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Figure 1. Counties with existing plants.

Klier and McMillen: Clustering of Auto Supplier Plants in the United States. JBES, 2008 [Part 14] 2/103
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Outcome Models for Spatial Data

© Spatial Regression Models
® Estimation and Analysis
® Nonlinear Models and Spatial Regression

® Nonlinear Models: Specification, Estimation

e Discrete Choice: Binary, Ordered, Multinomial,
Counts

e Sample Selection
e Stochastic Frontier
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Spatial Autocorrelation

(X —ul) = AW(x —pul) + € N observations on a spatially
arranged variable

W = contiguity matrix; W. =0

A = spatial autocorrelation parameter, -1 < A < 1.

E[e]=0, Var[e]=c'I

Spatial "moving average" form

(X —pi) =[I-AW]'€e

E[x]=pi, Var[x]=c’[(I - \W)'(I - AW)]"
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Spatial Autocorrelation in Regression

y=XB+(I-1AW)e. w,.=0.

E[e| X]=0, Var[e|X]=c’I

Ely | X]=XB

Varly | X] = csi(I - W)(I-AW)'

A Generalized Regression Model

B= {x' ((T-2AW)(I-2W))" x}_1 X'((I-AW)IT-2W)) 'y

52 = (v - XB) (- 2wW)T- W) (y - XB)

= The subject of much research
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Bell and Bockstael (2000) Spatial
Autocorrelation in Real Estate Sales

In Price = « + 1 In Assessed value (LIV)
+ B2 In Lot size (LLT)
+ B3 In Distance in km to Washington, DC (LDC)
+ B4 In Distance in kmm to Baltimore (LBA)
+ Bs% land surrounding parcel in publicly owned space (POPN)
+ PBe % land surrounding parcel in natural privately owned space (PNAT)
+ B7% land surrounding parcel in intensively developed use (PDEV)
+ Bg % land surrounding parcel in low density residential use (PLOW)
+ P9 Public sewer service (1 if existing or planned, O if not) (PSEW)
+ £.

(Land surrounding the parcel is all parcels in the GIS data whose centroids are within
500 meters of the transacted parcel.) For the full model, the specification is

y=XB +¢,
e = 2We + V.
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Agreed Upon Objective:
Practical Obstacles

* Problem: Maximize logL involving sparse
(I-AW)

e Inaccuracies in determinant and inverse

« Kelejian and Prucha (1999) moment based
estimator of A

 Followed by FGLS
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Spatial Autoregression in a Linear Model

Y =AWy + XB + &.
Ele | X]=0, Var[e| X]=c"I
Y =[I-AW]'(XB +€)

=[I-AW]'XB+[I-AW]'€e
E[y | X] =[I-AW]'XB
Varly | X] = o?[(I-AW)'(I - AW)]’
Estimators: Various forms of generalized least squares.
Maximum likelihood | € ~ Normal[0,X]
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Complications of the Generalized
Regression Model

© Potentially very large N — GIS data on agriculture
plots

® Estimation of L. There is no natural residual based
estimator

©® Complicated covariance structures — no simple
transformations
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Panel Data Application

E.g., N countries, T periods
Yie = xi’tB TG+ 8
€ = AWEe, + v, =N observations at time t.

Similar assumptions
Candidate for SUR or Spatial Autocorrelation model.
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Spatial Autocorrelation in a Panel

Spatial Lags in Health Expenditures

Moscone, Knapp, and Tosetti (2007) investigated the determinants of mental health expen-
diture over six years in 148 British local authorities using two forms of the spatial correlation
model to incorporate possible interaction among authorities as well as unobserved spatial
heterogeneity. The models estimated, in addition to pooled regression and a random effects
model, were as follows. The first is a model with spatial lags:

[ Ye = vl + pWy; + Xe B + U + &, }

where u is a 148 x 1 vector of random effects and i is a 148 x 1 column of ones. For each
local authority,

[ Yie = ve + p(W)Y,) + X[, B + U; + &t }

where w! is the ith row of the contiguity matrix, W. Contiguities were defined in W as one
if the locality shared a border or vertex and zero otherwise. (The authors also experimented
with other contiguity matrices based on “sociodemographic” differences.) The second model
estimated is of spatial error correlation

Ve = i+ Xef + U+ &,
- st=AWet+v,.




snometrics Association

Analytical Environment

Generalized linear regression
Complicated disturbance covariance matrix

Estimation platform: Generalized least
squares or maximum likelihood (normality)

Central problem, estimation of A
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Foundations and Trends® in Econometrics > Vol 4 > Issue 1-2 Table of contents
Estimation of Spatial Panels 1 Introduction

2 Static Spatial Panels — Fixed
Lee, Lung-fei ' £4 Yu, Jihai ? £4 Effects Models

3 Static Spatial Panels —
Random Effects Models

4 Spatial Dynamic Panels —
Stable Models with Fixed Effects
5 Spatial Dynamic Panels —
Unstable Models with Fixed
Effects

6 Some Empirical Applications
7 Conclusions

A Some Basic Technical
Theorems and Proofs

B Notations
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Outcomes in Nonlinear Settings

Land use intensity in Austin, Texas — Discrete Ordered
Intensity = 1,2,3,4

Land Usage Types in France, 1,2,3 — Discrete Unordered
Oak Tree Regeneration in Pennsylvania — Count

Number = 0,1,2,... (Many zeros)

Teenagers in the Bay area:

physically active = 1 or physically inactive = 0 — Binary
Pedestrian Injury Counts in Manhattan — Count

Efficiency of Farms in West-Central Brazil — Nonlinear
Model (Stochastic frontier)

Catch by Alaska trawlers in a nonrandom sample
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Nonlinear Outcomes

© Discrete revelation of choice indicates
— latent underlying preferences

@ Binary choice between two alternatives

@ Unordered choice among multiple choices ®

® Ordered choice revealing underlying
strength of preferences

® Counts of events

© Stochastic frontier and efficiency

® Nonrandom sample selection
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Modeling Discrete Outcomes

© “Dependent Variable” typically labels an outcome

e No quantitative meaning
e Conditional relationship to covariates

® No “regression” relationship in most cases.
e Models are often not conditional means.
e The "model” is usually a probability

© Nonlinear models — usually not estimated by any type
of linear least squares
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Nonlinear Spatial Modeling

O Discrete outcomey, =0, 1, ..., J for
some finite or infinite (count case) J.
ei=1,.,n
ot=1,.,T

® Covariates x;

® Conditional Probability (y; = j)
= a function of x.
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Regional Science and Urban Economics 40 (2010) 292 -298

Contents lists available at ScienceDirect - -

Regional Science and Urban Economics

Jo e By

jourmal homepage: www.eglsevier.com/locate/regec

FF3

Modeling spatial discrete choice

Oleg A, Smirnov

Department of Economics, University of Toledo, 28001 W Bancraft 5, Toledo, OH 435606-33 50, USA
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Issues Iin Spatial Discrete Choice

A series of Issues

O Spatial dependence between alternatives: Nested logit

® Spatial dependence in the LPM: Solves some practical problems. A bad model
©® Spatial probit and logit: Probit is generally more amenable to modeling

® Statistical mechanics: Social interactions — not practical

© Autologistic model: Spatial dependency between outcomes or utillities.
See below

® Variants of autologistic: The model based on observed outcomes is
incoherent (“selfcontradictory”)

® Endogenous spatial weights
® Spatial heterogeneity: Fixed and random effects. Not practical.

« The model discussed below

[Part 14] 19/103



snometrics Association

Two Platforms

[0 Random Utility for Preference Models ]
Outcome reveals underlying utility
e Binary: u* =0x y=1ifu*>0
e Ordered: u* =0%x y=jif p,y <u* <y
e Unordered: u*(j) = 0'x; , y = j if u*(j) > u*(k)
‘® Nonlinear Regression for Count Models

Outcome is governed by a nonlinear
___regression y

o E[y|x] = 9(8,x)
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Maximum Likelihood Estimation
Cross Section Case: Binary Outcome

e Random Utility: y*= 0'X + ¢
e Observed Outcome: y = 1ify* >0,
0ify* < O.

Probabilities: P(y=1|x) = Prob(y* > 0|x)
= Prob(e > -0'%)
P(y=0|x) = Prob(y* < 0]|x)
= Prob(e < -0'x)
Likelihood for the sample = joint probability

= H:‘=1Pr0b(y=Yi|xi)
Log Likelihood = > logProb(y=y|x;)
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Cross Sectlon Case n observations

y:=3 1%, g, < or>@x,) (Prob(g < or>@x,)
sty Y,=j | X, _prop| &2 = 9> 0'x, |_ | Prob(e, < or > 6'x;)
Y=l X, g, < Or > 0'X Prob(s, < or > 6'x_)

We operate on the marginal probabilities of n observations
LogL(8IX,y)= > " IogF[(Zyi -1)6'x, |

o Probit F(t)=a(t)=[" \/_exp( t2/2)dt= | o(t)dt
+ Logit  F(t) = A(t) = fxelz((;gt)
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How to Induce Correlation

© Joint distribution of multiple observations
® Correlation of unobserved heterogeneity

® Correlation of latent utility
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Bivariate Counts

© Intervening variable approach
Y, =X, +Z,Y, =Y, + Z; All 3 Poisson distributed
Only allows positive correlation.
Limited to two outcomes

® Bivariate conditional means
A = exp(X'B; + £1), A, = exp(X'B, + &), Cor(ey,e;)=p
|Cor(y1,y2)| << |p| (Due to residual variation)

© Copula functions — Useful for bivariate. Less so if > 2.
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Spatlally Correlated Observations
Correlation Based on Unobservables

L= A e ‘I l1
o 0, ; . w-—"-.\“

/
y, = 0'%X, +U, u, € 0

yf@_’i‘””Z “ S(1-pW) 7|~ ] O] (- pW) (1o W)

y,=0X +U u, €, 0
W = the usual spatial weight matrix.

In the cross section case, W= 0. Now, it is a full matrix.
The joint probably is a single n fold integral.
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Spatially Correlated Observations
Correlated Utilities

[y (v} (0%, +g ) (0'X, +¢, )
) ) 0O'X, + 1] 0%, +
Y2 BNTY Ya |, 2 T8 | _ (I—pW) : 2 T &
\Y:/ \Y:) \elxn + &, ) \elxn + S, )
W = the usual spatial weight matrix.

In the cross section case, W = 0. Now, it is a full
matrix. The joint probably is a single n fold integral.
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Log Likelihood

© In the unrestricted spatial case, the log
likelihood is one term,

® LoglL = log Prob(y,[x;, Y>|X%,, ... ,YalX:)

® In the discrete choice case, the
probability will be an n fold integral,
usually for a normal distribution.
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A Theoretical Behavioral Conflict

Y, Y, 0'X,; + ¢

Y, - W Y, N 0'X, + ¢,

Yo Yo) 0%, +¢,
y, =1y, >0]

Y, =1[p(W,Y, + WisY5 +...) +0'X, + & > 0]
Y, =1[p(W,, Y, + WyY; +...) +0'X, +¢, > 0] etc.

The model based on observables is more reasonable.
There is no reduced form unless is W lower triangular.

This model is not identified. (It is "incoherent.")

[Part 14] 28/103



This model extends readily to the model with a spatially
lagged dependent variable. To do so, we must reinterpret (1) as
the underlying latent variable explaining the propensity to have
d = 1. As the propensity to have d = | increases for nearby
observations, the propensity increases for observation i also.
This assumption is different from a model in which the discrete
variable d depends directly on neighboring values of d. that 1s.
where d = pWd + X + «. It 1s also different from a model in
which the value of the underlying variable depends on neigh-
boring values of d. so that y = pWd + X + e. These models
are not algebraically consistent.

See Maddala (1983)

From Klier and
McMillen (2012)

The assumption that the latent variable depends on spatially
lagged values of the latent variable may be disputable in some
settings. In our example, we are assuming that the propensity to
locate a new supplier plant in a county depends on the propen-
sity to locate plants in nearby counties, and 1t does not depend
simply on whether new plants have located nearby. The as-
sumption 1s reasonable in this context because of the forward-
looking nature of plant location decisions. Having other plants
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LogL for an Unrestricted BC Model

LogL(6| X, y)=
(q181\ (1 q,q,Wy, - qlqnwln\ /81\
ox, 0% d,e, ||| 9,9,W 1 e Q,q,W g
Iogj_w ."J'_OO 0. 267 1412W21 2 n | g] ©2
_\qn‘c’n/ \qnqlwnl 4.d,W,o - 1 J | \ &n /

g=-1lify, =0and +1ify, =1 = 2y -1

e One huge observation - n dimensional normal integral.

e Not feasible for any reasonable sample size.

e Even if computable, provides no device for estimating
sampling standard errors.
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Solution Approaches for Binary Choice

@ © ©® o

Distinguish between private and
social shocks and use pseudo-ML

Approximate the joint density and
use GMM with the EM algorithm

Parameterize the spatial correlation
and use copula methods

Define neighborhoods — make W a
sparse matrix and use pseudo-ML

Others ...
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JOURNAL OF REGIONAL SCIENCE, VOL. 32, NO. 3, 1992, pp. 335-348

PROBIT WITH SPATIAL AUTOCORRELATION

Daniel P. McMillen*
Department of Economics, University of Oregon, Eugene, OR 97403

ABSTRACT. Commonly-employed spatial autocorrelation models imply heteroskedastic
errors, but heteroskedasticity causes probit to be inconsistent. This paper proposes and
illustrates the use of two categories of estimators for probit models with spatial autocorrela-
tion. One category is based on the EM algorithm, and requires repeated application of a
maximum-likelihood estimator. The other category, which can be applied to models derived
using the spatial expansion method, only requires weighted least squares.

[Part 14] 32/103



conometrics Association

Spatial autocorrelation in the heterogeneity

I
=B'X. + € + pZ:j;ti W€,

=1y, >0], Prob[yi — 1] ) BX,
\/VB‘r 8 +pZ¢| IJ J)
or -
=B'X, +u
=1[y. > OlProbly. =1] = X, _ ﬁ'Xi}
1 > e [y, ] (D_\/Val’(ui)_ CD{ O,

> 2 2
or =1+p°) .. W,
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Heteroscedastic Probit
Estimation and Inference

G;

MLE: logL = >"" Iogd{(zy‘_l)lyx‘}
Jn (7me —v) 2 H(y)S(y) S=Score vector

Implies the algorithm, Newton's Method.

EM algorithm essentially replaces H with X'X during iterations.

(Slightly more involved for the heteroscedasticity. LHS variable

In the EM iterations is the score vector.)

To compute the asymptotic covariance, we need Var[S(y)]

Observations are (spatially) correlated! How to compute it?
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GMM

Pinske, J. and Slade, M., (1998) “"Contracting in Space: An Application of Spatial Statistics to Discrete
Choice Models,” Journal of Econometrics, 85, 1, 125-154.

Pinkse, 1., Slade, M. and Shen, L (2006) “"Dynamic Spatial Discrete Choice Using One Step GMM: An
Application to Mine Operating Decisions”, Spatial Economic Analysis, 1: 1, 53 — 99.

. 1

y*=XB+¢, € = pWe+u
= [I-pW]~
= Au
Cross section case: p=0
Probit Model: FOC for estimation of 0 is based on the
generalized residuals (. =y, —E[e | y,]
Z“ X [(Yi B cD(ﬁ’Xi))(l)(B,Xi)j —
=B - @(B')]
Spatially autocorrelated case: |Moment equations are still
valid. Complication is computing the variance of the moment
equations, which requires some approximations.
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GMM Approach

© Spatial autocorrelation induces
heteroscedasticity that is a function of p

® Moment equations include the

heteroscedasticity and an additional
instrumental variable for identifying p.

© LMtestof = 0is carried out under the null
hypothesis that = 0.

O Application: Contract type in pricing for 118
Vancouver service stations.

onometrics Association
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Autocorrelated Case: p#0
Probit Model: FOC for estimation of 6 is based on the
generalized residuals U =y, —E[¢]|y.]

5 (yi @L"(p)Dq{a"(p)_ .

Z =

= B |[{_q| BX
L‘..(p)}( q{a..(p)}

Requires at least K + 1 instrumental variables.

[Part 14] 37/103



Spatial Spatial Economic Analysis
- ———r Publication details, including instructions for authors and subscription information:
Analysis : http://www.informaworld.com/smpp/title~content=t724921204

Dynamic Spatial Discrete Choice Using One-step GMM: An Application to

Mine Operating Decisions
Joris Pinkse; Margaret Slade; Lihong Shen

Pinske, Slade, Shen (2006)
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Journal of Business & Economic Statistics

Publication details, including instructions for authors and subscription information:

Luma] of http://www.tandfonline.com/loi/ubes20

usiness & . : . :
Economic Clustering of Auto Supplier Plants in the United
ii;t}_st’-T“-_s: States

Thomas Klier® & Daniel P McMillen®

* Federal Reserve Bank of Chicago, Research Department, Chicago, IL 60604

> Department of Economics (MC 144), University of Illinois at Chicago, Chicago, IL 60607
Published online: 01 Jan 2012.

Figure 1. Counties with existing plants.




Figure 1. Counties with existing plants.
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Spatial Logit Model
y*=XB+e, e=pWe +¢&=(-pW) e
d=1y" > 0], Varle] = [(I-pW)' (-pW)] " =%, Z, = &7

Prob(y, = 1) = A[B’X‘] = A(Bx])=A

G;

lterated 2SLS (GMM)

Generalized residual u. =d. — A,
Instruments Z
Criterion: g = u(B,p)'Z(Z'2)*Z'u(B,p)
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Algorithm
U = di _Ai
~A.(1- A)X
it '( ,'))*(' A=(1-pW)W(l-pW)™
S ourop) | a@-ayPEia, | P P

G =[9:.0;.--9,]

lterated 2SLS (GMM)

1. Logit estimation of B | p=0, G,
2.u=(d-A), G =2(22)'2G,

A =(GG,) Gu,

3
s (B)
ﬁ k+1

k
[“J +A, untl A_is sufficiently small.
k

[Part 14] 42/103



LM Test?

If p=0,9g, =0 because A; = 0
At the initial logit values, g, = 0
Thus, ifp=0,g=0

How to test p = 0 using an LM style test.
Same problem shows up in RE models

But, here, p is in the interior of the
parameter space!
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Pseudo Maximum Likelithood

© Maximize a likelihood function that
approximates the true one

® Produces consistent estimators of
parameters

©® How to obtain standard errors?

O Asymptotic normality? Conditions for
CLT are more difficult to establish.
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Pseudo MLE
y*=X0+¢, € = pWe+u
= [I-pW]'u
= AU

Autocorrelated Case: p =0

Vi =X0+g -+ pW

Yi = 1[yi* > 0]. Var[Yi*] =1+ pzzjiivvijz = a;(p)
Implies a heteroscedastic probit.

Pseudo MLE is based on the marginal densities.

How to obtain the asymptotic covariance matrix?
[See Wang, Iglesias, Wooldridge (2013)]
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Heteroscedastic Probit Approach
Estimation and Inference

G;

MLE: |()g|_ — Z:ll |qu)|:(2y|'1)l3,xl:|

Jn (Yme —v) > H(v)S(y) S=Score vector
Implies the algorithm, Newton's Method.
EM algorithm essentially replaces H with X"X during iterations.
(Slightly more involved for the heteroscedasticity. LHS variable
In the EM iterations is the score vector.)
To compute the asymptotic covariance, we need Var[S(y)]
Observations are (spatially) correlated! How to compute it?
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Covariance Matrix for Pseudo MLE

V = A(data,6) B(data,0) A(data,0)
A(data,0) = Negative inverse of Hessian
B(data,0) = Covariance matrix of scores.

How to compute B(data, )
Terms are not independent in a spatial setting.
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‘Pseudo MaX|mum L|keI|hood

Smirnov, A., "Modeling Spatial Discrete Choice,” Regional Science and Urban Economics, 40, 2010.

Spatial Autoregression in Utilities
y*=pWy *+X0+¢g, y=1(y* > 0) for all n individuals
y¥=(I-pW)'X0+(I-pW)'e
I-pW)'=>" (pW)' assumed convergent

= A

= D + A-D where D = diagonal elements
y*=AX0+#+ De | + |(A-D)e
Private | Social
Suppose individuals ignore the social "shocks.'| Then

zn I
Prob[y, =1 or 0| X] = F| (2y, - 1) Jlau((jp)e

, probit or logit.

[Part 14] 48/103



Pseudo Maximum Likelihood

© Bases correlation in underlying utilities

® Assumes away the correlation in the reduced form
©® Makes a behavioral assumption

® Requires inversion of (I-pW)

©® Computation of (I-pW) is part of the optimization
process - p is estimated with 6 .

® Does not require multidimensional integration (for a logit
model, requires no integration)
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Copula Method and Parameterization

Bhat, C. and Sener, 1., (2009) “A copula-based closed-form binary logit choice model
for accommodating spatial correlation across observational units,” Journal of Geographical Systems,
11, 243-272

Basic Logit Model

y; =B'X;+¢, Yy, =1[y; >0] (as usual)

Rather than specify a spatial weight matrix, we assume
[e,,&,,...,€,] have an n-variate distribution.

Sklar's Theorem represents the joint distribution in terms
of the continuous marginal distributions, A(e;) and a copula
function Clu,=A(e,) ,u, = A(e,) ,...,u. = A(e,) | 6]
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Copula Representation

A particularly appealing
approach to constructing a multivariate logistic distribution for spatial correlation
analysis 1s to allow pairwise correlation across observational units (see Karunaratne
and Elston, 1998 for such a pairwise correlation structure):

A(Vi<vi,Va<va, ..., Vy<v,, ..., Vo <vg)

0 o-1 0
[TA) | > (14D D O (1= Ayv)) (1= Aclwi)) |, (7)

g=1 k=q+1
where 0, is the dependence parameter between V, and Vi (—1 < 0, < 1), 01 = Oy,

for all ¢ and k, and A, (vy) = =7 -
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Model

3 The binary choice model with spatial correlation

Consider that the data (z,, x,) for g =1, 2, ..., Q are generated by the following
latent variable framework:

2'; = ﬁ’xq + &
{ 0 ifz ”* <0

-

WET i >0 (10)
where z; is an unobserved propensity variable, ff is a vector of coefficients to be
estimated, and ¢, is a logistically distributed idioqyncratic error term with a scale
parameter of o, (thle allows spatial thCI‘OQCCdEH[lClty) Define V, = ¢,/g,, where
V, 1s standard loglstlc distributed. Let the V, terms (¢ = 1, 2, ..., Q) follow the
standard multivariate logistic distribution in Eq. 7. Also, let d, be the actual
observed value of z, in the sample. Then, the probability of the observed vector of

choices (dy,d>.,ds, .. .,dp) can be written, after some algebraic manipulations, as:
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Parameterization

| (eé)fsqk |

1+ (eé)fsqk_

The parameter o, in Eq. 11 i1s next parameterized as:
1/ 1/
0y = g(ilm,) = exp(i'm,).

where @, includes variables specific to pre-defined “neighborhoods”
(or other groupings) of observational units and individual-related factors
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Table 1 Estimation results for ieenagers’ weekday physical activity participation choice

Vanables Binary (aspaual) Copula-based spatially
logit model correlated and
heteroscedastic model
Parameter [statstx Parameter |slabsuc
Constant =5.534 =745 =3.211 =3.56
Individual demographics
Male 0.238 1.18 0.259 2.2
Caucasian 0.722 242 0.320 1.82
Hispanic 0.457 0.95 0.336 1.72
Driver's license 0.661 302 0,309 2N
Household demographics
Household size 0.562 5.40 0.275 273
Single parent family 1.264 295 1.0T0 335
Presence of bicycle —{.266 -{.93 0. 163 1.35
Household location and season vaniables
San Francisco County 1.309 1.84 0341 1.36
Summer (LE16 394 0,450 328
Fall 4.265 247 2.459 337
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Table 1 Estimation results for teenagers’ weekday physical activity participation choice

Variables Binary (aspatial) Copula-based spatially
logit model correlated and
heteroscedastic model

Parameter § statistic Parameter [ statstic

(Spatial ) heteroscedasticity variables

Single parent family - - -2.177 —3.95
Presence of bicycle - - —0.305 -1.23
Fraction of multi-family dwelling units - - —{.982 -2.02
Spatial correlation variables (4) in the § parameter

Inverse of distance between zonal centroids - - 3. 862 1.81
Number of observations T22 T22

Log-likelihood at convergence -318.323 — 308,273
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Case A (1992) Neighborhood influence and technological change. Economics 22:491-508
Beron KJ, Vijverberg WPM (2004) Probit in a spatial context: a monte carlo analysis. In: Anselin L, Florax RIGM,
Rey SJ (eds) Advances in spatial econometrics: methodology, tools and applications. Springer, Berlin

© Case (1992): Define “regions” or neighborhoods. No
correlation across regions. Produces essentially a
panel data probit model. (Wang et al. (2013))

® Beron and Vijverberg (2003): Brute force integration
using GHK simulator in a probit model.

©® Lesage: Bayesian - MCMC
O Others. See Bhat and Sener (2009).
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A Spatial Analysis of State Banking Regulation

Thomas A. Garrett
Gary A. Wagner
and
David C. Wheelock

Working Paper 2003-044C
http://research.stlouisfed.org/wp/2003/2003-044.pdf

December 2003
Revised February 2005
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Research Division
411 Locust Street
St. Louis. MO 63102
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Journal of Econometrics

Volume 172, Issue 1, January 2013, Pages 7/-89

Partial maximum likelihood estimation of spatial probit models *

Honglin Wang™ B Emma M. Iglesias”™ & &4 & jeffrey M. Wooldridge™ &
* Hong Kong Institute for Monetary Research, 55/F, Two International Finance Centre, 8 Finance Street, Central, Hong Kong
® Department of Applied Economics Il. Facultad de Economia y Empresa. University of A Corufia, Campus de Elvifia, 15071. A

Corufia, Spain
* Department of Economics, Michigan State University, 101 Marshall-Adams Hall, East Lansing, Ml 48824-1038, USA

See also Arbia, G., “Pairwise Likelihood Inference for Spatial Regressions
Estimated on Very Large Data Sets” Manuscript, Catholic University del Sacro

Cuore, Rome, 2012.
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Partial MLE

Observation 1
Y, —X'9+81+Z pW,¢,

= 1[y1 > 0] Var[Y1] 1+p Z W121 = a11(p)
Observatlon 2

y —XG+82+Z 2p %€;
¥, =1Ly, > 0] Varly,]=1+p°)> Wy =a,(p)

Covariance of y, andy, = a,(p)
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Bivariate Probit

® Pseudo MLE SV e
- \q}// | r‘Lj e
® Consistent ) ST W
. J W Q/{aw\“? & é\
©® Asymptotically normal? \JC;*/ -3 L9
e Resembles time series case 1. mtenions— sgro

e Correlation need not fade with ‘distance’
® Better than Pinske/Slade Univariate Probit?
© How to choose the pairings?
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Bayesian Estimation of Limited Dependent Variable Spatial Autoregressive Models

(pages 19-35)

James P. LeSage
Article first published online: 3 SEP 2010 | DOI: 10.1111/).1535-4632.2000 tb00413 x

geographical

Geographical Analysis
© The Ohio State University

January 2000

Volume 32, Issue 1
Pages 1-93

Previous Issue | Next Issue
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Lesage methods - MCMC

« SEM Model...

« Bayesian MCMC

« Data augmentation for unobserved y
 Quirks about sampler for rho.
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y* =B'Xx + ¢, we assume x contains a constant term

y=0ify* <0

y=1if0 < y*¥ <y
y=2ifpy <y*<uw i

sy ——————— — — — — —

IA

y=3ifp, <y*<p | ﬂ
amn u rﬂ. | |

y=Jifu,, < y* < p,

Ingeneral: y=jifp, <y*<yu,j=01,..,]

Hy =79, Uy = 0, Hy =790, Uy <l 1=1,..,]
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A Spatial Ordered Choice Model

Wang, C. and Kockelman, K., (2009) Bayesian Inference for Ordered Response Data with a Dynamic Spatial
Ordered Probit Model, Working Paper, Department of Civil and Environmental Engineering, Bucknell University.

Core Model: Cross Section

y; =B, +¢;, Yy, =jifu,, <y, <p,, Varlg,]=1
Spatial Formulation: There are R regions. Within a region

Y, =BX, +U, +e,, y/r=jif“j1<y;£“

Spatial heteroscedasticity: Var[e,]=c>
Spatial Autocorrelation Across Regions

u = pWu + v, v~ N[0,cI]

u = (I-pW)'v ~ N[O,c;{(I-pW)'(I-pW)} ']

The error distribution depends on 2 parameters, 2 and p
Estimation Approach: Gibbs Sampling; Markov Chain Monte Carlo
Dynamics in latent utilities added as a final step: y*(t)=f[y*(t-1)].
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An Ordered Probability Model

y* =B'Xx + ¢, we assume x contains a constant term

y=0ify* <0

y=1if0 < y*¥ <y
y=2ifpy <y*<uw i

sy ——————— — — — — —

IA

y=3ifp, <y*<p | ﬂ
amn u rﬂ. | |

y=Jifu,, < y* < p,

Ingeneral: y=jifp, <y*<yu,j=01,..,]

Hy =79, Uy = 0, Hy =790, Uy <l 1=1,..,]
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OCM for Land Use Intensity

Table 1 Data Description for Land Development Intensity Level Analysis

Variable Description
INTLV |Development intensity level
ELEVTN |Average elevation of the 300m grid cell (km)
SLOPE [Average slope of the 300m grid cell (%)
NSCHOOL [Number of K-12 schools 1n the neighborhood
POP  |Population (thousand) in the neighborhood
WORKER [Number of workers (thousand) living in the neighborhood

INC  ]Average household income (thousand dollars) in the neighborhood
EMPTT [Travel time to nearest major (top 15) employer (hours)
CBDTT [Travel time to CBD (hours)
AIRTT |Travel time to nearest airfield (hours)

RDTT |Travel time to nearest highwaz (hmu:s!
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OCM for Land Use IntenS|ty

Table 2 Summary Statistics for Land Development Intensity Analysis

Variable | Minmmum | Maximum | Mean | Std. Deviation
Constant | ELEVTN 0.136 0.390 0.251 0.061
through SLOPE 0.034 17.328 2.699 2.196
Years |NSCHOOL| 0.000 7.000 1.208 1.377
INTLV 0.000 3.000 0.826 0.774
POP 0.225 37.531 4.632 7.298
WORKER 0.121 19.997 2.408 3918
1083 INC 17.330 88.941 | 45.368 15.109
EMPTT 0.004 1.115 0.453 0.223
CBDTT 0.000 0.358 0.154 0.070
AIRTT 0.005 0.784 0.345 0.157
RDTT 0.002 0.498 0.111 0.093
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Estlmated Dynam|c OCM

Table 3 Estimation Results for Model of Land Development Intensity Levels

Variable Mean Std. Dev. t-stat.
POP -0.024 0.036 -0.668
WORKER 0.089 0.067 1.327
INC 0.019 0.002 0.143
EMPTT -0.232 0.130 -1.778
CBDTT -4.365 0.851 -5.126
AIRTT -2.867 0.248 -11.550
RDTT 2.309 0.385 6.001
NSCHOOL 0.039 0.017 2.305
ELEV -0.239 0.696 -0.343
SLOPE -0.034 0.010 -3.394
A 0.561 0.019 30.005
£ 0.857 0.074 11.612
o’ 0.871 0.222 3.931
e -0.834 0.011 -77.231
Vs 2.235 0.031 71.393
V3 4.361 0.034 130.167
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Statistically
Significant
(ata 0.05

significance level)

Mean of ¢

B 0584-0020
I 0.021- 0851
[ Jos52-1866
I 1667- 2688
I 2689- 4398

Figure 2 Distribution of Region-Specific Error Term Estimates (&) for Land Development
Intensitv Levels
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doi: 10.1111/5.1435-5957.2009.00249.x
APPLICATION OF THE DYNAMIC SPATIAL ORDERED PROBIT MODEL:
PATTERNS OF OZONE CONCENTRATION IN AUSTIN, TEXAS

Xiaokun (Cara) Wang
Assistant Professor
Department of Civil and Environmental Engineering
Bucknell University
e e . . . Lewisburg, PA 17837, USA
Application of the dynamic spatial ordered probit model: £
Patterns of land development change in Austin, Texas Kara M. Kockelman
(corresponding author)
Associate Professor & William J. Murray Jr. Fellow
' Bucknell University, Department of Civil Engineering, 701 Moore Avenue, Lewisburg, PA 17837, USA Department of Civil, Architectural and Environmental Engineering
(e-mail: cara.wang @bucknell.edu) : : :
2 University of Texas, | University Station, ECI Suite 6.9, C1761, Austin, TX 78712, USA The University of Texas at Austin
(e-mail: kkockelm@ mail.utexas.edu) 6.9 ECJ, Austin, TX 78712-1076
kkockelm@mail.utexas.edu

Xiaokun Wang', Kara M. Kockelman®

Received: 12 February 2008 / Accepted: 13 December 2008

This latent utility difference 1s influenced by many factors

* — r
Yike = Xiktﬂ T Eike

Oike = POike—1 + Nike
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Bayesian Estimation

The joint posterior distribution for all parameters can be written as follows:

p(y", B, A, p, BIY, X) o« p(Y]y )m(y*|B, A, p, BYm (B) (Ai )t (p) 7 (B)

As 1s standard in Bayesian estimation, the conditional posterior distributions of all parameters can be

dertved by extracting only items that contain them, as follows:

p(Bl...) o< m(y"|B, Ak, p, B) m(B)

p(y'|...) < pY|y)n(y"|B, A, p, B)

Data Augmentation

p(p|...) xw(y"|B, Ak, p,B)m(p)
p(B|...) xw(y’|B, Ak, p,B)m(B)
p(Akl...) < w(y"|B, A, p, B)m(Ag)

(16)

(17)
(18)
(19)
(20)
(21)
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Unordered Multinomial Choice

Core Random Utility Model
e Underlying Random Utility for Each Alternative
U(i,j) = Bix; +¢;, i = individual, j = alternative
e Preference Revelation
Y(i) = jif and only if U(i,j) > U(i,k) for all k = j
e Model Frameworks
Multinomial Probit: [e,,...,&,] ~ N[0,X]
Multinomial Logit: [e,,...,&,] ~ iid type 1 extreme value

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

ijr

cccccc
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Spatial Multinomial Probit

Chakir, R. and Parent, O. (2009) “"Determinants of land use changes: A spatial multinomial probit
approach, Papers in Regional Science, 88, 2, 328-346.

Utility Functions, land parcel i, usage type j, date t
U(i,j,t)=BX;; + 0y + &

ijt
Spatial Correlation at Time t

eij = PZL W, 0
Modeling Framework: Normal / Multinomial Probit
Estimation: MCMC - Gibbs Sampling
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Table 1. Varniables description

Variable Description Scale Source of the data
land use land use (= 1 if agriculture, 2 if urban, Parcel TERUTI survey
3 1f forest and 0 if no-use)
NRSEC90 number of second homes County INSEE population census
aver average rain County The Climate Database of Europe at the
resolution of 50 km
avesl average slope County The Digital Elevation Model of Europe
at the resolution of 1 km
REV average household income County Income tax survey Impot sur le revenu
des communes
whyd wheat yield Region AGRESTE
grpop population growth between County INSEE population census
1990 and 1999
network travel time to the nearest highway County Microsoft Autoroute 2007
TEXTI Soil quality 0, if coarse texture (clay County The French Soil map at the scale of
<18% and sand > 65 %); 1, otherwise /1,000,000
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Table 2. Descrniptive statistics of explanatory vanables

The Vi Wprld Conferend"o‘ the Spatial Econometrlcs Assocuatlon

Variable

std

min

mean max
grpop 12.83 17.23 ~11.40 149.00
NRSEC90 211.84 1,103.54 6.00 8,049.00
aver 2.38 0.53 1.01 3.63
avesl 2.49 1.31 0.24 7.09
REV 14,320.08 4,513.06 5.102.07 48,469 43
whyd 106.17 14.74 80.00 130.00
network 21.88 15.55 1 61
textl 0.48 0.50 0 1.00
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Table 6. Estimation results for spatial multinomial probit model

Variable Mean s.d. 2.5% 97.5%
p 0.632' 0.004 0.627 0.639
O 1.327" 0.031 1.278 1.388
on 1.000 ~1.000 1.000 1.000
o 0.975" 0.007 0.961 0.991
o 1.008' 0.006 0.996 1.018
ooy 0.975" 0.007 0.961 0.991
o 0.966' 0.014 0.038 0.997
o 0.084' 0.012 0.966 1.004
oy 1.008 0.006 0.996 1.018
o0 0.084' 0.012 0.966 1.004
o 1.025' 0.013 1.003 1.045

Note: ' Numerical Standard Errors (NSE) less than 1%.

The population growth has a significant and negative effect on urban land use suggesting that
counties with a higher population growth rate tend to be in suburban areas. This result confirms
the findings of Carrion-Flores and Irwin (2004) that suggest that new urban development is less
likely to be located in densely developed areas. This is what they call a ‘congestion effect’:
higher population density decreases the attractiveness of areas that are already substantially
developed.
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Incorporating Spatial Dependencies in Random Parameter Discrete

Choice Models
Abolfazl (Kouros) Mohammadian
Department of Civil and Materials Engineering
University of Illinois at Chicago

842 W. Taylor St.

Chicago. Illinois 60607-7023
Tel: (312) 996-9840

Fax: (312) 996-2426

Email: kouros{@uic.edu

Murtaza Haider

School of Urban Planning and Dept. of Civil Engineering
MeGill University

815 Sherbrooke Street West, Suite 400

Montreal, Quebec. Canada

Tel: (514) 308-4079

Fax: (514) 398-8376

Email: murtaza haider@megill ca

Pavlos S. Kanaroglou

School of Geography and Geology
McMaster University

Hamilton. Ontario, Canada

Tel: (905) 525-9140 Ext. 23525
Fax: (005) 546-0463

Email: pavlos@memaster.ca

Paper submitted for presentation at the

84* Annual Transportati

h Board Meeti

Janmary 2005
Washington D.C.

Each decision—maker in this study is assumed to hold a parcel of land and 1s planning to start a
housing project. Developers are faced with the decision of what type of residential units to build
(i.e.. detached, semi-detached. condo. or townhouse). It can be postulated that this decision is
influenced, to some extend at least, by nearby housing development projects. In other words, the
existing housing stock. as well as the location factors will affect the future housing developments

in the same neighborhood. This implies that the unobserved attributes of the neighborhood tend to

be correlated.

Random Parameters Models

Tracking Land Cover Change in a Mixed Logit Model:
Recognizing Temporal and Spatial Effects

Xiaokun Wang
Graduate Student Researcher
The University of Texas at Austin
6.9 ECJ, Austin, TX 78712-1076
wangxk@mail utexas.edu

Kara M. Kockelman
Clare Boothe Luce Associate Professor of Civil, Architectural and Environmental Engineering
The University of Texas at Austin
6.9 ECJ, Austin, TX 78712-1076
kkockelm@mail utexas.edu
Phone: 512-471-0210
FAX: 512-475-8744
(Corresponding Author)

To be presented at the 85th Annual Meeting of the Transportation Research Board and under
consideration for publication by Transportation Research Record
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s=1

zero otherwise. o can be modeled similar to an impedance function. In spatial statistics, it usually
takes the form of a negative exponential function of the distance separating the two decision-
makers (D).

D
Posi =4 exp(—f) [3]

5
exp(ai'n + Jffﬁfn + ﬁferint + Z psi:l.y.ﬂ' + Sint
PG| f,)= = (8]

Z ex‘p(ﬂr“m +J;JFV +ﬁ;nX“rm‘ +Zpsmv.sr +£JHT)

JeCy,
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Rathbun, S and Fei, L (2006) “A Spatial Zero-Inflated Poisson Regression Model for Oak Regeneration,”
Environmental Ecology Statistics, 13, 2006, 409-426

Feeeway Accidents by Region and Seasan

Poisson Regression

y=0,1,..

. exp(—1)\]
Probly = j|x] = p(j| )

Conditional Mean L = exp(B'x)

Signature Feature: Equidispersion
Usual Alternative: Various forms of Negative Binomial

Spatial Effect: Filtered through the mean
A, = exp(B'x.+6,)

0

" 0_ +
i pZmzl Wim m 8i
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Canonical Model for Counts

Rathbun, S and Fei, L (2006) “A Spatial Zero-Inflated Poisson Regression Model for Oak Regeneration,”
Environmental Ecology Statistics, 13, 2006, 409-426

Poisson Regression !
y=0,1,.. )
c L -4 fr Llr[\ }27
Probly = j|x] = eXp(j_lk)w S
Conditional Mean A = exp(B'x)
Signature Feature: Equidispersion N Gl == | =

0 10 20 40 60 80

Usual Alternative: Negative Binomial
Spatial Effect: Filtered through the mean

A, = exp(B'x+6))

0, = p>. . W0, +¢
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Zero Inflation

© There are two states
e Always zero
e Zero is one possible value, or 1,2,...

® Prob(0) = Prob(state 1) +
Prob(state 2) P(0|state 2)
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A Spatial Multivariate Count Model for Firm Location
Decisions

Chandra R. Bhat
Dept of Civil, Architectural and Environmental Engineering
The University of Texas at Austin

Rajesh Palet
Parsons Brinckerhoff

Palvinder Singh
Parsons Brinckerhoff

Bicycle and pedestrian
injuries in census tracts in
Manhattan. (Count data and
ordered outcomes)

' Hé Spatial Econometrics Association

A Blend of Ordered
Choice and Count Data
Models

Numbers of firms locating in Texas
counties: Count data (Poisson)

On Accommodating Spatial Dependence in Bicvcle and
Pedestrian Injury Counts by Severity Level

Chandra R. Bhat
Dept of Civil, Architectural and Environmental Engineering
The Universitv of Texas at Austin

Rajesh Paleti
Parsons Brnclkerhoff

Sriram Naravanamoorthy
Dept. of Civil, Architectural and Environmental Engineering

The Universitv of Texas at Austin
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Kriging

FORECASTING NETWORK DATA:
SPATIAL INTERPOLATION OF TRAFFIC COUNTS USING TEXAS DATA

Xiaokun Wang
Assistant Professor
Department of Civil and Environmental Engineering
Bucknell University

Kara M. Kockelman
Associate Professor & William J. Murray Jr. Fellow
(Corresponding author)
Department of Civil. Architectural and Environmental Engineering
The University of Texas at Austin
6.9 ECJ, Austin, TX 78712-1076
kkockelm(@mail utexas.edu
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Fig. 1 Locations of the 38 mixed-oak stands in central Pennsylvania
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The method of Kriging was first developed by Georges Matheron (1963). based on the Master's
thesis of Krige (1951). a South African mining engineer who used a prototype of this technique
to predict ore reserves. After several decades’ development. Kriging has become a core
geostatistics tool and 1s now used in many topic areas. For example. Bayraktar and Turalioglu

(2005) used Kriging for air quality analysis, Emerson (2005) applied Kriging to natural resource
analysis, and Zimmerman et al. (1998) used Kriging for water studies. Such methods can be used
to predict count values at unmeasured locations while assessing the errors of these predictions.
They rely on the notion that unobserved factors are autocorrelated over space, and the levels of
autocorrelation decline with distance. Meanwhile, the values to be predicted may depend on

several observable causal factors (e.g.. number of lanes. posted speed limit. and facility type).
These create a “trend” estimate, u(s); so, in general, spatial variables can be defined as follows:

Z.(s) = 1,(s) + £(s) (1)

where Z (s) is the variable of interest (actual traffic count here) and s gives location (x,y
coordinates) of site 1. Z (s) 1s composed of a deterministic trend 4 (s) and a random error

component £,(s). The various &£(s) values are correlated over space. Features of “trend” (often

called “drift” in other studies). or the expected value of Z(s). result in three types of Kriging: If
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Spatial Autocorrelation in a
Sample Selection Model

Flores-Lagunes, A. and Schnier, K., "Sample selection and Spatial Dependence,” Journal of Applied Econometrics,
27, 2, 2012, pp. 173-204.

«Alaska Department of Fish and Game.

Pacific cod fishing eastern Bering Sea — grid of locations
*Observation = ‘catch per unit effort’ in grid square

*Data reported only if 4+ similar vessels fish in the region
*1997 sample = 320 observations with 207 reported full data
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Spatial Autocorrelation in a
Sample Selection Model

Flores-Lagunes, A. and Schnier, K., "Sample selection and Spatial Dependence,” Journal of Applied Econometrics,
27, 2, 2012, pp. 173-204.

LHS is catch per unit effort = CPUE

*Site characteristics: MaxDepth, MinDepth, Biomass

Fleet characteristics:
e (Catcher vessel (CV = 0/1)
e Hook and line (HAL = 0/1)
e Nonpelagic trawl gear (NPT = 0/1)
e Large (at least 125 feet) (Large = 0/1)
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Spatial Autocorrelation in a
Sample Selection Model

%3 '
Vi =0, + X o+U, | U —SZ Gyl +&

* '
=By +Xi,B+U, [ U, =7 C”U12+8

y|2
(Silj ~N {(Oj,(clz 6122 ]}, (r)r) G, :199)
Ei2 0)\o, o)

Observation Mechanism
Yo =1/ y; > 0] Probit Model

Yi, = Vi, ify, = 1, unobserved otherwise.
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Spatial Autocorrelation in a
Sample Selection Model

u, =0Cu, +¢,
C = Spatial weight matrix, C.. =0.
u, =[1-8CJ 'e,= Q%¢, , likewise for u,

y'l = Ol + X0+ Z (0(6)(1) gy, Var[u,]= 012 Z (03(5)(1) )
=B +X.2B+Z o()i &, Var[u,]= GlZJ 1(03(y)(2))
Cov[u,,u.,]=0,, Z (0(5)(1) CO(y)(Z)
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Spatial Weights

o 1
ij — q2
d;
d; = Euclidean distance

Band of 7 neighbors is used
Row standardized.

ometrics Association
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Two Step Estimation

€@ Probit estimated by Pinske/Slade GMM

b a, + X, o
| Zheepen | i)
| \/ Z j-1 (’3(8)(1) o, + X0

\/ Glz j=1 60(6)(1))

@) Spatial regression with included IMR in second step
(*) GMM procedure combines the two steps in one large estimation.
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Selection equation® Employing probitd
Heckit Spheck-E Spheck-O Spheck-E Spheck-O
Constant —-0.104 —-0.135 —-0.098 4.971 41
(0.648)  (19.720) (0.756) (19.221) (1.048)
Max. depth 0.179% 0.197 0.232* 0.321 0.285**
(1.092) (1.201) (0.116)- (1.894) (0.108)
Min. depth -0.093 —0.088 —0.133* —0.073 —0.051
(D.068) (0.572) (0.073) (0.888) (0.061)
Biomass 0.005 0.005 0.007 0.200"** 0.162%*
(0.078) (0.842) (0.072) (0.038) (0.037)
Dum CV =0.739*** —0.696 —0.736™* 0.020 0.024
(0.183) (1.883) {0.257) (9.657) (0.537)
Dum HAL 0.650***  0.475 0.581** 0.931 1.072%*
(0.202) (3.281) (0.269) (6.543) (0.411)
Dum NPT 0.073 0.078 0.080 -0.474 —0.381**
(0.261) (4.654) (0.313) (0.834) (0.178)
Dum Large -0.078 —0.008 —0.088 0.494 0.399%*
(0.176) (2.063) 0.177) (0.770) (0.092)
IMR 2.205 2.543**
(16.327) (1.083)
Lag biomass —0.043 ~0.043 —0.069
(0.080) (1.064) (0.066)
SAE parameter (y) 0.94 7%= 0.872%**
(0.141) (0.070)
SAE parameter (¢) 0.392 0.203
(1.020) (0.133)
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Spatial Stochastic Frontier

Production function model

y=px+e

y=px+v-u

v = unexplained noise = N[0,1]

u = inefficiency > 0; |efficiency = exp(-u)
Object of estimation is u, not 3

Not a linear regression. Fit by MLE or MCMC.
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247 Spanish Dairy Farms, 6 Years

FARM | YEAR | cows | LAND | MIK | LABOR | FEED |
1= 1 93 15.3 a 7647 2 334357
2= 1 94 181 a 260 2 J68E9
3= 1 97 171 7 110419 2 510136
4= 1 95 17.3 a 111454 2 50711.6
b= 1 95 17.8 a 1184593 2 541536
b= 1 93 135 72 131197 2 R9038.7
= 2 93 203 9 118143 2 R3875.9
8= 2 94 203 10.4 127742 2 1991

————— [ Tests v=. Ho Inefficiency ]-————
IR te=t for inefficiency w=. 0LS v only

Deg. fresdom for sigma—-sgquared(u): 1
Leg. fresdom for heteroscedasticity: 0O
Deg. fresdom for truncation mesn:
Leg. fresdom for inefficiency model: 1 I
LogL when =sigmafu)=0 809.67610
Chi-=g=2#[Logl(SF)-LogLli{l5)] = 26024
Eodde—Falm C#*: 95Xk 2 706, 99%: § 412
IH te=t for =igma(u) = 0 based on ol= = ) i
Chi-sgq[l]=(N-6)*[m3 ="3]"2 21 BEE £
Wald testsz based on MLE= shown in table g
| Standard Froh. 5% Confidence “
YIT| Coefficient Error z |z | >Z= Interval
|Determninistic Component of Stochastic Frontier Hodel 114
Constant | 11 . 701d=xx .00447 2614 .87 0000 11 . 6926 11.7101
H1| CBE3GTeex 01887 30,93 .0oo0 CB4670 CBZ2068
iz . 03GGExxx .01113 3.20 0014 01375 _0B736 o
3| L 0Z2Z256% 01281 1.76 0783 —. 00256 04768 — 17T
Hd| L4494 Gxnn L0103k 43,42 0000 42919 46977 U I # W@ i
| Yariance parameters for compound error
Lanbda | 1 G0ladxxx .0a748 17.17 .00oo0 1.33019 1.67310 Huralayweiasstr 7
Sigma| L1871 0% .0oo11 1e98 .90 0000 18688 .18732

[Part 14] 95/103



Jometrics Association

A True Random Effects Model

Spatial Stochastic Frontier Models; Accounting for Unobserved Local
Determinants of Inefficiency

Schmidt, Moriera, Helfand, Fonseca; Journal of Productivity Analysis,
20009.

y; = Output of farm j in municipality I in Center-West Brazil
Yi =0, +'3’Xij TV - U

(a,,...,0, ) = conditionally autoregressive based on neighbors

a. -0, 1s smaller when municipalities 1 and k are closer together
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A Spatial Autoregressive Production Frontier Nodel for Panel

Data: With an Application to European Countries

Anthony J. Glass*, Karligash Kenjegalieva' and Robin Sickles

Estimating Efficiency Spillovers with State Level

Evidence for Manufacturing in the U.S.

Anthony Glass®*, Karligash Kenjegalieva®, Robin C. Sickles”

aSchool of Business and Economics, Loughborough Unwversity, Leics, LE11 3TU, UK
b Department of Economics, Rice University, Houston, U.S., and School of Business and
Eeconomics, Loughborough University, Leics, LE11 3TU, UK
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Consider the following Chff-Ord type production function for panel data:

h?'
Yie = Xaf+ AZ WijYje + Eit
j=1
1 = 1, N;t=1..T,

Estimation by Maximum Likelihood
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LeSage (2000) on Tlmlng

“The Bayesian probit and tobit spatial
autoregressive models described here have been
applied to samples of 506 and 3,107
observations. The time required to produce
estimates was around 350 seconds for the 506
observations sample and 900 seconds for the
case infolving 3,107 observations. ...
(inexpensive Apple G3 computer running at 266
Mhz.)"
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BEinomial Probhit Model

Dependent wvariable IF
Log likelihood function -4134. 21620
Festricted log likelihood -4783. 16647
Chi squared [ 6&](F= .000) 297 .90053
slgnificance level Laoooo
McFadden Pseudo E-squared 0347757
Estimation based on M = £330, K = 7 <€
Inf.Cr.AIC = 5282.4 AIC/N = 1.304
________ +____________________________________________________________________
| Standard Prob. H5% Confidence
IP| Coefficient Error = | = | »Z* Interval
________ +____________________________________________________________________
| Index function for probability
Constant | -1.7bZ287%%x .obB235 -3.13 ao1y -2.865086 -.bBOGY
IM| .44303 . 39455 1.12 2615 -.330Z8 1.21635
THLIM | BT 7h R .25128 2.70 .0070 .18502 1.17003
FDTUM | 3. 1977 9x=x .43002 7.44 .0000 2.35496 4.04061
SP | 1.155060%%% .14063 8.22 aaoo 88002 1.43129
PEOD | -4, 7007 Jexx .0a2281 -g8.50 aooo -5.78422 -3.681725
LOGSALES | .1065p%xx .05378 3.47 aoos .05114 29197
________ +____________________________________________________________________
* % Slgnitficance at 1%, 5%, 10% level:

odel was estimated on Jun 14, 2013 at 02:47:14 PM

Elapsed time: 0 hours, 0 minutes, .140 seconds.
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Efficient Spatial Econometric Model Estimation
with Very Large Datasets Using the Maximum
Likelihood Coding Technique

Giuseppe Arbia, University “G. dAnnunzio” of Pescara and
“Catholic University of the Sacred Hearth”, Rome
and
Pedro Amaral, University of Cambridge (UK)

1-11-2011 Pedro Amaral, U. Cambridge, Giuseppe Arbia U. Pescara 0

Computation time is still an issue in econometrics !!

In the spatial econometric modeling when we follow a maximum likelihood approach,
the problem originates mainly from the inversion of the matrix

(I-pW)
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Proposed North
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Thank you
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