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A Random Utility Approach

 Underlying Preference Scale, U*(choices)

 Revelation of Preferences:

 U*(choices)  < 0          Choice “0”

 U*(choices)  >  0          Choice “1”
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Binary Outcome: Visit Doctor
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A Model for Binary Choice

 Yes or No decision (Buy/NotBuy, Do/NotDo)

 Example, choose to visit physician or not

 Model:  Net utility of visit at least once

Uvisit =  +1Age + 2Income + Sex + 

Choose to visit if net utility is positive

Net utility = Uvisit – Unot visit

 Data:  X = [1,age,income,sex]

y = 1 if choose visit,  Uvisit > 0, 0 if not.

Random Utility
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Modeling the Binary Choice

Net Utility  =  Uvisit – Unot visit

Normalize     Unot visit  = 0

Net Uvisit =  + 1 Age + 2 Income + 3 Sex + 

Chooses to visit:  Uvisit >  0

 + 1 Age + 2 Income + 3 Sex +  > 0

 >  -[ + 1 Age + 2 Income + 3 Sex ]

Choosing Between the Two Alternatives
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Probability Model for Choice Between Two Alternatives

 > -[ + 1Age + 2Income + 3Sex ]

Probability is 

governed by ,
the random 

part of the 

utility function.



[Part 2]   7/86

Discrete Choice Modeling
Binary Choice Models

Application

27,326 Observations 
 1 to 7 years, panel 

 7,293 households observed 

 We use the 1994 year,  3,337 household 
observations
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Binary Choice Data
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An Econometric Model

 Choose to visit iff Uvisit >  0

 Uvisit =  + 1 Age + 2 Income + 3 Sex + 

 Uvisit > 0    > -( + 1 Age + 2 Income + 3 Sex)

 <     + 1 Age + 2 Income + 3 Sex

 Probability model: For any person observed by the analyst, 

Prob(visit)  =  Prob[ <  + 1 Age + 2 Income + 3 Sex]

 Note the relationship between the unobserved  and the 

outcome
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+1Age + 2 Income + 3 Sex
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Modeling Approaches

 Nonparametric – “relationship”
 Minimal Assumptions

 Minimal Conclusions

 Semiparametric – “index function” 
 Stronger assumptions

 Robust to model misspecification (heteroscedasticity)

 Still weak conclusions

 Parametric – “Probability function and index”
 Strongest assumptions – complete specification

 Strongest conclusions

 Possibly less robust. (Not necessarily)

 The linear probability “model”
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Nonparametric Regressions

P(Visit)=f(Income)

P(Visit)=f(Age)
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Klein and Spady Semiparametric

No specific distribution assumed

Note necessary 

normalizations. 

Coefficients are 

relative to 

FEMALE.

Prob(yi = 1 | xi )  =G(’x)  G is estimated by kernel methods
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Fully Parametric

 Index Function: U* = β’x + ε

 Observation Mechanism: y = 1[U* > 0]

 Distribution: ε ~ f(ε); Normal, Logistic, …

 Maximum Likelihood Estimation:

Max(β) logL = Σi log Prob(Yi = yi|xi)
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Parametric: Logit Model

What do these mean?
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Parametric Model Estimation

 How to estimate , 1, 2, 3?

 The technique of maximum likelihood

 Prob[y=1] = 

Prob[ > -( + 1 Age + 2 Income + 3 Sex)]

Prob[y=0]  =  1 - Prob[y=1]

 Requires a model for the probability

0 1
Prob[ 0 | ] Prob[ 1| ]

y y
L y y

 
    x  x
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Completing the Model:  F()

 The distribution

 Normal:      PROBIT, natural for behavior

 Logistic:      LOGIT, allows “thicker tails”

 Gompertz:  EXTREME VALUE, asymmetric

 Others…

 Does it matter?

 Yes, large difference in estimates

 Not much, quantities of interest are more stable.
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Estimated Binary Choice Models

Log-L(0) = log likelihood for a model that has only a constant term.

Ignore the t ratios for now.
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 + 1 (Age+1) + 2 (Income) + 3 Sex

Effect on Predicted Probability of an Increase in Age

(1 is positive)
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Partial Effects in Probability Models
 Prob[Outcome]  =  some F(+1Income…)

 “Partial effect”   =  F(+1Income…) / ”x”    (derivative)

 Partial effects are derivatives

 Result varies with model

 Logit: F(+1Income…) /x =  Prob * (1-Prob)     

 Probit:  F(+1Income…)/x =  Normal density      

 Extreme Value:  F(+1Income…)/x =  Prob * (-log Prob)  

 Scaling usually erases model differences
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Estimated Partial Effects
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Partial Effect for a Dummy Variable

 Prob[yi = 1|xi,di] = F(’xi+di)

= conditional mean

 Partial effect of d 

Prob[yi = 1|xi, di=1]   - Prob[yi = 1|xi, di=0]

 Probit:     ˆ ˆˆ( )        x xid
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Partial Effect – Dummy Variable
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Computing Partial Effects

 Compute at the data means?

 Simple

 Inference is well defined.

 Average the individual effects

 More appropriate?

 Asymptotic standard errors are complicated.
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Average Partial Effects
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Average Partial Effects vs. Partial Effects at Data Means
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Practicalities of Nonlinearities

PROBIT ; Lhs=doctor 

; Rhs=one,age,agesq,income,female  

; Partial effects $

PROBIT     ; Lhs=doctor 

; Rhs=one,age,age*age,income,female $

PARTIALS ; Effects : age $

The software does not know that agesq = age2.

The software knows that age * age is age2.
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Partial Effect for Nonlinear Terms

2

1 2 3 4

2

1 2 3 4 1 2

2

Prob [ Age Age Income Female]

Prob
[ Age Age Income Female] ( 2 Age)

Age

(1.30811 .06487 .0091 .17362 .39666 )
           

[( .06487 2(.0091) ]            

Age Age Income Female

Age

      


          



    

                                                                 

Must be computed at specific values of Age, Income and Female
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Average Partial Effect: Averaged over Sample Incomes and 

Genders for Specific Values of Age
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The Linear Probability “Model”

)





Prob(y = 1| ) =

E[y | ] = 0 * Prob(y = 1| ) +1Prob(y = 1| ) = Prob(y = 1|

y = + ε

x β x

x x x x

β x
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The Dependent Variable equals zero for 98.9% of the observations.  In the 

sample of 163,474 observations, the LHS variable equals 1 about 1,500 times.
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2SLS for a 

binary 

dependent 

variable.



[Part 2]   33/86

Discrete Choice Modeling
Binary Choice Models

)

ˆ ˆ ˆ if y = 1, or 0  if y = 0

The standard errors make no sense because the stochastic properties

of





  

Prob(y = 1| ) =

E[y | ] = 0 * Prob(y = 1| ) +1Prob(y = 1| ) = Prob(y = 1|

y = + ε

Residuals :  e  =  y  - 

x β x

x x x x

β x

β x = 1- β x - β x

 the "disturbance" are inconsistent with the observed variable.
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)

ˆ ˆ ˆ if y = 1, or 0  if y = 0

The standard errors make no sense because the stochastic properties

of





  

Prob(y = 1| ) =

E[y | ] = 0 * Prob(y = 1| ) +1Prob(y = 1| ) = Prob(y = 1|

y = + ε

Residuals :  e  =  y  - 

x β x

x x x x

β x

β x = 1- β x - β x

 the "disturbance" are inconsistent with the observed variable.

The variance of y|x equals ) ) (1 )

The "disturbances" are heteroscedastic.  Users of the LPM always seem to 

worr

  Prob(y = 0 | Prob(y = 1|x x β x β x

y about clustering.  They never seem to worry about heteroscedasticity.
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1.7% of the observations are > 20

DV = 1(DocVis > 20)
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What does OLS Estimate?

MLE

Average Partial Effects

OLS Coefficients
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Negative Predicted Probabilities
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Measuring Fit
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How Well Does the Model Fit?

 There is no R squared.

 Least squares for linear models is computed to maximize R2

 There are no residuals or sums of squares in a binary choice model

 The model is not computed to optimize the fit of the model to the 

data

 How can we measure the “fit” of the model to the data?

 “Fit measures” computed from the log likelihood

 “Pseudo R squared” = 1 – logL/logL0

 Also called the “likelihood ratio index”

 Others… - these do not measure fit.

 Direct assessment of the effectiveness of the model at predicting 

the outcome
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Log Likelihoods

 logL = ∑i log density (yi|xi,β)

 For probabilities 

 Density is a probability

 Log density is < 0

 LogL is < 0

 For other models, log density can be positive or 

negative.
 For linear regression, 

logL=-N/2(1+log2π+log(e’e/N)]

 Positive if s2 < .058497
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Likelihood Ratio Index

 
1

log (1 )log[1 ( )] log ( )

1.  Suppose the model predicted ( ) 1 whenever y=1

    and ( ) 0 whenever y=0.  Then, logL = 0.

    [ ( ) cannot equal 0 or 1 at any finite .]

2.  S
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The Likelihood Ratio Index

 Bounded by 0 and 1-ε

 Rises when the model is expanded

 Values between 0 and 1 have no meaning

 Can be strikingly low.

 Should not be used to compare models

 Use logL

 Use information criteria to compare nonnested models



[Part 2]   44/86

Discrete Choice Modeling
Binary Choice Models

Fit Measures Based on LogL
----------------------------------------------------------------------

Binary Logit Model for Binary Choice

Dependent variable               DOCTOR

Log likelihood function     -2085.92452       Full model         LogL

Restricted log likelihood   -2169.26982       Constant term only LogL0

Chi squared [   5 d.f.]       166.69058

Significance level               .00000

McFadden Pseudo R-squared      .0384209       1 – LogL/logL0

Estimation based on N =   3377, K =   6

Information Criteria: Normalization=1/N

Normalized   Unnormalized

AIC              1.23892     4183.84905       -2LogL + 2K

Fin.Smpl.AIC     1.23893     4183.87398       -2LogL + 2K + 2K(K+1)/(N-K-1)

Bayes IC         1.24981     4220.59751       -2LogL + KlnN

Hannan Quinn     1.24282     4196.98802       -2LogL + 2Kln(lnN)

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Characteristics in numerator of Prob[Y = 1]

Constant|    1.86428***       .67793        2.750   .0060

AGE|    -.10209***       .03056       -3.341   .0008      42.6266

AGESQ|     .00154***       .00034        4.556   .0000      1951.22

INCOME|     .51206          .74600         .686   .4925       .44476

AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288

FEMALE|     .65366***       .07588        8.615   .0000       .46343

--------+-------------------------------------------------------------
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Fit Measures Based on Predictions

 Computation

 Use the model to compute predicted 

probabilities

 Use the model and a rule to compute 

predicted y = 0 or 1

 Fit measure compares predictions to 

actuals
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Predicting the Outcome 

 Predicted probabilities

P = F(a + b1Age + b2Income + b3Female+…)

 Predicting outcomes

 Predict y=1 if P is “large”

 Use 0.5 for “large” (more likely than not)

 Generally, use 

 Count successes and failures

ˆŷ 1 if P > P*
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Cramer Fit Measure

   

1 1

1 0

F̂ = Predicted Probability

ˆ ˆF (1 )Fˆ
N N

ˆ ˆ ˆMean F | when = 1   -  Mean F | when = 0

   = 

N N

i i i iy y

y y

   
  

 

reward for correct predictions minus

    penalty for incorrect predictions

+----------------------------------------+

| Fit Measures Based on Model Predictions|

| Efron                        =   .04825|

| Ben Akiva and Lerman         =   .57139|

| Veall and Zimmerman          =   .08365|

| Cramer                       =   .04771|

+----------------------------------------+
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Hypothesis Testing in 

Binary Choice Models
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Covariance Matrix for the MLE

1

Log Likelihood

log {(1 ) log[1 ( )] log ( )}

We focus on the standard choices of ( ),  probit and logit.

Both distributions are symmetric; F(t)=1-F(-t).  Therefore, the terms in the su
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ogit model, F= , F = (1- ) and F = (1- )(1-2 ).

For the probit model, F= , F =  and F  = -[ ( )]i iq
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Simplifications

i i

2
2

i i

i i

Logit:  g  = y  -       H  = (1- )                      E[H ] =  = (1- ) 

( )
Probit: g  =         H  = ,    E[H ] =  =  

(1 )

Estimators:  Based on H ,  E[H ]

i i i i i i i i

i i i i i i i
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Robust Covariance Matrix

11 22

1

"Robust" Covariance Matrix:    =  

  =  negative inverse of second derivatives matrix  

log Problog
     =  estimated E -

ˆ ˆ

  = matrix sum of outer products of

N i

i

L




   
   

      


V A B A

A

B

   

1

1

1

1

2

1

 first derivatives

log Prob log Problog log
     =  estimated E

ˆ ˆ

ˆ ˆFor a logit model,  = (1 )

ˆ                             = ( )

N i i

i

N

i i i ii

N

i i i ii

L L

P P

y P











    
         

 
  









A x x

B x x

   

2

1

(Resembles the White estimator in the linear model case.)

N

i i ii
e



   
       x x



[Part 2]   52/86

Discrete Choice Modeling
Binary Choice Models

Robust Covariance Matrix for Logit Model

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Robust Standard Errors

Constant|    1.86428***       .68442        2.724   .0065

AGE|    -.10209***       .03115       -3.278   .0010      42.6266

AGESQ|     .00154***       .00035        4.446   .0000      1951.22

INCOME|     .51206          .75103         .682   .4954       .44476

AGE_INC|    -.01843          .01703       -1.082   .2792      19.0288

FEMALE|     .65366***       .07585        8.618   .0000       .46343

--------+-------------------------------------------------------------

|Conventional Standard Errors Based on Second Derivatives

Constant|    1.86428***       .67793        2.750   .0060

AGE|    -.10209***       .03056       -3.341   .0008      42.6266

AGESQ|     .00154***       .00034        4.556   .0000      1951.22

INCOME|     .51206          .74600         .686   .4925       .44476

AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288

FEMALE|     .65366***       .07588        8.615   .0000       .46343
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Base Model for Hypothesis Tests
----------------------------------------------------------------------

Binary Logit Model for Binary Choice

Dependent variable               DOCTOR

Log likelihood function     -2085.92452

Restricted log likelihood   -2169.26982

Chi squared [   5 d.f.]       166.69058

Significance level               .00000

McFadden Pseudo R-squared      .0384209

Estimation based on N =   3377, K =   6

Information Criteria: Normalization=1/N

Normalized   Unnormalized

AIC              1.23892     4183.84905

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Characteristics in numerator of Prob[Y = 1]

Constant|    1.86428***       .67793        2.750   .0060

AGE|    -.10209***       .03056       -3.341   .0008      42.6266

AGESQ|     .00154***       .00034        4.556   .0000      1951.22

INCOME|     .51206          .74600         .686   .4925       .44476

AGE_INC|    -.01843          .01691       -1.090   .2756      19.0288

FEMALE|     .65366***       .07588        8.615   .0000       .46343

--------+-------------------------------------------------------------

H0: Age is not a significant

determinant of 

Prob(Doctor = 1)

H0: β2 = β3 = β5 = 0 
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Likelihood Ratio Tests

 Null hypothesis restricts the parameter vector

 Alternative relaxes the restriction

 Test statistic: Chi-squared =

2 (LogL|Unrestricted model –

LogL|Restrictions) > 0

Degrees of freedom = number of restrictions
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LR Test of H0

RESTRICTED MODEL

Binary Logit Model for Binary Choice

Dependent variable               DOCTOR

Log likelihood function     -2124.06568

Restricted log likelihood   -2169.26982

Chi squared [   2 d.f.]        90.40827

Significance level               .00000

McFadden Pseudo R-squared      .0208384

Estimation based on N =   3377, K =   3

Information Criteria: Normalization=1/N

Normalized   Unnormalized

AIC              1.25974     4254.13136

UNRESTRICTED MODEL

Binary Logit Model for Binary Choice

Dependent variable               DOCTOR

Log likelihood function     -2085.92452

Restricted log likelihood   -2169.26982

Chi squared [   5 d.f.]       166.69058

Significance level               .00000

McFadden Pseudo R-squared      .0384209

Estimation based on N =   3377, K =   6

Information Criteria: Normalization=1/N

Normalized   Unnormalized

AIC              1.23892     4183.84905

Chi squared[3]  =  2[-2085.92452 - (-2124.06568)]  =  77.46456
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Wald Test

 Unrestricted parameter vector is estimated

 Discrepancy:  q= Rb – m (or r(b,m) if nonlinear) 

is computed

 Variance of discrepancy is estimated:

Var[q] = R V R’

 Wald Statistic is q’[Var(q)]-1q = q’[RVR’]-1q 
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Chi squared[3]  =  69.0541

Wald Test
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Lagrange Multiplier Test

 Restricted model is estimated

 Derivatives of unrestricted model and 

variances of derivatives are computed at 

restricted estimates

 Wald test of whether derivatives are zero tests 

the restrictions

 Usually hard to compute – difficult to program 

the derivatives and their variances.
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LM Test for a Logit Model
 Compute b0 (subject to restictions) 

(e.g., with zeros in appropriate positions.

 Compute Pi(b0) for each observation.

 Compute ei(b0) = [yi – Pi(b0)]

 Compute gi(b0) = xiei using full xi vector

 LM = [Σigi(b0)]’[Σigi(b0)gi(b0)]
-1[Σigi(b0)]
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Inference About 

Partial Effects
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Marginal Effects for Binary Choice
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The Delta Method
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Computing Effects

 Compute at the data means?

 Simple

 Inference is well defined

 Average the individual effects

 More appropriate?

 Asymptotic standard errors more complicated.

 Is testing about marginal effects meaningful?

 f(b’x) must be > 0; b is highly significant

 How could f(b’x)*b equal zero?
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APE vs. Partial Effects at the Mean

1

Delta Method for Average Partial Effect

1 ˆEstimator of Var PartialEffect
N

iiN 

        
 G Var G
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Method of Krinsky and Robb
Estimate β by Maximum Likelihood with b

Estimate asymptotic covariance matrix with V

Draw R observations b(r) from the normal

population N[b,V]

b(r)  =  b +  C*v(r),  v(r) drawn from N[0,I]

C =  Cholesky matrix, V = CC’

Compute partial effects d(r) using b(r)

Compute the sample variance of d(r),r=1,…,R

Use the sample standard deviations of the R 

observations to estimate the sampling standard 

errors for the partial effects.
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Krinsky and Robb

Delta Method
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Partial Effect for Nonlinear Terms
2

1 2 3 4

2

1 2 3 4 1 2

Prob [ Age Age Income Female]

Prob
[ Age Age Income Female] ( 2 Age)

Age

      


          



(1) Must be computed for a specific value of Age

(2) Compute standard errors using delta method or Krins

1 2

ky and Robb.

(3) Compute confidence intervals for different values of Age.

(4) Test of hypothesis that this equals zero is identical to a test 

      that (β + 2β Age) = 0.  Is this an interesting hypothesis? 

2(1.30811 .06487 .0091 .17362 .39666) )Prob

[( .06487 2(.0091) ]                                                                          

Age Age Income Female

AGE Age
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Average Partial Effect: Averaged over Sample Incomes and 

Genders for Specific Values of Age
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Endogeneity
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Endogenous RHS Variable

 U*  = β’x + θh + ε
y     = 1[U* > 0]

E[ε|h] ≠ 0 (h is endogenous)

 Case 1: h is continuous

 Case 2: h is binary = a treatment effect

 Approaches

 Parametric: Maximum Likelihood

 Semiparametric (not developed here): 

 GMM

 Various approaches for case 2
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Endogenous Continuous Variable

U* = β’x + θh + ε
y   = 1[U* > 0]     
h   = α’z + u

E[ε|h] ≠ 0  Cov[u, ε] ≠ 0

Additional Assumptions:

(u,ε)  ~  N[(0,0),(σu
2, ρσu, 1)]

z =  a valid set of exogenous

variables, uncorrelated with (u,ε)

Correlation = ρ.

This is the source of the endogeneity  

This is not IV estimation. Z may be uncorrelated with X without problems.
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Endogenous Income

0 = Not Healthy 1 = Healthy

Healthy = 0 or 1

Age, Married, Kids, Gender, Income

Determinants of Income (observed and 

unobserved) also determine health 

satisfaction.

Income responds to

Age, Age2, Educ, Married, Kids, Gender
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Estimation by ML (Control Function)

Probit fit of y to  and  will not consistently estimate ( , )

because of the correlation between h and  induced by the

correlation of u and .  Using the bivariate normality, 

(
Prob( 1| , )

h

h
y h







    
  

x

x
x





2

2

/ )

1

Insert           =  (   -  )/   and include f(h| ) to form logL

  -  

log (2 1)
1

logL=

  -  1
log

u

i i u

i i
i i

u

i

i i

u u

u

u h

h
h

y

h

 
 
   

 

    
       

     
  

   
    

  
  

    

α z z

α z
x

α z



N

i=1
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Two Approaches to ML

u

(1) Maximize the full log likelihood

      with respect to ( , , , , )

     (The built in Stata routine IVPROBIT does this. It is not

       an instrumental variable estimat

 

or; it i

  

Full information ML.

 

s a FIML estimator.)

     Note also, this does not imply replacing h with a prediction 

ˆ     from the regression then using probit with h instead of h.

(2) Two step limited information ML.  (Control Fun

 

u

2

      (a) Use OLS to estimate  and  with  and s.

ˆ ˆ      (b) Compute  =  /   =  ( ) /

ˆˆ ˆ ˆ      (c)  log log
1

The second step is to fit a probit m

i i i i

i i i
i i i

v u s h s

h v
h v





     
       

   

a

a z

o

x

ct

x

i n)






ˆodel for y to ( , , ) then

solve back for ( , , ) from ( , , ) and from the previously

estimated  and s.  Use the delta method to compute standard errors. 

h v

   

x

a
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FIML Estimates
----------------------------------------------------------------------

Probit with Endogenous RHS Variable

Dependent variable              HEALTHY

Log likelihood function     -6464.60772

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Coefficients in Probit Equation for HEALTHY

Constant|    1.21760***       .06359       19.149   .0000

AGE|    -.02426***       .00081      -29.864   .0000      43.5257

MARRIED|    -.02599          .02329       -1.116   .2644       .75862

HHKIDS|     .06932***       .01890        3.668   .0002       .40273

FEMALE|    -.14180***       .01583       -8.959   .0000       .47877

INCOME|     .53778***       .14473        3.716   .0002       .35208

|Coefficients in Linear Regression for INCOME

Constant|    -.36099***       .01704      -21.180   .0000

AGE|     .02159***       .00083       26.062   .0000      43.5257

AGESQ|    -.00025***     .944134D-05   -26.569   .0000      2022.86

EDUC|     .02064***       .00039       52.729   .0000      11.3206

MARRIED|     .07783***       .00259       30.080   .0000       .75862

HHKIDS|    -.03564***       .00232      -15.332   .0000       .40273

FEMALE|     .00413**        .00203        2.033   .0420       .47877

|Standard Deviation of Regression Disturbances

Sigma(w)|     .16445***       .00026      644.874   .0000

|Correlation Between Probit and Regression Disturbances

Rho(e,w)|    -.02630          .02499       -1.052   .2926

--------+-------------------------------------------------------------
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Partial Effects: Scaled Coefficients

    E[ | ] ( )

     where  ~ N[0,1]

    E[y|x, , ] = [ ( )]

  =  

E[y| , , ]
    [ ( )]( )

   

     

     


        



Conditional Mean

x x

z z

z x z

Partial Effects. Assume z x (just for convenience)

x z
x z

x

u

u

u

y h h

h u v v

v v

v
v

, 

 

 

   

R

1

E[y| , ] E[y| , , ]
    E ( ) [ ( )] ( )

E[y| , ] 1
    . ( ) [ ( )]







  
             


        







x z x z
x z

x x

The integral does not have a closed form, but it can easily be simulated :

x z
x z

x

For v

v u

u rr

v
v v dv

Est v
R

   

   

k k ,  .  ,  . ariables only in x omit For variables only in z omit
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Partial Effects

The scale factor is computed using the model coefficients, means of the 

variables and 35,000 draws from the standard normal population.

θ = 0.53778
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Endogenous Binary Variable

U*   = β’x + θh + ε
y     = 1[U* > 0]
h*   = α’z + u
h     = 1[h* > 0]

E[ε|h*] ≠ 0  Cov[u, ε] ≠ 0

Additional Assumptions:

(u,ε)  ~  N[(0,0),(σu
2, ρσu, 1)]

z =  a valid set of exogenous
variables, uncorrelated with (u,ε)

Correlation = ρ.

This is the source of the endogeneity  


This is not IV estimation. Z may be uncorrelated with X without problems.



[Part 2]   83/86

Discrete Choice Modeling
Binary Choice Models

Endogenous Binary Variable
P(Y = y,H = h)  =  P(Y = y|H =h) x P(H=h)

This is a simple bivariate probit model.

Not a simultaneous equations model - the estimator

is FIML, not any kind of least squares.

Doctor = F(age,age2,income,female,Public) Public = F(age,educ,income,married,kids,female)
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FIML Estimates
----------------------------------------------------------------------

FIML Estimates of Bivariate Probit Model

Dependent variable               DOCPUB

Log likelihood function    -25671.43905

Estimation based on N =  27326, K =  14

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

|Index    equation for DOCTOR

Constant|     .59049***       .14473        4.080   .0000

AGE|    -.05740***       .00601       -9.559   .0000      43.5257

AGESQ|     .00082***     .681660D-04    12.100   .0000      2022.86

INCOME|     .08883*         .05094        1.744   .0812       .35208

FEMALE|     .34583***       .01629       21.225   .0000       .47877

PUBLIC|     .43533***       .07357        5.917   .0000       .88571

|Index    equation for PUBLIC

Constant|    3.55054***       .07446       47.681   .0000

AGE|     .00067          .00115         .581   .5612      43.5257

EDUC|    -.16839***       .00416      -40.499   .0000      11.3206

INCOME|    -.98656***       .05171      -19.077   .0000       .35208

MARRIED|    -.00985          .02922        -.337   .7361       .75862

HHKIDS|    -.08095***       .02510       -3.225   .0013       .40273

FEMALE|     .12139***       .02231        5.442   .0000       .47877

|Disturbance correlation

RHO(1,2)|    -.17280***       .04074       -4.241   .0000

--------+-------------------------------------------------------------
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Partial Effects

    E[ | , ] ( )

    E[ | , ] [ | , ]

                   Prob( 0 | )E[ | , 0] Prob( 1| )E[ | , 1]

                   ( ) ( ) ( ) ( )
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h y h h y h
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Identification Issues

 Exclusions are not needed for estimation

 Identification is, in principle, by “functional form”

 Researchers usually have a variable in the 

treatment equation that is not in the main probit 

equation “to improve identification”

 A fully simultaneous model

 y1 = f(x1,y2),  y2 = f(x2,y1)

 Not identified even with exclusion restrictions

 (Model is “incoherent”)


