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A Random Utility Approach

 Underlying Preference Scale, U*(choices)

 Revelation of Preferences:

 U*(choices)  < 0          Choice “0”

 U*(choices)  >  0          Choice “1”
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Binary Outcome: Visit Doctor
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A Model for Binary Choice

 Yes or No decision (Buy/NotBuy, Do/NotDo)

 Example, choose to visit physician or not

 Model:  Net utility of visit at least once

Uvisit =  +1Age + 2Income + Sex + 

Choose to visit if net utility is positive

Net utility = Uvisit – Unot visit

 Data:  X = [1,age,income,sex]

y = 1 if choose visit,  Uvisit > 0, 0 if not.

Random Utility
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Modeling the Binary Choice

Net Utility  =  Uvisit – Unot visit

Normalize     Unot visit  = 0

Net Uvisit =  + 1 Age + 2 Income + 3 Sex + 

Chooses to visit:  Uvisit >  0

 + 1 Age + 2 Income + 3 Sex +  > 0

 >  -[ + 1 Age + 2 Income + 3 Sex ]

Choosing Between the Two Alternatives
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Probability Model for Choice Between Two Alternatives

 > -[ + 1Age + 2Income + 3Sex ]

Probability is 

governed by ,
the random 

part of the 

utility function.
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Application

27,326 Observations 
 1 to 7 years, panel 

 7,293 households observed 

 We use the 1994 year,  3,337 household 
observations



[Part 2]   8/86

Discrete Choice Modeling
Binary Choice Models

Binary Choice Data
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An Econometric Model

 Choose to visit iff Uvisit >  0

 Uvisit =  + 1 Age + 2 Income + 3 Sex + 

 Uvisit > 0    > -( + 1 Age + 2 Income + 3 Sex)

 <     + 1 Age + 2 Income + 3 Sex

 Probability model: For any person observed by the analyst, 

Prob(visit)  =  Prob[ <  + 1 Age + 2 Income + 3 Sex]

 Note the relationship between the unobserved  and the 

outcome
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+1Age + 2 Income + 3 Sex
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Modeling Approaches

 Nonparametric – “relationship”
 Minimal Assumptions

 Minimal Conclusions

 Semiparametric – “index function” 
 Stronger assumptions

 Robust to model misspecification (heteroscedasticity)

 Still weak conclusions

 Parametric – “Probability function and index”
 Strongest assumptions – complete specification

 Strongest conclusions

 Possibly less robust. (Not necessarily)

 The linear probability “model”
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Nonparametric Regressions

P(Visit)=f(Income)

P(Visit)=f(Age)
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Klein and Spady Semiparametric

No specific distribution assumed

Note necessary 

normalizations. 

Coefficients are 

relative to 

FEMALE.

Prob(yi = 1 | xi )  =G(’x)  G is estimated by kernel methods
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Fully Parametric

 Index Function: U* = β’x + ε

 Observation Mechanism: y = 1[U* > 0]

 Distribution: ε ~ f(ε); Normal, Logistic, …

 Maximum Likelihood Estimation:

Max(β) logL = Σi log Prob(Yi = yi|xi)
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Parametric: Logit Model

What do these mean?
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Parametric Model Estimation

 How to estimate , 1, 2, 3?

 The technique of maximum likelihood

 Prob[y=1] = 

Prob[ > -( + 1 Age + 2 Income + 3 Sex)]

Prob[y=0]  =  1 - Prob[y=1]

 Requires a model for the probability

0 1
Prob[ 0 | ] Prob[ 1| ]

y y
L y y

 
    x  x
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Completing the Model:  F()

 The distribution

 Normal:      PROBIT, natural for behavior

 Logistic:      LOGIT, allows “thicker tails”

 Gompertz:  EXTREME VALUE, asymmetric

 Others…

 Does it matter?

 Yes, large difference in estimates

 Not much, quantities of interest are more stable.
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Estimated Binary Choice Models

Log-L(0) = log likelihood for a model that has only a constant term.

Ignore the t ratios for now.
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 + 1 (Age+1) + 2 (Income) + 3 Sex

Effect on Predicted Probability of an Increase in Age

(1 is positive)



[Part 2]   20/86

Discrete Choice Modeling
Binary Choice Models

Partial Effects in Probability Models
 Prob[Outcome]  =  some F(+1Income…)

 “Partial effect”   =  F(+1Income…) / ”x”    (derivative)

 Partial effects are derivatives

 Result varies with model

 Logit: F(+1Income…) /x =  Prob * (1-Prob)     

 Probit:  F(+1Income…)/x =  Normal density      

 Extreme Value:  F(+1Income…)/x =  Prob * (-log Prob)  

 Scaling usually erases model differences
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Estimated Partial Effects
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Partial Effect for a Dummy Variable

 Prob[yi = 1|xi,di] = F(’xi+di)

= conditional mean

 Partial effect of d 

Prob[yi = 1|xi, di=1]   - Prob[yi = 1|xi, di=0]

 Probit:     ˆ ˆˆ( )        x xid
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Partial Effect – Dummy Variable
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Computing Partial Effects

 Compute at the data means?

 Simple

 Inference is well defined.

 Average the individual effects

 More appropriate?

 Asymptotic standard errors are complicated.
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Average Partial Effects

i i

i i
i i

i i

n n

i ii 1 i 1

i

Probability  =  P F( ' )

P F( ' )
Partial Effect = f ( ' )  = 

1 1
Average Partial Effect =  f ( ' )

n n

are estimates of  =E[ ] under certain assumptions.
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 
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 
 

x

x
x d

x x

d x

d




 

 


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Average Partial Effects vs. Partial Effects at Data Means
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Practicalities of Nonlinearities

PROBIT ; Lhs=doctor 

; Rhs=one,age,agesq,income,female  

; Partial effects $

PROBIT     ; Lhs=doctor 

; Rhs=one,age,age*age,income,female $

PARTIALS ; Effects : age $

The software does not know that agesq = age2.

The software knows that age * age is age2.
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Partial Effect for Nonlinear Terms

2

1 2 3 4

2

1 2 3 4 1 2

2

Prob [ Age Age Income Female]

Prob
[ Age Age Income Female] ( 2 Age)

Age

(1.30811 .06487 .0091 .17362 .39666 )
           

[( .06487 2(.0091) ]            

Age Age Income Female

Age

      


          



    

                                                                 

Must be computed at specific values of Age, Income and Female
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Average Partial Effect: Averaged over Sample Incomes and 

Genders for Specific Values of Age
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The Linear Probability “Model”

)





Prob(y = 1| ) =

E[y | ] = 0 * Prob(y = 1| ) +1Prob(y = 1| ) = Prob(y = 1|

y = + ε

x β x

x x x x

β x
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The Dependent Variable equals zero for 98.9% of the observations.  In the 

sample of 163,474 observations, the LHS variable equals 1 about 1,500 times.
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2SLS for a 

binary 

dependent 

variable.
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)

ˆ ˆ ˆ if y = 1, or 0  if y = 0

The standard errors make no sense because the stochastic properties

of





  

Prob(y = 1| ) =

E[y | ] = 0 * Prob(y = 1| ) +1Prob(y = 1| ) = Prob(y = 1|

y = + ε

Residuals :  e  =  y  - 

x β x

x x x x

β x

β x = 1- β x - β x

 the "disturbance" are inconsistent with the observed variable.
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)

ˆ ˆ ˆ if y = 1, or 0  if y = 0

The standard errors make no sense because the stochastic properties

of





  

Prob(y = 1| ) =

E[y | ] = 0 * Prob(y = 1| ) +1Prob(y = 1| ) = Prob(y = 1|

y = + ε

Residuals :  e  =  y  - 

x β x

x x x x

β x

β x = 1- β x - β x

 the "disturbance" are inconsistent with the observed variable.

The variance of y|x equals ) ) (1 )

The "disturbances" are heteroscedastic.  Users of the LPM always seem to 

worr

  Prob(y = 0 | Prob(y = 1|x x β x β x

y about clustering.  They never seem to worry about heteroscedasticity.
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1.7% of the observations are > 20

DV = 1(DocVis > 20)
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What does OLS Estimate?

MLE

Average Partial Effects

OLS Coefficients
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Negative Predicted Probabilities
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Measuring Fit
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How Well Does the Model Fit?

 There is no R squared.

 Least squares for linear models is computed to maximize R2

 There are no residuals or sums of squares in a binary choice model

 The model is not computed to optimize the fit of the model to the 

data

 How can we measure the “fit” of the model to the data?

 “Fit measures” computed from the log likelihood

 “Pseudo R squared” = 1 – logL/logL0

 Also called the “likelihood ratio index”

 Others… - these do not measure fit.

 Direct assessment of the effectiveness of the model at predicting 

the outcome
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Log Likelihoods

 logL = ∑i log density (yi|xi,β)

 For probabilities 

 Density is a probability

 Log density is < 0

 LogL is < 0

 For other models, log density can be positive or 

negative.
 For linear regression, 

logL=-N/2(1+log2π+log(e’e/N)]

 Positive if s2 < .058497
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Likelihood Ratio Index

 
1

log (1 )log[1 ( )] log ( )

1.  Suppose the model predicted ( ) 1 whenever y=1

    and ( ) 0 whenever y=0.  Then, logL = 0.

    [ ( ) cannot equal 0 or 1 at any finite .]

2.  S


    

 

 

 

 x x

x

x

x

N

i i i ii

i

i

i
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F

F

F

 







 

0

0 0 01

0 0 1 0

0

uppose the model always predicted the same value, F( )

     LogL  = (1 ) log[1 F( )] log F( )

               = log[1 F( )] log F( )

              < 0

log
     LRI = 1 - .  Since logL >

log





    

   


N

i ii
y y

N N

L

L
0 logL   0  LRI < 1.
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The Likelihood Ratio Index

 Bounded by 0 and 1-ε

 Rises when the model is expanded

 Values between 0 and 1 have no meaning

 Can be strikingly low.

 Should not be used to compare models

 Use logL

 Use information criteria to compare nonnested models
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Fit Measures Based on LogL
----------------------------------------------------------------------

Binary Logit Model for Binary Choice

Dependent variable               DOCTOR

Log likelihood function     -2085.92452       Full model         LogL

Restricted log likelihood   -2169.26982       Constant term only LogL0

Chi squared [   5 d.f.]       166.69058

Significance level               .00000

McFadden Pseudo R-squared      .0384209       1 – LogL/logL0

Estimation based on N =   3377, K =   6

Information Criteria: Normalization=1/N

Normalized   Unnormalized

AIC              1.23892     4183.84905       -2LogL + 2K

Fin.Smpl.AIC     1.23893     4183.87398       -2LogL + 2K + 2K(K+1)/(N-K-1)

Bayes IC         1.24981     4220.59751       -2LogL + KlnN

Hannan Quinn     1.24282     4196.98802       -2LogL + 2Kln(lnN)

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Characteristics in numerator of Prob[Y = 1]

Constant|    1.86428***       .67793        2.750   .0060

AGE|    -.10209***       .03056       -3.341   .0008      42.6266

AGESQ|     .00154***       .00034        4.556   .0000      1951.22

INCOME|     .51206          .74600         .686   .4925       .44476

AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288

FEMALE|     .65366***       .07588        8.615   .0000       .46343

--------+-------------------------------------------------------------
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Fit Measures Based on Predictions

 Computation

 Use the model to compute predicted 

probabilities

 Use the model and a rule to compute 

predicted y = 0 or 1

 Fit measure compares predictions to 

actuals
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Predicting the Outcome 

 Predicted probabilities

P = F(a + b1Age + b2Income + b3Female+…)

 Predicting outcomes

 Predict y=1 if P is “large”

 Use 0.5 for “large” (more likely than not)

 Generally, use 

 Count successes and failures

ˆŷ 1 if P > P*
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Cramer Fit Measure

   

1 1

1 0

F̂ = Predicted Probability

ˆ ˆF (1 )Fˆ
N N

ˆ ˆ ˆMean F | when = 1   -  Mean F | when = 0

   = 

N N

i i i iy y

y y

   
  

 

reward for correct predictions minus

    penalty for incorrect predictions

+----------------------------------------+

| Fit Measures Based on Model Predictions|

| Efron                        =   .04825|

| Ben Akiva and Lerman         =   .57139|

| Veall and Zimmerman          =   .08365|

| Cramer                       =   .04771|

+----------------------------------------+
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Hypothesis Testing in 

Binary Choice Models
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Covariance Matrix for the MLE

1

Log Likelihood

log {(1 ) log[1 ( )] log ( )}

We focus on the standard choices of ( ),  probit and logit.

Both distributions are symmetric; F(t)=1-F(-t).  Therefore, the terms in the su

N
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    
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 



22

2
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log log [ ( )]where q 2 1

log [ ( )]
( ) = q

[ ( )]

log
( )( )  = 

These simplify considerably.  Note q 1.  

For the l
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i i i i
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i
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ogit model, F= , F = (1- ) and F = (1- )(1-2 ).

For the probit model, F= , F =  and F  = -[ ( )]i iq

      
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Simplifications

i i

2
2

i i

i i

Logit:  g  = y  -       H  = (1- )                      E[H ] =  = (1- ) 

( )
Probit: g  =         H  = ,    E[H ] =  =  

(1 )

Estimators:  Based on H ,  E[H ]

i i i i i i i i

i i i i i i i
i i

i i i i i

q q

     
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2

1

1

1
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 and g  all functions evaluated at ( )

ˆActual Hessian:       Est.Asy.Var[ ] = 

ˆExpected Hessian:  Est.Asy.Var[ ] = 

ˆBHHH:                    Est.Asy.Var[ ] = 

i i i
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


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



 
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 
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Robust Covariance Matrix

11 22

1

"Robust" Covariance Matrix:    =  

  =  negative inverse of second derivatives matrix  

log Problog
     =  estimated E -

ˆ ˆ

  = matrix sum of outer products of

N i

i

L

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   
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 first derivatives

log Prob log Problog log
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ˆ ˆ

ˆ ˆFor a logit model,  = (1 )
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 
  
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   

2

1

(Resembles the White estimator in the linear model case.)

N

i i ii
e



   
       x x
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Robust Covariance Matrix for Logit Model

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Robust Standard Errors

Constant|    1.86428***       .68442        2.724   .0065

AGE|    -.10209***       .03115       -3.278   .0010      42.6266

AGESQ|     .00154***       .00035        4.446   .0000      1951.22

INCOME|     .51206          .75103         .682   .4954       .44476

AGE_INC|    -.01843          .01703       -1.082   .2792      19.0288

FEMALE|     .65366***       .07585        8.618   .0000       .46343

--------+-------------------------------------------------------------

|Conventional Standard Errors Based on Second Derivatives

Constant|    1.86428***       .67793        2.750   .0060

AGE|    -.10209***       .03056       -3.341   .0008      42.6266

AGESQ|     .00154***       .00034        4.556   .0000      1951.22

INCOME|     .51206          .74600         .686   .4925       .44476

AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288

FEMALE|     .65366***       .07588        8.615   .0000       .46343
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Base Model for Hypothesis Tests
----------------------------------------------------------------------

Binary Logit Model for Binary Choice

Dependent variable               DOCTOR

Log likelihood function     -2085.92452

Restricted log likelihood   -2169.26982

Chi squared [   5 d.f.]       166.69058

Significance level               .00000

McFadden Pseudo R-squared      .0384209

Estimation based on N =   3377, K =   6

Information Criteria: Normalization=1/N

Normalized   Unnormalized

AIC              1.23892     4183.84905

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Characteristics in numerator of Prob[Y = 1]

Constant|    1.86428***       .67793        2.750   .0060

AGE|    -.10209***       .03056       -3.341   .0008      42.6266

AGESQ|     .00154***       .00034        4.556   .0000      1951.22

INCOME|     .51206          .74600         .686   .4925       .44476

AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288

FEMALE|     .65366***       .07588        8.615   .0000       .46343

--------+-------------------------------------------------------------

H0: Age is not a significant

determinant of 

Prob(Doctor = 1)

H0: β2 = β3 = β5 = 0 
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Likelihood Ratio Tests

 Null hypothesis restricts the parameter vector

 Alternative relaxes the restriction

 Test statistic: Chi-squared =

2 (LogL|Unrestricted model –

LogL|Restrictions) > 0

Degrees of freedom = number of restrictions
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LR Test of H0

RESTRICTED MODEL

Binary Logit Model for Binary Choice

Dependent variable               DOCTOR

Log likelihood function     -2124.06568

Restricted log likelihood   -2169.26982

Chi squared [   2 d.f.]        90.40827

Significance level               .00000

McFadden Pseudo R-squared      .0208384

Estimation based on N =   3377, K =   3

Information Criteria: Normalization=1/N

Normalized   Unnormalized

AIC              1.25974     4254.13136

UNRESTRICTED MODEL

Binary Logit Model for Binary Choice

Dependent variable               DOCTOR

Log likelihood function     -2085.92452

Restricted log likelihood   -2169.26982

Chi squared [   5 d.f.]       166.69058

Significance level               .00000

McFadden Pseudo R-squared      .0384209

Estimation based on N =   3377, K =   6

Information Criteria: Normalization=1/N

Normalized   Unnormalized

AIC              1.23892     4183.84905

Chi squared[3]  =  2[-2085.92452 - (-2124.06568)]  =  77.46456
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Wald Test

 Unrestricted parameter vector is estimated

 Discrepancy:  q= Rb – m (or r(b,m) if nonlinear) 

is computed

 Variance of discrepancy is estimated:

Var[q] = R V R’

 Wald Statistic is q’[Var(q)]-1q = q’[RVR’]-1q 
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Chi squared[3]  =  69.0541

Wald Test
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Lagrange Multiplier Test

 Restricted model is estimated

 Derivatives of unrestricted model and 

variances of derivatives are computed at 

restricted estimates

 Wald test of whether derivatives are zero tests 

the restrictions

 Usually hard to compute – difficult to program 

the derivatives and their variances.
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LM Test for a Logit Model
 Compute b0 (subject to restictions) 

(e.g., with zeros in appropriate positions.

 Compute Pi(b0) for each observation.

 Compute ei(b0) = [yi – Pi(b0)]

 Compute gi(b0) = xiei using full xi vector

 LM = [Σigi(b0)]’[Σigi(b0)gi(b0)]
-1[Σigi(b0)]
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Inference About 

Partial Effects
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Marginal Effects for Binary Choice
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The Delta Method

   
 

    

      
   1 1

ˆ ˆ ˆ                      

ˆ ,
ˆ ˆ ˆ ˆˆ, , Est.Asy.Var

ˆ

ˆ ˆ,

   

ˆ ˆ ˆ ˆ1    1 2

P log P 1 l, og

f
f

    
 

             
     




 
 

 


 
 

 


Probit   G x I x x

Logit     G x x I x x

ExtVlu

x
x ,   G x ,  V =

x  IxG

  


    







   

   
   

1
ˆ ,

ˆ ˆ ˆˆEst.Asy.Var

P

, ,

ˆ 
 

     
     

x

G x V G x

x

  





[Part 2]   67/86

Discrete Choice Modeling
Binary Choice Models

Computing Effects

 Compute at the data means?

 Simple

 Inference is well defined

 Average the individual effects

 More appropriate?

 Asymptotic standard errors more complicated.

 Is testing about marginal effects meaningful?

 f(b’x) must be > 0; b is highly significant

 How could f(b’x)*b equal zero?
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APE vs. Partial Effects at the Mean

1

Delta Method for Average Partial Effect

1 ˆEstimator of Var PartialEffect
N

iiN 

        
 G Var G
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Method of Krinsky and Robb
Estimate β by Maximum Likelihood with b

Estimate asymptotic covariance matrix with V

Draw R observations b(r) from the normal

population N[b,V]

b(r)  =  b +  C*v(r),  v(r) drawn from N[0,I]

C =  Cholesky matrix, V = CC’

Compute partial effects d(r) using b(r)

Compute the sample variance of d(r),r=1,…,R

Use the sample standard deviations of the R 

observations to estimate the sampling standard 

errors for the partial effects.
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Krinsky and Robb

Delta Method
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Partial Effect for Nonlinear Terms
2

1 2 3 4

2

1 2 3 4 1 2

Prob [ Age Age Income Female]

Prob
[ Age Age Income Female] ( 2 Age)

Age

      


          



(1) Must be computed for a specific value of Age

(2) Compute standard errors using delta method or Krins

1 2

ky and Robb.

(3) Compute confidence intervals for different values of Age.

(4) Test of hypothesis that this equals zero is identical to a test 

      that (β + 2β Age) = 0.  Is this an interesting hypothesis? 

2(1.30811 .06487 .0091 .17362 .39666) )Prob

[( .06487 2(.0091) ]                                                                          

Age Age Income Female

AGE Age

    


   
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Average Partial Effect: Averaged over Sample Incomes and 

Genders for Specific Values of Age
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Endogeneity
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Endogenous RHS Variable

 U*  = β’x + θh + ε
y     = 1[U* > 0]

E[ε|h] ≠ 0 (h is endogenous)

 Case 1: h is continuous

 Case 2: h is binary = a treatment effect

 Approaches

 Parametric: Maximum Likelihood

 Semiparametric (not developed here): 

 GMM

 Various approaches for case 2
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Endogenous Continuous Variable

U* = β’x + θh + ε
y   = 1[U* > 0]     
h   = α’z + u

E[ε|h] ≠ 0  Cov[u, ε] ≠ 0

Additional Assumptions:

(u,ε)  ~  N[(0,0),(σu
2, ρσu, 1)]

z =  a valid set of exogenous

variables, uncorrelated with (u,ε)

Correlation = ρ.

This is the source of the endogeneity  

This is not IV estimation. Z may be uncorrelated with X without problems.
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Endogenous Income

0 = Not Healthy 1 = Healthy

Healthy = 0 or 1

Age, Married, Kids, Gender, Income

Determinants of Income (observed and 

unobserved) also determine health 

satisfaction.

Income responds to

Age, Age2, Educ, Married, Kids, Gender
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Estimation by ML (Control Function)

Probit fit of y to  and  will not consistently estimate ( , )

because of the correlation between h and  induced by the

correlation of u and .  Using the bivariate normality, 

(
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Two Approaches to ML

u

(1) Maximize the full log likelihood

      with respect to ( , , , , )

     (The built in Stata routine IVPROBIT does this. It is not

       an instrumental variable estimat

 

or; it i

  

Full information ML.

 

s a FIML estimator.)

     Note also, this does not imply replacing h with a prediction 

ˆ     from the regression then using probit with h instead of h.

(2) Two step limited information ML.  (Control Fun
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FIML Estimates
----------------------------------------------------------------------

Probit with Endogenous RHS Variable

Dependent variable              HEALTHY

Log likelihood function     -6464.60772

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Coefficients in Probit Equation for HEALTHY

Constant|    1.21760***       .06359       19.149   .0000

AGE|    -.02426***       .00081      -29.864   .0000      43.5257

MARRIED|    -.02599          .02329       -1.116   .2644       .75862

HHKIDS|     .06932***       .01890        3.668   .0002       .40273

FEMALE|    -.14180***       .01583       -8.959   .0000       .47877

INCOME|     .53778***       .14473        3.716   .0002       .35208

|Coefficients in Linear Regression for INCOME

Constant|    -.36099***       .01704      -21.180   .0000

AGE|     .02159***       .00083       26.062   .0000      43.5257

AGESQ|    -.00025***     .944134D-05   -26.569   .0000      2022.86

EDUC|     .02064***       .00039       52.729   .0000      11.3206

MARRIED|     .07783***       .00259       30.080   .0000       .75862

HHKIDS|    -.03564***       .00232      -15.332   .0000       .40273

FEMALE|     .00413**        .00203        2.033   .0420       .47877

|Standard Deviation of Regression Disturbances

Sigma(w)|     .16445***       .00026      644.874   .0000

|Correlation Between Probit and Regression Disturbances

Rho(e,w)|    -.02630          .02499       -1.052   .2926

--------+-------------------------------------------------------------
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Partial Effects: Scaled Coefficients

    E[ | ] ( )

     where  ~ N[0,1]

    E[y|x, , ] = [ ( )]

  =  

E[y| , , ]
    [ ( )]( )

   

     

     


        



Conditional Mean

x x

z z

z x z

Partial Effects. Assume z x (just for convenience)

x z
x z

x

u

u

u

y h h

h u v v

v v

v
v

, 

 

 

   

R

1

E[y| , ] E[y| , , ]
    E ( ) [ ( )] ( )

E[y| , ] 1
    . ( ) [ ( )]







  
             


        







x z x z
x z

x x

The integral does not have a closed form, but it can easily be simulated :

x z
x z

x

For v

v u

u rr

v
v v dv

Est v
R

   

   

k k ,  .  ,  . ariables only in x omit For variables only in z omit



[Part 2]   81/86

Discrete Choice Modeling
Binary Choice Models

Partial Effects

The scale factor is computed using the model coefficients, means of the 

variables and 35,000 draws from the standard normal population.

θ = 0.53778
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Endogenous Binary Variable

U*   = β’x + θh + ε
y     = 1[U* > 0]
h*   = α’z + u
h     = 1[h* > 0]

E[ε|h*] ≠ 0  Cov[u, ε] ≠ 0

Additional Assumptions:

(u,ε)  ~  N[(0,0),(σu
2, ρσu, 1)]

z =  a valid set of exogenous
variables, uncorrelated with (u,ε)

Correlation = ρ.

This is the source of the endogeneity  


This is not IV estimation. Z may be uncorrelated with X without problems.
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Endogenous Binary Variable
P(Y = y,H = h)  =  P(Y = y|H =h) x P(H=h)

This is a simple bivariate probit model.

Not a simultaneous equations model - the estimator

is FIML, not any kind of least squares.

Doctor = F(age,age2,income,female,Public) Public = F(age,educ,income,married,kids,female)
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FIML Estimates
----------------------------------------------------------------------

FIML Estimates of Bivariate Probit Model

Dependent variable               DOCPUB

Log likelihood function    -25671.43905

Estimation based on N =  27326, K =  14

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Index    equation for DOCTOR

Constant|     .59049***       .14473        4.080   .0000

AGE|    -.05740***       .00601       -9.559   .0000      43.5257

AGESQ|     .00082***     .681660D-04    12.100   .0000      2022.86

INCOME|     .08883*         .05094        1.744   .0812       .35208

FEMALE|     .34583***       .01629       21.225   .0000       .47877

PUBLIC|     .43533***       .07357        5.917   .0000       .88571

|Index    equation for PUBLIC

Constant|    3.55054***       .07446       47.681   .0000

AGE|     .00067          .00115         .581   .5612      43.5257

EDUC|    -.16839***       .00416      -40.499   .0000      11.3206

INCOME|    -.98656***       .05171      -19.077   .0000       .35208

MARRIED|    -.00985          .02922        -.337   .7361       .75862

HHKIDS|    -.08095***       .02510       -3.225   .0013       .40273

FEMALE|     .12139***       .02231        5.442   .0000       .47877

|Disturbance correlation

RHO(1,2)|    -.17280***       .04074       -4.241   .0000

--------+-------------------------------------------------------------
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Partial Effects
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Identification Issues

 Exclusions are not needed for estimation

 Identification is, in principle, by “functional form”

 Researchers usually have a variable in the 

treatment equation that is not in the main probit 

equation “to improve identification”

 A fully simultaneous model

 y1 = f(x1,y2),  y2 = f(x2,y1)

 Not identified even with exclusion restrictions

 (Model is “incoherent”)


