

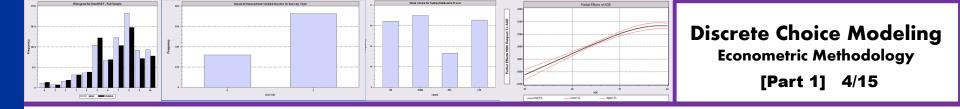
Discrete Choice Modeling

- 0 Introduction
- **1** Summary
- 2 Binary Choice
- 3 Panel Data
- 4 Bivariate Probit
- 5 Ordered Choice
- 6 Count Data
- 7 Multinomial Choice
- 8 Nested Logit
- 9 Heterogeneity
- 10 Latent Class
- 11 Mixed Logit
- **12 Stated Preference**
- 13 Hybrid Choice

William Greene Stern School of Business New York University

Objectives in Model Building

- **Specification**: guided by underlying theory
 - Modeling framework
 - Functional forms
- **Estimation**: coefficients, partial effects, model implications
- Statistical inference: hypothesis testing
- **Prediction**: individual and aggregate
- **Model assessment** (fit, adequacy) and evaluation
- Model extensions
 - Interdependencies, multiple part models
 - Heterogeneity
 - Endogeneity and "causal inference"
- **Exploration**: Estimation and inference methods

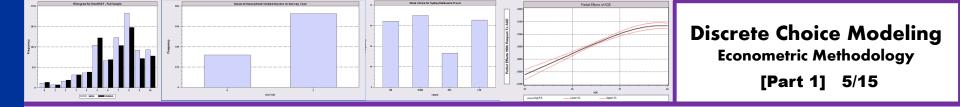

Regression Basics

The "MODEL"

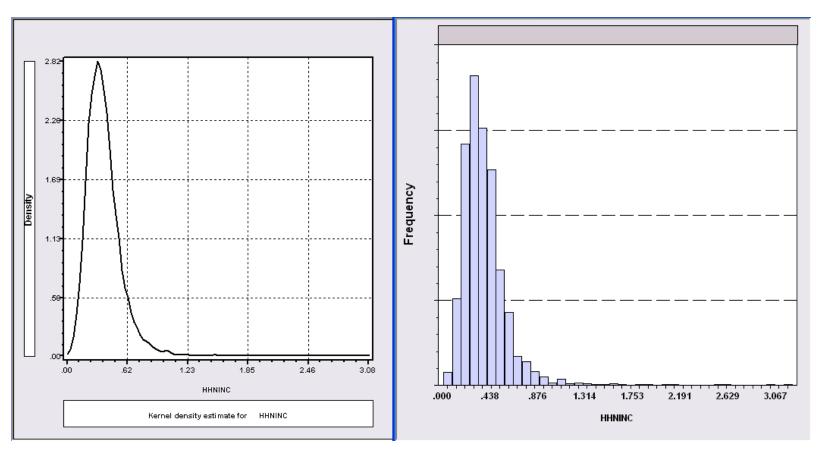
Modeling the conditional mean – Regression

Other features of interest

- Modeling quantiles
- Conditional variances or covariances
- Modeling probabilities for discrete choice
- Modeling other features of the population

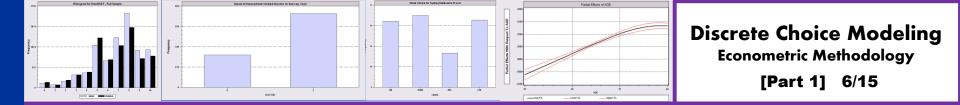

Application: Health Care Usage

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods

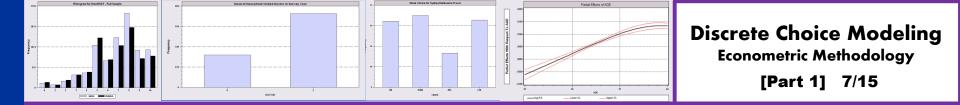

Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel with 7,293 individuals. They can be used for regression, count models, binary choice, ordered choice, and bivariate binary choice. This is a large data set. There are altogether 27,326 observations. The number of observations ranges from 1 to 7. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987). (Downloaded from the JAE Archive)

Variables in the file are

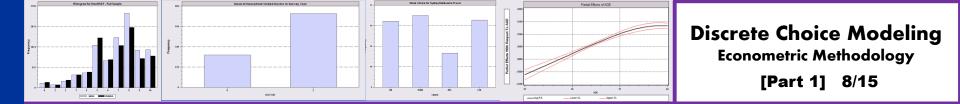
DOCTOR	= 1(Number of doctor visits > 0)
HOSPITAL	= 1(Number of hospital visits > 0)
HSAT	= health satisfaction, coded 0 (low) - 10 (high)
DOCVIS	= number of doctor visits in last three months
HOSPVIS	= number of hospital visits in last calendar year
PUBLIC	= insured in public health insurance = 1; otherwise = 0
ADDON	= insured by add-on insurance = 1; otherswise = 0
HHNINC	= household nominal monthly net income in German marks / 10000.
	(4 observations with income=0 were dropped)
HHKIDS	= children under age 16 in the household = 1; otherwise = 0
EDUC	= years of schooling
AGE	= age in years
MARRIED	= marital status



Household Income

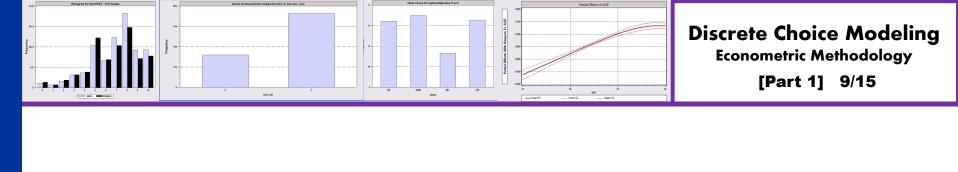

Kernel Density Estimator

Histogram

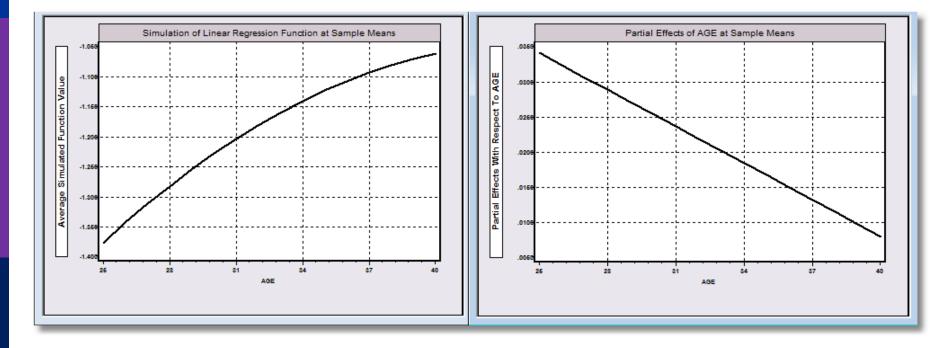

Regression – Income on Education

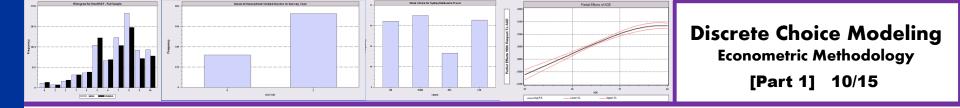
Ordinary	least squares regre	ession			
- LHS=LOGINC	Mean		92882		
	Standard deviation	=	. 47948	1	
	Number of observs.	=	887	,	
Model size Parameters		=	2	1	
	Degrees of freedom	=	885	i i i i i i i i i i i i i i i i i i i	
Residuals	Sum of squares	=	183.19359)	
	Standard error of e	2 =	. 45497	,	
Fit	R-squared	=	.10064	:	
	Adjusted R-squared	=	.09962	!	
Model test	F[1, 885] (prob	o) =	99.0(.0000)		
Diagnostic	Log likelihood	=	-559.06527	,	
	Restricted(b=0)	=	-606.10609		
	Chi-sq [1] (prob	o) =	94.1(.0000)		
Info criter.	LogAmemiya Prd. Cri	:. =	-1.57279		
+					
Variable Co	efficient Standa	d Erro	r b/St.Er.	P[Z >z]	Mean of X
+					
Constant	-1.71604*** .(08057	-21.299	.0000	
•			9.951		
+					
Note: ***, *:	*, * = Significance	at 1%,	5%, 10% lev	el.	
-		-			

Specification and Functional Form

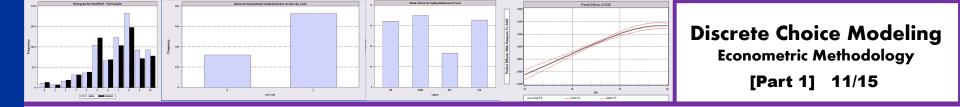

Ordinary	least squares regres	sion			Log of Household Income vs. Education by Gender
LHS=LOGINC	Mean	=	92882	-27-	Log of Household Income vs. Education by Gender
	Standard deviation	=	. 47948		
	Number of observs.	=	887	41-	
Model size	Parameters	=	3	E .	
	Degrees of freedom	=	884	<u> </u>	
Residuals	Sum of squares	=	183.00347	р	
	Standard error of e	=	. 45499	P	
Fit	R-squared	=	.10157		
	Adjusted R-squared	=	.09954	85-	
Model test	F[2, 884] (prob)	=	50.0(.0000)		
Diagnostic	Log likelihood	=	-558.60477	99	
	Restricted(b=0)	=	-606.10609	11	12 13 14 15 16 17 18 19 20 ED
	Chi-sq [2] (prob)	=	95.0(.0000)	-	— HHF HHM
Info criter.	LogAmemiya Prd. Crt.	=	-1.57158		
Variable Co	efficient Standard	Erro	or b/St.Er. P	?[Z >z]	Mean of X
•	-1.68303*** .08	 763	-19.207	.0000	
EDUC	.06993*** .00	746	9.375	.0000	10.9707
FEMALE	03065 .03	199	958	.3379	. 42277

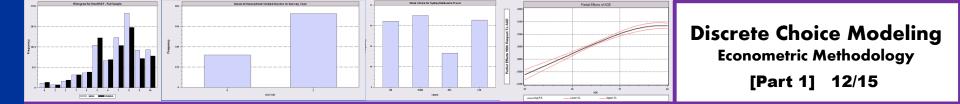
Interesting Partial Effects


Ordinary	least squares regress	sion			
LHS=LOGINC	Mean	=	92882	2	
	Standard deviation	=	. 47948	}	
	Number of observs.	=	887	,	
Model size	Parameters	=	5	i	
	Degrees of freedom	=	882	2	
Residuals	Sum of squares		171.87964		
	Standard error of e	=	.44145		
Fit	R-squared	=	.15618	$\partial E[$	Income [x]
	Adjusted R-squared	=	.15235	;	$\frac{Income \mathbf{x}]}{\partial Age} =$
Model test	F[4, 882] (prob)	=	40.8(.0000)		<i>OAge</i>
	Log likelihood				
_	Restricted(b=0)				
	Chi-sq [4] (prob)	=	150.6(.0000)		
	LogAmemiya Prd. Crt.	=			
Variable Coe	efficient Standard	Erro	r b/St.Er.	P[Z >z]	Mean of X
•	-5.26676*** .564		-9.322	.0000	
EDUC	.06469*** .00'	730	8.860	.0000	10.9707
FEMALE	03683 .03	134	-1.175	.2399	. 42277
			6.777		50.4780
		023	-7.014	.0000	2620.79

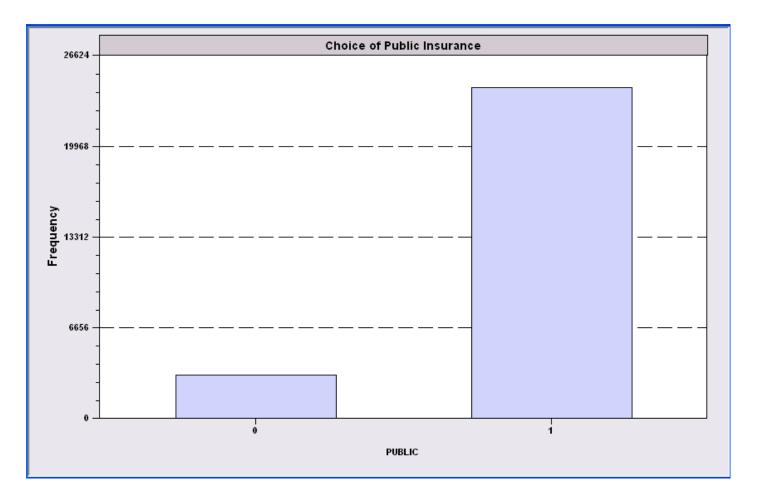

 $\frac{|\mathbf{x}]}{2} = \beta_{Age} + 2 \ Age \ \beta_{Age^2}$

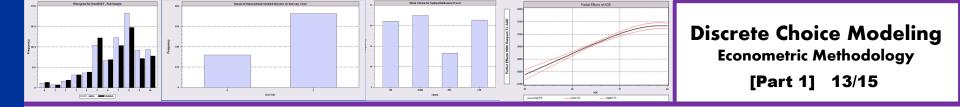
Function: Log Income | Age


Partial Effect wrt Age

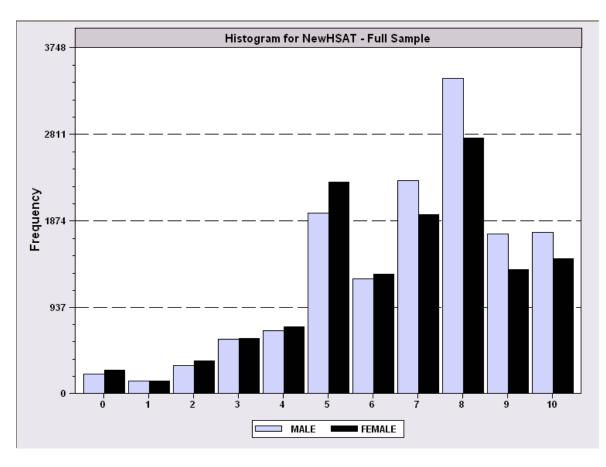

Modeling Categorical Variables

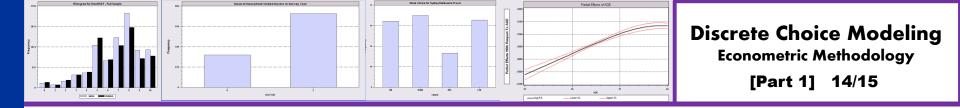
- Theoretical foundations
- Econometric methodology
 - Models
 - Statistical bases
 - Econometric methods
- Applications

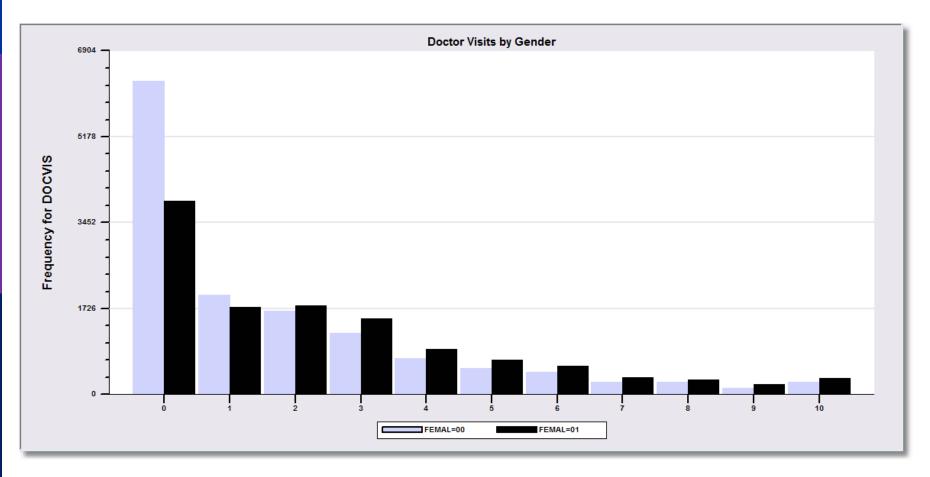


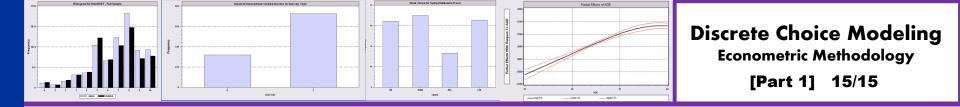

Categorical Variables

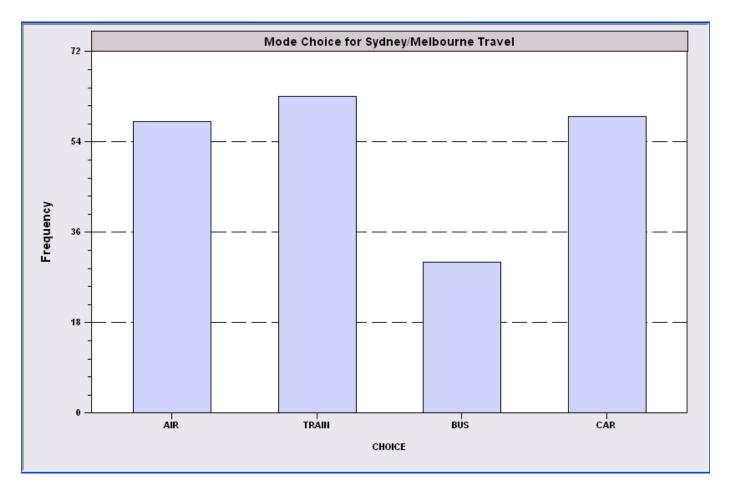
- Observed outcomes
 - Inherently discrete: number of occurrences, e.g., family size
 - Multinomial: The observed outcome indexes a set of unordered labeled choices.
 - Implicitly continuous: The observed data are discrete by construction, e.g., revealed preferences; our main subject
 - Discrete, cardinal: Counts of occurrences
- Implications
 - For model building
 - For analysis and prediction of behavior




Simple Binary Choice: Insurance




Ordered Outcome Self Reported Health Satisfaction



Counts of Occurrences

Multinomial Unordered Choice

