
[Topic 5-Bayesian Analysis]   1/77

Discrete Choice 
Modeling

William Greene
Stern School of Business
New York University



[Topic 5-Bayesian Analysis]   2/77

5.  BAYESIAN 
ECONOMETRICS
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Bayesian Estimation

Philosophical underpinnings:  
The meaning of statistical 
information

How to combine information 
contained in the sample 
with prior information
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Classical Inference

Population Measurement

Econometrics

Characteristics
Behavior Patterns
Choices

Imprecise inference about 
the entire population –
sampling theory and 
asymptotics
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Bayesian Inference

Population Measurement

Econometrics

Characteristics
Behavior Patterns
Choices

Sharp, ‘exact’ inference about 
only the sample – the ‘posterior’ 
density.
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Paradigms
• Classical

• Formulate the theory
• Gather evidence

 Evidence consistent with theory?  Theory stands and waits for 
more evidence to be gathered

 Evidence conflicts with theory? Theory falls
• Bayesian

• Formulate the theory
• Assemble existing evidence on the theory
• Form beliefs based on existing evidence
• (*) Gather new evidence
• Combine beliefs with new evidence
• Revise beliefs regarding the theory
• Return to (*)
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On Objectivity and Subjectivity

• Objectivity and “Frequentist” methods in 
Econometrics – The data speak

• Subjectivity and Beliefs
• Priors
• Evidence
• Posteriors

• Science and the Scientific Method
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Foundational Result
• A method of using new information to update existing 

beliefs about probabilities of events
• Bayes Theorem for events. (Conceived for updating 

beliefs about games of chance)

= =

=

Pr(A,B) Pr(B | A)Pr(A)
Pr(A |B)      

Pr(B) Pr(B)
Pr(Evidence |Nature)Pr(Nature)

Pr(Nature |Evidence)   
Pr(Evidence)
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Likelihoods
• (Frequentist) The likelihood is the density of the 

observed data conditioned on the parameters
• Inference based on the likelihood is usually 

“maximum likelihood”

• (Bayesian) A function of the parameters and 
the data that forms the basis for inference –
not a probability distribution 
• The likelihood embodies the current information 

about the parameters and the data
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The Likelihood Principle

• The likelihood embodies ALL the 
current information about the 
parameters and the data

• Proportional likelihoods should lead to 
the same inferences, even given 
different interpretations.
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“Estimation”

• Assembling information
• Prior information = out of sample. Literally 

prior or outside information
• Sample information is embodied in the 

likelihood
• Result of the analysis: “Posterior belief” = 

blend of prior and likelihood
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Bayesian Investigation

• No fixed “parameters.” θ is a random variable.
• Data are realizations of random variables.  

There is a marginal distribution p(data)
• Parameters are part of the random state of nature, 

p(θ) = distribution of θ independently (prior to) the 
data, as understood by the analyst.  (Two analysts 
could legitimately bring different priors to the study.)

• Investigation combines sample information with prior 
information.

• Outcome is a revision of the prior based on the 
observed information (data)
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The Bayesian Estimator

• The posterior distribution embodies all that is 
“believed” about the model.
• Posterior = f(model|data)

= Likelihood(θ,data) * prior(θ) / P(data)

• “Estimation” amounts to examining the 
characteristics of the posterior distribution(s).
• Mean, variance
• Distribution
• Intervals containing specified probabilities
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Priors and Posteriors
• The Achilles heel of Bayesian Econometrics
• Noninformative and Informative priors for estimation of 

parameters
• Noninformative (diffuse) priors:  How to incorporate the total 

lack of prior belief in the Bayesian estimator.  The estimator 
becomes solely a function of the likelihood

• Informative prior:  Some prior information enters the 
estimator.  The estimator mixes the information in the 
likelihood with the prior information.

• Improper and Proper priors
• P(θ) is uniform over the allowable range of θ
• Cannot integrate to 1.0 if the range is infinite.
• Salvation – improper, but noninformative priors will fall out of 

the posterior.
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Symmetrical Treatment of Data and 
Parameters

• Likelihood is p(data|θ)
• Prior summarizes nonsample information 

about θ in p(θ)
• Joint distribution is p(data, θ)
• P(data,θ) = p(data|θ)p(θ)
• Use Bayes theorem to get 

p(θ|data) = posterior distribution
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The Posterior Distribution
Sample information  L( | )
Prior information      p( )
Joint density for   and   =  p( , ) = L( )p( )
Conditional density for  given the data 

p( , ) L( )p( )p( | ) =  
p( ) L

θ
θ

θ θ θ θ
θ

θ θ θ
θ =

data

data data data |

data data |data
data

 = posterior density
( )p( )

Information obtained from the investigation
E[ |data] = posterior mean = the Bayesian "estimate"
Var[ |data] = posterior variance used for form interval estimates
Quan

θ
θ θ θ

θ
θ

∫ data | d

tiles of |data such as median, or 2.5th and 97.5th quantiles θ
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Priors – Where do they come from?
• What does the prior contain?

• Informative priors – real prior 
information

• Noninformative priors
• Mathematical complications

• Diffuse
 Uniform
 Normal with huge variance

• Improper priors
• Conjugate priors

L( )p( )p( | )   
L( )p( )d

θ

θ θ
θ =

θ θ θ∫
datadata
data
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Application

Estimate θ, the probability that a production process will produce a defective product.

Sampling design: Choose    N = 25 items from the production line.
D = the number of defectives. 

Result of our experiment  D = 8

Likelihood for the sample of data is  L( θ | data) = θ D(1 − θ) 25−D,  0 < θ < 1.

Maximum likelihood estimator of θ is q = D/25 = 0.32, 

Asymptotic variance of the MLE is estimated by  q(1 − q)/25 = 0.008704.
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Application: Posterior Density

( )

D N-D

D N-D

θ

θ (1-θ) p(θ)                   p( | ) p( | N,D) .
θ (1-θ) p(θ)dθ

:  
All allowable values of  are equally likely.    Uniform distribution over 0,1 . 

         

θ = θ =

θ

∫

Posterior density

Noninformative prior

data

( )

                   

         p   1,  0    1.  Prior mean = 1/2.  Prior variance = 1/12. 

(1 )( | )
( 1) ( 1)
( 1 1)

(                             

 

       

−

θ = ≤ θ ≤

θ − θ
θ =

 Γ + Γ − +
 Γ + + − + 
Γ

=

d

Posterio

at

r densit

a

y
D N D

p
D N D
D N D

N

1

0

2) (1 )
( 1) ( 1)

Note: (1 ) 1   =  A beta integral with a = D+1 and b = N-D+1

( 1) ( 1)                                                =  (D,N) = 
( 1 1)

−

−

+ θ − θ
Γ + Γ − +

θ − θ × θ

Γ + Γ − +
β

Γ + + − +

∫

D N D

D N D

D N D

d

D N D
D N D
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Posterior Moments

1

0

( 2) (1 )                   p(θ|N,D)
( 1) ( 1)

  
( 2) (1 )                   E[θ|data] = 
( 1) ( 1)

This is 

−

−

Γ + θ − θ
=
Γ + Γ − +

Γ + θ − θ
θ θ
Γ + Γ − +∫

Posterior Density with uniform noninformative prior

Posterior Mean

D N D

D N D

N
D N D

N d
D N D

a beta integral.  The posterior is a beta density with

=D+1, =N-D+1.  The mean of a beta variable =  

D 1Posterior mean = 9 / 27 = .3333
N 2

Prior mean = .5000.  MLE = 8/25 = .3200.

Posterior variance

α
α β

α +β
+ = 
+

( ) ( )
( )( )2   0.007936

Prior variance = 1/12 = .08333;  Variance of the MLE = .008704.

D 1 / N D 1
 = 

N  3 N  2

+ − +

+ +
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Informative prior

1 1

1 1
D N D

1
D N D

Beta is a common conjugate prior for a proportion or probability
( ) (1 )p( ) = ,  Prior mean is E[ ]=

( ) ( )
Posterior is

( ) (1 )(1 )
( ) ( )p( |N,D)=

( ) ((1 )

α− β−

α− β−
−

α−
−

Γ α +β θ −θ α
θ θ

Γ α Γ β α +β

Γ α +β θ −θ
θ −θ

Γ α Γ βθ
Γ α +β θ

θ −θ
11

0

D 1 N D 1

1 D 1 N D 1

0

1 ) d
( ) ( )

(1 )             =
(1 ) d

This is a beta density with parameters (D+ ,N-D+ )
DThe posterior mean is E[ |N,D] = ;  = =1 in earlier example.

N

β−

+α− − +β−

+α− − +β−

− θ
θ

Γ α Γ β

θ −θ

θ −θ θ

α β
α +

θ α β
α +β+

∫

∫



[Topic 5-Bayesian Analysis]   22/77

Mixing Prior and Sample 
Information

A typical result (exact for sampling from the normal distribution with known variance)
Posterior mean   w  Prior Mean + (1-w)  MLE
                          =   w  (Prior Mean - MLE) + MLE

      w = 

= × ×
×

Posterior Mean - MLE .3333 .32  .073889
Prior Mean - MLE .5 .32

Approximate Result
Prior Mean MLE

Prior Variance Asymptotic VariancePosterior Mean   Prior + (1- )MLE1 1
Prior Variance Asymptotic Variance

 

−
= =

−

+
≈ = ω ω

+

1
1/ (1 /12)Prior Variance   =  .095471 1 1/ (1 /12) 1 / (.008704)

Prior Variance Asymptotic Variance

ω = =
++
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Modern Bayesian Analysis
Posterior Mean = ( | )

Integral is often complicated, or does not exist in 
closed form.
Alternative strategy:  Draw a random sample from 
the posterior distribution and examine moments, 
quantile

p d
θ
θ θ θ∫ data

s, etc.
Example:  Our posterior is Beta(9,18).  Based on 
a random sample of 5,000 draws from this population:

Bayesian Estimate of Distribution of θ (Posterior mean was     .333333)
Observations       =          5000     (Posterior variance was .007936)
Sample Mean        =       .334017
Sample variance    =       .007454   Standard Deviation =       .086336
Skewness           =       .248077   Kurtosis-3 (excess)=      -.161478  
Minimum            =       .066214   Maximum            =       .653625
.025 Percentile    =       .177090   .975 Percentile    - .510028
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Bayesian Estimator

First generation: Do the integration (math)

= ∫
f(data | )p( )

E( | data) d
f(data)β

β β ββ β



[Topic 5-Bayesian Analysis]   25/77

The Linear Regression Model

′22 2 -n/2 -[(1/(2σ ))(y-Xβ) (y-Xβ)]L(β,σ |y,X)=[2πσ ] e

Likelihood

′= − −

       ′ ′ ′− − − = − − − −       σ σ σ       

2

2
2 2 2

Transformation using d=(N-K) and s (1 / d)( ) ( )

1 1 1 1 1
( ) ( ) ds ( ) ( )

2 2 2

y Xb y Xb

y Xβ y Xβ β b X X β b

++
− σ − − −

− −

  ′σ ∝ π σ Γ + σ 
′× − σ

2 2
d 12 v 2

2 ds (1/ ) K /2 2 1 1/2
2

2 1 1

Joint Posterior

[ds ] 1
f( , | , ) e [2 ] | ( ) |

(d 2)

exp{ (1 / 2)( ) '[ ( ) ] ( )}

β y X X X

β - b X X β - b

2Diffuse uniform prior for 

β, conjugate g
amma prior for 

σ
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Marginal Posterior for β

2

2 2
/2 1 /2

2 /21
2

2 1

After integrating  out of the joint posterior:

[ ] ( / 2) [2 ] | |
( 2)( | , ) .

[ ( ) ( )]

n-K
Multivariate t with mean  and variance matrix [ ( ) ]

2
The Bayesi

v
K

d K

ds d K
df

ds

s
n K

σ

π
+

− −

+

−

Γ + ′
Γ +∝

′ ′+ − −

− −

X X
β y X

β b X X β b

b X'X

an 'estimator' equals the MLE. Of course; the prior was 
noninformative.  The only information available is in the likelihood.
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Modern Bayesian Analysis
• Multiple parameter settings
• Derivation of exact form of expectations and 

variances for p(θ1,θ2 ,…,θK |data) is hopelessly 
complicated even if the density is tractable.

• Strategy:  Sample joint observations
(θ1,θ2 ,…,θK) from the posterior population and 
use marginal means, variances, quantiles, etc.

• How to sample the joint observations??? 
(Still hopelessly complicated.)



[Topic 5-Bayesian Analysis]   28/77

A Practical Problem

++
− σ − − −

− −

  ′σ ∝ π σ Γ + σ 
′ ′× − − σ −

2 2
v 12 v 2

2 vs (1 / ) K /2 2 1 1 /2
2

2 1 1

Sampling from the joint posterior may be impossible.
E.g., linear regression.

[vs ] 1
f( , | , ) e [2 ] | ( ) |

(v 2)

exp( (1 / 2)( ) [ ( ) ] ( ))
What is this???
T

β y X X X

β b X X β b

σ2

o do 'simulation based estimation' here, we need joint

observations on ( , ).β
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A Solution to the Sampling Problem

σ

σ

2

2

The joint posterior, p( , |data) is intractable.  But,
For inference about , a sample from the marginal
     posterior, p( |data) would suffice.

For inference about ,  a sample from the marginal

     p

β
β

β

−

σ σ

σ σ

′Σ −
σ ∝ × =

σ

2 2

2 2 1

2
2 i i

osterior of , p( |data) would suffice.  
Can we deduce these?  For this problem, we do have conditionals:

     p( | ,data)  = N[ , ( ) ]

(y )
     p( | ,data)  K   a gamma distributii

2

β b X'X

xβ
β

σ2

on

Can we use this information to sample from p( |data) and p( |data)?β
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Magic Tool: The Gibbs Sampler
• Problem: How to sample observations from the a population, 

p(θ1,θ2 ,…,θK |data).
• Solution:  The Gibbs Sampler.
• Target:  Sample from f(x1, x2) = joint distribution
• Joint distribution is unknown or it is not possible to sample from the 

joint distribution.
• Assumed: Conditional distributions f(x1|x2) and f(x2|x1) are both known 

and marginal samples can be drawn from both.
• Gibbs sampling:  Obtain one draw from x1,x2 by many cycles between 

x1|x2 and x2|x1.
• Start x1,0 anywhere in the right range.
• Draw x2,0 from x2|x1,0.
• Return to x1,1 from x1|x2,0 and so on.
• Several thousand cycles produces a draw
• Repeat several thousand times to produce a sample

• Average the draws to estimate the marginal means.
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Bivariate Normal Sampling

 ρ   
    ρ    

     
= Γ     

     
 

Γ θ θ 

1 1 1

2 2 2r r

1 2

0 1
Draw a random sample from bivariate normal ,

0 1

v u u
(1) Direct approach:  where  are two

v u u

1 0
    independent standard normal draws (easy) and = 

ρ 
ΓΓ θ = ρ θ = − ρ ρ 

2
1 2

1
    such that '= . ,  1 .

1
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Application: Bivariate Normal
• Obtain a bivariate normal sample (x,y) from

Normal[(0,0),(1,1,ρ)]. N = 5000.
• Conditionals: x|y is N[ρy,(1- ρ2)]

y|x is N[ρx,(1- ρ2)].
• Gibbs sampler: y0=0.

• x1 = ρy0 + sqr(1- ρ2)v where v is a N(0,1) draw
• y1 = ρx1 + sqr(1- ρ2)w where w is a N(0,1) draw

• Repeat cycle 60,000 times.  Drop first 10,000.  
Retain every 10th observation of the remainder.
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Gibbs Sampling for the Linear 
Regression Model

−σ σ

′Σ −
σ ∝ ×

σ
=

2 2 1

2
2 i i

     p( | ,data)  = N[ , ( ) ]

(y )
     p( | ,data)  K  

                        a gamma distribution

Iterate back and forth between these two distributions

i
2

β b X'X

xβ
β
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More General Gibbs Sampler
• Objective: Sample joint observations on θ1,θ2 ,…,θK. from 

p(θ1,θ2 ,…,θK|data) (Let K = 3) 
• Derive p(θ1|θ2,θ3,data) p(θ2|θ1,θ3,data) p(θ3|θ1,θ2,data)
• Gibbs Cycles produce joint observations

0. Start θ1,θ2,θ3 at some reasonable values
1. Sample a draw from p(θ1|θ2,θ3,data) using the draws of θ1,θ2 in hand
2. Sample a draw from p(θ2|θ1,θ3,data) using the draw at step 1 for θ1
3. Sample a draw from p(θ3|θ1,θ2,data) using the draws at steps 1 and 2
4. Return to step 1.  After a burn in period (a few thousand), start collecting

the draws.  The set of draws ultimately gives a sample from the joint
distribution.

• Order within the chain does not matter.



[Topic 5-Bayesian Analysis]   35/77

Using the Gibbs Sampler to Estimate a Probit 
Model

i
N 1 y

ii 1

Probit Model:  y* =  + ; y = 1[y* > 0];  ~ N[0,1].
Implication:  Prob[y=1| , ] = ( )
                       Prob[y=0| , ]  = 1 - ( )

Likelihood Function L( | , ) = [1 - ( )] [ (−
=

′ ε ε
′Φ

′Φ

′ ′Φ Φ∏

x
x x
x x

y X x x

β
β β
β β

β β β

{ }
{ }

i

i i

i i

i

y
i

N 1 y y
i ii 1

N 1 y y
i ii 1

N 1 y
ii 1

)]

Uninformative prior  p( )  1

[1  - ( )] [ ( )] 1
Posterior density       p( | , )

[1  - ( )] [ ( )] 1 d

[1 - ( )]
ˆPosterior Mean   = E[ | , ]

−
=

−
=

−
=

∝

′ ′Φ Φ
=

 ′ ′Φ Φ  

′Φ
=

∏
∏∫

∏∫

x x
y X

x x

x
y X

β

β

β

β β
β

β β β

β β
β β

{ }
{ }

i

i i

y
i

N 1 y y
i ii 1

[ ( )] 1 d

[1  - ( )] [ ( )] 1 d−
=

 ′Φ  
 ′ ′Φ Φ  ∏∫

x

x x
β

β β

β β β
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Strategy: Data Augmentation
• Treat yi* as unknown ‘parameters’ with β
• ‘Estimate’ θ = (β,y1*,…,yN*)  =  (β,y*)
• Draw a sample of R observations from the joint 

population (β,y*).  
• Use the marginal observations on β to estimate 

the characteristics (e.g., mean) of the 
distribution of β|y,X
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Gibbs Sampler Strategy
• p(β|y*,(y,X)).  If y* is known, y is known.

p(β|y*,(y,X))  = p(β|y*,X). 
• p(β|y*,X) defines a linear regression with 

N(0,1) normal disturbances.
• Known result for β|y*: 

p(β|y*,(y,X), ε=N[0,I])  = N[b*,(X’X)-1]
b* = (X’X)-1X’y*

• Deduce a result for y*|β
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Gibbs Sampler, Continued
• yi*|β,xi is Normal[xi’β,1]
• yi is informative about yi*:

• If yi = 1 , then yi* > 0; p(yi*|β,xi yi = 1) is truncated 
normal:  p(yi*|β,xi yi = 1) = φ(xi’β)/[1-Φ(xi’β)]
Denoted N+[xi’β,1]

• If yi = 0, then yi* < 0; p(yi*|β,xi yi = 0) is truncated 
normal:  p(yi*|β,xi yi = 0) = φ(xi’β)/Φ(xi’β)
Denoted N-[xi’β,1]
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Generating Random Draws from f(x)

-1

The inverse probability method of sampling
random draws:
If F(x) is the CDF of random variable x, then

a random draw on x may be obtained as F (u)
where u is a draw from the standard uniform (0,1).
Exampl

θ θ
θ

θ

Φ Φ-1

es:
:          f(x)= exp(- x); 

                             F(x)=1-exp(- x)
                              x = -(1/ )log(1-u)

:                 F(x) = (x); x = (u)

: x=

Exponential

Normal

Truncated Normal µ Φ Φ µ

µ Φ Φ µ

-1
i i

-1
i i

 + [1-(1-u)* ( )] for y=1;

                              x=  + [u (- )] for y=0.
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Sampling from the Truncated 
Normal

r

r
1

r r

r
1

r r

.
Begin with a draw from U[0,1].  
U the draw.

To obtain a draw y *  from N [ ,1]

y * [1 (1 U ) ( )]

To obtain a draw y *  from N [ ,1]

y * [U ( )]

+

−

−

−

=

µ

= µ +Φ − − Φ µ

µ

= µ +Φ Φ −µ

The usual inverse probability transform
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Sampling from the Multivariate 
Normal

To sample  from N[ , ]  (K dimensional)
Let  be the Cholesky matrix such that = 
Let  be a column of K independent random normal(0,1) d

′

A multivariate version of the inverse probability tra
x

L LL  
v

nsform
µ Σ

Σ
raws.

Then      +  is normally distributed with mean  and
variance   =    as needed.′ Σ

Lv
LIL  

µ µ
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Gibbs Sampler
• Preliminary: 

Obtain X’X then L such that LL’ = (X’X)-1.
• Preliminary: Choose initial value for β such as

β0 = 0.  Start with r = 1.
• (y* step) Sample N observations on y*(r) using 

βr-1 , xi and yi and the transformations for the truncated normal 
distribution.

• (β step) Compute b*(r) = (X’X)-1X’y*(r). Draw the observation on β(r)
from the normal population with mean b*(r) and variance (X’X)-1.

• Cycle between the two steps 50,000 times.  Discard the first 10,000 
and retain every 10th observation from the retained 40,000.  
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Frequentist and Bayesian Results

0.37 Seconds                                       2 Minutes
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Appendix
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Bayesian Model Estimation

• Specification of conditional likelihood:  
f(data | parameters) = L(parameters|data)

• Specification of priors:  g(parameters)
• Posterior density of parameters:

• Posterior mean = E[parameters|data]

f(data |parameters)g(parameters)f(parameters | data) =
f(data)
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The Marginal Density for the Data is 
Irrelevant

∫ ∫β β

f(data| )p( ) L(data| )p( )
f( |data) =  = 

f(data) f(data)
Joint density of  and data is f(data, ) = L(data| )p( )
Marginal density of the data is 

         f(data) = f(data, )d = L(data| )p( )d

Thus,

β β β ββ

β β β β

β β β β β

∫
∫

∫ ∫

β

L(data| )p( )
 f( |data) = 

L(data| )p( )d

 L(data| )p( )d
Posterior Mean = p( |data)d  = 

 L(data| )p( )d

Requires specification of the likeihood and the prior.

β

β
β

β ββ
β β β

β β β β
β β

β β β
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Bayesian Estimators

• Bayesian “Random Parameters” vs. 
Classical Randomly Distributed Parameters

• Models of Individual Heterogeneity
• Sample Proportion
• Linear Regression
• Binary Choice
• Random Effects: Consumer Brand Choice
• Fixed Effects:  Hospital Costs
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A Random Effects Approach

• Allenby and Rossi, “Marketing Models of 
Consumer Heterogeneity”
• Discrete Choice Model – Brand Choice
• Hierarchical Bayes
• Multinomial Probit

• Panel Data: Purchases of 4 brands of 
ketchup
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Structure

′it,j i it,j it,j

it,j it,j

it,j

Conditional data generation mechanism
y * = x +ε  =  utility for consumer i, choice  t, brand j.
Y   =1[y * = maximum utility among the J choices]
x   =  (constant, log price, "availabili

β

it,j j 1

ty," "featured")
ε ~ N[0,λ ],λ =1
Implies a J outcome multinomial probit model.
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Priors

  

 
  

i

i i i

j j

j

β

-1
β

Prior Densities

   ~ N , ,  

       Implies = + , ~ N[ , ]
   λ ~ Inverse Gamma[v,s ] 
        (looks like chi - squared), v = 3, s =1
Priors over model parameters

   ~ N ,aV , =

   ~ Wishart

β

β

V

w w 0 V

0

V

β β

β β

β β β

0 0 0 0[v , ],v = 8, = 8V V I
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Bayesian Estimator

• Joint Posterior =
• Integral does not exist in closed form.
• Estimate by random samples from the joint 

posterior.
• Full joint posterior is not known, so not possible 

to sample from the joint posterior.
• Gibbs sampler is used to sample from posterior

1 N 1 JE[ ,..., , , ,λ ,...,λ | ]ββ β V dataβ



[Topic 5-Bayesian Analysis]   52/77

Gibbs Cycles for the MNP Model

i

Marginal posterior for the individual parameters
(Known and can be sampled)
    | , , ,data
Marginal posterior for the common parameters  
(Each known and each can be sampled)
   | , ,data

   | , ,da

β

β

β

β β V λ

β V λ

Vβ λ ta

   | , ,dataβλ β V
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Results
• Individual parameter vectors and disturbance variances
• Individual estimates of choice probabilities
• The same as the “random parameters probit model” with slightly 

different weights.
• Allenby and Rossi call the classical method an “approximate 

Bayesian” approach.
• (Greene calls the Bayesian estimator an “approximate random 

parameters model”)
• Who’s right?

 Bayesian layers on implausible uninformative priors and calls the maximum 
likelihood results “exact” Bayesian estimators.

 Classical is strongly parametric and a slave to the distributional assumptions.
 Bayesian is even more strongly parametric than classical.
 Neither is right – Both are right.
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A Comparison of Maximum Simulated 
Likelihood and Hierarchical Bayes

• Ken Train: “A Comparison of Hierarchical Bayes and 
Maximum Simulated Likelihood for Mixed Logit”

• Mixed Logit

′i

i

U(i,t, j)  =  (i,t, j)+ε(i,t, j),
i =1,...,N individuals,
t =1,...,T choice situations
j =1,...,J alternatives (may also vary)

β x
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Stochastic Structure – Conditional 
Likelihood

.

′

′

′

′

∑

∏
∑

i i,j,t
J

i i,j,tj=1

T i i,j*,t
Jt=1

i i,j,tj=1

exp( )
Prob(i, j,t) =

exp( )

exp( )
Likelihood for individual i  =  

exp( )

j* = indicator for the specific choice made by i at time t
Note individual specific pa

β x
β x

β x
β x

irameter vector . β
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Classical Approach

1/2

, *,
1 1

, ,1

~ N[ , ];  write 

    where ( ) (uncorrelated)

exp[( ]
Log-likelihood log

exp[( ]

Maximize over  using maximum simulated likel

= =

=

′=
=

=

′
=

′
∑ ∏∫ ∑Jw

b
b + w
b + v

b w ) x
w

b w ) x

b,

i

i i

i j

TN i i j t
ii t

i i i j tj

diag

d

β Ω Ω ΓΓ
β

Γ Γ =

+

+

Γ

γ

ihood 
(random parameters model)
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Mixed Model Estimation

• MLWin:  Multilevel modeling for Windows
• http://multilevel.ioe.ac.uk/index.html
• Uses mostly Bayesian, MCMC methods
• “Markov Chain Monte Carlo (MCMC) methods allow 

Bayesian models to be fitted, where prior 
distributions for the model parameters are specified. 
By default MLwin sets diffuse priors which can be 
used to approximate maximum likelihood 
estimation.”  (From their website.) 
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Bayesian Approach – Gibbs Sampling and 
Metropolis-Hastings

N

K

, , )

∏N
ii=1

1 N 1

1 N

1

Posterior = L(data | , )×priors

Prior = Product of 3 independent priors for 
           ( ,...,γ ,...,γ
        =  N( ,..., | , ) (normal)
           ×InverseGamma(γ ,...,γ |parameters)
       

β Ω

β β b
β β b Ω

    ×g( | assumed parameters) (Normal with large variance)b



[Topic 5-Bayesian Analysis]   59/77

Gibbs Sampling from Posteriors: b

∑
1 N

N
ii=1

p( | ,..., ,Ω) =Normal[ ,(1/ N) ]

= (1/ N)

Easy to sample from Normal with known
mean and variance by transforming a set
of draws from standard normal.

bβ β β Ω

β β
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Gibbs Sampling from Posteriors: Ω

∑

∑

k 1 N k
N 2

k k,i ki=1

r,k

k
R 2

r,kr=1

p(γ | , ,..., ) ~ Inverse Gamma[1+N,1+NV ]

V = (1/ N) (β -b )  for each k =1,...,K

Draw from inverse gamma for each k : 
Draw R =1+N draws from N[0,1] = h ,

(1+NV )then the draw is 
h

bβ β
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Gibbs Sampling from Posteriors: βi

i i ip( | , ) =M×L(data | )×g(  | )
M = a constant, L = likelihood, g = prior
This is the definition of the posterior.
Not clear how to sample.
Use Metropolis - Hastings alg

β b Ω β β

ori

b,Ω

thm.
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Metropolis – Hastings Method

i,0

i,1

r r

r

Define :
= an 'old' draw (vector)
= the 'new' draw (vector)

 = σ , 
σ = a constant (see below)

= the diagonal matrix of standard deviations
= a vector of K draws from standard normal

β
β
d  Γ v

Γ
v
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Metropolis Hastings: A Draw of βi







i,1 i,0 r

i,1

i,0

i,1 i,0

i,1

Trial value : = +

Posterior( )
R = (Ms cancel)

Posterior( )
U = a random draw from U(0,1)

If U < R, use ,else keep 
During Gibbs iterations, draw 
σ controls acceptance rate. Try for 

β β d

β
β

β β
β

..4
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Application: Energy Suppliers

• N=361 individuals, 2 to 12 hypothetical 
suppliers

• X=
• (1) fixed rates, 
• (2) contract length,     
• (3) local (0,1),
• (4) well known company (0,1), 
• (5) offer TOD rates (0,1), 
• (6) offer seasonal rates]
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Estimates: Mean of Individual βi

MSL Estimate
(Asymptotic S.E.)

Bayes Posterior Mean
(Posterior Std.Dev.)

Price -1.04 (0.396) -1.04 (0.0374)

Contract -0.208 (0.0240) -0.194 (0.0224)

Local 2.40 (0.127) 2.41 (0.140)

Well Known 1.74 (0.0927) 1.71 (0.100)

TOD -9.94 (0.337) -10.0 (0.315)

Seasonal -10.2 (0.333) -10.2 (0.310)
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Nonlinear Models and Simulation
• Bayesian inference over parameters in a 

nonlinear model:
• 1.  Parameterize the model
• 2.  Form the likelihood conditioned on the 

parameters
• 3.  Develop the priors – joint prior for all model 

parameters
• 4.  Posterior is proportional to likelihood times prior.  

(Usually requires conjugate priors to be tractable.)
• 5.  Draw observations from the posterior to study its 

characteristics.
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Simulation Based Inference

×

×∫

Form the likelihood L( ,data)
Form the prior p( )
Form the posterior K p( )L( ,data) where K
is a constant that makes the whole thing integrate to 1.

Posterior mean =  K p( )L( ,data)d

Estimate the pos

θ

θ
θ

θ θ

θ θ θ θ

=∑R

r 1

1ˆterior mean by E( )=
R

by simulating draws from the posterior.

S
rθ|data θ
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Large Sample Properties of 
Posteriors

• Under a uniform prior, the posterior is 
proportional to the likelihood function
• Bayesian ‘estimator’ is the mean of the posterior
• MLE equals the mode of the likelihood
• In large samples, the likelihood becomes 

approximately normal – the mean equals the mode
• Thus, in large samples, the posterior mean will be 

approximately equal to the MLE.
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Conclusions

• Bayesian vs. Classical Estimation
• In principle, some differences in interpretation
• As practiced, just two different algorithms
• The religious debate is a red herring

• Gibbs Sampler.  A major technological advance
• Useful tool for both classical and Bayesian
• New Bayesian applications appear daily



[Topic 5-Bayesian Analysis]   70/77

Applications of the Paradigm
• Classical econometricians doggedly cling to 

their theories even when the evidence conflicts 
with them – that is what specification searches 
are all about.

• Bayesian econometricians NEVER incorporate 
prior evidence in their estimators – priors are 
always studiously noninformative.  (Informative 
priors taint the analysis.)  As practiced, 
Bayesian analysis is not Bayesian.
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Methodological Issues

• Priors: Schizophrenia
• Uninformative are disingenuous (and not Bayesian)
• Informative are not objective

• Using existing information? Received studies generally 
do not do this.

• Bernstein von Mises theorem and likelihood estimation.
• In large samples, the likelihood dominates
• The posterior mean will be the same as the MLE
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Standard Criticisms
• Of the Classical Approach

• Computationally difficult (ML vs. MCMC)
• No attention is paid to household level parameters.
• There is no natural estimator of individual or household level 

parameters
• Responses: None are true.  See, e.g., Train (2003, ch. 10)

• Of Classical Inference in this Setting
• Asymptotics are “only approximate” and rely on “imaginary samples.”  

Bayesian procedures are “exact.”
• Response:  The inexactness results from acknowledging that we try to 

extend these results outside the sample.  The Bayesian results are 
“exact” but have no generality and are useless except for this 
sample, these data and this prior. (Or are they?  Trying to extend 
them outside the sample is a distinctly classical exercise.)
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• As N ∞, the likelihood dominates and the prior 
disappears  Bayesian and Classical MLE converge. 
(Needs the mode of the posterior to converge to the 
mean.)

• Priors
• Diffuse  large variances imply little prior information. 

(NONINFORMATIVE)
• INFORMATIVE priors – finite variances that appear in 

the posterior.  “Taints” any final results.

Modeling Issues



[Topic 5-Bayesian Analysis]   74/77

Reconciliation: Bernstein-Von Mises 
Theorem

• The posterior distribution converges to normal with covariance 
matrix equal to 1/N times the information matrix (same as classical 
MLE).  (The distribution that is converging is the posterior, not the 
sampling distribution of the estimator of the posterior mean.)

• The posterior mean (empirical) converges to the mode of the 
likelihood function.  Same as the MLE.  A proper prior disappears 
asymptotically.

• Asymptotic sampling distribution of the posterior mean is the same 
as that of the MLE.
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Sources

• Lancaster, T.: An Introduction to Modern Bayesian 
Econometrics, Blackwell, 2004

• Koop, G.: Bayesian Econometrics, Wiley, 2003
• … “Bayesian Methods,” “Bayesian Data Analysis,” … 

(many books in statistics)
• Papers in Marketing: Allenby, Ginter, Lenk, Kamakura,…
• Papers in Statistics: Sid Chib,… 
• Books and Papers in Econometrics: Arnold Zellner, Gary 

Koop, Mark Steel, Dale Poirier,…
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Software
• Stata, Limdep, SAS, etc.
• R, Matlab, Gauss
• WinBUGS

• Bayesian inference Using Gibbs Sampling
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http://www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml
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