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Aggregate Data and Multinomial Choice: 
  

The Model of Berry, Levinsohn and Pakes 
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Resources 

 Automobile Prices in Market Equilibrium, S. Berry, J. Levinsohn, 
A. Pakes, Econometrica, 63, 4, 1995, 841-890. (BLP) 

http://people.stern.nyu.edu/wgreene/Econometrics/BLP.pdf 

 

 A Practitioner’s Guide to Estimation of Random-Coefficients Logit 
Models of Demand, A. Nevo, Journal of Economics and 
Management Strategy, 9, 4, 2000, 513-548 

http://people.stern.nyu.edu/wgreene/Econometrics/Nevo-
BLP.pdf 

 

 A New Computational Algorithm for Random Coefficients Model 
with Aggregate-level Data, Jinyoung Lee, UCLA Economics, 
Dissertation, 2011 

http://people.stern.nyu.edu/wgreene/Econometrics/Lee-
BLP.pdf 
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Theoretical Foundation 
 Consumer market for J differentiated brands of a good 

 j =1,…, Jt brands or types 

 i = 1,…, N consumers 

 t = i,…,T “markets”  (like panel data) 

 Consumer i’s utility for brand j (in market t) depends on 

 p = price 

 x = observable attributes 

 f  = unobserved attributes 

 w = unobserved heterogeneity across consumers 

 ε = idiosyncratic aspects of consumer preferences  

 Observed data consist of aggregate choices, prices and 
features of the brands. 
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BLP Automobile Market 

t 

Jt 
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Random Utility Model 

 Utility:  Uijt=U(wi,pjt,xjt,fjt|), i = 1,…,(large)N,  
j=1,…,J 
 wi = individual heterogeneity; time (market) invariant.  w has a 

continuous distribution across the population. 

 pjt, xjt, fjt, = price, observed attributes, unobserved features of 
brand j; all may vary through time (across markets) 

 Revealed Preference:  Choice j provides maximum 
utility 

 Across the population, given market t, set of prices pt 
and features (Xt,ft), there is a set of values of wi that 
induces choice j, for each j=1,…,Jt; then, sj(pt,Xt,ft|) 
is the market share of brand j in market t. 

 There is an outside good that attracts a nonnegligible 
market share, j=0.  Therefore,  

  <  j t t t
tJ

j=1
s ( , , | ) 1p X f θ
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Functional Form 

 (Assume one market for now so drop “’t.”) 
Uij=U(wi,pj,xj,fj|)= xj'β – αpj + fj + εij   
                         = δj + εij  

 Econsumers i[εij] = 0, δj is E[Utility]. 

 

 

 Will assume logit form to make integration 
unnecessary.  The expectation has a 
closed form. 

 
      
 j j qq j

Market Share E Prob( )
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Heterogeneity 

 Assumptions so far imply IIA.  Cross price 
elasticities depend only on market shares. 

 Individual heterogeneity: Random 
parameters 

 Uij=U(wi,pj,xj,fj|i)= xj'βi – αpj + fj + εij 

                          βik = βk +  σkvik. 

 The mixed model only imposes IIA for a 
particular consumer, but not for the 
market as a whole. 
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Endogenous Prices: Demand side 

 Uij=U(wi,pj,xj,fj|)= xj'βi – αpj + fj + εij 

 fj is unobserved 

 Utility responds to the unobserved fj  

 Price pj is partly determined by features fj. 

 In a choice model based on observables, 
price is correlated with the unobservables 
that determine the observed choices. 
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Endogenous Price: Supply Side 

 There are a small number of competitors in this market 

 Price is determined by firms that maximize profits given the 
features of its products and its competitors. 

 mcj  =  g(observed    cost characteristics c,  
              unobserved cost characteristics h) 

 At equilibrium, for a profit maximizing firm that produces 
one product, 
 sj + (pj-mcj)sj/pj = 0 

 Market share depends on unobserved cost characteristics as 
well as unobserved demand characteristics, and price is 
correlated with both. 
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Instrumental Variables 

(ξ and ω are our h and f.) 
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Econometrics: Essential Components 
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Econometrics 
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GMM Estimation Strategy - 1 
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GMM Estimation Strategy - 2 







 

 



 

   



t

jt

jt jt

1

t t t t t

J

t jt jtj 1
t

t t t

We have instruments  such that

E[f ( ) ] 0

ˆˆ ˆ( , : )   so  ( , : ).

1 ˆˆDefine  = f
J

ˆ ˆ ˆGMM Criterion would be Q ( )  

where  = the weighting matrix for mi

t

z

z

s X f S f s X S

g z

g Wg

W

t t

 
  

tT J

jt jtt 1 j 1
t

nimum distance estimation.

For the entire sample, the GMM estimator is built on

1 1 ˆˆ ˆ ˆ = f  and Q( )=
T J

g z g Wg



[Part 15]   16/24 

Discrete Choice Modeling 
Aggregate Share Data - BLP 

BLP Iteration 
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ABLP Iteration 

 ξt  is  

our ft. 
 is our 
(β,) 
 
No superscript is 
our (M); 
superscript 0 is 
our (M-1).  



[Part 15]   18/24 

Discrete Choice Modeling 
Aggregate Share Data - BLP 

Side Results 
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ABLP Iterative Estimator 
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BLP Design Data 
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Exogenous price and nonrandom parameters 
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IV Estimation 
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Full Model 
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Some Elasticities 


