

9. Heterogeneity: Latent Class Models

Science	AAA S.ORG	FEEDBACK	HELP LIE	RARIANS		Science	Magazine
MAAAS	NEWS	SCIENCE J	OURNALS	CAREE	RS BLOG	S & COMN	IUNITIES
Science The W	orld's Lead	ling Journal o	of Original S	cientific	Research, G	lobal News	, and Comme
Science Home Current	Issue Pr	evious Issues	Science Exp	press	Science Produ	cts My So	cience Abou
Published Online April 12 20 Science 11 May 2007: Vol. 316 no. 5826 pp. 889-8 DOI: 10.1126/science.11416	007 94 534				4	(Prev Table	of Contents N

REPORT

A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity

Latent Classes

- A population contains a mixture of individuals of different types (classes)
- Common form of the data generating mechanism within the classes
- Observed outcome y is governed by the common process F(y|x,θ_j)
- Classes are distinguished by the parameters, θ_{i} .

How Finite Mixture Models Work

Density? Note significant mass below zero. Not a gamma or lognormal or any other familiar density.

Y 4.21855 1.20367 2.45719 0.470427 16.4708 0.428376 1.56961 5.93268 3.83085 4.10209 7.29334 14.278 9.12016 1.57473 5.19982 3.84372 -3.57989 2.32862 2.85411 5.23678 2.25915 3.22748 11.0248 4.31525 3.55592 7.30238 8.61563 1.31486 5.6779 11.3807

Find the 'Best' Fitting Mixture of Two Normal Densities

$$LogL = \sum_{i=1}^{1000} log\left(\sum_{j=1}^{2} \int_{j=1}^{1} \frac{1}{\sigma_{j}} \phi\left(\frac{y_{i} \mu_{j}}{\sigma_{j}}\right)\right)$$

Maximum Likelihood Estimates

$$\hat{\mathsf{F}}(\mathsf{y}) = .28547 \left[\frac{1}{3.79628} \phi \left(\frac{\mathsf{y} - 7.05737}{3.79628} \right) \right] + .71453 \left[\frac{1}{1.81941} \phi \left(\frac{\mathsf{y} - 3.25966}{1.81941} \right) \right]$$

Mixing probabilities .715 and .285

[Topic 9-Latent Class Models] 7/66

A Practical Distinction

• Finite Mixture (Discrete Mixture):

- Functional form strategy
- Component densities have no meaning
- Mixing probabilities have no meaning
- There is no question of "class membership"
- The number of classes is uninteresting enough to get a good fit

• Latent Class:

- Mixture of subpopulations
- Component densities are believed to be definable "groups" (Low Users and High Users in Bago d'Uva and Jones application)
- The classification problem is interesting who is in which class?
- Posterior probabilities, P(class|y,x) have meaning
- Question of the number of classes has content in the context of the analysis

The Latent Class Model

(1) There are Q classes, unobservable to the analyst

(2) Class specific model: $f(y_{it} | \mathbf{x}_{it}, \boldsymbol{\beta} | ass = q) = g(y_{it}, \mathbf{x}_{it}, q)$

(3) Conditional class probabilities

Common multinomial logit form for prior class probabilities

$$\begin{split} \mathsf{P}(\mathsf{class} = \mathsf{q} | \boldsymbol{\delta}) \delta &= \pi_{\overline{\mathsf{iq}}} \; \boldsymbol{\theta} \, \frac{\exp(\delta_{\mathsf{q}})}{\sum_{\mathsf{q}=1}^{\mathsf{Q}} \exp(\delta_{\mathsf{q}})} \,, \quad \mathsf{Q} \\ \delta_{\mathsf{q}} \; &= \; \mathsf{log}(\pi_{\mathsf{q}} \, / \, \pi_{\mathsf{Q}}). \end{split}$$

Log Likelihood for an LC Model

Conditional density for each observation is $P(y_{it} | \mathbf{x}_{it} \boldsymbol{\beta} class = q) = f(y_{it} | \mathbf{x}_{it}, q)$ Joint conditional density for T_i observations is $f(\mathbf{y}_{i1}, \mathbf{y}_{i2}, \dots, \mathbf{y}_{i,T_i} \mid \mathbf{X}_i \mathbf{\beta}_q) = \prod_{t=1}^{T_i} f(\mathbf{y}_{it} \not \mathbf{x}_{i,t} \mathbf{\beta}_q)$ (T_i may be 1. This is not only a 'panel data' model.) Maximize this for each class if the classes are known. They aren't. Unconditional density for individual i is $f(y_{i1}, y_{i2}, ..., y_{i,T_i} | \mathbf{X}_i) \mathbf{\beta} = \sum_{q=1}^{Q} \pi_q \left(\prod_{t=1}^{T_i} f(y_{it} | \mathbf{X}_{i,t}, q) \right)$ Log Likelihood

Estimating Which Class

Prior class probability Prob[class=q] = π_q Joint conditional density for T_i observations is $P(y_{i1}, y_{i2}, ..., y_{i,T_i} | \mathbf{X}_i, \boldsymbol{\beta} | ass = q) = \prod_{t=1}^{T_i} f(y_{it} | \mathbf{x}_{i,t}, q)$ Joint density for data and class membership is the product $P(y_{i1}, y_{i2}, ..., y_{i,T_i}, class = q | \mathbf{X}_i) \boldsymbol{\beta} = \pi_q \prod_{t=1}^{T_i} f(y_{it} | \mathbf{x}_{i,t}, q)$ Posterior probability for class, given the data $P(class = q | y_{i1}, y_{i2}, ..., y_{i,T_i}, \mathbf{X}_i) = \frac{P(\mathbf{y}_i, class = q | \mathbf{X}_i)}{P(y_{i1}, y_{i2}, ..., y_{i,T_i} | \mathbf{X}_i)}$ $= \frac{P(\mathbf{y}_i, class = q | \mathbf{X}_i)}{\sum_{q=1}^{Q} P(\mathbf{y}_i, class = q | \mathbf{X}_i)}$

Use Bayes Theorem to compute the posterior (conditional) probability

$$w(\mathbf{q} \mid \mathbf{y}_{i}, \mathbf{X}_{i}) = P(class = j \mid \mathbf{y}_{i}, \mathbf{X}_{i}) = \frac{\pi_{q} \prod_{t=1}^{l_{i}} f(y_{it} \mid \mathbf{x}\boldsymbol{\beta}_{i}, \mathbf{q})}{\sum_{q=1}^{Q} \pi_{q} \prod_{t=1}^{T_{i}} f(y_{it} \mid \mathbf{x}\boldsymbol{\beta}_{i}, \mathbf{q})}$$
$$= W_{iq}$$

Best guess = the class with the largest posterior probability.

[Topic 9-Latent Class Models] 11/66

Posterior for Normal Mixture

$$\hat{w}(q \mid data_{i}) = \hat{w}(q \mid i) = \frac{\hat{\pi}_{q} \left[\prod_{t=1}^{T_{i}} \frac{1}{\hat{\sigma}_{q}} \phi\left(\frac{y_{it} - \hat{\mu}_{q}}{\hat{\sigma}_{q}}\right) \right]}{\sum_{q=1}^{Q} \hat{\pi}_{q} \left[\prod_{t=1}^{T_{i}} \frac{1}{\hat{\sigma}_{q}} \phi\left(\frac{y_{it} - \hat{\mu}_{q}}{\hat{\sigma}_{q}}\right) \right]}$$

Estimated Posterior Probabilities

G1	G2	YLCM
0.000380815	0.999619	0.749454
0.999998	2.4586e-006	6.00763
0.914497	0.0855032	3.3601
0.999983	1.65714e-005	5.53157
0.999998	2.1888e-006	6.03659
0.99946	0.000540485	4.65866
0.997469	0.00253128	4.27006
0.999999	1.40053e-006	6.14779
0.999863	0.000136592	5.00377
0.996985	0.00301525	4.2259
0.999983	1.72564e-005	5.52145
0.746364	0.253636	3.03334
0.860929	0.139071	3.22172
0.999932	6.81582e-005	5.1779
0.000111912	0.999888	0.434583
0.999933	6.66186e-005	5.18362
6.72545e-005	0.999933	0.303494
1	2.90138e-007	6.53927
0.985588	0.0144116	3.8288
0.279522	0.720478	2.51907

More Difficult When the Populations are Close Together

The Technique Still Works

Latent Cl Dependent Sample is LINEAR re Model fit	lass / Panel Line variable 1 pds and 10 gression model with 2 latent	arRg Model YLC 00 individuals classes.			
Variable	Coefficient	Standard Error h	o/St.Er.	P[Z >z]	Mean of X
	Model parameters	for latent class	8 1		
Constant	2.93611***	.15813	18.568	.0000	
Sigma	1.00326***	.07370	13.613	.0000	
	Model parameters	for latent class	s 2		
Constant	.90156***	.28767	3.134	.0017	
Sigma	.86951***	.10808	8.045	.0000	
	Estimated prior	probabilities for	class m	embership	
Class1Pr	.73447***	.09076	8.092	.0000	
Class2Pr	.26553***	.09076	2.926	.0034	
	L				

'Estimating' β_i

(1) Use $\hat{\boldsymbol{\beta}}_{j}$ from the class with the largest estimated probability (2) Probabilistic - in the same spirit as the 'posterior mean' $\hat{\boldsymbol{\beta}}_{i} = \sum_{q=1}^{Q} \text{Posterior Prob[class} = q|\text{data}_{i}] \hat{\boldsymbol{\beta}}_{q}$ $= \sum_{q=1}^{Q} \hat{w}_{iq} \hat{\boldsymbol{\beta}}_{q}$ Note : This estimates E[$\boldsymbol{\beta}_{i} | \boldsymbol{y}_{i}, \boldsymbol{X}_{i}$], not $\boldsymbol{\beta}_{i}$ itself.

How Many Classes?

- (1) Q is not a 'parameter' can't 'estimate' Q with π and β
- (2) Can't 'test' down or 'up' to Q by comparing log likelihoods. Degrees of freedom for Q+1 vs. Q classes is not well defined.
- (3) Use AKAIKE IC; AIC = $-2 \times \log L + 2 \# Parameters$.

For our mixture of normals problem,

 $AIC_1 = 10827.88$

AIC₂ = 9954.268 <===

 $AIC_3 = 9958.756$

LCM for Health Status

- Self Assessed Health Status = 0,1,...,10
- Recoded: Healthy = HSAT > 6
- Using only groups observed T=7 times; N=887
- Prob = $\Phi(Age, Educ, Income, Married, Kids)$
- 2, 3 classes

Too Many Classes

Latent Class / Panel Probit Model Dependent variable HEALTHY Estimation based on N = 6209, K = 20 Unbalanced panel has 887 individuals PROBIT (normal) probability model Model fit with 3 latent classes.									
Variable	Coefficient	Standard Error	b/st.Er	P[Z >z]	Mean of X				
1	Model parameter	s for latent cla	ss 1						
Constant	.01265	.385900D+10	.000	1.0000					
AGE	.16523	.138024D+09	. 000	1.0000	44.3352				
EDUC	.15327	.520918D+08	.000	1.0000	10.9409				
HHNINC	. 43195	.887276D+09	.000	1.0000	.34930				
MARRIED	.06640	.153413D+09	.000	1.0000	.84539				
HHKIDS	.17832	.152061D+09	.000	1.0000	. 45482				
1	Model parameter	s for latent cla	ss 2						
Constant	.32074	.29082	1.103	.2701					
AGE	02690***	.00406	-6.622	.0000	44.3352				
EDUC	.12215***	.01753	6.969	.0000	10.9409				
HHNINC	03849	.17139	225	.8223	.34930				
MARRIED	.20051***	.07749	2.588	.0097	.84539				
HHKIDS	.05879	.06565	.895	.3705	.45482				
1	Model parameter	s for latent cla	ss 3						
Constant	.00731	.26582	.027	.9781					
AGE	03396***	.00446	-7.612	.0000	44.3352				
EDUC	.02741*	.01466	1.869	.0616	10.9409				
HHNINC	.73861***	.24133	3.061	.0022	.34930				
MARRIED	.10671	.10520	1.014	.3104	.84539				
HHKIDS	.16550**	.07838	2.111	.0347	.45482				
1	Sstimated prior	probabilities f	or class m	embership					
Class1Pr	.12387***	.01676	7.390	.0000					
Class2Pr	.52530***	.02447	21.468	.0000					
Class3Pr	.35083***	.02268	15.466	.0000					
+									

Liopic y-Latent Class Models] 19/66

Two Class Model

Latent C Dependent Unbalance PROBIT (1 Model fit	lass / Panel Prob variable ed panel has & normal) probabil with 2 latent	oit Model HEALTHY 887 individuals ity model classes.			
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X
	Model parameters	for latent clas	s 1		
Constant	.61652**	.28620	2.154	.0312	
AGE	02466***	.00401	-6.143	.0000	44.3352
EDUC	.11759***	.01852	6.351	.0000	10.9409
HHNINC	.10713	.20447	.524	.6003	.34930
MARRIED	.11705	.09574	1.223	.2215	.84539
HHKIDS	.04421	.07017	.630	.5287	.45482
	Model parameters	s for latent clas	s 2		
Constant	.18988	.31890	.595	.5516	
AGE	03120***	.00464	-6.719	.0000	44.3352
EDUC	.02122	.01934	1.097	.2726	10.9409
HHNINC	.61039***	.19688	3.100	.0019	.34930
MARRIED	.06201	.10035	.618	.5367	.84539
HHKIDS	.19465**	.07936	2.453	.0142	.45482
	Estimated prior	probabilities for	or class m	membership	
Class1Pr	.56604***	.02487	22.763	.0000	
Class2Pr	.43396***	.02487	17.452	.0000	

Partial Effects in LC Model

Partial or respect to They are Condition Scale Fac B for lat	derivatives of ex to the vector of computed at the nal Mean at Sampl tor for Marginal tent class model	pected val. wit characteristics means of the Xs Point .611 Effects .383 is a wghted avr	h • • • • • • • • • • • • • • • • • • •	
Variable	Coefficient	Standard Error	b/st.Er. P[Z >z]	Elasticity
	Two class latent	class model		
AGE	01054***	.00134	-7.860 .0000	76377
EDUC	.02904***	.00589	4.932 .0000	.51939
HHNINC	.12475**	.05598	2.228 .0259	.07124
MARRIED	.03570	.02991	1.194 .2326	.04934
HHKIDS	.04196**	.02075	2.022 .0432	.03120
	Pooled Probit Ma	odel		
AGE	00846***	.00081	-10.429 .0000	63399
EDUC	.03219***	.00336	9.594 .0000	.59568
HHNINC	.16699***	.04253	3.927 .0001	.09865
	Marginal effect	for dummy varia	ble is $P 1 - P 0$.	
MARRIED	.02414	.01877	1.286 .1986	.03451
	Marginal effect	for dummy varia	ble is $P 1 - P 0$.	
HHKIDS	.06754***	.01483	4.555 .0000	.05195

Conditional Means of Parameters

Est.E[**β** | All information for individual i] = $\sum_{j=1}^{J} \hat{w}_{ij} \hat{\beta}_{j}$

using posterior (conditional) estimated class probabilities.

🎟 Matri	ix - BETA_I						
[887, 6]	Cell: 0.6157	59	✓ ×				
	1	2	3	4	5	6	~
1	0.615759	-0.0246682	0.117419	0.108025	0.116947	0.0444756	2=
2	0.604733	-0.0248373	0.114929	0.121032	0.115524	0.0483638	
3	0.202056	-0.0310124	0.0239692	0.596029	0.0635754	0.190357	
4	0.240936	-0.0304162	0.0327517	0.550166	0.0685913	0.176647	
5	0.598638	-0.0249307	0.113552	0.128221	0.114738	0.0505129	
6	0.447543	-0.0272478	0.0794216	0.306452	0.0952454	0.103792	
7	0.616334	-0.0246594	0.117549	0.107347	0.117021	0.0442728	
8	0.616489	-0.024657	0.117584	0.107164	0.117041	0.0442183	
9	0.616015	-0.0246643	0.117477	0.107724	0.11698	0.0443856	
10	0.194904	-0.0311221	0.0223537	0.604465	0.0626528	0.192879	
11	0.369695	-0.0284416	0.0618367	0.398282	0.0852023	0.131244	
12	0.198347	-0.0310693	0.0231313	0.600405	0.0630969	0.191665	
13	0.440908	-0.0273496	0.0779228	0.31428	0.0943894	0.106132	
14	0.430045	-0.0275161	0.075469	0.327094	0.0929879	0.109963	
15	0.189896	-0.0311989	0.0212223	0.610373	0.0620066	0.194645	
16	0.19017	-0.0311947	0.0212844	0.610049	0.062042	0.194548	
17	0.190421	-0.0311908	0.0213409	0.609754	0.0620743	0.19446	
18	0.189918	-0.0311985	0.0212274	0.610347	0.0620095	0.194637	
19	0.414608	-0.0277529	0.0719819	0.345303	0.0909964	0.115406	
20	0.194766	-0.0311242	0.0223225	0.604628	0.0626349	0.192928	

An Extended Latent Class Model

Class probabilities relate to observable variables (usually demographic factors such as age and sex).

(1) There are Q classes, unobservable to the analyst

(2) Class specific model: $f(y_{it} | \mathbf{x}_{it}, class = q) = g(y_{it}, \mathbf{x}_{it}, q)$

(3) Conditional class probabilities given some information, \mathbf{z}_i)

Common multinomial logit form for prior class probabilities $P(class=q|\mathbf{z}\boldsymbol{\beta}) = \pi_{iq} = \frac{\exp(\mathbf{z}\boldsymbol{\beta}_{q})}{\sum_{q=1}^{Q}\exp(\mathbf{z}\boldsymbol{\beta}_{q})} \boldsymbol{\beta}_{q} = \mathbf{0}$

Most empirical applications of latent class models to health care utilisation take class membership probabilities as parameters $\pi_{ij} = \pi_j$, j = 1, ..., C to be estimated along with $\theta_1, ..., \theta_C$ (e.g., Deb and Trivedi, 1997; Deb, 2001; Jiménez-Martín et al., 2002; Atella et al., 2004; Bago d'Uva, 2006). This is analogous to the hypothesis that individual heterogeneity is uncorrelated with the regressors in a random effects or random parameters specification. A more general approach is to parameterise the heterogeneity as a function of time invariant individual characteristics z_i , as in Mundlak (1978), thus accounting for the possible correlation between observed regressors and unobserved effects. This has been done in recent studies that consider continuous distributions for the individual effects, mostly by setting $z_i = \bar{x}_i$. To implement this approach in the case of the latent class model, class membership can be modelled as a multinomial logit (as in, e.g., Clark and Etilé, 2006; Clark et al., 2005; Bago d'Uva, 2005):

$$\pi_{ij} = \frac{\exp(z'_i \gamma_j)}{\sum_{g=1}^{C} \exp(z'_i \gamma_g)}, \quad j = 1, \dots, C,$$

with $\gamma_c = 0$. This specification makes it possible to uncover the determinants of class membership (more commonly done by means of posterior analysis). The vectors of parameters $\theta_1, \ldots, \theta_c, \gamma_1, \ldots, \gamma_{c-1}$ are estimated jointly by maximum likelihood.

(3)

Health Satisfaction Model

Latent Cl Dependent Log likel	ass / Panel Prob variable ihood function	oit Model HEALTHY -3465.98697	Used means	an AGE and s probabi	d FEMALE lity model
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X
	Model parameters	s for latent clas	s 1		
Constant	.60050**	.29187	2.057	.0396	
AGE	02002***	.00447	-4.477	.0000	44.3352
EDUC	.10597***	.01776	5.968	.0000	10.9409
HHNINC	.06355	.20751	.306	.7594	.34930
MARRIED	.07532	.10316	.730	.4653	.84539
HHKIDS	.02632	.07082	.372	.7102	.45482
	Model parameters	s for latent clas	ss 2		
Constant	.10508	.32937	.319	.7497	
AGE	02499***	.00514	-4.860	.0000	44.3352
EDUC	.00945	.01826	.518	.6046	10.9409
HHNINC	.59026***	.19137	3.084	.0020	.34930
MARRIED	00039	.09478	004	.9967	.84539
HHKIDS	.20652***	.07782	2.654	.0080	.45482
	Estimated prior	probabilities for	or class m	embership	
ONE_1	1.43661***	.53679	2.676	.0074	(.56519
AGEBAR_1	01897*	.01140	-1.664	.0960	
FEMALE_1	78809***	.15995	-4.927	.0000	
ONE_2	.000	(Fixed	Parameter)	(.43481
AGEBAR_2	.000	(Fixed	Parameter)	
FEMALE_2	.000	(Fixed	Parameter)	

[Topic 9-Latent Class Models] 25/66

The EM Algorithm

Latent Class is a 'missing data' model

 $d_{i,q} = 1$ if individual i is a member of class q

If $\boldsymbol{d}_{\!\scriptscriptstyle i,q}$ were observed, the complete data log likelihood would be

$$logL_{c} = \sum_{i=1}^{N} log\left\{\sum_{q=1}^{Q} d_{i,q}\left[\prod_{t=1}^{T_{i}} f(y_{i,t} \mid data_{i,t}, class = q)\right]\right\}$$

(Only one of the Q terms would be nonzero.)

Expectation - Maximization algorithm has two steps

- (1) Expectation Step: Form the 'Expected log likelihood' given the data and a prior guess of the parameters.
- (2) Maximize the expected log likelihood to obtain a new guess for the model parameters.

(E.g., http://crow.ee.washington.edu/people/bulyko/papers/em.pdf)

Implementing EM for LC Models

Given initial guesses $\pi_{a}^{0} = \pi_{1}^{0}, \pi_{2}^{0}, ..., \pi_{O}^{0}, \beta_{a}^{0} = \beta_{1}^{0}, \beta_{2}^{0}, ..., \beta_{O}^{0}$ E.g., use 1/Q for each $\pi_{_{\!\!\alpha}}$ and the MLE of $\pmb{\beta}$ from a one class model. (Must perturb each one slightly, as if all π_a are equal and all $\boldsymbol{\beta}_{\alpha}$ are the same, the model will satisfy the FOC.) (1) Compute $\hat{F}(q|i) = \text{posterior class probabilities}$, using $\hat{\beta}^{0}$, $\hat{\delta}^{0}$ Reestimate each $\boldsymbol{\beta}_{\alpha}$ using a weighted log likelihood Maximize wrt $\mathbf{\beta}_{q} \sum_{i=1}^{N} \hat{F}_{iq} \sum_{t=1}^{T_{i}} \log f(y_{it} | \mathbf{x} \mathbf{\beta}_{t}, q)$ (2) Reestimate π_{a} by reestimating **\delta** $\hat{\pi}_{q} = (1/N) \Sigma_{i=1}^{N} \hat{F}(q|i)$ using old $\hat{\pi} a \beta d$ new Now, return to step 1. Iterate until convergence.

Zero Inflation?

Zero Inflation – ZIP Models

- Two regimes: (Recreation site visits)
 - Zero (with probability 1). (Never visit site)
 - Poisson with Pr(0) = exp[- β'x_i]. (Number of visits, including zero visits this season.)
- Unconditional:
 - Pr[0] = P(regime 0) + P(regime 1)*Pr[0|regime 1]
 - Pr[j | j >0] = P(regime 1)*Pr[j|regime 1]
- This is a "latent class model"

Hurdle Models

- Two decisions:
 - Whether or not to participate: y=0 or +.
 - If participate, how much. y|y>0
- One 'regime' individual always makes both decisions.
- Implies different models for zeros and positive values
 - Prob(0) = $1 F(\gamma' z)$, Prob(+) = $F(\gamma' z)$
 - Prob(y|+) = P(y)/[1 P(0)]

Health care utilisation in Europe: New evidence from the ECHP

Teresa Bago d'Uva^{a,b,*}, Andrew M. Jones^c

^a Department of Applied Economics (Room H13-09), Erasmus School of Economics, PB 1738, 3000 DR Rotterdam, The Netherlands

^b Netspar, The Netherlands

^c Department of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom

Consider individuals *i* observed T_i times, where T_i can take values up to 5 and 6 for Finland and Austria, and values up to 7 for the remaining eight countries considered here. Denote the observations of the dependent variable over the panel as $y_i = [y_{i1}, \ldots, y_{iT_i}]$, where y_{it} represents the number of visits in year *t*. We assumed that each individual *i* belongs to a latent class $j, j = 1, \ldots, C$, and that individuals are heterogeneous across classes. The probability of belonging to class *j* is π_{ij} , where $0 < \pi_{ij} < 1$ and $\sum_{j=1}^{C} \pi_{ij} = 1$. Conditional on the class that individual *i* belongs to, the number of visits in a given year *t*, y_{it} , is distributed according to $f_j(y_{it}|x_{it}, \theta_j)$ and the θ_j are vectors of parameters specific to each class. Assuming independence, conditional on the latent class *j*, the joint density of y_{it} over the observed periods is obtained from the product of T_i independent densities $f_j(y_{it}|x_{it}, \theta_j)$. The unconditional (on the latent class) joint density of $y_i = [y_{i1}, \ldots, y_{iT_i}]$ derives from averaging out the individual unobserved heterogeneity represented by the latent classes:

$$g(y_i|x_i; \pi_{i1}, \ldots, \pi_C; \theta_1, \ldots, \theta_C) = \sum_{j=1}^C \pi_{ij} \prod_{t=1}^{T_i} f_j(y_{it}|x_{it}, \theta_j),$$

(2)

where x_i is a vector of covariates, including a constant, and θ_j are vectors of parameters.

Following Bago d'Uva (2006), the class-specific density of the number of visits in a given year, $f_j(y_{it}|x_{it}, \theta_j)$, is defined as in the standard hurdle model, using a negative binomial as the parent distribution in both stages. Formally, for each component j, j = 1, ..., C, the probability of zero visits and the probability of observing y_{it} visits, given $y_{it} > 0$, are given by

$$\begin{split} f_{j}(0|x_{it};\theta_{j1}) &= P[Y_{it} = 0|x_{it},\theta_{j1}] = (\lambda_{j1,it}^{1-k} + 1)^{-\lambda_{j1,it}^{k}} \\ f_{j}(y_{it}|y_{it} > 0, x_{it};\theta_{j2}) &= \frac{\Gamma\left(y + (\lambda_{j2,it}^{k}/\alpha_{j})\right)\left(\alpha_{j}\lambda_{j2,it}^{1-k} + 1\right)^{-(\lambda_{j2,it}^{k}/\alpha_{j})}\left[1 + (\lambda_{j2,it}^{k-1}/\alpha_{j})\right]^{-y_{i,t}}}{\Gamma(\lambda_{j2,it}^{k}/\alpha_{j})\Gamma(y_{it} + 1)\left[1 - (\alpha_{j}\lambda_{j2,it}^{1-k} + 1)^{-(\lambda_{j2,it}^{k}/\alpha_{j})}\right]}, \end{split}$$

where $\lambda_{j1,it} = \exp(x'_{it}\beta_{j1}), \lambda_{j2,it} = \exp(x'_{it}\beta_{j2}), \alpha_j$ are overdispersion parameters and k is an an arbitrary constant (most commonly set equal to 1 or 0, corresponding to the NegBin1 and NegBin2 models, respectively; we use the NegBin2 model). The vectors of parameters driving the probability of seeking care, β_{j1} , and the number of visits, given that this is positive, β_{j2} , are allowed to be different which means that the determinants of care may have different effects on the two stages of the

[Topic 9-Latent Class Models] 32/66

A Latent Class Hurdle NB2 Model

- Analysis of ECHP panel data (1994-2001)
- Two class Latent Class Model
 - Typical in health economics applications
- Hurdle model for physician visits
 - Poisson hurdle for participation and negative binomial intensity given participation
 - Contrast to a negative binomial model

Country	GPs				Specialists			
	Low users		High users		Low users		High users	
	Estimated coefficient	Estimated elasticity	Estimated coefficient	Estimated elasticity	Estimated coefficient	Estimated elasticity	Estimated coefficient	Estimated elasticity
Austria	P(Y>0) -0.051 (-1.467)	-0.012	-0.109 (-0.872)	-0.005	0.191(3.743)	0.110	0.211 (3.556)	0.030
	E(Y Y>0)0.012 (0.693)	0.009	0.039 (2.167)	0.035	0.014 (0.210)	0.006	0.105 (3.858)	0.070
Belgium	P(Y>0) 0.035 (1.002)	0.008	0.292 (4.004)	0.010	0.054 (1.399)	0.036	0.079 (1.348)	0.014
	E(Y Y>0)- 0.052 (-3.125)	- 0.037	-0.055 (-4.030)	0.050	-0.112 (-1.611)	-0.052	-0.049 (-1.920)	-0.035
)enmark	P(Y>0) 0.083 (1.746)	0.033	0.261 (2.302)	0.023	0.053 (0.738)	0.045	0.079 (1.123)	0.034
	E(Y Y>0)0.042 (0.992)	0.021	-0.030 (-1.009)	-0.024	-0.053 (-0.434)	-0.022	-0.082 (-1.120)	-0.050
ïnland	P(Y>0) 0.054 (1.358)	0.024	-0.030 (-0.263)	-0.003	0.203 (3.525)	0.155	0.167 (1.909)	0.041
	E(Y Y>0)0.007 (0.237)	0.004	-0.048 (-1.706)	-0.037	-0.229 (-2.985)	-0.090	0.025 (0.487)	0.014
reece	P(Y>0) 0.012 (0.565)	0.006	0.015 (0.447)	0.004	0.184 (7.641)	0.128	0.148 (5.413)	0.060
	E(Y Y>0)-0.024 (-1.864)	-0.015	0.026 (1.967)	0.020	0.017 (0.878)	0.010	0.067 (4.192)	0.055
eland	P(Y>0) 0.164 (4.754)	0.064	0.026 (0.339)	0.003	0.172 (3.274)	0.152	0.313 (4.367)	0.144
	E(Y Y>0)- 0.095 (-3.865)	0.057	-0.049 (-2.528)	0.043	0.063 (0.738)	0.027	-0.091 (-1.838)	-0.057
aly	P(Y>0) -0.001 (-0.054)	0.000	0.116 (3.766)	0.011	0.136 (6.251)	0.105	0.190 (7.918)	0.063
	E(Y Y>0)- 0.044 (-4.944)	-0.031	-0.024 (-2.691)	-0.021	-0.084 (-2.787)	-0.035	0.000 (-0.026)	0.000
he Netherla	ndsP(Y>0) 0.082 (2.897)	0.035	0.094 (1.739)	0.009	0.071 (2.085)	0.055	-0.055 (-1.084)	-0.016
	E(Y Y>0)-0.037 (-1.484)	-0.019	-0.085 (-5.446)	- 0.068	-0.250 (-4.377)	-0.129	-0.008 (-0.299)	-0.006
ortugal	P(Y>0) 0.223 (10.888)	0.104	0.243 (8.070)	0.036	0.252 (9.190)	0.198	0.295 (9.454)	0.099
	E(Y Y>0) 0.027 (2.302)	0.018	0.001 (0.078)	0.001	-0.087 (-3.292)	-0.045	0.041 (2.340)	0.028
pain	P(Y>0) -0.015 (-0.997)	-0.006	0.037 (1.261)	0.005	0.112 (5.680)	0.080	0.138 (5.189)	0.042

Notes: t-statistics of coefficients in parentheses. Coefficients in bold are those significant at 5%. Elasticities are calculated for each individual and averaged over the sample. Elasticities in bold correspond to significant coefficients.

LC Poisson Regression for Doctor Visits

Latent CJ Dependent Log like Restricte Chi squar Significa Unbalance POISSON n Model fit	lass / Panel Pois t variable lihood function ed log likelihood red [20 d.f.] ance level ed panel has 72 regression model t with 3 latent	son Model DOCV -71088.400 -213471.860 284766.920 .000 93 individua	VIS 014 049 070 000 als				
DOCVIS	Coefficient	Standard Error	z	Prob. z >Z *	95% Cor Inte	nfidence erval	
Constant AGE HSAT INCOME	Model parameters 3.17505*** .00734*** 16554*** 49866*** Model parameters	for latent .03833 .00067 .00271 .04988 for latent	class 1 82.84 10.93 -61.11 -10.00 class 2	.0000 .0000 .0000 .0000 .0000	3.09993 .00603 17085 59642	3.25017 .00866 16023 40090	-
Constant AGE HSAT INCOME	.22803*** .02479*** 23278*** .08285 Model parameters	.07453 .00127 .00454 .06470 for latent	3.06 19.49 -51.32 1.28 class 3	.0022 .0000 .0000 .2003	.08195 .02230 24167 04396	.37410 .02728 22389 .20966	1
Constant AGE HSAT INCOME	1.79613*** .01418*** 17543*** 13569*** Estimated prior	.03743 .00063 .00243 .03602 probabilitis	47.99 22.48 -72.17 -3.77 as for cla	.0000 .0000 .0000 .0002 ass memb	1.72278 .01294 18020 20630	1.86949 .01542 17067 06509	- 1
ONE_1 FEMALE_1 MARRIE_1 EDUC_1 ONE_2	-1.17685*** .25804*** 20921** 02913 .28202*	.27028 .09562 .09901 .02113 .16781	-4.35 2.70 -2.11 -1.38 1.68	.0000 .0070 .0346 .1679 .0928	-1.70659 .07063 40326 07054 04688	64710 .44544 01516 .01228 .61093	
FEMALE_2 MARRIE_2 EDUC_2 ONE_3 FEMALE_3	71203*** .02506 .00599 0.0 . 0.0 .	.05922 .06549 .01290 (Fixed H (Fixed H	-12.02 .38 .46 Parameter) Parameter)	.0000 .7020 .6423	82809 10329 01929	59597 .15341 .03127	E
MARRIE_3 EDUC_3		(Fixed H	Parameter) Parameter)) 	+		-
Prior Class .099	class probabilit s 1 Class 2 543 .45860	ies at data Class 3 .44596	means for Class .0000	c LCM va 4 C)0	riables Class 5 .00000 +		•

s Models] 35/66

Is the LCM Finding High and Low Users?

Untitled 1 *
fx Insert Name:
<pre>SETPANEL ; Group = ID ; Pds = TI \$ CREATE ; t = ndx(id,1) \$ t = the within group index, 1,2,,Ti CREATE ; edbar = Group Mean(educ,pds=ti) \$ NAMELIST ; x=one,age,hsat,educ,married,hhkids \$ POISSON ; Lhs = docvis ; Rhs=x ; Lcm = female,edbar ; Par ; pts = 2 ; nanel\$</pre>
CREATE ; Prob1 = classp_i(id,1) ; Prob2 = 1-Prob1 \$ CREATE ; Class1= Prob1 > .5 ; Class2 = 1-Class1 ; Class = class1 + 2*class2 \$ DSTAT : For[class1 : Rhs = Docyis \$
····· , ···[····· , ···· ···· +

Is the LCM Finding High and Low Users? Apparently So.

Subsample	e analyzed for	this command is	s CLASS =	2					
Descripti	ive Statistics	for 1 variab	les						
Variable	Mean	Std.Dev.	Minimum	Maximum	Cases Missing				
DOCVIS	1.567855	2.421592	0.0	44.0	19188 0				
Subsample analyzed for this command is CLASS = 1 Descriptive Statistics for 1 variables									
Variable	Mean	Std.Dev.	Minimum	Maximum	Cases Missing				
DOCVIS	6.992996	8.614750	0.0	121.0	8138 0				

Heckman and Singer's RE Model

- Random Effects Model
- Random Constants with Discrete Distribution

(1) There are Q classes, unobservable to the analyst

(2) Class specific model: $f(y_{it} | \mathbf{x}_{it}, \mathbf{G}ass = q) = g(y_{it}, \mathbf{x}_{it}, \alpha_{q},)$

(3) Conditional class probabilities π_q

Common multinomial logit form for prior class probabilities

to constrain all probabilities to (0,1) and ensure $\sum_{q=1}^{Q} \pi_q = 1$;

multinomial logit form for class probabilities;

$$P(class=q|\boldsymbol{\delta}) = \pi_{q} = \frac{exp(\delta_{q})}{\sum_{j=1}^{J} exp(\delta_{q})}, \ \delta_{Q} = 0$$

3 Class Heckman-Singer Form

Latent C. Dependent Log like: Restricte Chi squar Significa	lass / t varia lihood ed log red [ance le	Panel Fols able function likelihood 20 d.f.] evel	son Model DOC -71303.62 -213471.86 284336.47 .00	VIS 317 Log 049 464 000	likelihoo	d function	-71088	. 40014
DOCVIS	Coef	ficient	Standard Error	z	Prob. z >Z *	95% Con Inte	fidence rval	
Constant AGE HSAT INCOME	Model 2	parameters 94456*** 01146*** 17724*** 21880***	for latent .02913 .00053 .00177 .03045	class 1 101.09 21.56 -100.23 -7.19	.0000 .0000 .0000 .0000	2.88747 .01042 18071 27848	3.00165 .01250 17377 15913	
Constant AGE HSAT INCOME	Model -	parameters 60562*** 01146*** 17724*** 21880***	for latent .03277 .00053 .00177 .03045	class 2 18.48 21.56 -100.23 -7.19	.0000 .0000 .0000 .0000	.54140 .01042 18071 27848	.66984 .01250 17377 15913	
Constant AGE HSAT INCOME	Model 1. -	parameters 94821*** 01146*** 17724*** 21880***	for latent .03015 .00053 .00177 .03045	class 3 64.61 21.56 -100.23 -7.19	.0000 .0000 .0000 .0000	1.88911 .01042 18071 27848	2.00731 .01250 17377 15913	
ONE_1 FEMALE_1 MARRIE_1 EDUC_1 ONE_2 FEMALE_2 MARRIE_2 EDUC_2 ONE_3	Estima -1. 	ated prior) 02248*** 24984*** 31995*** 03069 39483** 73345*** 11502* 00774 0 0	probabiliti .26972 .09529 .09893 .02108 .17044 .06013 .06663 .01310 (Fixed	es for c -3.79 2.62 -3.23 -1.46 2.32 -12.20 -1.73 Parameter	Lass membe .0002 .0087 .0012 .1455 .0205 .0205 .0000 .0843 .5546	ership -1.55112 .06307 51385 07200 .06077 85129 24562 01793	49383 .43662 12605 .01063 .72889 61560 .01558 .03341	
FEMALE_3 MARRIE_3 EDUC_3 EDUC_3 Prior Class .099	class s 1 900	0.0 . 0.0 . 0.0 . probabilit: Class 2 .46041	(Fixed (Fixed (Fixed (Fixed (Fixed ties at data Class 3 	Parameter Parameter Parameter 	c) c) c) c) c) cr LCM var s 4 Cl 000	+ riables .ass 5 00000		

odels] 39/66

Heckman and Singer Binary ChoiceModel – 3 Points

Latent Cl Dependent Log likel Sample is PROBIT (1	lass / Panel Probi t variable lihood function s 7 pds and 88 hormal) probabili	t Model HEALT -3442.772 7 individua ty model	ΉΥ 42 18			
HEALTHY	Coefficient	Standard Error	z	Prob. z >Z *	95% Cor Inte	nfidence erval
Constant AGE EDUC HHNINC MARRIED HHKIDS Constant	Model parameters 1.82601*** 03515*** .08945*** .49818*** .03473 .18370*** Model parameters .50135	for latent .32656 .00423 .01750 .16176 .08490 .06214 for latent .31077	class 1 5.59 -8.31 5.11 3.08 .41 2.96 class 2 1.61	.0000 .0000 .0000 .0021 .6825 .0031 .1067	1.18595 04344 .05515 .18113 13167 .06190 10775	2.46606 02687 .12375 .81523 .20113 .30550 1.11045
AGE EDUC HHNINC MARRIED HHKIDS	03515*** .08945*** .49818*** .03473 .18370*** Model parameters	.00423 .01750 .16176 .08490 .06214 for latent	-8.31 5.11 3.08 .41 2.96 class 3	.0000 .0000 .0021 .6825 .0031	04344 .05515 .18113 13167 .06190	02687 .12375 .81523 .20113 .30550
Constant AGE EDUC HHNINC MARRIED HHKIDS	75636** 03515*** .08945*** .49818*** .03473 .18370***	.31567 .00423 .01750 .16176 .08490 .06214	-2.40 -8.31 5.11 3.08 .41 2.96	.0166 .0000 .0000 .0021 .6825 .0031	-1.37506 04344 .05515 .18113 13167 .06190	13767 02687 .12375 .81523 .20113 .30550
Class1Pr Class2Pr Class3Pr Note: ***	<pre>Lestimated prior p .31094*** .45267*** .23639*** *, **, * ==> Sign</pre>	03386 03032 03017 03017 03017	s for cl. 9.18 14.93 7.84 1%, 5%,	ass memb .0000 .0000 .0000 .0000 10% lev	ership .24458 .39324 .17727 el.	.37730 .51209 .29552

Heckman/Singer vs. REM

							. — —
Random Eff	ects Binary Prol	oit Model					
			ð•				
 HEALTHY	Coefficient	Standard Error	z	Prob. $ z > Z^*$	95% Con: Inte:	fidence rval	
Constant (Other coe	.33609 efficients omitte	.29252 ed)	1.15	.2506	23723	.90941	
Rho	.52565***	.02025	25.96	.0000	.48596	.56534	
Rho = $\sigma^2/(Mean = .33)$	1+s2) so σ^2 = rh 3609, Variance =	o/(1-rho) = 1 1.10814	1.10814.				
For Heckma	an and Singer mod	del,					
3 points	a1,a2,a3 :	= 1.82601, .5	50135, -	.75636			
3 probabil	lities p1,p2,p3 :	= .31094, .4	15267 ,	.23639			
Mean = .61	L593 variance =	90642					

Modeling Obesity with a Latent Class Model

Mark Harris

Department of Economics, Curtin University

Bruce Hollingsworth

Department of Economics, Lancaster University William Greene

Stern School of Business, New York University Pushkar Maitra

Department of Economics, Monash University

Two Latent Classes: Approximately Half of European Individuals

Science	AAA S.ORG	FEEDBACK	HELP LIE	RARIAN	IS		Science Maga	zine
MAAAS	NEWS	SCIENCE J	OURNALS	CARE	ERS	BLOGS &	COMMUNITI	ES I
Science The Wo	orld's Lead	ling Journal o	of Original S	cientifi	c Rese	arch, Globa	l News, and (Comme
Science Home Current	Issue Pr	evious Issues	Science Ex	press	Scien	ce Products	My Science	Abou
Published Online April 12 20 Science 11 May 2007: Vol. 316 no. 5826 pp. 889-89 DOI: 10.1126/science.11416	107 94 634					< Pre	v Table of Con	tents N

REPORT

A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity

An Ordered Probit Approach

A Latent Regression Model for "True BMI"

BMI^{*} =
$$\beta' \mathbf{x} + \varepsilon, \varepsilon \sim N[0,\sigma^2], \sigma^2 = 1$$

"True BMI" = a proxy for weight is unobserved

Observation Mechanism for Weight Type

WT	= 0 if	<i>BMI</i> * <u><</u> 0	Normal
	1 if	0 < <i>BMI</i> * <u><</u> µ	Overweight
	2 if	μ < <i>ΒΜΙ</i> *	Obese

Latent Class Modeling

- Several 'types' or 'classes. Obesity be due to genetic reasons (the FTO gene) or lifestyle factors
- Distinct sets of individuals may have differing reactions to various policy tools and/or characteristics
- The observer does not know from the data which class an individual is in.
- Suggests a latent class approach for health outcomes (Deb and Trivedi, 2002, and Bago d'Uva, 2005)

Latent Class Application

- Two class model (considering FTO gene):
 - More classes make class interpretations much more difficult
 - Parametric models proliferate parameters
- Two classes allow us to correlate the unobservables driving class membership and observed weight outcomes.
- Theory for more than two classes not yet developed.

Correlation of Unobservables in Class Membership and BMI Equations

Class Membership: $C^* = \delta' \mathbf{z}_i + u_i$, $C = 1[C^* > 0]$ (Probit) BMI|Class=0,1 BMI* = $\beta'_c \mathbf{x}_i + \varepsilon_{c,i}$, BMI group = OP[BMI*, $\mu(\boldsymbol{\alpha}'_c \mathbf{w}_i)$]

Endogeneity:
$$\begin{pmatrix} u_i \\ \varepsilon_{c,i} \end{pmatrix} \sim N \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{pmatrix} 1 & \rho_c \\ \rho_c & 1 \end{bmatrix}$$

Bivariate Ordered Probit (one variable is binary).

Full information maximum likelihood.

Outcome Probabilities

- Class 0 dominated by normal and overweight probabilities 'normal weight' class
- Class 1 dominated by probabilities at top end of the scale 'non-normal weight'
- Unobservables for weight class membership, negatively correlated with those determining weight levels:

Male	Sample	Class 0	Class 1
Normal	0.315	0.306	0.009
Overweight	0.439	0.180	0.258
Obese	0.246	0.001	0.245
ρ		-0.018	0.036
Female	Sample	Class 0	Class 1
NI I	<u> </u>		
Normal	0.439	0.318	0.121
Normal Overweight	0.439 0.298	0.318 0.084	0.121 0.214
Normal Overweight Obese	0.439 0.298 0.264	0.318 0.084 0.002	0.121 0.214 0.261

Classification (Latent Probit) Model

	Male	Female
Constant	-2.233**	-2.758**
US born	0.532**	0.527**
Mother/Father born O/S	0.009	0.269**
Age	0.877**	1.153**
Age ²	-0.086**	-0.106**
White	-0.178**	-0.340**
Black	-0.094	0.350**

Inflated Responses in Self-Assessed Health

Mark Harris Department of Economics, Curtin University Bruce Hollingsworth Department of Economics, Lancaster University William Greene Stern School of Business, New York University

SAH vs. Objective Health Measures

Favorable SAH categories seem artificially high.

- 60% of Australians are either overweight or obese (Dunstan et. al, 2001)
- 1 in 4 Australians has either diabetes or a condition of impaired glucose metabolism
- Over 50% of the population has elevated cholesterol
- Over 50% has at least 1 of the "deadly quartet" of health conditions (diabetes, obesity, high blood pressure, high cholestrol)
- Nearly 4 out of 5 Australians have 1 or more long term health conditions (National Health Survey, Australian Bureau of Statistics 2006)
- Australia ranked #1 in terms of obesity rates

Similar results appear to appear for other countries

A Two Class Latent Class Model

- Mis-reporters choose either good or very good
- The response is determined by a probit model

$$m^* = x'_m \beta_m + \varepsilon_m$$

- True-reporters can choose any outcome
- This actual response will be determined by a further latent variable equation, along the lines of the previous Ordered Probit set-up...

$$y^* = x'_{y}\beta_{y} + \varepsilon_{y}$$

Observed Mixture of Two Classes

For true-reporters the respective probabilities for each outcome are simply the ordered probit ones, weighted by the probability of being a truthful respondent (0=poor to 4=excellent):

$$\Pr(true, y) = \begin{cases} 0 = \Phi(x'_r \beta_r) \times \left[\Phi(-x'_y \beta_y) \right] \\ 1 = \Phi(x'_r \beta_r) \times \left[\Phi(\mu_1 - x'_y \beta_y) - \Phi(-x'_y \beta_y) \right] \\ 2 = \Phi(x'_r \beta_r) \times \left[\Phi(\mu_2 - x'_y \beta_y) - \Phi(\mu_1 - x'_y \beta_y) \right] \\ 3 = \Phi(x'_r \beta_r) \times \left[\Phi(\mu_3 - x'_y \beta_y) - \Phi(\mu_2 - x'_y \beta_y) \right] \\ 4 = \Phi(x'_r \beta_r) \times \left[1 - \Phi(\mu_3 - x'_y \beta_y) \right] \end{cases}$$

Pr(true,y) = Pr(true) * Pr(y | true)

 Putting all these elements together we have a latent class model:

$$\Pr(y) = \begin{cases} 0 = \Phi(x'_r\beta_r) \times \left[\Phi(-x'_y\beta_y)\right] \\ 1 = \Phi(x'_r\beta_r) \times \left[\Phi(\mu_1 - x'_y\beta_y) - \Phi(-x'_y\beta_y)\right] \\ 2 = \Phi(x'_r\beta_r) \times \left[\Phi(\mu_2 - x'_y\beta_y) - \Phi(\mu_1 - x'_y\beta_y)\right] + \Phi(-x'_r\beta_r) \Phi(-x'_m\beta_m) \\ 3 = \Phi(x'_r\beta_r) \times \left[\Phi(\mu_3 - x'_y\beta_y) - \Phi(\mu_2 - x'_y\beta_y)\right] + \Phi(-x'_r\beta_r) \Phi(x'_m\beta_m) \\ 4 = \Phi(x'_r\beta_r) \times \left[1 - \Phi(\mu_3 - x'_y\beta_y)\right] \end{cases}$$

$$\Pr(y) = \Pr(true) \Pr(y \mid true) + \Pr(misreporter) \Pr(y \mid misreporter)$$

 With nonzero correlations, probabilities are now functions of bivariate normal cdf's:

$$\begin{cases} 0 = \Phi_{2} \left(x_{r}^{\prime} \beta_{r}, -x_{y}^{\prime} \beta_{y}^{\prime}; -\rho_{ry} \right) \\ 1 = \Phi_{2} \left(x_{r}^{\prime} \beta_{r}, \mu_{1} - x_{y}^{\prime} \beta_{y}^{\prime}; -\rho_{ry} \right) - \Phi_{2} \left(x_{r}^{\prime} \beta_{r}, -x_{y}^{\prime} \beta_{y}^{\prime}; -\rho_{ry} \right) \\ 2 = \left[\Phi_{2} \left(x_{r}^{\prime} \beta_{r}, \mu_{2} - x_{y}^{\prime} \beta_{y}^{\prime}; -\rho_{ry} \right) - \Phi_{2} \left(x_{r}^{\prime} \beta_{r}, \mu_{1} - x_{y}^{\prime} \beta_{y}^{\prime}; -\rho_{ry} \right) \right] + \Phi_{2} \left(-x_{r}^{\prime} \beta_{r}, -x_{m}^{\prime} \beta_{m}^{\prime}; \rho_{m} \right) \\ 3 = \left[\Phi_{2} \left(x_{r}^{\prime} \beta_{r}, \mu_{3} - x_{y}^{\prime} \beta_{y}^{\prime}; -\rho_{ry} \right) - \Phi_{2} \left(x_{r}^{\prime} \beta_{r}, \mu_{2} - x_{y}^{\prime} \beta_{y}^{\prime}; -\rho_{ry} \right) \right] + \Phi_{2} \left(-x_{r}^{\prime} \beta_{r}, x_{m}^{\prime} \beta_{m}^{\prime}; -\rho_{rm} \right) \\ 4 = \Phi_{2} \left(x_{r}^{\prime} \beta_{r}, x_{y}^{\prime} \beta_{y} - \mu_{3}^{\prime}; \rho_{ry} \right) \end{cases}$$

Again inflates the good/very good categories

General Result

HEALTH ECONOMICS Health Econ. 22: 554–567 (2013) Published online 20 April 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/hec.2824

INVESTIGATING ATTRIBUTE NON-ATTENDANCE AND ITS CONSEQUENCES IN CHOICE EXPERIMENTS WITH LATENT CLASS MODELS

MYLENE LAGARDE,*

Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK

Second, this article contributes to the study of heuristics in DCEs in the health literature. As underlined before, the majority of DCE studies in health have identified dominant preferences, which constitute special cases of ANA. This paper not only describes and accounts for dominant preferences, but it encompasses all other ANA response strategies. Doing that, it adds to a very limited literature in health, where ANA has been mostly ignored despite its critical importance and potential relevance. One qualitative study of the responses given by 18 respondents in a DCE exploring preferences for cancer screening identified that only five respondents seemed to consider all attributes, whereas the rest revealed that they employed various attribute non-attendance strategies (Ryan *et al.*, 2009). In a recent study, Hole (2011b) used a two-step process to account for endogenous ANA of respondents and found that '*a substantial share of the respondents ignored one or more attributes when making their choices*'. Although his approach overcame the problems of LCMs mentioned above, it did not present a precise description of the various ANA rules employed by respondents. In contrast with Hole (2011b), which is, to date, the unique quantitative study of ANA in health DCEs, this paper provides a full description of all the response patterns used by respondents in the DCE, as well as their frequency.

... only five respondents seemed to consider all attributes, whereas the rest revealed that they employed various attribute nonattendance strategies

. . .

The 2^K model

- The analyst believes some attributes are ignored. There is no definitive indicator.
- Classes distinguished by which attributes are ignored
- A latent class model applies. For K attributes there are 2^K candidate coefficient vectors

Latent Class Modeling

A Latent Class Model

000000000

			Free Flow	Slowed	Start / Stop
			0	0	0
			β_4	0	0
	Toll Cost	Pupping Cost]	0	β_5	0
			0	0	β_6
[P_2	p ₃ _	β_4	β_5	0
			β_4	0	β_6
			0	β_5	β ₆
			β4	β_5	β ₆

2.1. Using latent class models to account for attribute non-attendance

Through their econometric specification, LCMs provide an alternative approach to models such as multinomial logit and mixed logit to accommodate response heterogeneity. In LCMs, it is assumed that the population of respondents can be divided into a set number (Q) of classes, or groups of individuals, who will differ in their preferences. In other words, although the groups are different from each other (i.e. they are defined by different parameter vectors), all members of a same group share the same parameters. As the analyst ignores which observation is in which class, the model assumes that individuals belong to a certain group up to a probability. The logit choice probability function of choosing one particular alternative from J alternatives for an individual i belonging to a specific class q can be then written as

$$Pr (\mathbf{y}_{it} = 1 | class q) = \mathbf{P}_{it|}\mathbf{q} = \frac{e^{\vec{X}_{itj}\beta_q}}{\sum_{\mathbf{j}=1}^{J} e^{\vec{X}_{itj}\beta_q}}$$
(1)

The probability that an individual *i* belongs to class q (out of a total of Q classes) is given by

$$H_{iq} = \frac{e^{\theta_q}}{\sum_{q=1}^{Q} e^{\theta_q}}, q = 1, \dots, Q \text{ and } \theta_Q = 0$$
(2)

The data used in this study come from a DCE designed to elicit preferences regarding the introduction of new guidelines to managing malaria in pregnancy in Ghana (Lagarde *et al.*, 2011). The choice experiment was designed after a series of focus group discussions and in-depth interviews with healthcare providers and a pilot study.

Six attributes describing the conditions of malaria case management by ante-natal care were used (see Table I): the type of treatment approach to managing malaria in pregnancy, the drugs prescribed to pregnant women, the workload, the potential monthly bonus included in the policy and the likely health outcomes for mothers (incidence of severe anaemia) and babies (incidence of low birth weight). An orthogonal D-efficient experimental design of 16 choice sets was created using the macros developed for SAS (Kuhfeld, 2009). Each choice set consisted of two generic alternatives representing two policies that could be introduced to manage malaria in pregnancy (see Figure 1).

... a discrete choice experiment designed to elicit preferences regarding the introduction of new guidelines to managing malaria in pregnancy in Ghana ...

Table I. Attributes and levels in the choice experiment	
Attribute	Levels
The type of approach to managing malaria in pregnancy	Preventive approachCurative approach (test and treat if parasite positive)
The anti-malarial drugs you have to prescribe to pregnant women	SP (Fansidar)Artesunate-amodiaquine (AS–AQ)
Prevalence of anaemia for mothers treated with protocol	■ 1% ■ 15%
Prevalence of low birth weight among infants of mothers treated with the protocol	■ 10% ■ 15%
Staffing level for the ANC clinic	Under-staffedAdequately staffed
The salary supplement included in the protocol	• GH. C10 • GH. C20

Model	Attribute assumed to have been ignored in the second class	Average class membership (%)
Model 1	Low birth weight ignored	7.99
Model 2	Anaemia ignored	17.24
Model 3	Bonus ignored	21.75
Model 4	Workload ignored	46.92
Model 5	Drug ignored	62.57
Model 6	Treatment ignored	66.76

Table II. Average proportion of respondents who ignored one attribute