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Discrete Parameter Heterogeneity

Latent Classes

q i

Discrete unobservable partition of the population 

             into Q classes

Discrete approximation to a continuous distribution

             of parameters across individuals
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Latent Class Probabilities

 Ambiguous – Classical Bayesian model?
 The randomness of the class assignment is from the point of view 

of the observer, not a natural process governed by a discrete 
distribution.

 Equivalent to random parameters models with 
discrete parameter variation
 Using nested logits, etc. does not change this

 Precisely analogous to continuous ‘random parameter’ models

 Not always equivalent – zero inflation models – in 
which classes have completely different models
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A Latent Class MNL Model
 Within a “class”

 Class sorting is probabilistic (to the analyst) determined 

by individual characteristics
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Two Interpretations of Latent Classes
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Estimates from the LCM

 Taste parameters within each class q

 Parameters of the class probability model, θq

 For each person:

 Posterior estimates of the class they are in q|i

 Posterior estimates of their taste parameters E[q|i]

 Posterior estimates of their behavioral parameters, 

elasticities, marginal effects, etc.
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Using the Latent Class Model
Computing posterior (individual specific) class probabilities

Computing posterior (individual specific) taste parameters

ˆ ˆ
ˆ ˆ ˆ vs. 

ˆ ˆ

ˆ

ˆ


i|q iq

q|i q|i iqQ

i|q iqq=1

iq

i|q

P F
F =   (posterior)    Note F F

P H

F = estimated prior class probability 

P = estimated choice probability for 

       the choice made, given the class

ˆ ˆˆ  
Q
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Application: Shoe Brand Choice
 Simulated Data: Stated Choice, 400 respondents, 8 choice 

situations, 3,200 observations

 3 choice/attributes + NONE

 Fashion = High / Low

 Quality   = High / Low

 Price      = 25/50/75,100 coded 1,2,3,4

 Heterogeneity: Sex (Male=1), Age (<25, 25-39, 40+)

 Underlying data generated by a 3 class latent class 

process (100, 200, 100 in classes)

 Thanks to www.statisticalinnovations.com (Latent Gold)
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Degenerate Branches

Choice Situation

Opt Out Choose Brand

None Brand2Brand1 Brand3

Purchase

Brand

Shoe Choice

1 2 3 Brand

0 None

U(Brand j)  =  β Fashion + β Quality + β Price + ε

U(None)     =  β                                                 + 
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One Class MNL Estimates

-----------------------------------------------------------

Discrete choice (multinomial logit) model

Dependent variable               Choice

Log likelihood function     -4158.50286

Estimation based on N =   3200, K =   4

R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj

Constants only  -4391.1804  .0530 .0510

Response data are given as ind. choices

Number of obs.=  3200, skipped    0 obs

--------+--------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]

--------+--------------------------------------------------

FASH|1|    1.47890***       .06777       21.823   .0000

QUAL|1|    1.01373***       .06445       15.730   .0000

PRICE|1|   -11.8023***       .80406      -14.678   .0000

ASC4|1|     .03679          .07176         .513   .6082

--------+--------------------------------------------------
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Application: Brand Choice

True underlying model is a three class LCM

NLOGIT 

; Lhs=choice

; Choices=Brand1,Brand2,Brand3,None

; Rhs = Fash,Qual,Price,ASC4

; LCM=Male,Age25,Age39 

; Pts=3 

; Pds=8 

; Parameters (Save posterior results) $
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Three Class LCM
Normal exit from iterations. Exit status=0.

-----------------------------------------------------------

Latent Class Logit Model

Dependent variable               CHOICE

Log likelihood function     -3649.13245

Restricted log likelihood   -4436.14196

Chi squared [  20 d.f.]      1574.01902

Significance level               .00000

McFadden Pseudo R-squared      .1774085

Estimation based on N =   3200, K =  20

R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj

No coefficients -4436.1420  .1774 .1757

Constants only  -4391.1804  .1690 .1673

At start values -4158.5428  .1225 .1207

Response data are given as ind. choices

Number of latent classes =            3

Average Class Probabilities

.506  .239  .256

LCM model with panel has     400 groups

Fixed number of obsrvs./group=        8

Number of obs.=  3200, skipped    0 obs

--------+--------------------------------------------------

LogL for one class MNL = -4158.503

Based on the LR statistic it would 

seem unambiguous to reject the one 

class model. The degrees of freedom 

for the test are uncertain, however.
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Estimated LCM: Utilities
--------+--------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]

--------+--------------------------------------------------

|Utility parameters in latent class -->> 1

FASH|1|    3.02570***       .14549       20.796   .0000

QUAL|1|    -.08782          .12305        -.714   .4754

PRICE|1|   -9.69638***      1.41267       -6.864   .0000

ASC4|1|    1.28999***       .14632        8.816   .0000

|Utility parameters in latent class -->> 2

FASH|2|    1.19722***       .16169        7.404   .0000

QUAL|2|    1.11575***       .16356        6.821   .0000

PRICE|2|   -13.9345***      1.93541       -7.200   .0000

ASC4|2|    -.43138**        .18514       -2.330   .0198

|Utility parameters in latent class -->> 3

FASH|3|    -.17168          .16725       -1.026   .3047

QUAL|3|    2.71881***       .17907       15.183   .0000

PRICE|3|   -8.96483***      1.93400       -4.635   .0000

ASC4|3|     .18639          .18412        1.012   .3114
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Estimated LCM: Class Probability Model

--------+--------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]

--------+--------------------------------------------------

|This is THETA(01) in class probability model.

Constant|    -.90345**        .37612       -2.402   .0163

_MALE|1|     .64183*         .36245        1.771   .0766

_AGE25|1|    2.13321***       .32096        6.646   .0000

_AGE39|1|     .72630*         .43511        1.669   .0951

|This is THETA(02) in class probability model.

Constant|     .37636          .34812        1.081   .2796

_MALE|2|   -2.76536***       .69325       -3.989   .0001

_AGE25|2|    -.11946          .54936        -.217   .8279

_AGE39|2|    1.97657***       .71684        2.757   .0058

|This is THETA(03) in class probability model.

Constant|       .000        ......(Fixed Parameter)......

_MALE|3|       .000        ......(Fixed Parameter)......

_AGE25|3|       .000        ......(Fixed Parameter)......

_AGE39|3|       .000        ......(Fixed Parameter)......

--------+--------------------------------------------------
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Estimated LCM: 

Conditional Parameter Estimates
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Estimated LCM: Conditional (Posterior) 

Class Probabilities
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Average Estimated Class Probabilities

MATRIX ; list ; 1/400 * classp_i'1$

Matrix Result   has  3 rows and  1 columns.
1

+--------------

1|     .50555

2|     .23853

3|     .25593

This is how the data were simulated.  Class 
probabilities are .5, .25, .25.  The model ‘worked.’
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Elasticities
+---------------------------------------------------+

| Elasticity             averaged over observations.|

| Effects on probabilities of all choices in model: |

| * = Direct Elasticity effect of the attribute.    |

| Attribute is PRICE    in choice BRAND1            |

|                                  Mean    St.Dev |

| *     Choice=BRAND1            -.8010     .3381   |

|       Choice=BRAND2             .2732     .2994   |

|       Choice=BRAND3             .2484     .2641   |

|       Choice=NONE               .2193     .2317   |

+---------------------------------------------------+

| Attribute is PRICE    in choice BRAND2            |

|       Choice=BRAND1             .3106     .2123   |

| *     Choice=BRAND2           -1.1481     .4885   |

|       Choice=BRAND3             .2836     .2034   |

|       Choice=NONE               .2682     .1848   |

+---------------------------------------------------+

| Attribute is PRICE    in choice BRAND3            |

|       Choice=BRAND1             .3145     .2217   |

|       Choice=BRAND2             .3436     .2991   |

| *     Choice=BRAND3            -.6744     .3676   |

|       Choice=NONE               .3019     .2187   |

+---------------------------------------------------+

Elasticities are computed by 

averaging individual elasticities

computed at the expected 

(posterior) parameter vector.

This is an unlabeled choice 

experiment.  It is not possible to 

attach any significance to the fact 

that the elasticity is different for 

Brand1 and Brand 2 or Brand 3.
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Application: Long Distance Drivers’ 

Preference for Road Environments

 New Zealand survey, 2000, 274 drivers

 Mixed revealed and stated choice experiment

 4 Alternatives in choice set
 The current road the respondent is/has been using;

 A hypothetical 2-lane road;

 A hypothetical 4-lane road with no median;

 A hypothetical 4-lane road with a wide grass median.

 16 stated choice situations for each with 2 choice profiles
 choices involving all 4 choices

 choices involving only the last 3 (hypothetical)

Hensher and Greene, A Latent Class Model for Discrete Choice Analysis: 
Contrasts with Mixed Logit – Transportation Research B, 2003
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Attributes

 Time on the open road which is free flow (in 
minutes);

 Time on the open road which is slowed by other 
traffic (in minutes);

 Percentage of total time on open road spent with 
other vehicles close behind (ie tailgating) (%);

 Curviness of the road (A four-level attribute -
almost straight, slight, moderate, winding);

 Running costs (in dollars);

 Toll cost (in dollars).
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Experimental Design

The four levels of the six attributes chosen are: 

 Free Flow Travel Time: -20%, -10%, +10%, +20% 

 Time Slowed Down: -20%, -10%, +10%, +20% 

 Percent of time with vehicles close behind:
-50%, -25%, +25%, +50%

 Curviness:almost, straight, slight, moderate, winding

 Running Costs: -10%, -5%,    +5%,  +10% 

 Toll cost for car and double for truck if trip duration is:

1 hours or less 0,    0.5,   1.5,        3 

Between 1 hour and 2.5 hours  0,    1.5,   4.5,        9 

More than 2.5 hours 0,    2.5,   7.5,      15
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Estimated Latent Class Model
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Estimated Value of Time Saved
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Distribution of Parameters –

Value of Time on 2 Lane Road

Kernel density estimate for     VOT2L

VOT2L 
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Decision Strategy in Multinomial Choice



1 J

1 K

1 M

ij j i

Choice Situation:  Alternatives     A ,...,A

Attributes of the choices:             x ,...,x

Characteristics of the individual:  z ,...,z

Random utility functions:             U(j|x,z)  =  U(x ,z ,

  

j

j l

)

Choice probability model:            Prob(choice=j)=Prob(U U )  l j
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Multinomial Logit Model



 
 

 





ij j i

J

ij j ij 1

exp[ ]
Prob(choice j)

exp[ ]

Behavioral model assumes

(1) Utility maximization (and the underlying micro- theory)

(2) 

z

z

Individual pays attention to all attributes. That is the

 

β x

β x

    .implication of the nonzero β
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Individual Explicitly Ignores Attributes

Hensher, D.A., Rose, J. and Greene, W. (2005) The Implications on Willingness to 

Pay of Respondents Ignoring Specific Attributes (DoD#6) Transportation, 32 (3), 

203-222. 

Hensher, D.A. and Rose, J.M. (2009) Simplifying Choice through Attribute 

Preservation or Non-Attendance: Implications for Willingness to Pay, Transportation 

Research Part E, 45, 583-590.

Rose, J., Hensher, D., Greene, W. and Washington, S. Attribute Exclusion Strategies 

in Airline Choice: Accounting for Exogenous Information on Decision Maker 

Processing Strategies in Models of Discrete Choice, Transportmetrica, 2011

Choice situations in which the individual explicitly states 

that they ignored certain attributes in their decisions.
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Appropriate Modeling Strategy

 Fix ignored attributes at zero?  Definitely not!

 Zero is an unrealistic value of the attribute (price)

 The probability is a function of xij – xil, so the 

substitution distorts the probabilities

 Appropriate model:  for that individual, the specific 

coefficient is zero – consistent with the utility 

assumption.  A person specific, exogenously determined 

model

 Surprisingly simple to implement
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Choice Strategy Heterogeneity

 Methodologically, a rather minor point – construct 
appropriate likelihood given known information

 Not a latent class model. Classes are not latent.

 Not the ‘variable selection’ issue (the worst form of 
“stepwise” modeling)

 Familiar strategy gives the wrong answer.

M

im 1 i M
logL logL ( | data,m)

 
  θ
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Application: Sydney 

Commuters’ Route Choice

 Stated Preference study – several possible 
choice situations considered by each person

 Multinomial and mixed (random parameters) logit

 Consumers included data on which attributes 
were ignored.

 Ignored attributes visibly coded as ignored are 
automatically treated by constraining β=0 for that 
observation.
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Data for Application of Information Strategy

Stated/Revealed preference study, Sydney car commuters.  

500+ surveyed, about 10 choice situations for each.

Existing route vs. 3 proposed alternatives.

Attribute design

 Original: respondents presented with 3, 4, 5, or 6 attributes

 Attributes – four level design.

 Free flow time

 Slowed down time

 Stop/start time

 Trip time variability

 Toll cost

 Running cost 

 Final: respondents use only some attributes and indicate 
when surveyed which ones they ignored
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Stated Choice Experiment

Ancillary questions:  Did you ignore any of these attributes?
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Individual Implicitly Ignores Attributes

Hensher, D.A. and Greene, W.H. (2010) Non-attendance and dual processing of 

common-metric attributes in choice analysis: a latent class specification, Empirical 

Economics 39 (2), 413-426

Campbell, D., Hensher, D.A. and Scarpa, R. Non-attendance to Attributes in 

Environmental Choice Analysis: A Latent Class Specification, Journal of 

Environmental Planning and Management, proofs 14 May 2011.

Hensher, D.A., Rose, J.M. and Greene, W.H. Inferring attribute non-attendance from 

stated choice data: implications for willingness to pay estimates and a warning for 

stated choice experiment design, 14 February 2011, Transportation, online 2 June 

2001 DOI 10.1007/s11116-011-9347-8.
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Stated Choice Experiment

Individuals seem to be ignoring attributes.  Unknown to the analyst
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The 2K model

 The analyst believes some attributes are 

ignored.  There is no indicator.

 Classes distinguished by which attributes are 

ignored

 Same model applies, now a latent class.  For K 

attributes there are 2K candidate coefficient 

vectors
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Latent Class Models with 

Cross Class Restrictions

 8 Class Model: 6 structural utility parameters, 7 unrestricted prior probabilities.

 Reduced form has 8(6)+8 = 56 parameters.  (πj = exp(αj)/∑jexp(αj), αJ =  0.)

 EM Algorithm:  Does not provide any means to impose cross class restrictions.

 “Bayesian” MCMC Methods:  May be possible to force the restrictions – it will 
not be simple.

 Conventional Maximization:  Simple
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Results for the 2K model
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Choice Model with 6 Attributes
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Stated Choice Experiment
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Latent Class Model – Prior Class Probabilities
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Latent Class Model – Posterior Class Probabilities
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6 attributes implies 64 classes. Strategy to reduce 

the computational burden on a small sample
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Posterior probabilities of membership in the 

nonattendance class for 6 models 
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The EM Algorithm

  



   
i

i,q

i,q

TN Q

c i,q i,t i,ti 1 q 1 t 1

Latent Class is a ' ' model

d 1 if individual i is a member of class q

If d  were observed, the complete data log likelihood would be

logL log d f(y | data ,class q)

missing data

  

(Only one of the Q terms would be nonzero.)

Expectation - Maximization algorithm has two steps

(1) Expectation Step: Form the 'Expected log likelihood'

     given the data and a prior guess of the parameters.

(2) Maximize the expected log likelihood to obtain a new

     guess for the model parameters.

(E.g., http://crow.ee.washington.edu/people/bulyko/papers/em.pdf)
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Implementing EM for LC Models
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ˆ ˆˆ(1) Compute F(q|i) = posterior class probabilities, using ,

     Reestimate each  using a weighted log likelihood 
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(2) Reestimate  by reestimating 

ˆ     =(1/N) F(q|i) using old and new   ˆ ˆ

     Now, return to step 1.

Iterate until convergence.
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