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A Random Utility Approach

0 Underlying Preference Scale, U*(choices)
O Revelation of Preferences:

= U*(choices) < 0 =—>» Choice “0”

= U*(choices) > 0 =——>» Choice “1”
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Binary Outcome: Visit Doctor

Head of Household Visited Doctor in Survey Year
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A Model for Binary Choice

O Yes or No decision (Buy/NotBuy, Do/NotDo)
O Example, choose to visit physician or not
O Model: Net utility of visit at least once

U, = at+pP;Age + B,Income + ySex + ¢

Choose to visit if net utility is positive Random Utility
Net Uti"ty = Uvisit - Unot visit
O Data: X = [1,age,income,sex]

y = 1 if choose visit, & U,; > 0, 0 if not.
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Choosing Between the Two Alternatives

Modeling the Binary Choice
Net Utility = U U
Normalize U

not visit

=0

visit —

not visit
Net U, = a + B, Age + 3, Income + B;Sex + ¢
Chooses to visit: U, > 0
o + B;Age + 3, Income + ;Sex + >0

e > -la+ pB;Age + B,Income + B;Sex |
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Probability Model for Choice Between Two Alternatives

" Prabability Density for Random Utility
| L
H R R T H‘h. _____________ I governed by &,
o v HHH. _____ I part of the
| utility function.
s i T

e > -[a + B,Age + B,Income + B,Sex ]
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Application

27,326 Observations

= 1to 7 years, panel
= 7,293 households observed
= We use the 1994 year, 3,337 household

observations

Descriptive Statistics for 4 wvariahles
________ +_____________________________________________________________________
Variahle| Mean mtd . Devw. Minimum Mazimum Cases Missing
________ +_____________________________________________________________________
DOCTOR | .bB378980 .47445h0 a.o 1.0 3377 0
AGE | 42 . 62659 11.585949 25.0 B4.0 3377 0
THCOME | .444764 .216586 .034000 3.0 3377 0
FEMALE | 463429 .498735 a.o 1.0 3377 0
________ +_____________________________________________________________________
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Binary Choice Data

Listing of current sample -—-————--------—--"-"—"—"—"—"—"—"—"—~"—~—~—(—(—(—(—(—— -~ ——— "
Line Ohservation ID DOCTOR AGE THCOME FEMALE
1 1 1 1 54 . 30500 a
2 2 1 a 55 .45101 a
3 3 1 a SR .35000 a
4 4 2 a 44 . 30500 1
5 5 2 1 45 .31828 1
2] 3] 2 1 4R .35000 1
7 7 2 1 48 . 35305 1
g 5] 3 a 58 .14340 1
| | 3 a BO .30000 1
10 10 3 1 b1 .11000 1
11 11 3 1 B2 .loooo 1
12 12 4 1 29 .13000 1
13 13 5 1 27 .0B500 a
14 14 5 1 28 .0e000 a
15 15 5 a 31 .15500 a
1k 1k B 1 25 .1e000 a
17 17 B 1 2B .30000 a
18 18 B a 27 .30000 a
19 19 B 1 28 .20000 a
20 20 B 1 31 .13000 a
21 21 7 a 2B .30000 1
22 22 7 a 27 .20000 1 B
23 23 7 1 30 .13000 1 S
24 24 g 1 b4 .15000 a —
25 25 | 1 30 .24000 a &
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An Econometric Model

0 Choose to visit iff Uvisit > 0

= Uvisit = + B; Age + 3, Income + ;Sex + ¢

= Uvisit >0 < ¢ >-(a+ B, Age + B, Income + 3; Sex)
e< a+pB;Age + 3, Income + 3; Sex

O Probability model: For any person observed by the analyst,
Prob(visit) = Prob[e < a + B; Age + B, Income + B5 Sex]

O Note the relationship between the unobserved ¢ and the
outcome
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1

.............................................................................................

Probability that yi

2804 - - mme el e e Feem e

a+pB;Age + B, Income + [z Sex
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Modeling Approaches

O Nonparametric — “relationship”
= Minimal Assumptions
= Minimal Conclusions
O Semiparametric — “index function”
= Stronger assumptions
= Robust to model misspecification (heteroscedasticity)
= Still weak conclusions
O Parametric — “Probability function and index”
= Strongest assumptions — complete specification
= Strongest conclusions
= Possibly less robust. (Not necessarily)

O The linear probability “model”
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Nonparametric Regressions

"""""""""""""""""""" P(Visit)=f(Age)

P(Visit)=f(Income)

il

Elv|

.........................................................................................................................
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Klein and Spady Semiparametric
No specific distribution assumed

Semiparametric Binary Choice Hodel

Dependent wariable DOCTOR

Log likelihood function —2902.04013

Festricted log likelihood —2908 . 96085

Chi =sguared [ 2 d.f.] 13. 84142

Significance level .ooo99

McFadden FP=eudo R—=guared LO0237al

Eztimation bazed on H = 4481, K = 2

Inf . Cr AIC = Sa0g .1 AICSNH = 1.296

Logi=stic kernel fn. Bandwidth = 24628

Standard Frob. 95 Confidence
DOCTOR Coefficient Error = |z | »Z% Interval

Note necessary ;
normalizations. Characteristics in numerator of Prob[DOCTOR=1]

. . AGE 03136%x 01269 2.47 0134 00649 05622
Coefficients are IHCOME —. 30808 _BE1Z20 —.35 7266 —-2 03519  1.41903
relative to FEMALE 1.0 ... (Fixed Parameter).....

EFEMALE. Con=ztant | o.o . (Fixed Parameter). .. . .

Prob(y; =1|X;) =G(B’x) G is estimated by kernel methods
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Fully Parametric

O Index Function: U* = f’x + €

O Observation Mechanism: y = 1[{U* > 0]
O Distribution: € ~ f(¢); Normal, Logistic, ...
0 Maximum Likelihood Estimation:

Max(B) logL = Z; log Prob(Y; = yi|x)
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Binary Logit Model for Binary Choice

Dependent variahle DOCTOR
Log likelihood function -2097.48109
Festricted log likelihood -21b9. 26952
Chi sguared [ 3](P= .000) 14353.57744
Slgnificance lewvel .ooooo
McFadden Pseudo E-sguared 0330935
Estimation hased on N = 3377, K = What do these mean?

Inf.Cr.AIC = 4203.0 AICAN

________ +________________________ —_——— e =
| Prob. 95% Confidence

DOCTOR| Coefficient z |z | »<= Interwval
________ +______________ — —, e et et et ettt ettt e e et e e e e, e e e, e e, e e - - ———————
Constant| —.42055%== .15510 -2.66 .0078 -. 73072 -.11099

AGE | LOZ253p5%x= 00328 .21 .0000 01722 .03008

THCOME | —.44195%*x .16936 -2.61 .0091 -.77393 -.11003

FEMALE | .B3E25%«%x .07551 g§.45 .0000 .49026 . 78624
———————— o T T T T T T T T =
®xx  x¥ % ==3 Hignificance at 1%, 5%, 10% level. T
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Parametric Model Estimation

O How to estimate a, By, B,, B3?

= The technique of maximum likelihood

L = Hy:O Prob[y = 0| x] xHyzlProb[y =1|X]

= Probly=1] =
Prob[e > -(a + B, Age + B, Income + B, Sex)]
Prob[y=0] = 1 - Prob[y=1]

O Requires a model for the probability
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Completing the Model: F(€)

O The distribution
= Normal: PROBIT, natural for behavior
= Logistic: LOGIT, allows “thicker tails”
= Gompertz:. EXTREME VALUE, asymmetric
= Others...

O Does it matter?
= Yes, large difference in estimates
= Not much, quantities of interest are more stable.
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Estimated Binary Choice Models

LOGIT PROBIT EXTREME VALUE
Variable | Estimate Estimate Estimate
Constant -0.42085 -0.25179 0.00960
Age 0.02365 0.01445 0.01878
Income -0.44198 -0.27128 -0.32343
Sex 0.63825 0.38685 0.52280
Log-L -2097.48 -2097.35 -2098.17
Log-L(0) -2169.27 -2169.27 -2169.27

Log-L(0) = log likelihood for a model that has only a constant term.
Ignore the t ratios for now.
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Effect on Predicted Probability of an Increase in Age

Probability Distribution for Random Utility

—  1.0004
o — S— SRS WS4 S— S—
- P ] - ] : :
: '[ ,
= :
2 :
2" S0 . T sfrnnsssnmrssssnnsnnnnnprrssnnnnnnnnnnnn
:E f’.!.\l_... AT ap Foun
z (r'x) =7 Ay'x) or
& Fly'x+d) - Fy'x)
b1 R T o Ty A T B T T T TP T
— Avy=1

PHIGAMMA_X)

o +‘[31 (Age+1)|+ B, (Income) + 3, Sex

(B, is positive)
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Partial Effects in Probability Models

o Prob[Outcome] = some F(a+[3;Income...)

o “Partial effect” = oF(a+[;Income...)/ 0"x” (derivative)
= Partial effects are derivatives
= Result varies with model
Logit: oF(oi+;Income...) /ox = Prob * (1-Prob) x 3
Probit: 0 F(a+,Income...)/ox =| Normal density  x B
Extreme Value: 0 F(a+3,Income...)/ox =[ Prob * (-log Prob) x B

m Scaling usually erases model differences
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Estimated Partial Effects

LOGIT PROBIT EXTREME VALUE
Estimate t ratio Estimate t ratio Estimate t ratio
Age 00527 7.235 00527 7.269 .00506 6.291
Income -.09844 -2.611 -.09897 -2.636 -.09711 -2.527
Female 14026 8.663 .13958 8.264 .13539 8.747
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Partial Effect for a Dummy Variable

O Probly, = 1|x;,,d] = F(B'X+yd))
= conditional mean

O Partial effect of d
Probly, = 1|x;,, d=1] - Prob|y,= 1|x;, d=0]

0 Probit: §(d,) = (B +7) - (B'X)
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Partial derivatives of E[yv] = F[*] with
respect to the vector of characteristics
Theyv are computed at the means of the Xs
Observations used for means are All Ohs.

________ +_____________________________________________________________

Variahle| Coefficient mtandard Error hosSt.Er. P[|Z|*z] Elasticity

________ +_____________________________________________________________

| Index function for probahility

Constant | —.0915p*== 03550 -2.588 L0097

AGE | L0527 %% 00073 7.2B649 L0000 . 33855

TRICOME | — (1900 *%% 137505 - F3h g4 = [aR3?
|Marginal effect for dummy wvariable 1= P|1 - P|O0.

FEMALE | .13950%== 01613 g.624 L0000 .09745

BMote: =***, %% % = Significance at 1%, 5%, 10% level.
Flasticity for a binary variahle = marginal effect-Mean.
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Computing Partial Effects

O Compute at the data means?
= Simple
= Inference is well defined.

O Average the individual effects
= More appropriate?
= Asymptotic standard errors are complicated.
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Average Partial Effects

Probability = P. =F(B'x,)
oP. aF(ﬁ X.)

Partial Effect = —
OX.

Average Partial Effect = Z _d ( > F(B'x, )j

are estimates of 6 =E[d. ] under certain assumptions.

=T(B'x;)xB =d,
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Variable Mean -
Estimate
________ e .00527
ME AGE | .00511838
- -.09897
HE_IHCDMl -.0960923
ME_FEMRLl .137915 13958
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Practicalities of Nonlinearities

The software does not know that agesq = age?.

PROBIT ; Lhs=doctor
, Rhs=one,age,agesqg,income,female
. Partial effects $

The software knows that age * age is age?.

PROBIT , Lhs=doctor
; Rhs=one,age,age*age,income,female $
PARTIALS ; Effects:age $
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Partial Effect for Nonlinear Terms

Prob = ®[a + B,Age + B,Age” + B,Income + B, Female]
oProb
O0Age

= o[o + B,Age + B,Age” + B,Income + B,Female] x (B, + 2B,Age)
1 2 3 4 1 2

~ $(1.30811-.06487 Age + .0091Age” —.17362Income +.39666Female)
x[(—.06487 + 2(.0091) Age]

Must be computed at specific values of Age, Income and Female
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Average Partial Effect: Averaged over Sample Incomes and
Genders for Specific Values of Age

Partial Effects VWith Respect To AGE

0

0

Partial Effects of AGE
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The Linear Probability “Model”

Prob(y =1| x) =B'x
Ely | x]=0*Prob(y =1| x)+1Prob(y =1| x) =Prob(y = 1| x)
y=Bx+¢

ROTTEN APPLES: AN INVESTIGATION OF THE
PREVALENCE AND PREDICTORS
OF TEACHER CHEATING

Brian A. Jacob
Steven D. Levitt

Working Paper 9413
http://www.nber.org/papers/w9413

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge. MA 02138
December 2002
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The Dependent Variable equals zero for 98.9% of the observations. In the
sample of 163,474 observations, the LHS variable equals 1 about 1,500 times.

Table 9: OLS Estimates of the Relationship between Cheating
and Classroom Characteristics
Dependent variable =
Indicator of classroom cheating

Independent vaniables (1) (2) (3) (4)

Social motion policy 0.0011 0.0011 0.0015 0.0023
OO poTORRPREY (00013)  (00013) _ (0.0013) _ (0.0009)
School probati i 0.0020 0.0019 0.0021 0.0029
OO PR (0.0014)  (00014) _ (0.0014)  (0.0013)
Pri la hiew i -0.0047 -0.0028 -0.0016 -0.0028
i (0.0005) _(0.0005)  _ (0.0007) _  (0.0007)
. - . -0.0049 -0.0051 -0.0046

u - _—

Social promotion*classroom achievement (0.0014) __ (0.0014) (0.0012)
S - B -0.0070 -0.0070 -0.0064
SChmlpmbm"“ 'fllla“m{’m“hmmem T (00013) _ (0.0013) (0.0013)
- -0.0084 -0.0085 -0.0089 -0.0089
Mized grade classroom (0.0007) __(0,0007) _ (0.0008) _ (0.0012)
o ; ) ) ; 0.0252 0.0249 0.0141 0.0131
/o of stdents meluded m ofhicial reporting (0.0031) ___(0.0031)  _ (0.0037) _  (0.0037)

School*Year Fixed Effects No No No Yes
Number of observations 163 474 163 474 163 474 163.474

Notes: The unit of observation 1s classroom®grade®*year*subject and the sample includes years eight vears (1993 to
2000), four subjects (reading comprehension and three math sections) and five grades (three to seven). The
dependent variable is the cheating indicator derived using the 95™ percentile cutoff. Robust standard errors clustered
by school®*year are shown in parenthesis. Other vaniables included in the regressions i column 1 and 2 include a
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Table 10: In Cheating Classrooms, for Whom do Teachers Cheat?
Dependent variable =
Teacher cheated for the student
Independent variables (1) (2) (3) (4
Prior achievement in the bottom 0.011 -0.007
quartile (0.038) - (0.075) B
Prior achievement in the 2™ quartile (gg;;) - (gggg} --
=
Prior achievement in the 3 quartile (ggéi) - (-[? f 411- ) --
Prior achievement (linear measure) -- 0.0004 -- 0.0005
(0.0003) (0.0004)
Prior achievement (linear) * High- -0.0007 -0.0007
stakes B (0.0004 " IIIIIII (0.0005)
Excluded from test reporting "0.045 -0.048 0-045 -0.052
’ = (0.014) (0.014) (0021} (0.020)
Male -0.009 -0.009 -0.014 -0.013
(0.004) (0.004) (OUDS:} (0.005)
Black 0.005 0.006 0.004 0.001
(0.011) o1y (0.024)  (0.023)
Hispanic -0.010 -0.008 0.006 0.004
(0.010) 0009 (0023) (0022
2SLS for a Ace -0.010 -0.012 -0.015 -0.017
. = (0.004) (0.004) (0.005) {(0.005)
bi nary Sample Full Low-Achieving Schools
dependent Number of obse;W'ations 39.215 . 23,010 _
Notes: The sample includes only those classrooms that were categorized as cheating based on the 95th percentile
Va“ab I e. cutoff in a particular subject and year. The depeudcm variable takes on the value of one if a student s answer string
and test score pattern was suspicious at the 90 percentile level, suggesting that the teacher had cheated for that
5 T particular subject and year. include fixed effects for classroom®*year. Low achieving
schools are defined as those in which fewer than 25% of s ts met national norms in reading in 1995, The
equations are estunated using 2SLS where a student’s test scoges at -2 are used to instrument for the student’s t-1
achievement level Robust standard errors are shown in nthesis
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Prob(y =1| x) =B8'x

Ely | x]=0*Prob(y =1| x) + 1Prob(y =1| x) =Prob(y =1]| x)
y=Bx+¢

Residuals: e =y -[§’x =1-[§’x ify=1, orO-fB'x ify=0

The standard errors make no sense because the stochastic properties
of the "disturbance™ are inconsistent with the observed variable.

Residuals
0
L

T T T T T T
0 2 4 & B8 1
Fitted values
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Prob(y =1|x) =B'x

Ely | x]=0*Prob(y =1| x)+1Prob(y =1| x) =Prob(y = 1| x)
y=B'x+¢

Residuals: e = y -B'’x=1-f'x ify=1,0r0-B'x ify=0

The standard errors make no sense because the stochastic properties
of the "disturbance" are inconsistent with the observed variable.

The variance of y|x equals Prob(y =0 | x)Prob(y =1| x) =B'x(1-B'x)
The "disturbances" are heteroscedastic. Users of the LPM always seem to
worry about clustering. They never seem to worry about heteroscedasticity.
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Binomial Probit Model

Dependent veriable gl What does OLS Estimate?

Standard Frob. 95% Confidence
ov Coefficient Error z |z | »Z= Interwval

Inde=x function for probability

Constant —2 2327 8%%x .19860 -11.24 0000 —2.62203 -—1.834353
AGE L0105 3%x% .10lse 5.65 0000 .0eaa .01418 MLE
EDTC —. 02047% .11095 -1.87 .0ele —. 04193 .aoo99
MARRIED — . 12096%*xx .0de 25 —-2.61 00839 —. 21161 —. 03030
FUBLIC L2982 1%xx .09436 3.16 001 11327 .48314
HEALTHY — BE77E%xx .14959 —-17.30 .0000 —. 95496 —. 76057
*®%%  *¥%, * == Significance at 1%, &%, 10% lewel.

Partial derivatives of E[v] = F[*] with
reszpect to the wvector of characteristics
Awverage partial effects for szample obs.

Partial Standard Frob. 95% Confidence
oV Ef fect Error = |z | >Z= Interval
AGEI 000471 %% C7425D-04 5.56 .0000 .gooz? 00056
EDTC —.000ans= 00043 -1.87 0621 —. 00164 .gooo4d -
MARRIED —.00504%* 00205 —2.46 0139 ~onsne  -oo1n3 ¢ Average Partial Effects
FUBLIC L0091 Feex 00223 4 .12 .0000 .oo482 01356 ¥
HEALTHY —. 03140%xx .00186 -16.92 0000 —. 03503 —. 02776 ¥
# Partial effect for dummy wvariable i= E[v|x.d=1] - E[v]|=x.d=0]
Drdinary lea=t =guares regression ... ... ... ...
LHS=DV Hean = 017419
Standard deviation = .13110
Fit F—=gquared = .01955 ERE-bar =guared 01937
Standard Frob. 95 Confidence
oV Coefficient Error = |z | >Z= Interval
CDnstantI L0227 8%%x 00682 3.34 0008 00942 03614
AGE L0004 4% . 7315D-04 5.93 .0000 .oooz29 .gooss - .
EDUC . D005s 00037 —1.62 1060 ~p0131 00013 OLS Coefficients
HARREIED — . 0052 0*xx .oo187? —-2.78 . 00&% —.Qnaaz —. 00153
FUBLIC 007 00%%x 00263 2.66 0077 .00185 01215
HEALTHY —. 0326 1%xx 00166 -19.59 0000 —. 035348 —. 02935
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Density Kernel Density Estimates

24—

12

-.0250 .0ooo 0250 0500 0750 000
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Negative Predicted Probabilities

| —» create;dvn=dviit<03
| -» crosg.rhe=dvn; lhe=dvs
Crosgss Tabulation

DWW
o o ———— T —— +
| DV | 0 1| Total]
o T ——— +
| 0| 22281 26848|
| 1| 163 478 |
o e — o -
| Total| 22744 4582 27326
o e —— o -
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Measuring Fit
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How Well Does the Model Fit?

O Thereis no R squared.
= Least squares for linear models is computed to maximize R?
= There are no residuals or sums of squares in a binary choice model
= The model is not computed to optimize the fit of the model to the
data
O How can we measure the “fit” of the model to the data?

= “Fit measures” computed from the log likelihood

“Pseudo R squared” =1 —logL/logLO
Also called the “likelihood ratio index”
Others... - these do not measure fit.

= Direct assessment of the effectiveness of the model at predicting
the outcome
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Log Likelihoods

O logL = ) log density (y;|X;,B)
O For probabilities
= Density is a probability
= Logdensityis<O0
= LogLis<O
O For other models, log density can be positive or
negative.

= For linear regression,
logL=-N/2(1+log2mr+log(e’e/N)]
= Positive if s2 <.058497
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Likelihood Ratio Index

logL=>"" {(1—y,)log[L—F (B'x,)]+y; log F (Bx;)}

1. Suppose the model predicted F (B'x.) =1 whenever y=1
and F (B'x.) =0 whenever y=0. Then, logL = 0.
[F(B'x;) cannot equal O or 1 at any finite 3.]

2. Suppose the model always predicted the same value, F(3,)

LogL, = > " {(1—y,)log[1—F(B,)1+y; log F(B,)!

= Nylog[1-F(B,)] + N, log F(B,)
<0

LRI=1- 299  Sincelogl > logL, 0 < LRI<1.
log L,
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The Likelihood Ratio Index

O Bounded by O and 1-¢

O Rises when the model is expanded

O Values between 0 and 1 have no meaning
O Can be strikingly low.

O Should not be used to compare models

= Use logL
= Use information criteria to compare nonnested models
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Binary Logit Model for Binary Choice

Dependent variable DOCTOR

Log likelihood function -2085.92452 <€ Full model LogL
Restricted log likelihood -2169.26982 € Constant term only LogL0
Chi squared [ 5d.f.] 166.69058

Significance level .00000

McFadden Pseudo R-squared .0384209 €= 1 - LogL/logL0
Estimation based on N = 3377, K = 6

Information Criteria: Normalization=1/N
Normalized Unnormalized

AIC 1.23892 4183.84905 -2LogL + 2K
Fin.Smpl.AIC 1.23893 4183.87398 -2LogL + 2K + 2K(K+1)/(N-K-1)
Bayes IC 1.24981 4220.59751 -2LogL + KlnN
Hannan Quinn 1.24282 4196.98802 -2LogL + 2Kln(1nN)
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________
|]Characteristics in numerator of Prob[Y = 1]
Constant| 1.86428**%* .67793 2.750 .0060
AGE | -.10209*** .03056 -3.341 .0008 42 .6266
AGESQ| .00154**%* .00034 4.556 .0000 1951.22
INCOME | .51206 .74600 .686 .4925 .44476
AGE_INC| -.01843 .01691 -1.090 .2756 19.0288
FEMALE | .65366*** .07588 8.615 .0000 .46343

________ +-—-———————————r— e
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Fit Measures Based on Predictions

0 Computation

= Use the model to compute predicted
probabilities

= Use the model and a rule to compute
predictedy =0or 1
O Fit measure compares predictions to
actuals
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Predicting the Outcome

O Predicted probabilities
P=F(a+b,;Age + b,Income + b;Female+...)
O Predicting outcomes
= Predict y=1if P is “large”

= Use 0.5 for “large” (more likely than not)
= Generally, ysg11TP>P*

O Count successes and failures
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Cramer Fit Measure

F = Predicted Probability
ZililinA: _ zi’il(l_ yi)IE

N, N,
X:(Mean F|when yzl) - (Mean F|when y:O)

A=

=reward for correct predictions minus
penalty for incorrect predictions

o - +
| Fit Measures Based on Model Predictions|
| Efron = .04825]|
| Ben Akiva and Lerman = .57139|
| Veall and Zimmerman = .08365|
| Cramer = .04771 |



Hypothesis Testing In
Binary Choice Models
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Covariance Matrix for the MLE
Log Likelihood

logL =" {(L-y,)loglL— F (B'x,)]+, log F (B'x; )}
We focus on the standard choices of F(B'x.), probit and logit.
Both distributions are symmetric; F(t)=1-F(-t). Therefore, the terms in the sums are
log L; = log F[q; (Bx;)Iwhere g; =2y, -1
algg = = Fla, (ﬁ,Xi)] (0:X;) = q; 5Xi =0
B Fla(Bx)] F

o’logl, |F" (F' 2 N
OBop’ ‘{ F (Fj }(qixi)(qixi) =H,

These simplify considerably. Note g’ =1.
For the logit model, F=A, F'=A(1-A) and F"'=A(1-A)(1-2A).
For the probit model, F=®, F'= ¢ and F" = -[q, (B'X;)]¢
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Simplifications
Logit: g =Y, 'Ai Hi :Ai (1'Ai) E[Hi] :LPi :Ai (1'Ai)
Probit: g, = CiL) H, = (AP™)0, +[¢‘ ] , E[H]=Y, = i
(Di (Di (Di CI)i(:l-_(Di)

Estimators: Based on H., E[H.] and g’ all functions evaluated at (q.'x;)

A -1
Actual Hessian:  Est.Asy.Var[f] = [Z.N: HXX }

-1

Expected Hessian: Est.Asy.Var[p] = [Zi VXX

==l

BHHH: Est.Asy.Var[f] = [Zilgfxixi’
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Robust Covariance Matrix

"Robust" Covariance Matrix: V = ABA
A = negative inverse of second derivatives matrix

2 -1 2 -1
= estimated E{-a IogL} :{_z_“ o log PfObi}
=1

PP’ oBOP’

B = matrix sum of outer products of first derivatives

dlogL dlog L} 5 dlog Prob; dlogProb, |
op’ o op’

R . -1
For a logit model, A = [ZiN_lPi(l— Pi)Xin}

B= [ZL (y; _lf)i)zxixi'}:[z:il eiZXiXi,:|

(Resembles the White estimator in the linear model case.)

= estimated E{
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Robust Covariance Matrix for Logit Model

________ .|._____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ .|._____________________________________________________________
| Robust Standard Errors
Constant| 1.86428**x* .68442 2.724 .0065
AGE | -.10209%*** .03115 -3.278 .0010 42 .6266
AGESQ| .00154*** .00035 4.446 .0000 1951.22
INCOME | .51206 .75103 .682 .4954 .44476
AGE INC| -.01843 .01703 -1.082 .2792 19.0288
FEMALE | .65366*** .07585 8.618 .0000 .46343
________ +_____________________________________________________________
| Conventional Standard Errors Based on Second Derivatives
Constant| 1.86428**x* .67793 2.750 .0060
AGE | -.10209*** .03056 -3.341 .0008 42.6266
AGESQ| .00154*** .00034 4.556 .0000 1951.22
INCOME | .51206 .74600 .686 .4925 .44476
AGE INC| -.01843 .01691 -1.090 .2756 19.0288

FEMALE | .65366*** .07588 8.615 .0000 .46343



Discrete Choice Modeling
Binary Choice Models

[Part 2] 53/86

Binary Logit Model for Binary Choice

Dependent wvariable DOCTOR
Log likelihood function -2085.92452 . i i i fi
Restricted log likelihood -2169.26982 HO. Age 'S nOt a Slgnlflcant
Chi squared [ 5 d.f.] 166.69058 determinant of
Significance level .00000 Prob(DOCtOI‘ — 1)
McFadden Pseudo R-squared .0384209
Estimation based on N = 3377, K = 6 . _ _ _
Information Criteria: Normalization=1/N HO' BZ - BB - BS =0
Normalized Unnormalized
AIC 1.23892 4183.84905
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________
|Characteristics in numerator of Prob[Y = 1]
Constant| 1.86428%%* .67793 2.750 .0060
AGE | -.10209*** .03056 -3.341 .0008 42 .6266
AGESQ| .00154**%* .00034 4.556 .0000 1951.22
INCOME | .51206 .74600 .686 .4925 .44476
AGE_INC| -.01843 .01691 -1.090 .2756 19.0288
FEMALE | .65366**x* .07588 8.615 .0000 .46343

________ +-—-—————————,errr e = =
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Likelihood Ratio Tests

O Null hypothesis restricts the parameter vector
O Alternative relaxes the restriction

O Test statistic: Chi-squared =
2 (LogL|Unrestricted model —

LogL|Restrictions) > 0
Degrees of freedom = number of restrictions
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LR Test of H,

UNRESTRICTED MODEL
Binary Logit Model for Binary Choice

Dependent variable DOCTOR
Log likelihood function -2085.92452
Restricted log likelihood -2169.26982
Chi squared [ 5d.f.] 166.69058
Significance level .00000
McFadden Pseudo R-squared .0384209
Estimation based on N = 3377, K = 6

Information Criteria: Normalization=1/N
Normalized Unnormalized
AIC 1.23892 4183.84905

RESTRICTED MODEL
Binary Logit Model for Binary Choice

Dependent variable DOCTOR
Log likelihood function -2124.06568
Restricted log likelihood -2169.26982
Chi squared [ 2 d.f.] 90.40827
Significance level .00000
McFadden Pseudo R-squared .0208384
Estimation based on N = 3377, K = 3

Information Criteria: Normalization=1/N
Normalized Unnormalized
AIC 1.25974 4254 .13136

Chi squared[3] = 2[-2085.92452 - (-2124.06568)] = 77.46456
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Wald Test

O Unrestricted parameter vector is estimated
O Discrepancy: q= Rb —m (or r(b,m) if nonlinear)
IS computed

O Variance of discrepancy is estimated:
Var[g] =R VR’

o Wald Statistic is gq’[Var(g)]'g = q'[RVR']1q
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1.86423
0 1 0 0 0 0 a 'DDD'I giggi 0 0.102093
0 0 1 0 0 0 “nEra0s3 - 0| = 0.007154004
0 0 0 0 1 0 0018433 0 0.018433
RVR, 0.E53E53
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0.459554 0.0719385 0000193173 0231031 000556395 0.00125442 0 0 0
00195865 0000934022 | -9.98629=005 000516330 -0.00014392  -0.000160159 1 0 0
0.000198178 -9.986292-005 | 1.14272e-007 -1.03054e-005  2.83349e-007  1.56007=-006 0 1 0
023103 | 000516338 | -1.03054=-005 0556523 00122606 -0.000805863 0 0 0
0.00556335 -0.00014392 2833459007 -00122686 0000285347 277535005 0 0 1
0.00125442 | 0.000160159 | 156007e-006  -0.000305883 277535005  0.00575729
0.000934022 -3.98625e-005 | -0.00014392
= | 999629005 1142726007 | 2838432007
0.00014332  2.83843e-007 | 0.000285847
0102093 | 0.00154004 018433 | [ 0000934022 9986292006 -0.00014332 -0.102093 .
-9.93629:-006 | 1.14272e-007 283849007 000154004 = 59_0541'
0.00014332 | 28308492007 | 0.000255047 -0.018433

Chi squared[3] = 69.0541
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Lagrange Multiplier Test

0 Restricted model is estimated

O Derivatives of unrestricted model and
variances of derivatives are computed at
restricted estimates

O Wald test of whether derivatives are zero tests
the restrictions

O Usually hard to compute — difficult to program
the derivatives and their variances.
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LM Test for a Logit Model

o Compute b, (subject to restictions)
(e.g., with zeros in appropriate positions.

o Compute Pi(b,) for each observation.
0 Compute g(bg) = [y; — Pi(by)]
o Compute gi(b,) = x;e; using full x; vector

O LM = [2,0i(bo)l'[2i9i(bg)gi(bo)] [Zi9i(bo)]
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Y Logit Model with guadratic and interaction

Hameli=t ;| ==one.age.age¥age, 1ncomne.
age*incone, female $
Logit ;o 1f[vear=1994]
. Lh= = doctor
; Bh= = =
Y Constrained MLE. Force 3 coefficient=s to = 0
cml :bi{2)=0.b{3y=0_.b{5)=0
Frob = p%
Y First derivative (=cale part) =
Create ;o gl= (doctor — p) ; gl = gi*®gil £
Y Second deriwvatiwve (=scale part)
Create ; hi=p*{1l-p)%

Y LM =tati=tic based on BHHH e=stimator
Matriz 1f[vear=1994] ;. li=st ; - = X'g1i1 %
Matriz ;i1f[wvear=1994] ; List ; IM = g'#{E{'[gi12]i:*g 5
Y LM =tati=tic use= internal routine
Logit ; 1f[wear=1994] : Lh==doctor ; Rh===
Start = b ; Maxzit=0%
Y IM =tati=stic ba=ed on actual =econd derivatives

Matriz ;1f[vear=1994] ; List ; ML = g'#{X'[hi1]i:*g &
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Binary Logit Model for Binary Cholce

Dependent wvariable DOCTOR
Log likelihood function -2124.0B5k68
Festricted log likelihood -21b9. 204982
Chi sguared [ 5] (F= .000) 90.40827
Slgnificance level Looooo
McFadden Pseudo E-sgquared 0208354
Estimation based on W = 3377, K = 3
Int.Cr.AIC = 4254 .1 AICAH = 1.260
Linear constraints imposed 3
________ +____________________________________________________________________
| mtandard Fraoh. H5% Confidence
DOCTOR| Coefficient Error = |=| <% Interval
________ +____________________________________________________________________
Constant | D20 %% 05975 5.88 .0000 30227 .70418
AGE | a.o ..., (Fixed Parameter).....
AGE#=AGE | I (Fizxed Parameter).....
IHCOME | —.37810%= 16741 -2.26 L0239 -.70B23 -. 04995
| Interaction AGE=INCOME
_ntroctlZ| a.o ..., (Fixed Parameter).....
FEMALE | b7 T o0exx 07433 9.05 .0000 .03054 .02416
________ +____________________________________________________________________

®%x %% % ==3 DSignificance at 1%, 5, 10¥ level.
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| -» Create ;ogl= [doctor - p) @ gi2 = gi*gl 5
| -» Matriz ;if[yvear=1994] ; list ; G = X'gl 5
3 1
________ +______________
1] .239344E-05
2| 2Z2BE.60
3| 212205.
4| .968396E-06
5 849.705
2y .238041E-05
| -» Matriz :if[wvear=1994] : List ; ML = g'#=' [gqi12]¥s*g 5
ML | 1
________ +______________
1] 81.4583

| - Matriz :;i1f[vear=1994] ; List ; ML = g'#*{X'[hil]Xi*g 5

1] .028225 .2395344E-05
2| Laooooo 2208 .60
3| Laooooo 212205,
4 | -.378105 .968390E-06
= Laooooo 8449 .705

b .B77500 .238041E-05
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|-* Logit ; if[vear=1994] ; Lhs=doctor : Rhs=x
; Btart = h ; Mazit=05
Masximum of 0 iterations. Exit i1terations with status=1.
Maxzit = 0. Computing LM statistic at starting values.
No iterations computed and no parameter update done.
Binary Logit Model for Binarvy Choice
Dependent variahle DOCTOR
LM Stat. at start wvalues 71.67452 _
LM statistic kept as scalar LMETAT
Log likelihood function -2124.06563
Festricted log likelihood -21p9. 20982
Chi sguared [ 5](P= .000) 90.40827
Significance level .0ooao
McFadden Pseudo RE-sguared 0208354
Estimation hased on N = 3377, K = B
Inf.Cr.AIC = 4260.1 AICAH = 1.262
________ +____________________________________________________________________
Standard Froh. 95% Confidence
DOCTOR| Coefficient Error z |z|>Z= Interval
________ +____________________________________________________________________
Constant | .52822 .BBYE3 .79 4290 -.780B9 1.83714
AGE | 0.0 L2967 .0o 1.0000 -.58161D-01  .58161D-01
AGE*AGE | 0.0 .noo3z .00 1.0000 -.83007D-03 .63007D-03
IRCOME | -.37810 .72928 -.52 .p041 -1.80747 1.05126
| Interaction AGE*INCOME
_ntretlz] 0.0 01625 .00 1.0000 -.31844D-01  .31544D-01
FEMALE | LBTTE0xxx LOF522 9.01 .o0000 .53007 .82493
________ +____________________________________________________________________

| -» Matriz ;if[vear=1994] : List ; ML = g'=J{X'[hil]X)*g 5

1] 71l.6745




Inference About
Partial Effects
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Marginal Effects for Binary Choice

LOGIT: E[y|X]= exp(B’X)/ :1+ exp(B'i): = A(B’X)
5=EYIX]/ A(BR)][1-A(Bx) |

PROBIT E[y|i]=cb(§'x)

5B/ [3(fe)

EXTREME VALUE E[y|X]=P, —exp[ exp(—ﬁ’i)}
8 = CEly| X%)—( = Pl[_logpl]ﬁ
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§ = f(ﬁ,x), G

)
o(B%)| { (ﬁ’i)ﬁf}

Logit G= i

Probit G =

ExtViu G =|

The Delta Method

(ﬁ,x = i ('g[yX) .V = Est.Asy.Var [B]

1A[3x} | + 12A[3x 3'

X
X "

IRt
—IogP X)J{l 1+IogP B, JB
)

Est.Asy.Var[_S] :[G( )J [ ([3 X }
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Computing Effects

O Compute at the data means?
= Simple
= Inference is well defined
O Average the individual effects
= More appropriate?
= Asymptotic standard errors more complicated.
O Is testing about marginal effects meaningful?
= f(b’x) must be > 0; b is highly significant
= How could f(b’x)*b equal zero?
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APE vs. Partial Effects at the Mean

Delta Method for Average Partial Effect

: 1 <N : = A=,
Estimator of Var[ﬁzi_l PartialEffect, } =G Var [B] G

——>» partials ; effects: hhninc-female ; summary §

Fartial Effect= for Probit Probability Function
Fartial Effect=s Averaged Owver Ob=zervation=

*# == Partial Effect for a Binarv Variable
Fartial Standard
(Delta method) Effect Error |t| 95% Confidence Interwval
HHHIHC —. 05496 03762 1.46 —. 12889 01877
* FEMALE 14021 .01599 .77 10886 17155
—>» partials ; effects: hhnincrsfemale ; summary ; means$s

Fartial Effect= for Probit Probability Function
Fartial Effects Computed at data Means

#®# == Partial Effect for a Binarv Wariable
Partial Standard
(Delta method) Effect Error |t| 95% Confidence Interwval
HHHIHC —. 06374 .o4009 1.549 —. 14232 01484

FEMALE C15045 L01752 8.59 11611 .184719
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Estimate p by Maximum Likelihood with b @A cek |
. . . . . 1 4
Estimate asymptotic covariance matrix with V 1 0251 763
2 001445
1 3 0271285
Draw R obseryatlons b(r) from the normal ; e R
populatlon N[b,V] [4. 4] Celt: | —
~ 1 | 2 [ 3 | a_ ]
b(r) - b + C*V(r)! V(r) drawn from N[Oal] 1 0.00937614  -0.000158123 -0.0043301 | -0.00067F015
—_ 1 — ’ 2 000015831293 | 3596472006 | -1.1648=-005 | -6.53447e-006
C - ChOIESky mat”X, V - CC 3 -0.004330 | -1.1648e-005 001053328 | 0000122354
. . 4 -0.000677015 | -6.59447=-006 | 0.000122354 000203521
Compute partial effects d(r) using b(r)
- [4.4] Cell: |0.0965304 >
Compute the sample variance of d(r),r=1,...,R 1' . :HJ' .
.- - 1 0.0963304 1] 1] 1]
Use the sample standard deviations of the R 2 | 000163305 000113924 i i
observations to estimate the sampling standard | | —— duesne omee  omuee oo
errors for the partial effects.
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__________________________________________________ Delta Method
WALD procedure. Estimates and standard errors
for nonlinear functions and joint test of PROBIT
nonlinear restrictions.
wald Statlstic srmmmmm Estimate t ratio
Frob. from Chi-squared[ 5] = 00000
Krinsky-Robb method used with 1000 draws
———————— e .00527 | _~1.269
Variable| Coefficient Standard Error b-s3t.Er. //////
________ o
Fricn(1l) | CAZZTIR R 02273 1,599 /{ .
Fncn(2]| L 36483%** L 00351 104.020 - 09897 > 2.636
Fricn(3) | 00527 *** 00071 7. 467 /
Fncn(4)| —. 09897 *** ,03829 -2.585
Fricn(3) | 14711 4*** 0164z B.597% —43958 | ,8.264
________ o __
Mote: ***, ** * — Hignificance at 1%, 5%, 10% le
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Partial Effect for Nonlinear Terms

Prob = ®[a + B,Age + B,Age’ + B,Income + B, Female]
oProb
O0Age
(1) Must be computed for a specific value of Age
(2) Compute standard errors using delta method or Krinsky and Robb.
(3) Compute confidence intervals for different values of Age.
(4) Test of hypothesis that this equals zero is identical to a test

that (B, +2B,Age) =0. Is this an interesting hypothesis?

= ¢[ow + B,Age + B,Age’ + B,Income + B,Female] x (B, + 2B,Age)
1 2 3 4

oProb  ¢(1.30811-.06487 Age + .0091Age* —.17362Income +.39666) Female)
OAGE  x[(-.06487 + 2(.0091) Age]
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Average Partial Effect: Averaged over Sample Incomes and
Genders for Specific Values of Age

Partial Effects of AGE

|
:

3+

100

Partial Effects With Respect To AGE

|
;
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Endogenelty
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Endogenous RHS Variable

oU* =B'X +6h+¢
y =1[U*> 0]
E[e|n] # 0 (h is endogenous)
= Case 1: his continuous
= Case 2: his binary = a treatment effect

O Approaches
m Parametric: Maximum Likelihood

= Semiparametric (not developed here):
GMM
Various approaches for case 2
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Endogenous Continuous Variable

U* = B'X + Bh +|e

Y 1[U* > 0] — 'IC':r?irsr?lsa:;\oensZSr.ceoftheendogeneity

h =a'z + |u

E[e|lh] # O & Cov[u, €] # 0

Additional Assumptions:

(u,e) ~ N[(0,0),(0,% poy, 1)]

Z = a valid set of exogenous
variables, uncorrelated with (u,€)

This is not IV estimation. Z may be uncorrelated with X without problems.
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Endogenous Income

g Income responds to
£ Age, Age?, Educ, Married, Kids, Gender
‘I:I MALE W FEMALE I \ I i

< > |k \ e

0 = Not Healthy 1=Healthy ||| |/ | =~ | *

Healthy =0 or 1 /
Age, Married, Kids, Gender, Income S L —
Determinants of Income (observed and

unobserved) also determine health
satisfaction.
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Estimation by ML (Control Function)

Probit fit of y to x and h will not consistently estimate (8,0)
because of the correlation between h and ¢ induced by the
correlation of u and . Using the bivariate normality,

Prob(y_llx’h)_®[B’x+9h+(p/0u)u}

«/1—p2

Insert u, = (h - @'z)/lo, and include f(h|z) to form logL

B'x; +6h + p(h‘_aZ‘]

Oy

log®@| (2y; -1)

|09L:ZiN:1< \/1—p2
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Two Approaches to ML

(1) Full information ML. Maximize the full log likelihood
with respect to (B,6,6,,a,p)
(The built in Stata routine IVPROBIT does this. It is not
an instrumental variable estimator; it is a FIML estimator.)
Note also, this does not imply replacing h with a prediction

from the regression then using probit with h instead of h.
(2) Two step limited information ML. (Control Function)

(a) Use OLS to estimate o and o, with a and s.

(b) Compute V. = 4./s = (h, —a'z;)/s

© logd| PXitOM+o% |\ D[8'x, +1h, +10,]
V1- p°

The second step is to fit a probit model for y to (x,h,v) then

solve back for (B,6,p) from (8,A,t) and from the previously

estimated a and s. Use the delta method to compute standard errors.
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Probit with Endogenous RHS Variable

Dependent variable HEALTHY
Log likelihood function -6464.60772
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________
|Coefficients in Probit Equation for HEALTHY
Constant| 1.21760**x* .06359 19.149 .0000
AGE | -.02426*** .00081 -29.864 .0000 43.5257
MARRIED | -.02599 .02329 -1.116 .2644 .75862
HHKIDS | .06932%*%* .01890 3.668 .0002 .40273
FEMALE | -.14180*** .01583 -8.959 .0000 .478717
INCOME | .53778%*%* .14473 3.716 .0002 .35208
|Coefficients in Linear Regression for INCOME
Constant| -.36099**x* .01704 -21.180 .0000
AGE | .02159%** .00083 26.062 .0000 43.5257
AGESQ| -.00025*** .944134D-05 -26.569 .0000 2022.86
EDUC| .02064*** .00039 52.729 .0000 11.3206
MARRIED | .07783%%% .00259 30.080 .0000 .75862
HHKIDS | -.03564*** .00232 -15.332 .0000 .40273
FEMALE | .00413%** .00203 2.033 .0420 .478717
| Standard Deviation of Regression Disturbances
Sigma (w) | .16445%** .00026 644.874 .0000
|Correlation Between Probit and Regression Disturbances
Rho (e, w) | -.02630 .02499 -1.052 .2926
________ +_____________________________________________________________
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Partial Effects: Scaled Coefficients

Conditional Mean
E[y|x,h]=D(B'x + 6h)
h=a'z+u=a'z+oc,v where v~ N[0,1]
Ely|x,z,v] =®[B'X+6(a'z + 5,V)]
Partial Effects. Assume z = x (just for convenience)

8E[3g>)<(,z,v] =o[B'X+6(a'z +c,V)](B+6a)
Ebbel_g [GE[V'X’Z’V]} ~(B+00)[” 9B +0(a'z + o, VV)Y
OX OX o0

The integral does not have a closed form, but it can easily be simulated :
oEly|x,z] _ 1 <R , ,
Est.T =B+ G)oc)EZ:r:1 o[B'X+6(a'z+0o,V, )]

For variablesonly in x, omit 6a,. For variablesonly in z, omit §,.
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Partial Effects

| Listed Calculator Results | 0 =0.53778
SB = .380919
EH Matrix - BMODEL [ = |[ = |[22 | | B Matrix- ALPHA [ = || = |[ 22 | || ED Matrix - SCALEDB [(= | = |[=54]
[7.1] Cel: [1.2176 [7. 1] Cell: |-0.35099 [7. 1] Cel: |0.239023
1 ~ 1 -~ 1 ~
1 1.2176 1 0.36099 1 0.299023
2 0.02426 2 0.02159 2 0.00369571
3 0 = 3 0.00025 L 3 | -3.92804e-005 |
4 0 4 0.02064 1 4 000324299 1
g 0.02533 g 0.07783 5 0.00463535
B 0.06932 6 0.03564 6 0.0146532
7 01418 i 7 0.00413 7 0.0407803

The scale factor is computed using the model coefficients, means of the
variables and 35,000 draws from the standard normal population.
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Endogenous Binary Variable

U* = B'X + Bh +|e
—_ B ] lation = p.

K* - 1’.U* > O- = 'IC':r?irsr?sa:hoensoSrceoftheendogeneity
=qaz + |U

h = 1[h* > 0]

E[e|lh*] # O & Cov[u, €] # O

Additional Assumptions:

(u,e) ~ N[(0,0),(0,% poy, 1)]

Z = a valid set of exogenous
variables, uncorrelated with (u,€)

This is not IV estimation. Z may be uncorrelated with X without problems.
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P(Y =y,H=h) = P(Y =y|H =h) x P(H=h)
This 1s a simple bivariate probit model.
Not a simultaneous equations model - the estimator
Is FIML, not any kind of least squares.

Doctor = F(age,age?,income,female,Public)

Public = F(age,educ,income,married,kids,female)

oooooo

zzzzz
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FIML Estimates of Bivariate Probit Model

Dependent variable DOCPUB
Log likelihood function -25671.43905
Estimation based on N = 27326, K = 14
________ +_____________________________________________________________
Variable| Coefficient Standard Error b/St.Er. P[|Z]|>z] Mean of X
________ +_____________________________________________________________
| Index equation for DOCTOR
Constant| .59049%**x* .14473 4.080 .0000
AGE | -.05740**%* .00601 -9.559 .0000 43.5257
AGESQ| .00082*** .681660D-04 12.100 .0000 2022.86
INCOME | .08883* .05094 1.744 .0812 .35208
FEMALE | .34583*** .01629 21.225 .0000 .47877
PUBLIC| .43533*** .07357 5.917 .0000 .88571
| Index equation for PUBLIC
Constant| 3.55054**%* .07446 47.681 .0000
AGE | .00067 .00115 .581 .5612 43.5257
EDUC | -.16839*** .00416 -40.499 .0000 11.3206
INCOME | -.98656*** .05171 -19.077 .0000 .35208
MARRIED | -.00985 .02922 -.337 .7361 .75862
HHKIDS | -.08095*** .02510 -3.225 .0013 .40273
FEMALE | .12139%*%* .02231 5.442 .0000 .47877
|Disturbance correlation
RHO(1,2) | -.17280*** .04074 -4.241 .0000
________ +_____________________________________________________________
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= Partial Effects
Conditional Mean

E[y|x,h]=®D(B'x+ 6h)

Ely|x.z]=E.E[y|x.h]
=Prob(h=0]|z)E[y|x,h=0]+Prob(h=1|z)E[y|x,h=1]
=O(—a'z)D(P'X)+ D(a'z)D(B'X +0)

Partial Effects
Direct Effects
CE[y|x.2] _
OX -

[@(-0'2)(B'X) + D(a'2)$(B'x +0)] B

Indirect Effects

OE[y|x.z] [
0Z

—O(—a'Z)D(B'X) + dp(a'z)D(B'x + 6)] a
=0(a'z)[PB'x+6)-DP(P'X)] a
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ldentification Issues

O Exclusions are not needed for estimation
O Identification is, in principle, by “functional form”

O Researchers usually have a variable in the
treatment equation that is not in the main probit
equation “to improve identification”

O A fully simultaneous model
=yl =1(x1,y2), y2 =1(x2,y1)
= Not identified even with exclusion restrictions
= (Model is “incoherent”)



