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Y=1[New Plant Located in County]

Klier and McMillen: Clustering of Auto Supplier Plants in the United States. JBES, 2008
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Outcome Models for Spatial Data

 Spatial Regression Models

 Estimation and Analysis

 Nonlinear Models and Spatial Regression

 Nonlinear Models: Specification, Estimation

 Discrete Choice: Binary, Ordered, Multinomial, 
Counts

 Sample Selection

 Stochastic Frontier
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Spatial Autocorrelation
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Spatial Autocorrelation in Regression
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Bell and Bockstael (2000)  Spatial 

Autocorrelation in Real Estate Sales
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Agreed Upon Objective: 

Practical Obstacles

• Problem: Maximize logL involving sparse
(I-W)

• Inaccuracies in determinant and inverse

• Kelejian and Prucha (1999) moment based
estimator of 

• Followed by FGLS
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Spatial Autoregression in a Linear Model
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Complications of the Generalized 

Regression Model

 Potentially very large N – GIS data on agriculture

plots

 Estimation of . There is no natural residual based

estimator

 Complicated covariance structures – no simple

transformations 
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Panel Data Application
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Similar assumptions 

Candidate for SUR or Spatial Autocorrelation model. 

x β

ε Wε v



[Part 14]   11/103

Spatial Autocorrelation in a Panel
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Analytical Environment

 Generalized linear regression

 Complicated disturbance covariance matrix

 Estimation platform: Generalized least

squares or maximum likelihood (normality)

 Central problem, estimation of 
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Outcomes in Nonlinear Settings

 Land use intensity in Austin, Texas – Discrete Ordered

Intensity = 1,2,3,4

 Land Usage Types in France, 1,2,3 – Discrete Unordered

 Oak Tree Regeneration in Pennsylvania – Count 

Number = 0,1,2,… (Many zeros)

 Teenagers in the Bay area:

physically active = 1 or physically inactive = 0 – Binary

 Pedestrian Injury Counts in Manhattan – Count 

 Efficiency of Farms in West-Central Brazil – Nonlinear

Model (Stochastic frontier)

 Catch by Alaska trawlers in a nonrandom sample
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Nonlinear Outcomes 

 Discrete revelation of choice indicates

latent underlying preferences

 Binary choice between two alternatives

 Unordered choice among multiple choices 

 Ordered choice revealing underlying

strength of preferences 

 Counts of events

 Stochastic frontier and efficiency

 Nonrandom sample selection
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Modeling Discrete Outcomes

 “Dependent Variable” typically labels an outcome

 No quantitative meaning

 Conditional relationship to covariates

 No “regression” relationship in most cases. 

 Models are often not conditional means.

 The “model” is usually a probability

 Nonlinear models – usually not estimated by any type

of linear least squares



[Part 14]   17/103

Nonlinear Spatial Modeling

 Discrete outcome yit = 0, 1, …, J for

some finite or infinite (count case) J.

 i = 1,…,n

 t = 1,…,T

 Covariates xit

 Conditional Probability (yit = j) 

= a function of xit.
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Issues in Spatial Discrete Choice

• A series of Issues
 Spatial dependence between alternatives: Nested logit

 Spatial dependence in the LPM: Solves some practical problems. A bad model

 Spatial probit and logit: Probit is generally more amenable to modeling

 Statistical mechanics:  Social interactions – not practical

 Autologistic model: Spatial dependency between outcomes or utillities. 

See below

 Variants of  autologistic:  The model based on observed outcomes is

incoherent (“selfcontradictory”)

 Endogenous spatial weights

 Spatial heterogeneity: Fixed and random effects.  Not practical.

• The model discussed below
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Two Platforms

 Random Utility for Preference Models
Outcome reveals underlying utility
 Binary:       u*    = ’x y = 1 if u* > 0

 Ordered:    u*    = ’x y = j if   j-1 < u* < j

 Unordered: u*(j) = ’xj , y = j if u*(j) > u*(k)

 Nonlinear Regression for Count Models
Outcome is governed by a nonlinear
regression
 E[y|x]  =  g(,x)
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Maximum Likelihood Estimation

Cross Section Case: Binary Outcome

 







  Random Utility:        y* =   + 
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Cross Section Case: n observations
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How to Induce Correlation

 Joint distribution of multiple observations

 Correlation of unobserved heterogeneity

 Correlation of latent utility
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Bivariate Counts

 Intervening variable approach

Y1 = X1 + Z, Y2 = Y2 + Z; All 3 Poisson distributed

Only allows positive correlation.

Limited to two outcomes

 Bivariate conditional means

1 = exp(x1 + 1), 2 = exp(x2 + 2), Cor(1,2)=

|Cor(y1,y2)| << ||  (Due to residual variation)

 Copula functions – Useful for bivariate.  Less so if > 2.
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Spatially Correlated Observations

Correlation Based on Unobservables
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Spatially Correlated Observations

Correlated Utilities
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Log Likelihood

 In the unrestricted spatial case, the log

likelihood is one term,

 LogL = log Prob(y1|x1, y2|x2, … ,yn|xn)

 In the discrete choice case, the

probability will be an n fold integral,
usually for a normal distribution.
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See Maddala (1983)

From Klier and 

McMillen (2012)
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LogL for an Unrestricted BC Model
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   One huge observation - n dimensional normal integral.

   Not feasible for any reasonable sample size.
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     sampling standard errors.
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Solution Approaches for Binary Choice

 Distinguish between private and
social shocks and use pseudo-ML

 Approximate the joint density and
use GMM with the EM algorithm

 Parameterize the spatial correlation
and use copula methods

 Define neighborhoods – make W a 
sparse matrix and use pseudo-ML

 Others …
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Heteroscedastic Probit

Estimation and Inference
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(Slightly more involved for the heteroscedasticity.  LHS variable

in the EM iterations is the score vector.)

To compute the asymptotic covariance
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, we need Var[ ( )]

Observations are (spatially) correlated!  How to compute it?
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GMM
Pinske, J. and Slade, M., (1998) “Contracting in Space: An Application of Spatial Statistics to Discrete 
Choice Models,” Journal of Econometrics, 85, 1, 125-154.
Pinkse, J. , Slade, M. and Shen, L (2006) “Dynamic Spatial Discrete Choice Using One Step GMM: An 
Application to Mine Operating Decisions”, Spatial Economic Analysis, 1: 1, 53 — 99.
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GMM Approach

 Spatial autocorrelation induces

heteroscedasticity that is a function of 

 Moment equations include the

heteroscedasticity and an additional
instrumental variable for identifying .

 LM test of   = 0 is carried out under the null

hypothesis that  =  0.

 Application: Contract type in pricing for 118

Vancouver service stations.
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GMM
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Extension to Dynamic Choice Model

Pinske, Slade, Shen (2006)
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LM Test?

• If  = 0, g = 0 because Aii = 0

• At the initial logit values, g = 0

• Thus, if  = 0, g = 0

• How to test  = 0 using an LM style test.

• Same problem shows up in RE models

• But, here,  is in the interior of the 
parameter space!



[Part 14]   44/103

Pseudo Maximum Likelihood

 Maximize a likelihood function that

approximates the true one

 Produces consistent estimators of

parameters

 How to obtain standard errors?

 Asymptotic normality? Conditions for

CLT are more difficult to establish.
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Pseudo MLE
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o MLE is based on the marginal densities.

How to obtain the asymptotic covariance matrix?

[See Wang, Iglesias, Wooldridge (2013)]
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ˆ ˆ ˆ(data, ) (data, ) (data, )

ˆ(data, )  Negative inverse of Hessian

ˆ(data, )  Covariance matrix of scores.

ˆHow to compute (data, )

Terms are not independent in a spatial setting.
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Covariance Matrix for Pseudo MLE
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‘Pseudo’ Maximum Likelihood

Smirnov, A., “Modeling Spatial Discrete Choice,” Regional Science and Urban Economics, 40, 2010.
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Pseudo Maximum Likelihood

 Bases correlation in underlying utilities

 Assumes away the correlation in the reduced form

 Makes a behavioral assumption

 Requires inversion of (I-W)

 Computation of (I-W) is part of the optimization
process -  is estimated with  .

 Does not require multidimensional integration (for a logit

model, requires no integration)
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Copula Method and Parameterization

Bhat, C. and Sener, I., (2009)  “A copula-based closed-form binary logit choice model
for accommodating spatial correlation across observational units,” Journal of Geographical Systems, 
11, 243–272

    

  

* *
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Copula Representation
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Model
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Likelihood
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Parameterization
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Other Approaches

 Case (1992): Define “regions” or neighborhoods.  No

correlation across regions.  Produces essentially a
panel data probit model.  (Wang et al. (2013))

 Beron and Vijverberg (2003):  Brute force integration

using GHK simulator in a probit model.

 Lesage:  Bayesian - MCMC

 Others.  See Bhat and Sener (2009).

Case A (1992) Neighborhood influence and technological change. Economics 22:491–508
Beron KJ, Vijverberg WPM (2004) Probit in a spatial context: a monte carlo analysis. In: Anselin L, Florax RJGM, 
Rey SJ (eds) Advances in spatial econometrics: methodology, tools and applications. Springer,  Berlin
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See also Arbia, G., “Pairwise Likelihood Inference for Spatial Regressions 

Estimated on Very Large Data Sets”  Manuscript, Catholic University del Sacro 

Cuore, Rome, 2012.
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Partial MLE
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Bivariate Probit

 Pseudo MLE

 Consistent

 Asymptotically normal?

 Resembles time series case

 Correlation need not fade with ‘distance’

 Better than Pinske/Slade Univariate Probit?

 How to choose the pairings?
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Lesage methods - MCMC

• SEM Model…

• Bayesian MCMC

• Data augmentation for unobserved y

• Quirks about sampler for rho.
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Ordered Probability Model
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A Spatial Ordered Choice Model
Wang, C. and Kockelman,  K., (2009) Bayesian Inference for Ordered Response Data with a Dynamic Spatial 
Ordered Probit Model, Working Paper, Department of Civil and Environmental Engineering, Bucknell University.

* *

1

* *

1

Core Model: Cross Section

     y ,    y  = j if y ,  Var[ ] 1

Spatial Formulation:  There are R regions.  Within a region

     y u ,    y  = j if y

     Spatial he

i i i i j i j i

ir ir i ir ir j ir j





        

       

β x

β x

2

2

1 2 1

teroscedasticity:  Var[ ]

Spatial Autocorrelation Across Regions

       =    +  ,   ~ N[ , ]

       =  ( - )   ~  N[ , {( - ) ( - )} ]

     The error distribution depends on 2 para

ir r

v

v
 

  

 

   

u Wu v v 0 I

u I W v 0 I W I W

2meters,  and 

Estimation Approach:  Gibbs Sampling; Markov Chain Monte Carlo

Dynamics in latent utilities added as a final step: y*(t)=f[y*(t-1)]. 
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An Ordered Probability Model
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OCM for Land Use Intensity
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OCM for Land Use Intensity
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Estimated Dynamic OCM
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Data Augmentation
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Unordered Multinomial Choice
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  Underlying Random Utility for Each Alternative

      U(i,j) = ,  i = individual, j = alternative

  Preference Revelation

      Y(i) = j if and only if U(i,j) > U(i,k

Core Random Utility Model

 x





 

 

1 J
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) for all k  j

  Model Frameworks

      Multinomial Probit:  [ ,..., ] ~ N[0, ]

      Multinomial Logit:   [ ,..., ] ~ iid type 1 extreme value
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Spatial Multinomial Probit

Chakir, R. and Parent, O. (2009) “Determinants of land use changes: A spatial multinomial probit 
approach, Papers in Regional Science, 88, 2, 328-346.
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Utility Functions, land parcel i, usage type j, date t

     U(i,j,t)=

Spatial Correlation at Time t

     w

Modeling Framework:  Normal / Multinomial Probit

Estimation:  MCMC

x

 - Gibbs Sampling
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Random Parameters Models
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Canonical Model
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Poisson Regression

     y = 0,1,...
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     Prob[y = j| ]  =  
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     Conditional Mean    =  exp( )
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Rathbun, S and Fei, L (2006) “A Spatial Zero-Inflated Poisson Regression Model for Oak Regeneration,”  
Environmental Ecology Statistics, 13, 2006, 409-426
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Canonical Model for Counts
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Poisson Regression
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Usual Alternative:  Negative Binomial

Spatial Effect: Filtered 

x

x



 

    


i i i

n

i im m im 1

through the mean

        =  exp( + )

        =  w

x

Rathbun, S and Fei, L (2006) “A Spatial Zero-Inflated Poisson Regression Model for Oak Regeneration,”  
Environmental Ecology Statistics, 13, 2006, 409-426
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Zero Inflation

 There are two states

 Always zero

 Zero is one possible value, or 1,2,…

 Prob(0) = Prob(state 1) +

Prob(state 2) P(0|state 2)
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Numbers of firms locating in Texas 

counties:  Count data (Poisson)

Bicycle and pedestrian 

injuries in census tracts in 

Manhattan. (Count data and 

ordered outcomes)

A Blend of Ordered 

Choice and Count Data 

Models
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Kriging
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Spatial Autocorrelation in a 

Sample Selection Model

•Alaska Department of Fish and Game.
•Pacific cod fishing eastern Bering Sea – grid of locations
•Observation = ‘catch per unit effort’ in grid square
•Data reported only if 4+ similar vessels fish in the region
•1997 sample = 320 observations with 207 reported full data

Flores-Lagunes, A. and Schnier, K., “Sample selection and Spatial Dependence,” Journal of Applied Econometrics, 
27, 2, 2012, pp. 173-204.
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Spatial Autocorrelation in a 

Sample Selection Model

•LHS is catch per unit effort = CPUE

•Site characteristics: MaxDepth, MinDepth, Biomass

•Fleet characteristics: 

 Catcher vessel (CV = 0/1)

 Hook and line (HAL = 0/1)

 Nonpelagic trawl gear (NPT = 0/1)

 Large (at least 125 feet) (Large = 0/1)

Flores-Lagunes, A. and Schnier, K., “Sample selection and Spatial Dependence,” Journal of Applied Econometrics, 
27, 2, 2012, pp. 173-204.
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Spatial Autocorrelation in a 

Sample Selection Model

*
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*
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Spatial Autocorrelation in a 

Sample Selection Model
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Spatial Weights

2

1
,

 Euclidean distance

Band of 7 neighbors is used

Row standardized.
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Two Step Estimation
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n second step

(*)  GMM procedure combines the two steps in one large estimation.
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Spatial Stochastic Frontier

Production function model

y = + ε

y = + v - u

v  unexplained noise = N[0,1]

u = inefficiency > 0; efficiency = exp(-u)

Object of estimation is u, not 

Not a linear regression. Fit by MLE or MCMC.
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247 Spanish Dairy Farms, 6 Years
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A True Random Effects Model

ij

i ij ij ij

1 n

i k

y Output of farm j in municipality i in Center-West Brazil

y α + +v  - u

(α ,...,α ) conditionally autoregressive based on neighbors

α -α  is smaller when municipalities i and k are closer tog

ij







β x

ether

Spatial Stochastic Frontier Models; Accounting for Unobserved Local 

Determinants of Inefficiency

Schmidt, Moriera, Helfand, Fonseca; Journal of Productivity Analysis, 

2009.
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Estimation by Maximum Likelihood
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LeSage (2000) on Timing

“The Bayesian probit and tobit spatial 

autoregressive models described here have been 

applied to samples of 506 and 3,107 

observations.  The time required to produce 

estimates was around 350 seconds for the 506 

observations sample and 900 seconds for the 

case infolving 3,107 observations. … 

(inexpensive Apple G3 computer running at 266 

Mhz.)”



[Part 14]   100/103

Time and Space (In Your Computer)
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Thank you
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