

Discrete Choice Modeling

- 0 Introduction
- 1 Summary
- 2 Binary Choice
- 3 Panel Data
- 4 Bivariate Probit
- 5 Ordered Choice
- 6 Count Data
- 7 Multinomial Choice
- 8 Nested Logit
- 9 Heterogeneity
- 10 Latent Class
- 11 Mixed Logit
- **12 Stated Preference**
- 13 Hybrid Choice

William Greene Stern School of Business New York University

A Random Utility Approach

- Underlying Preference Scale, U*(choices)
 Revelation of Preferences:
 - U*(choices) $\leq 0 \longrightarrow$ Choice "0"

• U*(choices) > 0 \longrightarrow Choice "1"

Binary Outcome: Visit Doctor

A Model for Binary Choice

- Yes or No decision (Buy/NotBuy, Do/NotDo)
- **Example**, choose to visit physician or not
- Model: Net utility of visit at least once

$$U_{visit} = \alpha + \beta_1 Age + \beta_2 Income + \gamma Sex + \varepsilon$$

Choose to visit if net utility is positive

Random Utility

Net utility = $U_{visit} - U_{not visit}$

Data: X = [1,age,income,sex] y = 1 if choose visit, $\Leftrightarrow U_{visit} > 0, 0$ if not.

Choosing Between the Two Alternatives

Modeling the Binary Choice Net Utility = $U_{visit} - U_{not visit}$ Normalize $U_{not visit} = 0$

Net $U_{visit} = \alpha + \beta_1 Age + \beta_2 Income + \beta_3 Sex + \varepsilon$

Chooses to visit: $U_{visit} > 0$

 $\alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_3 \operatorname{Sex} + \varepsilon > 0$

 $\epsilon > -[\alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_3 \operatorname{Sex}]$

Probability Model for Choice Between Two Alternatives

 $\varepsilon > -[\alpha + \beta_1 Age + \beta_2 Income + \beta_3 Sex]$

Application

- 27,326 Observations
- 1 to 7 years, panel
- 7,293 households observed
- We use the 1994 year, 3,337 household observations

Descriptive	Statistics f	for 4 variabl	les			
Variable	Mean	Std.Dev.	Minimum	Maximum	Cases M	issing
DOCTOR AGE INCOME FEMALE	.657980 42.62659 .444764 .463429	.474456 11.58599 .216586 .498735	0.0 25.0 .034000 0.0	1.0 64.0 3.0 1.0	3377 3377 3377 3377 3377	0 0 0 0

Binary Choice Data

Listin	ng of current sample						
Line	Observation	ID	DOCTOR	AGE	INCOME	FEMALE	
1	1	1	1	54	.30500	0	
2	2	1	0	55	.45101	0	
3	3	1	0	56	.35000	0	
4	4	2	0	44	.30500	1	
5	5	2	1	45	.31828	1	
6	6	2	1	46	.35000	1	
7	7	2	1	48	.35305	1	
8	8	3	0	58	.14340	1	
9	9	3	0	60	.30000	1	
10	10	3	1	61	.11000	1	
11	11	3	1	62	.10000	1	
12	12	4	1	29	.13000	1	
13	13	5	1	27	.06500	0	
14	14	5	1	28	.06000	0	
15	15	5	0	31	.15500	0	
16	16	6	1	25	.16000	0	
17	17	6	1	26	.30000	0	
18	18	6	0	27	.30000	0	
19	19	6	1	28	.20000	0	
20	20	6	1	31	.18000	0	
21	21	7	0	26	.30000	1	
22	22	7	0	27	.20000	1	_
23	23	7	1	30	.18000	1	=
24	24	8	1	64	.15000	0	
. 25	25	9	1	30	.24000	0	-

An Econometric Model

□ Choose to visit iff Uvisit > 0

• Uvisit = α + β_1 Age + β_2 Income + β_3 Sex + ε

• Uvisit > 0
$$\Leftrightarrow \varepsilon$$
 > -(α + β_1 Age + β_2 Income + β_3 Sex)
 $\varepsilon < \alpha + \beta_1$ Age + β_2 Income + β_3 Sex

- Probability model: For any person observed by the analyst, Prob(visit) = Prob[$\epsilon \leq \alpha + \beta_1 \text{ Age} + \beta_2 \text{ Income} + \beta_3 \text{ Sex}$]
- Note the relationship between the unobserved ε and the outcome

 $\alpha + \beta_1 Age + \beta_2 Income + \beta_3 Sex$

Modeling Approaches

Nonparametric – "relationship"

- Minimal Assumptions
- Minimal Conclusions

Semiparametric – "index function"

- Stronger assumptions
- Robust to model misspecification (heteroscedasticity)
- Still weak conclusions

Parametric – "Probability function and index"

- Strongest assumptions complete specification
- Strongest conclusions
- Possibly less robust. (Not necessarily)

The linear probability "model"

Nonparametric Regressions

P(Visit)=f(Income)

P(Visit)=f(Age)

 $Prob(y_i = 1 | x_i) = G(\beta'x)$ G is estimated by kernel methods

Fully Parametric

Index Function: U* = β'x + ε
 Observation Mechanism: y = 1[U* > 0]
 Distribution: ε ~ f(ε); Normal, Logistic, ...
 Maximum Likelihood Estimation:

 $Max(\boldsymbol{\beta}) \log L = \Sigma_i \log Prob(Y_i = y_i | x_i)$

Parametric: Logit Model

Parametric Model Estimation

□ How to estimate α , β_1 , β_2 , β_3 ?

The technique of maximum likelihood

 $L = \prod_{y=0} \operatorname{Prob}[y = 0 | \mathbf{x}] \times \prod_{y=1} \operatorname{Prob}[y = 1 | \mathbf{x}]$ • $\operatorname{Prob}[y=1] =$ $\operatorname{Prob}[\varepsilon > -(\alpha + \beta_1 \operatorname{Age} + \beta_2 \operatorname{Income} + \beta_3 \operatorname{Sex})]$ $\operatorname{Prob}[y=0] = 1 - \operatorname{Prob}[y=1]$

Requires a model for the probability

Completing the Model: F(E)

- The distribution
 - Normal: PROBIT, natural for behavior
 - Logistic: LOGIT, allows "thicker tails"
 - Gompertz: **EXTREME VALUE**, asymmetric
 - Others...
- Does it matter?
 - Yes, large difference in estimates
 - Not much, quantities of interest are more stable.

Estimated Binary Choice Models

	LOGIT		PRO	BIT	EXTREME VALUE		
Variable	Estimate	t-ratio	Estimate	t-ratio	Estimate	t-ratio	
Constant	-0.42085	-2.662	-0.25179	-2.600	0.00960	0.078	
Age	0.02365	7.205	0.01445	7.257	0.01878	7.129	
Income	-0.44198	-2.610	-0.27128	-2.635	-0.32343	-2.536	
Sex	0.63825	8.453	0.38685	8.472	0.52280	8.407	
Log-L	-2097.48		-2097.35		-2098.17		
Log-L(0)	-2169.27		-2169.27		-2169.27		

Log-L(0) = log likelihood for a model that has only a constant term. Ignore the t ratios for now.

Effect on Predicted Probability of an Increase in Age

Partial Effects in Probability Models

- **D** Prob[Outcome] = some $F(\alpha + \beta_1 \text{Income...})$
- "Partial effect" = $\partial F(\alpha + \beta_1 \text{Income...}) / \partial x$ " (derivative)
 - Partial effects are derivatives
 - Result varies with model

□ Logit: $\partial F(\alpha + \beta_1 \text{Income...}) / \partial x$

Probit: ∂ F(α + β_1 Income...)/ ∂ **x**

Extreme Value: $\partial F(\alpha + \beta_1 \text{Income...})/\partial \mathbf{x}$

= Prob * (1-Prob) $\times \beta$ = Normal density $\times \beta$ = Prob * (-log Prob) $\times \beta$

Scaling usually erases model differences

Estimated Partial Effects

	LOGIT		PR	овіт	EXTREME VALUE		
	Estimate	t ratio	Estimate	t ratio	Estimate	t ratio	
Age	.00527	7.235	.00527	7.269	.00506	6.291	
Income	09844	-2.611	09897	-2.636	09711	-2.527	
Female	.14026	8.663	.13958	8.264	.13539	8.747	

Partial Effect for a Dummy Variable

- $Prob[y_i = 1 | \mathbf{x}_i, d_i] = F(\beta' \mathbf{x}_i + \gamma d_i)$ = conditional mean
- Partial effect of d
 Prob[y_i = 1|x_i, d_i=1] Prob[y_i = 1|x_i, d_i=0]
- **Probit:** $\delta(\mathbf{d}_i) = \Phi(\hat{\boldsymbol{\beta}}' \overline{\mathbf{x}} + \hat{\gamma}) \Phi(\hat{\boldsymbol{\beta}}' \overline{\mathbf{x}})$

Partial Effect – Dummy Variable

Partial derivatives of E[y] = F[*] with respect to the vector of characteristics They are computed at the means of the Xs Observations used for means are All Obs.							
Variable	Coefficient	Standard Error	b∕St.Er. P[Z >z]	Elasticity		
Constant AGE INCOME	Index function 09186*** .00527*** 09897***	for probability .03550 .00073 .03755	-2.588 7.269 -2.636	.0097 .0000 .0084	.33855		
FEMALE	Marginal effect .13958***	for dummy varia .01618	ble is P 1 - 8.624	P 0. .0000	.09745		
hT			··· 10·· 11				

Note: *******, ******, ***** = Significance at 1%, 5%, 10% level. Elasticity for a binary variable = marginal effect/Mean.

Computing Partial Effects

- Compute at the data means?
 - Simple
 - Inference is well defined.

Average the individual effects

- More appropriate?
- Asymptotic standard errors are complicated.

Average Partial Effects

Probability = $P_i = F(\beta' \mathbf{x}_i)$ Partial Effect = $\frac{\partial P_i}{\partial \mathbf{x}_i} = \frac{\partial F(\beta' \mathbf{x}_i)}{\partial \mathbf{x}_i} = f(\beta' \mathbf{x}_i) \times \beta = \mathbf{d}_i$ Average Partial Effect = $\frac{1}{n} \sum_{i=1}^n \mathbf{d}_i = \beta \left(\frac{1}{n} \sum_{i=1}^n f(\beta' \mathbf{x}_i)\right)$

are estimates of $\delta = E[\mathbf{d}_i]$ under certain assumptions.

Average Partial Effects vs. Partial Effects at Data Means

	=========
Variable	Mean
+-	
ME_AGE	.00511838
ME INCOM	0960923
ME_FEMAL	.137915

PROBIT					
Estimate	t ratio				
.00527	7.269				
09897	-2.636				
.13958	8.264				

Partial Effect for Nonlinear Terms

$$Prob = \Phi[\alpha + \beta_1 Age + \beta_2 Age^2 + \beta_3 Income + \beta_4 Female]$$

$$\frac{\partial Prob}{\partial Age} = \phi[\alpha + \beta_1 Age + \beta_2 Age^2 + \beta_3 Income + \beta_4 Female] \times (\beta_1 + 2\beta_2 Age)$$

$$= \frac{\phi(1.30811 - .06487 Age + .0091 Age^2 - .17362 Income + .39666 Female)}{\times [(-.06487 + 2(.0091) Age]}$$

Must be computed at specific values of Age, Income and Female

Average Partial Effect: Averaged over Sample Incomes and Genders for Specific Values of Age

The Linear Probability "Model"

 $Prob(y = 1 | \mathbf{x}) = \mathbf{\beta}'\mathbf{x}$ E[y | **x**] = 0 * Prob(y = 1 | **x**) + 1Prob(y = 1 | **x**) = Prob(y = 1 | **x**) y = \mathbf{\beta}'\mathbf{x} + \varepsilon

ROTTEN APPLES: AN INVESTIGATION OF THE PREVALENCE AND PREDICTORS OF TEACHER CHEATING

Brian A. Jacob Steven D. Levitt

Working Paper 9413 http://www.nber.org/papers/w9413

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 December 2002

The Dependent Variable equals zero for 98.9% of the observations. In the sample of 163,474 observations, the LHS variable equals 1 about 1,500 times.

	Change Change	ip between c	nearing	
and Classi	room Character	ISTICS Dependent	t variable –	
		Indicator of cla	ssroom cheating	2
Independent variables	(1)	(2)	(3)	(4)
Conicl promotion policy	0.0011	0.0011	0.0015	0.0023
Social promotion policy	(0.0013)	(0.0013)	(0.0013)	(0.0009)
Cabaal and the caller	0.0020	0.0019	0.0021	0.0029
School probation policy	(0.0014)	(0.0014)	(0.0014)	(0.0013)
	-0.0047	-0.0028	-0.0016	-0.0028
Prior classroom achievement	(0.0005)	(0.0005)	(0.0007)	(0.0007)
C	··· ··· ··· ···· ···· ····	-0.0049	-0.0051	-0.0046
Social promotion classroom achievement		(0.0014)	(0.0014)	(0.0012)
C-h1		-0.0070	-0.0070	-0.0064
School probation "classroom achievement		(0.0013)	(0.0013)	(0.0013)
NG	-0.0084	-0.0085	-0.0089	-0.0089
wixed grade classroom	(0.0007)	(0.0007)	(0.0008)	(0.0012)
	0.0252	0.0249	0.0141	0.0131
% or students included in official reporting	(0.0031)	(0.0031)	(0.0037)	(0.0037)
			3 6	
School*Year Fixed Effects	No	No	No	Yes

Table 0: OIS Estimates of the Polationship between Chesting

Notes: The unit of observation is classroom*grade*year*subject and the sample includes years eight years (1993 to 2000), four subjects (reading comprehension and three math sections) and five grades (three to seven). The dependent variable is the cheating indicator derived using the 95th percentile cutoff. Robust standard errors clustered by school*year are shown in parenthesis. Other variables included in the regressions in column 1 and 2 include a

163.474

163.474

163,474

163.474

Number of observations

Classrooms, for	Whom do Tea	chers Cheat?	
	Dependent	t variable =	
(1)	(2)	(3)	(4)
0.011		-0.007	
(0.038)		(0.075)	
0.057		0.069	
(0.024)		(0.039)	
0.023		-0.012	
(0.067)		(0.141)	
	0.0004		0.0005
	(0.0003)		(0.0004)
	-0.0007		-0.0007
	(0.0004)		(0.0005)
-0.045	-0.048	-0.045	-0.052
(0.014)	(0.014)	(0.021)	(0.020)
-0.009	-0.009	-0.014	-0.013
(0.004)	(0.004)	(0.005)	(0.005)
0.005	0.006	0.004	0.001
(0.011)	(0.011)	(0.024)	(0.023)
-0.010	-0.008	0.006	0.004
(0.010)	(0.009)	(0.023)	(0.022)
-0.010	-0.012	-0.015	-0.017
(0.004)	(0.004)	(0.005)	(0.005)
F	ull	Low-Achiev	ving Schools
39.216 23.010			<u>.</u>
	(1) 0.011 (0.038) 0.057 (0.024) 0.023 (0.067) -0.045 (0.014) -0.009 (0.004) 0.005 (0.011) -0.010 (0.010) -0.010 (0.004) Fr	Classrooms, for Whom do Tea Dependent Teacher cheated (1) (2) 0.011 (0.038) 0.057 (0.024) 0.023 (0.067) 0.0004 (0.0003) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)	Classrooms, for Whom do Teachers Cheat? Dependent variable = Teacher cheated for the student (1) (2) (3) 0.011 -0.007 (0.038) (0.075) 0.057 0.069 (0.024) -0.012 (0.067) -0.012 (0.067) -0.012 (0.067) -0.0141) - -0.0007 - (0.0003) - -0.0007 - (0.0004) - -0.0007 - (0.0004) - -0.0007 - - - - - 0.0004 - - - - - - - - - - - - - - - - - - - - - -

cutoff in a particular subject and year. The dependent variable takes on the value of one if a *student s* answer string and test score pattern was suspicious at the 90th percentile level, suggesting that the teacher had cheated for that student in the particular subject and year. All models include fixed effects for classroom*year. Low achieving schools are defined as those in which fewer than 25% of students met national norms in reading in 1995. The equations are estimated using 2SLS where a student's test scores at t-2 are used to instrument for the student's t-1 achievement level. Robust standard errors are shown in parenthesis.

2SLS for a

dependent

variable.

binary

Prob $(y = 1 | \mathbf{x}) = \mathbf{\beta}'\mathbf{x}$ E $[y | \mathbf{x}] = 0 * Prob(y = 1 | \mathbf{x}) + 1Prob(y = 1 | \mathbf{x}) = Prob(y = 1 | \mathbf{x})$ $y = \mathbf{\beta}'\mathbf{x} + \varepsilon$

Residuals: $\mathbf{e} = \mathbf{y} - \hat{\boldsymbol{\beta}}' \mathbf{x} = \mathbf{1} - \hat{\boldsymbol{\beta}}' \mathbf{x}$ if $\mathbf{y} = 1$, or $0 - \hat{\boldsymbol{\beta}}' \mathbf{x}$ if $\mathbf{y} = 0$

The standard errors make no sense because the stochastic properties of the "disturbance" are inconsistent with the observed variable.

Prob $(y = 1 | \mathbf{x}) = \boldsymbol{\beta}'\mathbf{x}$ E $[y | \mathbf{x}] = 0 * Prob(y = 1 | \mathbf{x}) + 1Prob(y = 1 | \mathbf{x}) = Prob(y = 1 | \mathbf{x})$ $y = \boldsymbol{\beta}'\mathbf{x} + \varepsilon$ Residuals : $\mathbf{e} = y - \hat{\boldsymbol{\beta}}'\mathbf{x} = 1 - \hat{\boldsymbol{\beta}}'\mathbf{x}$ if y = 1, or $0 - \hat{\boldsymbol{\beta}}'\mathbf{x}$ if y = 0The standard errors make no sense because the stochastic properties of the "disturbance" are inconsistent with the observed variable.

The variance of y|x equals $Prob(y = 0 | \mathbf{x})Prob(y = 1 | \mathbf{x}) = \boldsymbol{\beta}' \mathbf{x}(1 - \boldsymbol{\beta}' \mathbf{x})$ The "disturbances" are heteroscedastic. Users of the LPM always seem to worry about clustering. They never seem to worry about heteroscedasticity.

Discrete Choice Modeling Binary Choice Models [Part 2] 36/86

Binomial Dependent	Probit Model t variable		DV				
D₹	Coefficient	Standard Error	z	Prob. z >Z*	95% Conf Inter	idence rval	
Constant AGE EDUC MARRIED PUBLIC HEALTHY	Index function f -2.23278*** .01053*** 02047* 12096*** .29821*** 85776***	or probabili .19860 .00186 .01095 .04625 .09436 .04959	ty -11.24 5.65 -1.87 -2.61 3.16 -17.30	.0000 .0000 .0616 .0089 .0016 .0000	-2.62203 - .00688 04193 21161 .11327 95496	-1.84353 .01418 .00099 03030 .48314 76057	
***, **,	* ==> Significa	ance at 1%, 5	%, 10% 1	level.			
Partial derivatives of E[y] = F[*] with respect to the vector of characteristics Average partial effects for sample obs.							
DV	Partial Effect	Standard Error	z	Prob. z >Z *	95% Conf Inter	fidence rval	
AGE EDUC MARRIED PUBLIC HEALTHY	.00041*** 00080* 00504** .00919*** 03140***	.7425D-04 .00043 .00205 .00223 .00186	5.56 -1.87 -2.46 4.12 -16.92	.0000 .0621 .0139 .0000 .0000	.00027 00164 00906 .00482 03503	.00056 .00004 00103 .01356 02776	#
# Partia	al effect for dum	amy variable	is E[y]x	k,d=1] −	E[y x,d=0]		
Ordinary LHS=DV Fit	least square Mean Standard dew R-squared	es regression = viation = =		01749 13110 01955 1	R-bar squared	.019	37
DV	Coefficient	Standard Error	z	Prob. z >Z*	95% Conf Inter	fidence rval	
Constant AGE EDUC MARRIED PUBLIC HEALTHY	.02278*** .00044*** 00059 00520*** .00700*** 03261***	.00682 .7315D-04 .00037 .00187 .00263 .00166	3.34 5.98 -1.62 -2.78 2.66 -19.59	.0008 .0000 .1060 .0055 .0077 .0000	.00942 .00029 00131 00887 .00185 03588	.03614 .00058 .00013 00153 .01215 02935	

What does OLS Estimate?

MLE

Average Partial Effects

OLS Coefficients

Negative Predicted Probabilities

Measuring Fit

How Well Does the Model Fit?

□ There is no R squared.

- Least squares for linear models is computed to maximize R²
- There are no residuals or sums of squares in a binary choice model
- The model is not computed to optimize the fit of the model to the data

How can we measure the "fit" of the model to the data?

- "Fit measures" computed from the log likelihood
 - "Pseudo R squared" = 1 logL/logL0
 - Also called the "likelihood ratio index"
 - Others... these do not measure fit.
- Direct assessment of the effectiveness of the model at predicting the outcome

Log Likelihoods

- **D** logL = \sum_{i} log density ($y_i | \mathbf{x}_i, \boldsymbol{\beta}$)
- For probabilities
 - Density is a probability
 - Log density is < 0</p>
 - LogL is < 0</p>
- For other models, log density can be positive or negative.
 - For linear regression, logL=-N/2(1+log2π+log(e'e/N)]
 - Positive if s² < .058497

Likelihood Ratio Index

 $\log L = \sum_{i=1}^{N} \left\{ (1 - y_i) \log[1 - F(\boldsymbol{\beta}' \mathbf{x}_i)] + y_i \log F(\boldsymbol{\beta}' \mathbf{x}_i) \right\}$

- 1. Suppose the model predicted $F(\beta' \mathbf{x}_i) = 1$ whenever y=1 and $F(\beta' \mathbf{x}_i) = 0$ whenever y=0. Then, logL = 0. $[F(\beta' \mathbf{x}_i)$ cannot equal 0 or 1 at any finite β .]
- 2. Suppose the model always predicted the same value, $F(\beta_0)$ $LogL_0 = \sum_{i=1}^{N} \{(1 - y_i) log[1 - F(\beta_0)] + y_i log F(\beta_0)\}$ $= N_0 log[1 - F(\beta_0)] + N_1 log F(\beta_0)$ < 0

LRI = 1 -
$$\frac{\log L}{\log L_0}$$
. Since $\log L > \log L_0$ $0 \le LRI < 1$.

The Likelihood Ratio Index

- Bounded by 0 and 1-ε
- Rises when the model is expanded
- Values between 0 and 1 have no meaning
- Can be strikingly low.
- Should not be used to compare models
 - Use logL
 - Use information criteria to compare nonnested models

Fit Measures Based on LogL

Binary Lo	git Model for B	inary Choice			
Dependent	variable	DOCTOR			
Log likel	ihood function	-2085.92452	Full	model	LogL
Restricte	d log likelihoo	d -2169.26982	Cons	tant term	only LogL0
Chi squar	ed [5 d.f.]	166.69058			
Significa	nce level	.00000			
McFadden	Pseudo R-square	d.0384209	— 1 - 3	LogL/logL	0
Estimatio	n based on N =	3377, К = 6			
Informati	on Criteria: No:	rmalization=1/N			
	Normalized	Unnormalized			
AIC	1.23892	4183.84905	-210	gL + 2K	
Fin.Smpl.	AIC 1.23893	4183.87398	-210	gL + 2K +	2K(K+1)/(N-K-1)
Bayes IC	1.24981	4220.59751	-210	gL + KlnN	
Hannan Qu	inn 1.24282	4196.98802	-210	gL + 2Kln	(lnN)
+					
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X
+					
1	Characteristics	in numerator of	Prob[Y = 2	1]	
Constant	1.86428***	. 67793	2.750	.0060	
AGE	10209***	.03056	-3.341	.0008	42.6266
AGESQ	.00154***	.00034	4.556	.0000	1951.22
INCOME	.51206	.74600	. 686	.4925	.44476
AGE INC	01843	.01691	-1.090	.2756	19.0288
FEMALE	.65366***	.07588	8.615	.0000	.46343

Fit Measures Based on Predictions

Computation

- Use the model to compute predicted probabilities
- Use the model and a rule to compute predicted y = 0 or 1
- Fit measure compares predictions to actuals

Predicting the Outcome

Predicted probabilities

 $P = F(a + b_1Age + b_2Income + b_3Female+...)$

Predicting outcomes

- Predict y=1 if P is "large"
- Use 0.5 for "large" (more likely than not)
 Generally, $u\hat{k}\bar{e}^{1}$ if $\hat{P} > P^{*}$
- Count successes and failures

Cramer Fit Measure

 $\hat{\mathbf{F}} = \mathbf{Predicted} \ \mathbf{Probability}$

$$\hat{\lambda} = \frac{\sum_{i=1}^{N} y_i \hat{F}}{N_1} - \frac{\sum_{i=1}^{N} (1 - y_i) \hat{F}}{N_0}$$

$$\hat{\lambda} = \left(\text{Mean } \hat{F} | \text{ when } y = 1 \right) - \left(\text{Mean } \hat{F} | \text{ when } y = 0 \right)$$

= reward for correct predictions minus penalty for incorrect predictions

д.			+
	Fit Measures Based on Model	Predi	.ctions
Ι	Efron	=	.04825
Ι	Ben Akiva and Lerman	=	.57139
Ι	Veall and Zimmerman	=	.08365
Ι	Cramer	=	.04771
-			

Hypothesis Testing in Binary Choice Models

Covariance Matrix for the MLE

Log Likelihood

$$\log L = \sum_{i=1}^{N} \{ (1 - y_i) \log[1 - F(\boldsymbol{\beta}' \mathbf{x}_i)] + y_i \log F(\boldsymbol{\beta}' \mathbf{x}_i) \}$$

We focus on the standard choices of $F(\beta' \mathbf{x}_i)$, probit and logit.

Both distributions are symmetric; F(t)=1-F(-t). Therefore, the terms in the sums are $\log L_i = \log F[q_i(\boldsymbol{\beta}'\mathbf{x}_i)]$ where $q_i = 2y_i - 1$ $\frac{\partial \log L_i}{\partial \boldsymbol{\beta}} = \frac{F'[q_i(\boldsymbol{\beta}'\mathbf{x}_i)]}{F[q_i(\boldsymbol{\beta}'\mathbf{x}_i)]}(q_i\mathbf{x}_i) = q_i \frac{F'_i}{F}\mathbf{x}_i = \mathbf{g}_i$ $\frac{\partial^2 \log L_i}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'} = \left\{\frac{F''}{F} - \left(\frac{F'}{F}\right)^2\right\}(q_i\mathbf{x}_i)(q_i\mathbf{x}_i)' = \mathbf{H}_i$

These simplify considerably. Note $q_i^2 = 1$.

For the logit model, $F=\Lambda$, $F'=\Lambda(1-\Lambda)$ and $F''=\Lambda(1-\Lambda)(1-2\Lambda)$. For the probit model, $F=\Phi$, $F'=\phi$ and $F''=-[q_i(\beta'\mathbf{x}_i)]\phi$

Simplifications

Logit: $g_i = y_i - \Lambda_i$ $H_i = \Lambda_i (1 - \Lambda_i)$ $E[H_i] = \Psi_i = \Lambda_i (1 - \Lambda_i)$

Probit:
$$\mathbf{g}_i = \frac{q_i \phi_i}{\Phi_i}$$
 $\mathbf{H}_i = \frac{(q_i \boldsymbol{\beta}' \mathbf{x}_i) \phi_i}{\Phi_i} + \left(\frac{\phi_i}{\Phi_i}\right)^2$, $\mathbf{E}[\mathbf{H}_i] = \Psi_i = \frac{\phi_i^2}{\Phi_i(1 - \Phi_i)}$

Estimators: Based on H_i, E[H_i] and g_i^2 all functions evaluated at $(q_i \beta' \mathbf{x}_i)$

Actual Hessian: Est.Asy.Var
$$[\hat{\beta}] = \left[\sum_{i=1}^{N} H_i \mathbf{x}_i \mathbf{x}'_i\right]^{-1}$$

Expected Hessian: Est.Asy.Var $[\hat{\beta}] = \left[\sum_{i=1}^{N} \Psi_i \mathbf{x}_i \mathbf{x}'_i\right]^{-1}$
BHHH: Est.Asy.Var $[\hat{\beta}] = \left[\sum_{i=1}^{N} g_i^2 \mathbf{x}_i \mathbf{x}'_i\right]^{-1}$

Robust Covariance Matrix

"Robust" Covariance Matrix: $\mathbf{V} = \mathbf{A} \mathbf{B} \mathbf{A}$

 \mathbf{A} = negative inverse of second derivatives matrix

= estimated
$$\operatorname{E}\left[-\frac{\partial^2 \log L}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'}\right]^{-1} = \left[-\sum_{i=1}^{N} \frac{\partial^2 \log \operatorname{Prob}_i}{\partial \hat{\boldsymbol{\beta}} \partial \hat{\boldsymbol{\beta}}'}\right]^{-1}$$

 \mathbf{B} = matrix sum of outer products of first derivatives

$$= \text{ estimated } \mathbf{E} \left[\frac{\partial \log L}{\partial \boldsymbol{\beta}} \frac{\partial \log L}{\partial \boldsymbol{\beta}'} \right] = \left[\sum_{i=1}^{N} \frac{\partial \log \operatorname{Prob}_{i}}{\partial \hat{\boldsymbol{\beta}}} \frac{\partial \log \operatorname{Prob}_{i}}{\partial \hat{\boldsymbol{\beta}}'} \right]^{-1}$$

For a logit model, $\mathbf{A} = \left[\sum_{i=1}^{N} \hat{P}_{i} (1 - \hat{P}_{i}) \mathbf{x}_{i} \mathbf{x}_{i}' \right]^{-1}$
 $\mathbf{B} = \left[\sum_{i=1}^{N} (y_{i} - \hat{P}_{i})^{2} \mathbf{x}_{i} \mathbf{x}_{i}' \right] = \left[\sum_{i=1}^{N} e_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i}' \right]$

(Resembles the White estimator in the linear model case.)

Robust Covariance Matrix for Logit Model

+					
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X
	Robust Standard	Errors			
Constant	1.86428***	.68442	2.724	.0065	
AGE	10209***	.03115	-3.278	.0010	42.6266
AGESQ	.00154***	.00035	4.446	.0000	1951.22
INCOME	.51206	.75103	. 682	.4954	.44476
AGE_INC	01843	.01703	-1.082	.2792	19.0288
FEMALE	. 65366***	.07585	8.618	.0000	.46343
+	Conventional Sta	andard Errors B	ased on Sec	ond Deriv	vatives
Constant	1.86428***	. 67793	2.750	.0060	
AGE	10209***	.03056	-3.341	.0008	42.6266
AGESQ	.00154***	.00034	4.556	.0000	1951.22
INCOME	.51206	.74600	.686	.4925	.44476
AGE_INC	01843	.01691	-1.090	.2756	19.0288
FEMALE	.65366***	.07588	8.615	.0000	.46343

Base Model for Hypothesis Tests

_ _

Binary Lo	git model for B:	inary Choice			
Dependent	t variable	DOCTOR			
Log like!	lihood function	-2085.92452	H _a :	Age is no	ot a significa
Restricte	ed log likelihood	d -2169.26982	• • •		
Chi squar	red [5 d.f.]	166.69058		determin	ant of
Significa	ance level	.00000		Prob(Doc	ctor = 1
McFadden	Pseudo R-square	d.0384209			
Estimatio	on based on $N =$	3377, К = 6	н .	0 0	0 _ 0
Informat	ion Criteria: No:	rmalization=1/N	Π ₀ :	$p_2 = p_3 =$	$p_5 = 0$
	Normalized	Unnormalized	<u>R</u>		
AIC	1.23892	4183.84905			
Variable	Coefficient	Standard Error	b/St.E	r. P[Z >z]	Mean of X
	Characteristics	in numerator of	Prob[Y	= 1]	
Constant	Characteristics	in numerator of .67793	Prob[Y 2.7	= 1] 50 .0060	
Constant AGE	Characteristics	in numerator of .67793 .03056	Prob[Y 2.7 -3.3	= 1] 50 .0060 41 .0008	42.6266
Constant AGE AGESQ	Characteristics	in numerator of .67793 .03056 .00034	Prob[Y 2.7 -3.3 4.5	= 1] 50 .0060 41 .0008 56 .0000	42.6266 1951.22
Constant AGE AGESQ INCOME	Characteristics	in numerator of .67793 .03056 .00034 .74600	Prob[Y 2.7 -3.3 4.5 .6	= 1] 50 .0060 41 .0008 56 .0000 86 .4925	42.6266 1951.22 .44476
Constant AGE AGESQ INCOME AGE INC	Characteristics	in numerator of .67793 .03056 .00034 .74600 .01691	Prob[Y 2.7 -3.3 4.5 .6 -1.0	= 1] 50 .0060 41 .0008 56 .0000 86 .4925 90 .2756	42.6266 1951.22 .44476 19.0288

Likelihood Ratio Tests

Discrete Choice Modeling Binary Choice Models [Part 2] 55/86

LR Test of H₀

UNRESTRICTED MODEL	RESTRICTED MODEL			
Binary Logit Model for Binary Choice	Binary Logit Model for Binary Choice			
Dependent variable DOCTOR	Dependent variable DOCTOR			
Log likelihood function -2085.92452	Log likelihood function -2124.06568			
Restricted log likelihood -2169.26982	Restricted log likelihood -2169.26982			
Chi squared [5 d.f.] 166.69058	Chi squared [2 d.f.] 90.40827			
Significance level .00000	Significance level .00000			
McFadden Pseudo R-squared .0384209	McFadden Pseudo R-squared .0208384			
Estimation based on $N = 3377$, $K = 6$	Estimation based on $N = 3377$, $K = 3$			
Information Criteria: Normalization=1/N	Information Criteria: Normalization=1/N			
Normalized Unnormalized	Normalized Unnormalized			
AIC 1.23892 4183.84905	AIC 1.25974 4254.13136			

Chi squared[3] = 2[-2085.92452 - (-2124.06568)] = 77.46456

Wald Test

- Unrestricted parameter vector is estimated
- Discrepancy: q= Rb m (or r(b,m) if nonlinear) is computed
- Variance of discrepancy is estimated:
 Var[**q**] = **R V R'**
- □ Wald Statistic is $\mathbf{q}'[Var(\mathbf{q})]^{-1}\mathbf{q} = \mathbf{q}'[\mathbf{RVR'}]^{-1}\mathbf{q}$

Chi squared[3] = 69.0541

Lagrange Multiplier Test

Restricted model is estimated

- Derivatives of unrestricted model and variances of derivatives are computed at restricted estimates
- Wald test of whether derivatives are zero tests the restrictions
- Usually hard to compute difficult to program the derivatives and their variances.

LM Test for a Logit Model

- Compute b₀ (subject to restictions)
 (e.g., with zeros in appropriate positions.
- **Compute** $P_i(\mathbf{b}_0)$ for each observation.
- **Compute** $e_i(\mathbf{b}_0) = [y_i P_i(\mathbf{b}_0)]$
- **Compute** $\mathbf{g}_i(\mathbf{b}_0) = \mathbf{x}_i \mathbf{e}_i$ using full \mathbf{x}_i vector

 $\square LM = [\Sigma_i \mathbf{g}_i(\mathbf{b}_0)]'[\Sigma_i \mathbf{g}_i(\mathbf{b}_0)\mathbf{g}_i(\mathbf{b}_0)]^{-1}[\Sigma_i \mathbf{g}_i(\mathbf{b}_0)]$


```
? Logit Model with quadratic and interaction
Namelist ; x=one,age,age*age,income,
           aqe*income,female $
Logit ; if[year=1994]
         : Lhs = doctor
         : Rhs = x
? Constrained MLE. Force 3 coefficients to = 0
         ; cml:b(2)=0,b(3)=0,b(5)=0
         ; Prob = p$
? First derivative (scale part)
Create ; gi= (doctor - p) ; gi2 = gi*gi $
? Second derivative (scale part)
Create ; hi=p*(1-p)$
? LM statistic based on BHHH estimator
Matrix ;if[year=1994] ; list ; G = X'gi $
Matrix ;if[vear=1994] ; List ; LM = q'*<X'[qi2]X>*q $
? LM statistic uses internal routine
Logit ; if[vear=1994] ; Lhs=doctor ; Rhs=x
       : Start = b : Maxit=0$
? LM statistic based on actual second derivatives
Matrix ;if[vear=1994] ; List ; ML = q'*<X'[hi]X>*q $
```


							/
Binary Logit Model for Binary Choice Dependent variable DOCTOR Log likelihood function -2124.06568 Restricted log likelihood -2169.26982 Chi squared [5](P= .000) 90.40827 Significance level .00000 McFadden Pseudo R-squared .0208384 Estimation based on N = 3377, K = 3 Inf.Cr.AIC = 4254.1 AIC/N = 1.260 Linear constraints imposed 3							
DOCTOR	Coefficient	Standard Error	z	Prob. z >Z*	95% Con Inte	fidence rval	
Constant AGE	.52822 *** 0.0	.08978 (Fixed	5.88 Parameter)	.0000	.35227	.70418	
AGE*AGE INCOME	0.0 37810** Interaction AGE*1	(Fixed .16741 NCOME	Parameter) -2.26	.0239	70623	04998	
_ntrct02 FEMALE	0.0 .67750***	(Fixed .07483	Parameter) 9.05	.0000	.53084	.82416	
***, **,	* ==> Significar	ice at 1%,	5%, 10% le	vel.			

Inference About Partial Effects

Marginal Effects for Binary Choice

LOGIT:
$$\mathbf{E}[y | \overline{\mathbf{x}}] = \exp(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}}) / [1 + \exp(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})] = \Lambda(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})$$

 $\hat{\boldsymbol{\delta}} = \frac{\partial \mathbf{E}[y | \overline{\mathbf{x}}]}{\partial \overline{\mathbf{x}}} = [\Lambda(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})] [1 - \Lambda(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})] \hat{\boldsymbol{\beta}}$
PROBIT $\mathbf{E}[y | \overline{\mathbf{x}}] = \Phi(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})$
 $\hat{\boldsymbol{\delta}} = \frac{\partial \mathbf{E}[y | \overline{\mathbf{x}}]}{\partial \overline{\mathbf{x}}} = [\phi(\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})] \hat{\boldsymbol{\beta}}$
EXTREME VALUE $\mathbf{E}[y | \overline{\mathbf{x}}] = P_1 = \exp[-\exp(-\hat{\boldsymbol{\beta}}'\overline{\mathbf{x}})]$
 $\hat{\boldsymbol{\delta}} = \frac{\partial \mathbf{E}[y | \overline{\mathbf{x}}]}{\partial \overline{\mathbf{x}}} = P_1[-\log P_1] \hat{\boldsymbol{\beta}}$

The Delta Method

$$\hat{\boldsymbol{\delta}} = f\left(\hat{\boldsymbol{\beta}}, \mathbf{x}\right), \quad \mathbf{G}\left(\hat{\boldsymbol{\beta}}, \mathbf{x}\right) = \frac{\partial f\left(\hat{\boldsymbol{\beta}}, \mathbf{x}\right)}{\partial \hat{\boldsymbol{\beta}}'}, \quad \hat{\mathbf{V}} = \text{Est.Asy.Var}\begin{bmatrix}\hat{\boldsymbol{\beta}}\end{bmatrix}$$
Probit

$$\mathbf{G} = \begin{bmatrix} \boldsymbol{\phi}\left(\hat{\boldsymbol{\beta}}' \overline{\mathbf{x}}\right) \end{bmatrix} \qquad \left\{ \mathbf{I} - \left(\hat{\boldsymbol{\beta}}' \overline{\mathbf{x}}\right) \hat{\boldsymbol{\beta}} \overline{\mathbf{x}}' \right\}$$
Logit

$$\mathbf{G} = \begin{bmatrix} \Lambda\left(\hat{\boldsymbol{\beta}}' \overline{\mathbf{x}}\right) \end{bmatrix} \begin{bmatrix} 1 - \Lambda\left(\hat{\boldsymbol{\beta}}' \overline{\mathbf{x}}\right) \end{bmatrix} \quad \left\{ \mathbf{I} + \begin{bmatrix} 1 - 2\Lambda\left(\hat{\boldsymbol{\beta}}' \overline{\mathbf{x}}\right) \end{bmatrix} \hat{\boldsymbol{\beta}} \overline{\mathbf{x}}' \right\}$$
ExtVlu

$$\mathbf{G} = \begin{bmatrix} P_1\left(\hat{\boldsymbol{\beta}}, \mathbf{x}\right) \end{bmatrix} \begin{bmatrix} -\log P_1\left(\hat{\boldsymbol{\beta}}, \mathbf{x}\right) \end{bmatrix} \left\{ \mathbf{I} - \begin{bmatrix} 1 + \log P_1\left(\hat{\boldsymbol{\beta}}, \mathbf{x}\right) \end{bmatrix} \hat{\boldsymbol{\beta}} \overline{\mathbf{x}}' \right\}$$
Est.Asy.Var
$$\begin{bmatrix} \hat{\boldsymbol{\delta}} \end{bmatrix} = \begin{bmatrix} \mathbf{G}\left(\hat{\boldsymbol{\beta}}, \mathbf{x}\right) \end{bmatrix} \hat{\mathbf{V}} \begin{bmatrix} \mathbf{G}\left(\hat{\boldsymbol{\beta}}, \mathbf{x}\right) \end{bmatrix}$$

Computing Effects

- Compute at the data means?
 - Simple
 - Inference is well defined
- Average the individual effects
 - More appropriate?
 - Asymptotic standard errors more complicated.
- □ Is testing about marginal effects meaningful?
 - f(b'x) must be > 0; b is highly significant
 - How could f(b'x)*b equal zero?

APE vs. Partial Effects at the Mean

Delta Method for Average Partial Effect

Estimator of
$$\operatorname{Var}\left[\frac{1}{N}\sum_{i=1}^{N}\operatorname{PartialEffect}_{i}\right] = \overline{\mathbf{G}} \operatorname{Var}\left[\hat{\boldsymbol{\beta}}\right] \overline{\mathbf{G}}'$$

--> partials ; effects: hhninc/female ; summary \$ Partial Effects for Probit Probability Function Partial Effects Averaged Over Observations

* ==> Partial Effect for a Binary Variable

(Delta met	P thod) E	artial S ffect	itandard Error	t	95%	Confidence	Interval
HHNI * FEM	 INC - ALE	.05496 .14021	.03762 .01599	1.46 8.77		12869 .10886	.01877 .17155

--> partials ; effects: hhninc/female ; summary ; means\$

Partial Effects for Probit Probability Function Partial Effects Computed at data Means * ==> Partial Effect for a Binary Variable

(Delta method)	Partial Effect	Standard Error	t	95% Confidence	Interval
HHNINC	06374	.04009	1.59	14232	.01484
FEMALE	.15045	.01752	8.59	.11611	.18479

Method of Krinsky and Robb

Estimate $\boldsymbol{\beta}$ by Maximum Likelihood with \boldsymbol{b}

Estimate asymptotic covariance matrix with V

- Draw R observations **b**(r) from the normal population N[**b**,**V**]
- $\mathbf{b}(\mathbf{r}) = \mathbf{b} + \mathbf{C}^* \mathbf{v}(\mathbf{r}), \ \mathbf{v}(\mathbf{r}) \text{ drawn from N[0,I]} \\ \mathbf{C} = \text{Cholesky matrix, } \mathbf{V} = \mathbf{C}\mathbf{C}^*$

Compute partial effects **d**(r) using **b**(r)

Compute the sample variance of d(r), r=1,...,R

Use the sample standard deviations of the R observations to estimate the sampling standard errors for the partial effects.

[4, 1]	Cell:				
	1	~			
1	-0.251789				
2	0.01445				
3	-0.271285				_
4	0.386852				×
[4, 4]	Cell:				
	1	2	3	4	
1	0.00937614	-0.000158129	-0.0043301	-0.000677015	\square
2	-0.000158129	3.96472e-006	-1.1648e-005	-6.59447e-006	
3	-0.0043301	-1.1648e-005	0.0105988	0.000122354	
4	-0.000677015	-6.59447e-006	0.000122354	0.00208521	
[4, 4]	Cell: 0.0968	304	✓ ×		
	1	2	3	4	
1	0.0968304	0	0	0	\square
2	-0.00163305	0.00113924	0	0	\square
3	-0.0447184	-0.074326	0.0554499	0	\square
4	-0.00699176	-0.0158108	-0.0246251	0.0343503	

Krinsky and Robb

				Delta M	ethod
WALD proce for nonlin	edure. Estimate near functions restrictions.	PR	овіт		
Wald Stat. Prob. from	istic m Chi-squared[Estimate	t ratio		
Variable	Coefficient	Standard Error	b/St.Er.	.00527	7.269
Fncn(1) Fncn(2) Fncn(3)	. 42279*** . 36483*** . 00527***	.02273 .00351 .00071	18.599 104.020 7.467	09897	-2.636
Fncn(4) Fncn(5)	09897*** .14114***	.03829 .01642	-2.585 8.597	.13958	→ 8.264
Note: ***	, **, * = Signi	ficance at 1%, 5	%, 10% lev		

Partial Effect for Nonlinear Terms

 $Prob = \Phi[\alpha + \beta_1 Age + \beta_2 Age^2 + \beta_3 Income + \beta_4 Female]$

 $\frac{\partial \text{Prob}}{\partial \text{Age}} = \phi[\alpha + \beta_1 \text{Age} + \beta_2 \text{Age}^2 + \beta_3 \text{Income} + \beta_4 \text{Female}] \times (\beta_1 + 2\beta_2 \text{Age})$

(1) Must be computed for a specific value of Age

(2) Compute standard errors using delta method or Krinsky and Robb.

- (3) Compute confidence intervals for different values of Age.
- (4) Test of hypothesis that this equals zero is identical to a test that $(\beta_1 + 2\beta_2 Age) = 0$. Is this an interesting hypothesis?

 $\frac{\partial \text{Prob}}{\partial AGE} = \frac{\phi(1.30811 - .06487Age + .0091Age^2 - .17362Income + .39666)Female)}{\times[(-.06487 + 2(.0091)Age]}$

Average Partial Effect: Averaged over Sample Incomes and Genders for Specific Values of Age

Endogeneity

Endogenous RHS Variable

- $\Box U^* = \mathbf{\beta'x} + \theta h + \varepsilon$
 - $y = 1[U^* > 0]$
 - $E[\epsilon|h] \neq 0$ (h is endogenous)
 - Case 1: h is continuous
 - Case 2: h is binary = a treatment effect
- Approaches
 - Parametric: Maximum Likelihood
 - Semiparametric (not developed here):
 - GMM
 - Various approaches for case 2

Endogenous Continuous Variable

$$U^{*} = \boldsymbol{\beta}' \boldsymbol{x} + \theta \boldsymbol{h} + \boldsymbol{\varepsilon}$$

$$y = 1[U^{*} > 0] \quad \leftarrow \quad \begin{array}{c} \text{Correlation = }\rho. \\ \text{This is the source of the endogeneity} \end{array}$$

$$h = \boldsymbol{a}' \boldsymbol{z} \qquad + \boldsymbol{u}$$

$$E[\varepsilon|h] \neq 0 \Leftrightarrow \text{Cov}[u, \varepsilon] \neq 0$$
Additional Assumptions:

- $(u,\epsilon) \sim N[(0,0),(\sigma_u^2, \rho\sigma_u, 1)]$
- z = a valid set of exogenousvariables, uncorrelated with (u,ε)

This is not IV estimation. Z may be uncorrelated with X without problems.

Endogenous Income

Age, Age², Educ, Married, Kids, Gender

Estimation by ML (Control Function)

Probit fit of y to x and h will not consistently estimate (β , θ) because of the correlation between h and ε induced by the correlation of u and ε . Using the bivariate normality,

Prob(
$$y = 1 | \mathbf{x}, h$$
) = $\Phi\left[\frac{\beta'\mathbf{x} + \theta h + (\rho / \sigma_u)u}{\sqrt{1 - \rho^2}}\right]$

Insert $u_i = (h_i - \alpha' z)/\sigma_u$ and include f(h|z) to form logL

$$\log \mathbf{L} = \sum_{i=1}^{N} \left\{ \log \Phi \left[(2y_i - 1) \left(\frac{\boldsymbol{\beta}' \mathbf{x}_i + \boldsymbol{\theta} h_i + \rho \left(\frac{h_i - \boldsymbol{\alpha}' \mathbf{z}_i}{\sigma_u} \right)}{\sqrt{1 - \rho^2}} \right) \right] + \left\{ \log \frac{1}{\sigma_u} \phi \left[\left(\frac{h_i - \boldsymbol{\alpha}' \mathbf{z}_i}{\sigma_u} \right) \right] \right\}$$

Two Approaches to ML

(1) **Full information ML.** Maximize the full log likelihood with respect to $(\beta, \theta, \sigma_u, \alpha, \rho)$

(The built in Stata routine IVPROBIT does this. It is not an instrumental variable estimator; it is a FIML estimator.)
Note also, this does not imply replacing h with a prediction from the regression then using probit with h instead of h.

(2) Two step limited information ML. (Control Function)

(a) Use OLS to estimate $\boldsymbol{\alpha}$ and $\boldsymbol{\sigma}_u$ with \boldsymbol{a} and s.

(b) Compute $\hat{v}_i = \hat{u}_i / s = (h_i - \mathbf{a}' \mathbf{z}_i) / s$

(c)
$$\log \hat{\Phi} \left[\frac{\boldsymbol{\beta}' \mathbf{x}_i + \theta h_i + \rho \hat{v}_i}{\sqrt{1 - \rho^2}} \right] = \log \hat{\Phi} \left[\boldsymbol{\delta}' \mathbf{x}_i + \lambda h_i + \tau \hat{v}_i \right]$$

The second step is to fit a probit model for y to (\mathbf{x},h,\hat{v}) then solve back for $(\boldsymbol{\beta},\theta,\rho)$ from $(\boldsymbol{\delta},\lambda,\tau)$ and from the previously estimated **a** and s. Use the delta method to compute standard errors.

FIML Estimates

Probit with Endogenous RHS Variable Dependent variable HEALTHY Log likelihood function -6464.60772								
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X			
	Coefficients in	for HEAL	ГНҮ					
Constant	1.21760***	.06359	19.149	.0000				
AGE	02426***	.00081	-29.864	.0000	43.5257			
MARRIED	02599	.02329	-1.116	.2644	.75862			
HHKIDS	.06932***	.01890	3.668	.0002	.40273			
FEMALE	14180***	.01583	-8.959	.0000	.47877			
INCOME	.53778***	.14473	3.716	.0002	.35208			
Coefficients in Linear Regression for INCOME								
Constant	36099***	.01704	-21.180	.0000				
AGE	.02159***	.00083	26.062	.0000	43.5257			
AGESQ	00025***	.944134D-05	-26.569	.0000	2022.86			
EDUC	.02064***	.00039	52.729	.0000	11.3206			
MARRIED	.07783***	.00259	30.080	.0000	.75862			
HHKIDS	03564***	.00232	-15.332	.0000	. 40273			
FEMALE	.00413**	.00203	2.033	.0420	.47877			
Standard Deviation of Regression Disturbances								
Sigma(w)	.16445***	.00026	644.874	.0000				
Correlation Between Probit and Regression Disturbances								
Rho(e,w)	02630	.02499	-1.052	.2926				
+-								

Partial Effects: Scaled Coefficients

Conditional Mean

 $\mathbf{E}[y | \mathbf{x}, h] = \Phi(\boldsymbol{\beta}' \mathbf{x} + \theta h)$

 $h = \alpha' \mathbf{z} + u = \alpha' \mathbf{z} + \sigma_u v$ where $v \sim N[0,1]$

 $E[\mathbf{y}|\mathbf{x},\mathbf{z},v] = \Phi[\boldsymbol{\beta}'\mathbf{x} + \theta(\boldsymbol{\alpha}'\mathbf{z} + \sigma_u v)]$

Partial Effects. Assume z = x (just for convenience)

$$\frac{\partial \mathbf{E}[\mathbf{y}|\mathbf{x},\mathbf{z},v]}{\partial \mathbf{x}} = \phi[\boldsymbol{\beta}'\mathbf{x} + \theta(\boldsymbol{\alpha}'\mathbf{z} + \sigma_{u}v)](\boldsymbol{\beta} + \theta\boldsymbol{\alpha})$$
$$\frac{\partial \mathbf{E}[\mathbf{y}|\mathbf{x},\mathbf{z}]}{\partial \mathbf{x}} = \mathbf{E}_{v} \left[\frac{\partial \mathbf{E}[\mathbf{y}|\mathbf{x},\mathbf{z},v]}{\partial \mathbf{x}}\right] = (\boldsymbol{\beta} + \theta\boldsymbol{\alpha}) \int_{-\infty}^{\infty} \phi[\boldsymbol{\beta}'\mathbf{x} + \theta(\boldsymbol{\alpha}'\mathbf{z} + \sigma_{u}v)]\phi(v)dv$$

The integral does not have a closed form, but it can easily be simulated :

$$Est.\frac{\partial \mathbf{E}[\mathbf{y}|\mathbf{x},\mathbf{z}]}{\partial \mathbf{x}} = (\mathbf{\beta} + \mathbf{\theta}\mathbf{\alpha})\frac{1}{R}\sum_{r=1}^{R} \phi[\mathbf{\beta}'\mathbf{x} + \mathbf{\theta}(\mathbf{\alpha}'\mathbf{z} + \sigma_{u}v_{r})]$$

For variables only in x, omit $\theta \alpha_k$. For variables only in z, omit β_k .

Partial Effects

The scale factor is computed using the model coefficients, means of the variables and 35,000 draws from the standard normal population.

Endogenous Binary Variable

 $U^{*} = \mathbf{\beta'x} + \theta h + \varepsilon$ y = 1[U* > 0] h* = **a'z** + u h = 1[h* > 0]

Correlation = ρ . This is the source of the endogeneity

 $E[\varepsilon|h^*] \neq 0 \Leftrightarrow Cov[u, \varepsilon] \neq 0$ Additional Assumptions:

$$(u,\varepsilon) \sim N[(0,0),(\sigma_u^2, \rho\sigma_u, 1)]$$

z = a valid set of exogenousvariables, uncorrelated with (u, ε)

This is not IV estimation. Z may be uncorrelated with X without problems.

Endogenous Binary Variable $P(Y = y,H = h) = P(Y = y|H = h) \times P(H=h)$

This is a simple bivariate probit model.

Not a simultaneous equations model - the estimator is FIML, not any kind of least squares.

FIML Estimates

FIML Estimates of Bivariate Probit Model Dependent variable DOCPUB Log likelihood function -25671.43905 Estimation based on N = 27326, K = 14									
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	Mean of X				
Index equation for DOCTOR									
Constant	.59049***	.14473	4.080	.0000					
AGE	05740***	.00601	-9.559	.0000	43.5257				
AGESQ	.00082***	.681660D-04	12.100	.0000	2022.86				
INCOME	.08883*	.05094	1.744	.0812	.35208				
FEMALE	.34583***	.01629	21.225	.0000	.47877				
PUBLIC	.43533***	.07357	5.917	.0000	.88571				
Index equation for PUBLIC									
Constant	3.55054***	.07446	47.681	.0000					
AGE	.00067	.00115	.581	.5612	43.5257				
EDUC	16839***	.00416	-40.499	.0000	11.3206				
INCOME	98656***	.05171	-19.077	.0000	.35208				
MARRIED	00985	.02922	337	.7361	.75862				
HHKIDS	08095***	.02510	-3.225	.0013	.40273				
FEMALE	.12139***	.02231	5.442	.0000	.47877				
Disturbance correlation									
RHO(1,2)	17280***	.04074	-4.241	.0000					
+									

Partial Effects

Conditional Mean

$$E[y | \mathbf{x}, h] = \Phi(\beta'\mathbf{x} + \theta h)$$

$$E[y | \mathbf{x}, \mathbf{z}] = E_h E[y | \mathbf{x}, h]$$

$$= \operatorname{Prob}(h = 0 | \mathbf{z}) E[y | \mathbf{x}, h = 0] + \operatorname{Prob}(h = 1 | \mathbf{z}) E[y | \mathbf{x}, h = 1]$$

$$= \Phi(-\alpha'\mathbf{z}) \Phi(\beta'\mathbf{x}) + \Phi(\alpha'\mathbf{z}) \Phi(\beta'\mathbf{x} + \theta)$$

Partial Effects

Direct Effects
$$\frac{\partial \mathbf{E}[y \mid \mathbf{x}, \mathbf{z}]}{\partial \mathbf{x}} = \left[\Phi(-\alpha' \mathbf{z})\phi(\beta' \mathbf{x}) + \Phi(\alpha' \mathbf{z})\phi(\beta' \mathbf{x} + \theta) \right] \beta$$

Indirect Effects

$$\frac{\partial \mathbf{E}[y \mid \mathbf{x}, \mathbf{z}]}{\partial \mathbf{z}} = \begin{bmatrix} -\phi(-\alpha'\mathbf{z})\Phi(\beta'\mathbf{x}) + \phi(\alpha'\mathbf{z})\Phi(\beta'\mathbf{x} + \theta) \end{bmatrix} \alpha$$

$$= \phi(\alpha'\mathbf{z}) \Big[\Phi(\beta'\mathbf{x} + \theta) - \Phi(\beta'\mathbf{x}) \Big] \alpha$$

Identification Issues

- Exclusions are not needed for estimation
- Identification is, in principle, by "functional form"
- Researchers usually have a variable in the treatment equation that is not in the main probit equation "to improve identification"
- A fully simultaneous model
 - y1 = f(x1, y2), y2 = f(x2, y1)
 - Not identified even with exclusion restrictions
 - (Model is "incoherent")