22.78 .0000 1.56678 1.86171 SOUTH .31274*** .02025 15.44 .0000 .27305 .35243 SMSA 13695*** .01530 -8.95 .0000 16695 10696 UNION .37025*** .01610 23.00 .0000 .33869 .40180 ED .65029*** .02380 27.33 .0000 64068 54684	Ordinary LHS=LWAGE Regressic Residual Total Fit Model tes	IWAGE Mean = Standard deviation = Standard deviation = vession Sum of Squares = dual Sum of Squares = all Sum of Squares = Sum of Squares = = All Sum of Squares =			67635 46151 4165 7.888 9.017 6.905 35343 41480 23700	DegFreedom 9 4155 4164 Root MSE R-bar square Prob F > F*	Mean square 40.87643 .12491 .21299 .35301 d .41353 .00000
EXP .06447*** .00233 27.62 .0000 .05990 .06904 EXP*EXP 00058*** .4810D-04 -12.13 .0000 00068 00049 WKS .01533*** .00113 13.57 .0000 .01312 .01755 OCC 1.71424*** .07524 22.78 .0000 1.56678 1.86171 SOUTH .31274*** .02025 15.44 .0000 .27305 .35243 SMSA 13695*** .01530 -8.95 .0000 16695 10696 UNION .37025*** .01610 23.00 .0000 .33869 .40180 ED .65029*** .02380 27.33 .0000 .60366 .69693	LWAGE	Coefficient		z			
	EXP EXP*EXP WKS OCC SOUTH SMSA UNION ED	.06447*** 00058*** .01533*** 1.71424*** .31274*** 13695*** .37025*** .65029***	.00233 .4810D-04 .00113 .07524 .02025 .01530 .01610 .02380	27.62 -12.13 13.57 22.78 15.44 -8.95 23.00 27.33	.0000 .0000 .0000 .0000 .0000 .0000 .0000	.05990 00068 .01312 1.56678 .27305 16695 .33869 .60366	.06904 00049 .01755 1.86171 .35243 10696 .40180 .69693

A Warning About Control Functions

S. SPIRITURE

Two stage least squares regression Standard error of e = 1.29053						
LWAGE	Coefficient	Standard Error	z	Prob. z >Z *	95% Confidence Interval	
Constant EXP EXP*EXP WKS OCC SOUTH SMSA UNION ED	-4.38670*** .06447*** .01533*** 1.71424*** .31274*** 13695** .37025*** .65029***	1.40197 .00852 .00018 .00413 .27473 .07394 .05588 .05879 .08689	$\begin{array}{r} -3.13 \\ 7.56 \\ -3.32 \\ 3.72 \\ 6.24 \\ 4.23 \\ -2.45 \\ 6.30 \\ 7.48 \end{array}$.0018 .0000 .0009 .0002 .0000 .0000 .0142 .0000 .0000	$\begin{array}{rrrr} -7.13451 & -1.63889 \\ .04777 & .08117 \\00093 &00024 \\ .00725 & .02342 \\ 1.17578 & 2.25270 \\ .16782 & .45767 \\24647 &02744 \\ .25502 & .48548 \\ .48000 & .82059 \end{array}$	
Residual	augmented least - Standard err		ession .	35343		
LWAGE	Coefficient	Standard Error	z	Prob. z >Z *	95% Confidence Interval	
Constant EXP EXP*EXP WKS OCC SOUTH SMSA UNION ED U	-4.38670*** .06447*** .01533*** 1.71424*** .31274*** .37025*** .65029*** 59376***	.38395 .00233 .4810D-04 .00113 .07524 .02025 .01530 .01610 .02380 .02394	$\begin{array}{r} -11.43\\ 27.62\\ -12.13\\ 13.57\\ 22.78\\ 15.44\\ -8.95\\ 23.00\\ 27.33\\ -24.80\end{array}$.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

Sum of squares is not computed correctly because U is in the regression. A general result. Control function estimators usually require a fix to the estimated covariance matrix for the estimator.

Endogenous Dummy Variable

38 18

SR. MILLIN STA

- $Y = x\beta + \delta T + \epsilon$ (unobservable factors)
- T = a dummy variable (treatment)
- T = 0/1 depending on:
 - x and z
 - The same unobservable factors
- T is endogenous same as ED

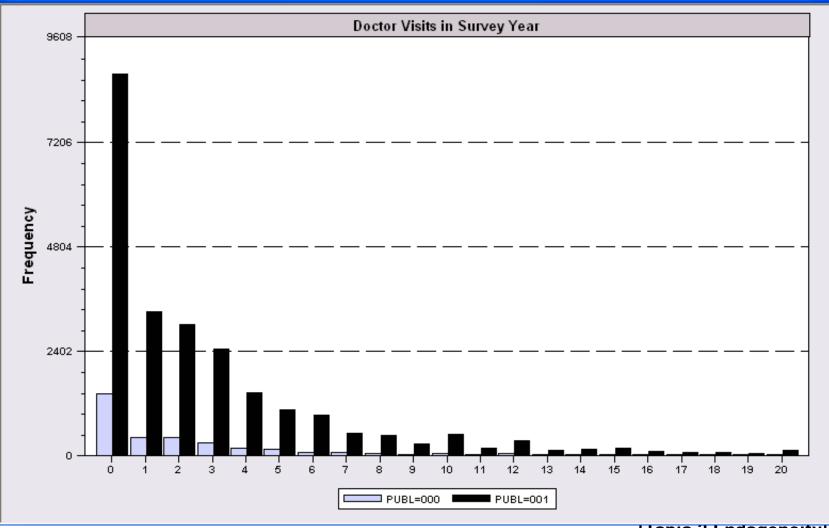
Application: Health Care Panel Data

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods

Variables in the file are

Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel with 7,293 individuals. They can be used for regression, count models, binary choice, ordered choice, and bivariate binary choice. This is a large data set. There are altogether 27,326 observations. The number of observations ranges from 1 to 7. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987). Note, the variable NUMOBS below tells how many observations there are for each person. This variable is repeated in each row of the data for the person. (Downloaded from the JAE Archive)

	I I I I I I I I I I I I I I I I I I I	
\rightarrow	DOCTOR	= 1(Number of doctor visits > 0)
	HOSPITAL	= 1(Number of hospital visits > 0)
	HSAT	= health satisfaction, coded 0 (low) - 10 (high)
	DOCVIS	= number of doctor visits in last three months
	HOSPVIS	= number of hospital visits in last calendar year
\rightarrow	PUBLIC	= insured in public health insurance = 1; otherwise = 0
	ADDON	= insured by add-on insurance = 1; otherswise = 0
	HHNINC	= household nominal monthly net income in German marks / 10000.
		(4 observations with income=0 were dropped)
	HHKIDS	= children under age 16 in the household = 1; otherwise = 0
	EDUC	= years of schooling
	AGE	= age in years
	MARRIED	= marital status
	EDUC	= years of education



A study of moral hazard Riphahn, Wambach, Million: "Incentive Effects in the Demand for Healthcare" Journal of Applied Econometrics, 2003

Did the presence of the ADDON insurance influence the demand for health care – doctor visits and hospital visits?

For a simple example, we examine the PUBLIC insurance (89%) instead of ADDON insurance (2%).

Evidence of Moral Hazard?

[lopic 2-Endogeneity] 24/33

Regression Study

Ordinary LHS=DOCVIS	least squares r Mean Standard deviat Number of obser	= ion =	3. 5.		
Model size Parameters				6 27320	
Degrees of freedom Residuals Sum of squares Standard error of e			853326. 5.	41135 58878	
Fit	R-squared Adjusted R-squa	= .red =		03533 03516	
Model test	F[5, 27320] (prob) =	200.1(.	0000) 	
DOCVIS Co		tandard Error		Prob. z> Z	Mean of X
AGE HHNINC	.43660 .06754*** -1.54898***	.29014 .00304 .19956	22.25 -7.76	.0000	.35208
EDUC	.94128*** 05549*** .59843***	.06895 .01624 .11370	-3.42	.0006	.47877 11.3206 .88571

60.

Endogenous Dummy Variable

- Doctor Visits = f(Age, Educ, Health, Presence of Insurance, Other unobservables)
- Insurance = f(Expected Doctor Visits, Other unobservables)

Approaches

- (Parametric) Control Function: Build a structural model for the two variables (Heckman)
- (Semiparametric) Instrumental Variable: Create an instrumental variable for the dummy variable (Barnow/Cain/ Goldberger, Angrist, Current generation of researchers)
- (?) Propensity Score Matching (Heckman et al., Becker/Ichino, Many recent researchers)

Heckman's Control Function Approach

- $Y = x\beta + \delta T + E[\varepsilon|T] + {\varepsilon E[\varepsilon|T]}$
- $\lambda = E[\varepsilon|T]$, computed from a model for whether T = 0 or 1

Sample Selection Model..... least squares regression Two step LHS=DOCVIS Mean 3.18352 Correlation of disturbance in regression and Selection Criterion (Rho)..... -.88169 Standard Prob. Mean DOCVIS Coefficient Error z z>|Z| of X Constant| -14.8749*** 1.01175 -14.70 .0000 .00348 20.28 .0000 43.5257 .26463 2.20 .0277 .35208 AGE .07062*** HHNINC .58241** FEMALE| 1.00046*** .06885 14.53 .0000 .47877 .03360 11.70 .0000 11.3206 .39321*** EDUC .66997 16.60 .0000 .88571 PUBLIC 11.1200******* .35142 -16.07 .0000 -5.64728*** .497D-09 LAMBDAI Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Magnitude = 11.1200 is nonsensical in this context.

Instrumental Variable Approach

- Construct a prediction for T using only the exogenous information
- Use 2SLS using this instrumental variable.

Two stage LHS=DOCVI ONE		squares HHNINC	regression = FEMALE		 18352 TFIT	
DOCVIS	Coefficie	ent	Standard Error	z	Prob. z≻ Z	Mean of X
Constant AGE HHNINC FEMALE EDUC PUBLIC	3.178 .628	35*** 25*** 39*** 50***	2.56970 .00487 .47734 .11232 .07802 1.76483	-12.89 15.47 6.66 5.59 11.81 13.54	.0000 .0000 .0000 .0000 .0000 .0000	43.5257 .35208 .47877 11.3206 .88571
+ Note: ***	· . **, * =:	=> Sign:	ificance at	1%, 5%,	10% leve:	l.

Magnitude = 23.9012 is also nonsensical in this context.

Propensity Score Matching

- Create a model for T that produces probabilities for T=1: "Propensity Scores"
- Find people with the same propensity score some with T=1, some with T=0
- Compare number of doctor visits of those with T=1 to those with T=0.

İ	Estimated Average Treatment Effect (PUBLIC) Outcome is DOCVIS Nearest Neighbor Using average of 1 closest neighbors Note, controls may be reused in defining matches. Number of bootstrap replications used to obtain variance = 25
	Estimated average treatment effect = .258108 Begin bootstrap iterations ************************************
	Number of Treated observations = 24203 Number of controls = 2568 Estimated Average Treatment Effect = .258108 Estimated Asymptotic Standard Error = .163314 t statistic (ATT/Est.S.E.) = 1.580447 Confidence Interval for ATT = (061986 to .578203) 95% Average Bootstrap estimate of ATT = .315962 ATT - Average bootstrap estimate =057853

Difference in Differences

With two periods,

 $\Delta y_{it} = y_{i2} - y_{i1} = \delta_0 + (\mathbf{x}'_{i2} \mathbf{\beta} \mathbf{x}'_{i1}) + u_i$ Consider a "treatment, D_i," that takes place between time 1 and time 2 for some of the individuals $\Delta y_i = \delta_0 + (\Delta \mathbf{x} \mathbf{\beta}' + \delta_1 D_i + u_i)$ D_i = the "treatment dummy"

This is a linear regression model. If there are no regressors,

$$\hat{\delta}_1 = \overline{\Delta y}$$
 | treatment - $\overline{\Delta y}$ | control
= "difference in differences" estimator.

 $\hat{\delta}_{0}$ = Average change in y_i for the "treated"

Difference-in-Differences Model

With two periods and strict exogeneity of D and T,

$$y_{it} = \beta_0 + \beta_1 D_{it} + \beta_2 T_t + \beta_3 T_t D_{it} + \varepsilon_{it}$$

 D_{it} = dummy variable for a treatment that takes place

between time 1 and time 2 for some of the individuals,

Street and

 $T_t = a$ time period dummy variable, 0 in period 1,

1 in period 2.

This is a linear regression model. If there are no regressors,

Using least squares,

$$\boldsymbol{b}_3 = (\overline{\boldsymbol{y}}_2 - \overline{\boldsymbol{y}}_1)_{D=1} - (\overline{\boldsymbol{y}}_2 - \overline{\boldsymbol{y}}_1)_{D=0}$$

Difference in Differences

$$\begin{aligned} \mathbf{y}_{it} &= \beta_0 + \beta_1 \mathbf{D}_{it} + \beta_2 \mathbf{T}_t + \beta_3 \mathbf{D}_{it} \mathbf{T}_t + \boldsymbol{\beta}' \mathbf{x}_{it} + \varepsilon_{it}, t = 1, 2 \\ \Delta \mathbf{y}_{it} &= \beta_2 + \beta_3 \mathbf{D}_{i2} + \Delta(\boldsymbol{\beta}' \mathbf{x}_{it}) + \Delta \varepsilon_{it} \\ &= \beta_2 + \beta_3 \mathbf{D}_{i2} + \boldsymbol{\beta}' (\Delta \mathbf{x}_{it}) + \mathbf{u}_i \\ (\Delta \mathbf{y}_{it} \mid \mathbf{D} = 1) - (\Delta \mathbf{y}_{it} \mid \mathbf{D} = 0) \\ &= \beta_3 + \boldsymbol{\beta}' \Big[(\Delta \mathbf{x}_{it} \mid \mathbf{D} = 1) - (\Delta \mathbf{x}_{it} \mid \mathbf{D} = 0) \Big] \end{aligned}$$

If the same individual is observed in both states, the second term is zero. If the effect is estimated by averaging individuals with D = 1 and different individuals with D=0, then part of the 'effect' is explained by change in the covariates, not the treatment.