

Discrete Choice Modeling

- 0 Introduction
- 1 Summary
- 2 Binary Choice
- 3 Panel Data
- 4 Bivariate Probit
- 5 Ordered Choice
- 6 Count Data
- 7 Multinomial Choice
- 8 Nested Logit
- 9 Heterogeneity
- 10 Latent Class
- 11 Mixed Logit
- **12 Stated Preference**
- 13 Hybrid Choice

William Greene Stern School of Business New York University


The wave 1 panel consists of some 5,500 households and 10,300 individuals drawn from 250 areas of Great Britain. Additional samples of 1,500 households in each of Scotland and Wales were added to the main sample in 1999, and in 2001 a sample of 2,000 households was added in Northern Ireland, making the panel suitable for UK-wide research.

• BHPS wave 18 data and documentation are available from the UK Data Archive.

[Part 3] 3/52

THE UNIVERSITY OF MELBOURNE	FACULTY OF BUSINESS & ECONOMICS	Melbourne Institute The Household, Income and Labour I in Australia (HILDA) Survey	Dynamics
HILDA Su	rvev		HILDA Home
			News
	ncome and Labour Dyr has the following key f	namics in Australia (HILDA) Survey is a household-based panel study which eatures:	
0		ic and subjective well-being, labour market dynamics and family dynamics.	Ordering the Data
 Special question 	onnaire modules are ir	ncluded each wave.	Documentation and
	nel consisted of 7,682 3 households and 5,4	households and 19,914 individuals. In wave 11 this was topped up with an 77 individuals.	Support
 Interviews are 	conducted annually w	ith all adult members of each household.	HILDA Publications
The panel mer	nbers are followed over	er time.	
The funding ha	as been guaranteed fo	r sixteen waves, though the survey is designed to continue for longer than this.	Research Conference
Academic and	other researchers car	apply to use the General Release datasets for their research.	

AAA	Deutsch Sitemap	Newsletter	Contact Imp	print Data Prot	ection	DIW Berlin	Suche
S•EP			А	bout SOEP		Research Center SC	
	About S	OEP					
	The SOEP Ser	vice Group					
	SOEP Quicklin	nks:					
	7 SOEPinfo	7 5	OEPlit		→ so	EPnewsle	tter
	→ SOEPmonite	or 🔸 S	OEPdata Do	ocuments	→ SO	EPdata FA	NQ
	About SOEP >						
Team	Short Description	otion					
Contact	Services of the services of		Data Center S	OEP			
SOEP-Overview	Organization	& Financing					
Mission							
SOEP Survey Committee	Short Descrip	otion					
	The German Soci longitudinal study Research, DIW Be 20,000 persons se	of private ho erlin. Every y	useholds, loca ear, there wer	ated at the Gerr e nearly 11,000	nan Inst) housel	itute for Eco holds, and m	nomic Iore than
	The data provide i the Old and New (Panel was started	German State					
	Some of the many employment, earn				ccupatio	nal biograph	nies,

[Part 3] 5/52

A national study of socioeconomics and health over lifetimes and across generations

STUDIES | DOCUMENTATION | DATA | PUBS, MEETINGS & MEDIA | PEOPLE | NEWS

Home

RECENT PUBLICATIONS

 Neighborhood Effects in Temporal Perspective: The Impact of Long-Term Exposure to Concentr...

- Multigenerational Households and the School Readiness of Children Born to Unmarried Mother...
- Cumulative Effects of Job Characteristics on Health
- Essays on the Empirical Implications of Performance Pay Contracts

The Panel Study of Income Dynamics - PSID - is the longest running longitudinal household survey in the world.

The study began in 1968 with a nationally representative sample of over 18,000 individuals living in 5,000 families in the United States. Information on these individuals and their descendants has been collected continuously, including data covering employment, income, wealth, expenditures, health, marriage, childbearing, child development, philanthropy, education, and numerous other topics. The PSID is directed by faculty at the University of Michigan, and the data are available on this website without cost to researchers and analysts.

The data are used by researchers, policy analysts, and teachers around the globe. Over 3,000 peer-reviewed publications have been based on the PSID. Recognizing the importance of the data, numerous countries have created their own PSID-like studies that now facilitate crossnational comparative research. The National Science Foundation recognized the PSID as one of the 60 most significant advances funded by NSF in its 60 year history.

© 2011 PSID

Access SIPP Synthetic Data

Using & Linking Files

SIPP Publications

Access SIPP Data

SIPP Small Grants

Data Products Schedules

URL: http://www.census.gov/sipp/

Tutorial Technical

Documentation

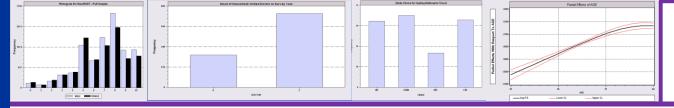
SIPP Help

re-engineered

SIPP

re-engineered SIPP

(Formerly, DEWS)


Source: U.S. Census Bureau, Demographics Survey Division, Survey of Income and Program Participation branch Created: February 14, 2002 Last revised: January 2, 2009

Measuring America—People, Places, and Our Economy

[Part 3] 7/52

		ortant legal notice English (en)
	Home Statistics Publications About Eurostat User support	🚨 S. 🖾 SE E 🔒
Access to microdata	European Community Household Panel (ECHP)	See Also
Introduction European Community Household Panel	 ECHP microdata for scientific purposes: how to obtain them? Description of dataset 	Additional information on ECHP
Publications European Union Labour Force Survey	The European Community Household Panel (ECHP) is a panel survey in which a sample of households and persons have been interviewed year after year.	Conditions
Community Innovation Statistics Publications European Union Statistics on	These interviews cover a wide range of topics concerning living conditions. They include detailed income information, financial situation in a wider sense, working life, housing situation, social relations, health and biographical information of the interviewed.	
 Income and Living Conditions Publications Structure of Earnings Survey 	The total duration of the ECHP was 8 years, running from 1994-2001 (8 waves). ECHP based data in the database 	
Publications Adult Education Survey Publications	99% of the "income and living conditions" domain under theme "Population and social conditions" is derived from ECHP. This includes many indicators of relative monetary poverty and of income inequality, analysed in different ways (eg. different cut-off thresholds, by age, gender, activity status, tenure status).	
	It also includes a selection of indicators of social exclusion and non-monetary deprivation derived from ECHP, notably on housing. Of these, 4 have been chosen as structural indicators, namely the at-risk-of-poverty rate before cash social transfers, the persistent at-risk-of-poverty rate and the s80/s20 income	
	perore cash social transfers, the persistent at-risk-of-poverty rate and the s80/s20 income quintile share ratio. The at-risk-of-poverty rate after social transfers is a headline indicator. A selection of indicators in the "health status" and "health care" collections of the "public health" domain also under the above-mentioned same theme are derived from ECHP as well.	

[Part 3] 8/52

Home 👻 Subject Are	
BROWSE NLS	The National Longitudinal Surveys (NLS) are a set of surveys designed to gather information at multiple points in time on the labo market activities and other significant life events of several groups of men and women. For more than 4 decades, NLS data have served
NLS GENERAL OVERVIEWS	as an important tool for economists, sociologists, and other researchers.
NLS NEWS RELEASES	On This Barra
	On This Page
NLS PUBLICATIONS	NLS General Overviews NLS News Releases NLS FAQs
NLS FAQS	» NLS News Releases » NLS FAQs » NLS Tables » NLS Related Links
SEARCH NLS	» <u>NLS Data</u> » <u>Contact NLS</u>
	NLS General Overviews
Go	
Go NLS TOPICS	
Go NLS TOPICS NLSY97	NLS General Overviews • National Longitudinal Survey of Youth 1997 (NLSY97) Survey of young men and women born in the years 1980-84; respondents were ages 12-17 when first interviewed in 1997.
NLS TOPICS NLSY97 NLSY79 NLSY79 CHILD & YOUNG	NLS General Overviews • National Longitudinal Survey of Youth 1997 (NLSY97) Survey of young men and women born in the years 1980-84; respondents were ages 12-17 when first interviewed in 1997. • National Longitudinal Survey of Youth 1979 (NLSY79) Survey of men and women born in the years 1957-64; respondents
Go NLS TOPICS NLSY97 NLSY79 NLSY79 CHILD & YOUNG ADULT	 NLS General Overviews National Longitudinal Survey of Youth 1997 (NLSY97) Survey of young men and women born in the years 1980-84; respondents were ages 12-17 when first interviewed in 1997. National Longitudinal Survey of Youth 1979 (NLSY79) Survey of men and women born in the years 1957-64; respondents were ages 14-22 when first interviewed in 1979.
Go NLS TOPICS NLSY97 NLSY79 NLSY79 CHILD & YOUNG ADULT NLS ORIGINAL COHORTS	 NLS General Overviews National Longitudinal Survey of Youth 1997 (NLSY97) Survey of young men and women born in the years 1980-84; respondents were ages 12-17 when first interviewed in 1997. National Longitudinal Survey of Youth 1979 (NLSY79) Survey of men and women born in the years 1957-64; respondents were ages 14-22 when first interviewed in 1979. NLSY79 Children and Young Adults Survey of the biological children of women in the NLSY79.
Go NLS TOPICS NLSY97 NLSY79 NLSY79 CHILD & YOUNG ADULT NLS ORIGINAL COHORTS ØBTAIN DATA	 NLS General Overviews National Longitudinal Survey of Youth 1997 (NLSY97) Survey of young men and women born in the years 1980-84; respondents were ages 12-17 when first interviewed in 1997. National Longitudinal Survey of Youth 1979 (NLSY79) Survey of men and women born in the years 1957-64; respondents were ages 14-22 when first interviewed in 1979. NLSY79 Children and Young Adults Survey of the biological children of women in the NLSY79.
Go NLS TOPICS NLSY97 NLSY79 NLSY79 CHILD & YOUNG ADULT NLS ORIGINAL COHORTS ØBTAIN DATA	 NLS General Overviews National Longitudinal Survey of Youth 1997 (NLSY97) Survey of young men and women born in the years 1980-84; respondents were ages 12-17 when first interviewed in 1997. National Longitudinal Survey of Youth 1979 (NLSY79) Survey of men and women born in the years 1957-64; respondents were ages 14-22 when first interviewed in 1979. NLSY79 Children and Young Adults Survey of the biological children of women in the NLSY79. National Longitudinal Surveys of Young Women and Mature Women (NLSW) The Young Women's survey includes women who were ages 14-24 when first interviewed in 1968. The Mature Women's survey includes women who were ages 30-44 when

[Part 3] 9/52

ARMS Farm Financial and Crop Production Practices

Overview	
Tailored Reports	
What Is ARMS?	
Update & Revision History	
Documentation	
Contact Us	
Questionnaires & Manuals	

Overview

The annual Agricultural Resource Management Survey (ARMS) is USDA's primary source of information on the financial condition, production practices, and resource use of America's farm businesses and the economic well-being of America's farm households. ARMS data are essential to USDA, congressional, administration, and industry decision makers when weighing alternative policies and programs that touch the farm sector or affect farm families.

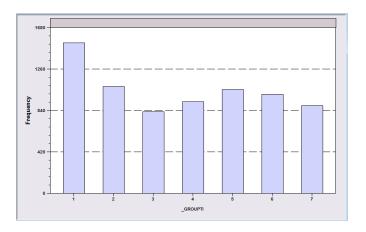
Sponsored jointly by ERS and the National Agricultural Statistics Service (NASS), ARMS is the only national survey that provides observations of field-level farm practices, the economics of the farm businesses operating the field (or dairy herd, green house, nursery, poultry house, etc.), and the characteristics of farm operators and their households (age, education, occupation, farm and off-farm work, types of employment, family living expenses, etc.)--all collected in a representative sample. Information about crop production, farm production, business, and households includes data for selected surveyed States where available. See more background on ARMS....

[Part 3] 10/52

[Part 3] 11/52

Application: Health Care Panel Data

German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods

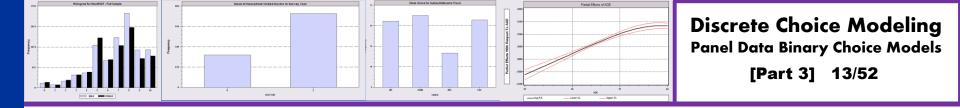

Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel with 7,293 individuals. They can be used for regression, count models, binary choice, ordered choice, and bivariate binary choice. There are altogether 27,326 observations. The number of observations ranges from 1 to 7. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987).

Variables in the file are

DOCTOR = 1(Number of doctor visits > 0) **HOSPITAL** = 1(Number of hospital visits > 0) HSAT = health satisfaction, coded 0 (low) - 10 (high) DOCVIS = number of doctor visits in last three months HOSPVIS = number of hospital visits in last calendar year PUBLIC = insured in public health insurance = 1; otherwise = 0= insured by add-on insurance = 1; otherswise = 0 ADDON HHNINC = household nominal monthly net income in German marks / 10000. (4 observations with income=0 were dropped) HHKIDS = children under age 16 in the household = 1; otherwise = 0 EDUC = years of schooling AGE = age in years **MARRIED** = marital status

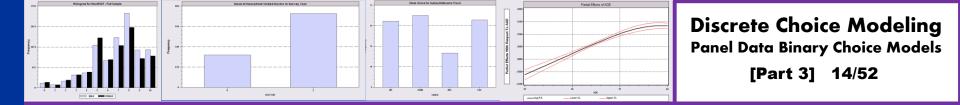
Unbalanced Panels

Group Sizes


Most theoretical results are for balanced panels.

Most real world panels are unbalanced.

Often the gaps are caused by attrition.


The major question is whether the gaps are 'missing completely at random.' If not, the observation mechanism is endogenous, and at least some methods will produce questionable results.

Researchers rarely have any reason to treat the data as nonrandomly sampled. (This is good news.)

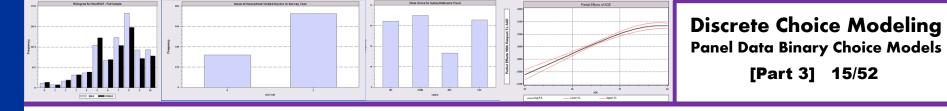
Unbalanced Panels and Attrition 'Bias'

- Test for 'attrition bias.' (Verbeek and Nijman, Testing for Selectivity Bias in Panel Data Models, International Economic Review, 1992, 33, 681-703.
 - Variable addition test using covariates of presence in the panel
 - Nonconstructive what to do next?
- Do something about attrition bias. (Wooldridge, Inverse Probability Weighted M-Estimators for Sample Stratification and Attrition, Portuguese Economic Journal, 2002, 1: 117-139)
 - Stringent assumptions about the process
 - Model based on probability of being present in each wave of the panel

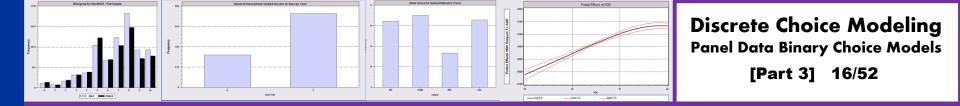
Panel Data Binary Choice Models

Random Utility Model for Binary Choice

 $U_{it} = \alpha + \beta' \mathbf{x}_{it} + \varepsilon_{it} + Person i specific effect$

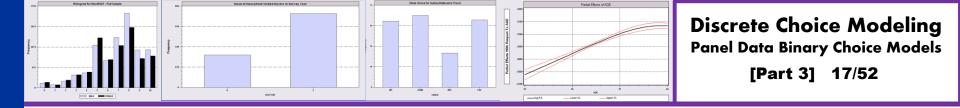

Fixed effects using "dummy" variables

 $U_{it} = \alpha_i + \beta' \mathbf{x}_{it} + \varepsilon_{it}$

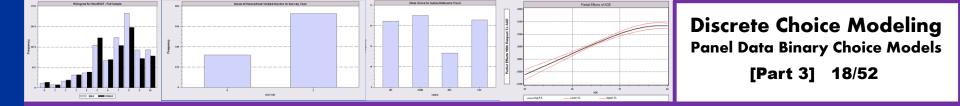

Random effects using omitted heterogeneity

 $U_{it} = \alpha + \beta' \mathbf{x}_{it} + \varepsilon_{it} + u_i$

Same outcome mechanism: $Y_{it} = 1[U_{it} > 0]$



Pooled Model

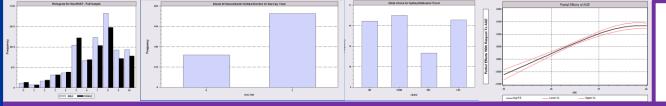

Ignoring Unobserved Heterogeneity

Assuming strict exogeneity; $Cov(\mathbf{x}_{it}, u_i + \varepsilon_{it}) = 0$ $y_{it} *=\mathbf{x}'_{it}\mathbf{\beta} + u_i + \varepsilon_{it}$ $Prob[y_{it} = 1 | x_{it}] = Prob[u_i + \varepsilon_{it} > -\mathbf{x}'_{it}\mathbf{\beta}]$ Using the same model format: $Prob[y_{it} = 1 | x_{it}] = F(\mathbf{x}'_{it}\mathbf{\beta} / \sqrt{1 + \sigma_u^2}) = F(\mathbf{x}'_{it}\mathbf{\delta})$ This is the 'population averaged model.'

Ignoring Heterogeneity in the RE Model

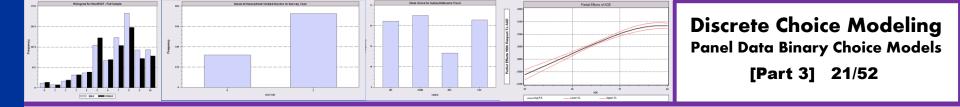
- Ignoring heterogeneity, we estimate $\boldsymbol{\delta}$ not $\boldsymbol{\beta}$. Partial effects are $\boldsymbol{\delta} f(\mathbf{x}'_{it}\boldsymbol{\delta})$ not $\boldsymbol{\beta} f(\mathbf{x}'_{it}\boldsymbol{\beta})$
- β is underestimated, but f(x_{it}β) is overestimated.
 Which way does it go? Maybe ignoring u is ok?
 Not if we want to compute probabilities or do
 statistical inference about β. Estimated standard
 errors will be too small.

Ignoring Heterogeneity (Broadly)


- Presence will generally make parameter estimates look smaller than they would otherwise.
- Ignoring heterogeneity will definitely distort standard errors.
- Partial effects based on the parametric model may not be affected very much.
- Is the pooled estimator 'robust?' Less so than in the linear model case.

[Part 3] 19/52

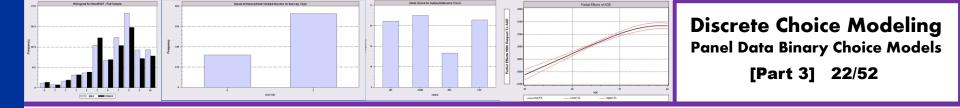
Pooled vs. RE Panel Estimator


Binomial Pro Dependent va	riable	DOCTOR			
•		Standard Error	b/St.Er.	P[Z >z]	Mean of X
Constant AGE	.02159 .01532***	.05307 .00071	.407 21.695		43.5257
EDUC	02793***	.00348	-8.023	.0000	11.3206
HHNINC 	10204**	.04544	-2.246	.0247	. 35208
-	anel has 7	293 individuals			
Constant	11819	.09280	-1.273	.2028	
AGE	.02232***	.00123	18.145	.0000	43.5257
EDUC	03307***	.00627	-5.276	.0000	11.3206
HHNINC	.00660	.06587	.100	. 9202	.35208
Rho	.44990***	.01020	44.101	.0000	

[Part 3] 20/52

Partial Effects

respect to They are con Observation	the vector of mputed at the s used for me	E[y] = F[*] with characteristics means of the Xs eans are All Obs.			
		Standard Error		P[Z >z]	Elasticity
	oled				
AGE	.00578***	.00027	21.720	.0000	.39801
EDUC	01053***	.00131	-8.024	.0000	18870
HHNINC	03847**	.01713	-2.246	.0247	02144
+					
Ba:	sed on the pa	anel data estimat	or		
AGE	.00620***	.00034	18.375	.0000	.42181
EDUC	00918***	.00174	-5.282	.0000	16256
HHNINC	.00183	.01829	.100	.9202	.00101
+					


Effect of Clustering

- Y_{it} must be correlated with Y_{is} across periods
- Pooled estimator ignores correlation

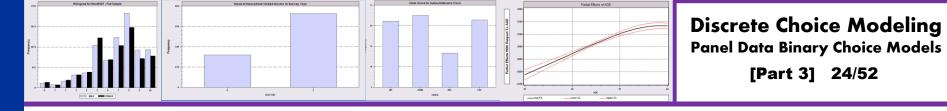
D Broadly,
$$y_{it} = E[y_{it}|\mathbf{x}_{it}] + w_{it}$$
,

•
$$E[y_{it}|\mathbf{x}_{it}] = Prob(y_{it} = 1|\mathbf{x}_{it})$$

- w_{it} is correlated across periods
- Assuming the marginal probability is the same, the pooled estimator is consistent. (We just saw that it might not be.)
- Ignoring the correlation across periods generally leads to underestimating standard errors.

'Cluster' Corrected Covariance Matrix

- C = the number if clusters
- n_c = number of observations in cluster c
- \mathbf{H}^{-1} = negative inverse of second derivatives matrix
- \mathbf{g}_{ic} = derivative of log density for observation


$$\mathbf{V} = \mathbf{H}^{-1} \left(\frac{C}{C-1} \right) \left(\sum_{c=1}^{C} \left(\sum_{i=1}^{n_c} \mathbf{g}_{ic} \right) \left(\sum_{i=1}^{n_c} \mathbf{g}_{ic}' \right) \right) \mathbf{H}^{-1}$$


[Part 3] 23/52

Cluster Correction: Doctor

Binomial 1	Probit Model					
Dependent	variable		DOCTOR	ł		
Log likel:	ihood function	-1	7457.21899)		
-						
Variable	Coefficient				P[Z >z]	Mean of X
+						
I	Conventional S	tanda	ard Errors			
Constant	25597***		.05481	-4.670	.0000	
AGE	.01469***		.00071	20.686	.0000	43.5257
EDUC	01523***		.00355	-4.289	.0000	11.3206
HHNINC	10914**		.04569	-2.389	.0169	.35208
FEMALE	.35209***		.01598	22.027	.0000	.47877
+		l				
I	Corrected Stan	dard.	Errors			
Constant	25597***		.07744	-3.305	.0009	
AGE	.01469***		.00098	15.065	.0000	43.5257
EDUC	01523***		.00504	-3.023	.0025	11.3206
HHNINC	10914*		.05645	-1.933	.0532	.35208
FEMALE	.35209***		.02290	15.372	.0000	.47877
+		ا ا				

Random Effects

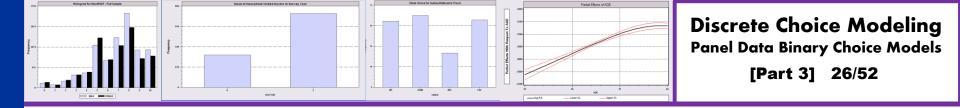
Quadrature – Butler and Moffitt (1982)

This method is used in most commerical software since 1982

 $logL = \sum\nolimits_{i=1}^{N} log {\int_{-\infty}^{\infty}} \left[\prod\nolimits_{t=1}^{T_i} F(\boldsymbol{y}_{it}, \boldsymbol{\alpha} + \boldsymbol{\beta}' \boldsymbol{x}_{it} + \boldsymbol{\sigma}_u \boldsymbol{v}_i) \right] \boldsymbol{\varphi} \big(\boldsymbol{v}_i \big) d\boldsymbol{v}_i$

$$= \sum_{i=1}^{N} \log \int_{-\infty}^{\infty} g(\mathbf{v}) \frac{1}{\sqrt{2\pi}} \exp \left(\frac{-\mathbf{v}^2}{2}\right) d\mathbf{v}_i$$

(make a change of variable to $w = v/\sqrt{2}$

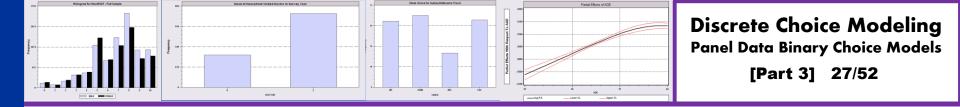

$$= \frac{1}{\sqrt{\pi}} \sum_{i=1}^{N} \log \int_{-\infty}^{\infty} g(\sqrt{2}w) \exp(-w^2) dw_i$$

$$u_{i} \sim N[0, \sigma_{u}^{2}]$$

= $\sigma_{u}v_{i}$
where $v_{i} \sim N[0, 1]$

The integral can be computed using Hermite quadrature.

$$\approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^{N} \log \sum_{h=1}^{H} w_h g(\sqrt{2}z_h)$$


The values of w_h (weights) and z_h (nodes) are found in published tables such as Abramovitz and Stegun (or on the web). H is by choice. Higher H produces greater accuracy (but takes longer).

Quadrature Log Likelihood

After all the substitutions, the function to be maximized: Not simple, but feasible.

$$\begin{split} \log L &= \sum_{i=1}^{N} \log \frac{1}{\sqrt{\pi}} \sum_{h=1}^{H} \mathbf{w}_{h} \left[\prod_{t=1}^{T_{i}} F(\mathbf{y}_{it}, \alpha + \beta' \mathbf{x}_{it} + \left(\sigma_{u} \sqrt{2}\right) \mathbf{z}_{h}) \right] \\ &= \sum_{i=1}^{N} \log \frac{1}{\sqrt{\pi}} \sum_{h=1}^{H} \mathbf{w}_{h} \left[\prod_{t=1}^{T_{i}} F(\mathbf{y}_{it}, \alpha + \beta' \mathbf{x}_{it} + \theta \mathbf{z}_{h}) \right] \end{split}$$

Simulation Based Estimator

$$\begin{split} \log L &= \sum_{i=1}^{N} \log \int_{-\infty}^{\infty} \left[\prod_{t=1}^{T_{i}} F(\boldsymbol{y}_{it}, \boldsymbol{\alpha} + \boldsymbol{\beta}' \boldsymbol{x}_{it} + \boldsymbol{\sigma}_{u} \boldsymbol{v}_{i}) \right] \boldsymbol{\phi}(\boldsymbol{v}_{i}) d\boldsymbol{v}_{i} \\ &= \sum_{i=1}^{N} \log \int_{-\infty}^{\infty} \boldsymbol{g}(\boldsymbol{v}_{i}) \ \frac{1}{\sqrt{2\pi}} \exp \left(\frac{-\boldsymbol{v}_{i}^{2}}{2} \right) d\boldsymbol{v}_{i} \end{split}$$

This equals $\sum_{i=1}^{N} \log E[g(v_i)]$

The expected value of the function of v_i can be approximated by drawing R random draws v_{ir} from the population N[0,1] and averaging the R functions of v_{ir} . We maximize

$$\log L_{s} = \sum_{i=1}^{N} \log \frac{1}{R} \sum_{r=1}^{R} \left[\prod_{t=1}^{T_{i}} F(\boldsymbol{y}_{it}, \boldsymbol{\alpha} + \boldsymbol{\beta}' \boldsymbol{x}_{it} + \boldsymbol{\sigma}_{u} \boldsymbol{v}_{ir}) \right]$$

[Part 3] 28/52

Random Effects Model: Quadrature

Dependent Log likeli Restricted Chi square Estimation Unbalanced	log likelihoo d [1 d.f.] based on N = panel has 7		← Pooled		
Variable	Coefficient	Standard Error	b/St.Er.	P[Z >z]	
		.09280			
AGE	.02232***	.00123	18.145	.0000	43.5257
EDUC	03307***	.00627	-5.276	.0000	11.3206
HHNINC	.00660	.06587	.100	. 9202	.35208
•	.44990***				
•	ooled Estimate	 s			
Constant	.02159	.05307	.407	.6842	
AGE	.01532***	.00071	21.695	.0000	43.5257
EDUC	02793***	.00348	-8.023	.0000	11.3206
HHNINC	10204**	.04544	-2.246	.0247	.35208
+-					

[Part 3] 29/52

Random Parameter Model

Random Coef Dependent v	ficients Probi ariable		(Quadratur	re Based)	
Restricted Chi squared Simulation	ood function log likelihood [1 d.f.] based on 50 Ha	-17701.08500 2808.80780 alton draws			
Variable C	oefficient S	Standard Error	b/St.Er.	P[Z >z]	
No	nrandom paramet	cers			
AGE	.02226***	.00081	27.365	.0000	(.02232)
EDUC	03285***	.00391	-8.407	.0000	(03307)
HHNINC	.00673	.05105	.132	.8952	(.00660)
Me	ans for random	parameters			
Constant	11873**	.05950	-1.995	.0460	(11819)
Sc	ale parameters	for dists. of	random par	rameters	
Constant	.90453***	.01128	80.180	.0000	

Using quadrature, a = -.11819. Implied ρ from these estimates is .90454²/(1+.90453²) = .449998 compared to .44990 using quadrature.

A Dynamic Model

 $\boldsymbol{y}_{it} = \boldsymbol{1} [\boldsymbol{x}_{it}^{\prime}\boldsymbol{\beta} + \boldsymbol{\gamma}\boldsymbol{y}_{i,t-1} + \boldsymbol{\epsilon}_{it} + \boldsymbol{u}_i > 0]$

Two similar 'effects'

Unobserved heterogeneity

State dependence = state 'persistence'

 $Pr(y_{it} = 1 | y_{i,t-1}, ..., y_{i0}, x_{it}, u] = F[\mathbf{x}'_{it}\beta + \gamma y_{i,t-1} + u_i]$

How to estimate β , γ , marginal effects, F(.), etc?

- (1) Deal with the latent common effect
- (2) Handle the lagged effects:

This encounters the initial conditions problem.

Dynamic Probit Model: A Standard Approach

(1) Conditioned on all effects, joint probability

$$\mathsf{P}(\mathsf{y}_{i1},\mathsf{y}_{i2},\ldots,\mathsf{y}_{iT} \mid \mathsf{y}_{i0},\mathbf{x}_{i},\mathsf{u}_{i}) = \prod_{t=1}^{T} \mathsf{F}(\mathbf{x}_{it}'\boldsymbol{\beta} + \gamma \mathsf{y}_{i,t-1} + \mathsf{u}_{i},\mathsf{y}_{it})$$

(2) Unconditional density; integrate out the common effect

$$P(y_{i1}, y_{i2}, ..., y_{iT} | y_{i0}, \mathbf{x}_{i}) = \int_{-\infty}^{\infty} P(y_{i1}, y_{i2}, ..., y_{iT} | y_{i0}, \mathbf{x}_{i}, u_{i})h(u_{i} | y_{i0}, \mathbf{x}_{i})du_{i}$$

(3) Density for heterogeneity

$$h(u_i | y_{i0}, \mathbf{x}_i) = N[\alpha + \theta y_{i0} + \mathbf{x}'_i \mathbf{\delta}, \sigma_u^2], \mathbf{x}_i = [\mathbf{x}_{i1}, \mathbf{x}_{i2}, \dots, \mathbf{x}_{iT}], \text{ so}$$
$$u_i = \alpha + \theta y_{i0} + \mathbf{x}'_i \mathbf{\delta} + \sigma_u w_i \quad \text{(contains every period of } \mathbf{x}_{it})$$

(4) Reduced form

$$P(\mathbf{y}_{i1}, \mathbf{y}_{i2}, \dots, \mathbf{y}_{iT} \mid \mathbf{y}_{i0}, \mathbf{x}_{i}) = \int_{-\infty}^{\infty} \prod_{t=1}^{T} F(\mathbf{x}_{it}' \boldsymbol{\beta} + \gamma \mathbf{y}_{i,t-1} + \alpha + \theta \mathbf{y}_{i0} + \mathbf{x}_{i}' \boldsymbol{\delta} + \sigma_{u} \mathbf{w}_{i}, \mathbf{y}_{it}) h(\mathbf{w}_{i}) d\mathbf{w}_{i}$$

This is a random effects model

Simplified Dynamic Model

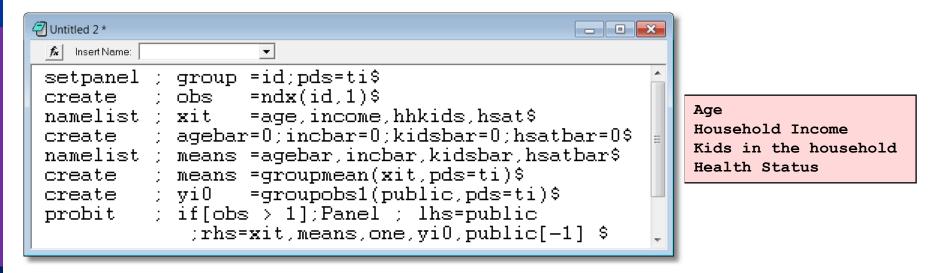
Projecting u_i on all observations expands the model enormously.

(3) Projection of heterogeneity only on group means

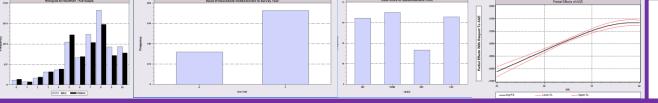
$$h(u_i | y_{i0}, \mathbf{x}_i) = N[\alpha + \theta y_{i0} + \overline{\mathbf{x}}_i' \mathbf{\delta}, \sigma_u^2] \text{ so}$$

$$\mathbf{u}_{\mathbf{i}} = \alpha + \theta \mathbf{y}_{\mathbf{i}0} + \mathbf{x}_{\mathbf{i}}^{\prime}\mathbf{0} + \mathbf{w}$$

(4) Reduced form

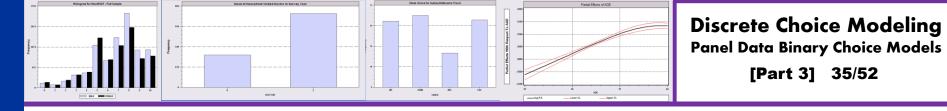

$$P(\mathbf{y}_{i1}, \mathbf{y}_{i2}, \dots, \mathbf{y}_{iT} \mid \mathbf{y}_{i0}, \mathbf{x}_{i}) = \int_{-\infty}^{\infty} \prod_{t=1}^{T} F(\alpha + \mathbf{x}'_{it}\boldsymbol{\beta} + \gamma \mathbf{y}_{i,t-1} + \theta \mathbf{y}_{i0} + \overline{\mathbf{x}}'_{i}\boldsymbol{\delta} + \sigma_{u}\mathbf{w}_{i}, \mathbf{y}_{it})h(\mathbf{w}_{i})d\mathbf{w}_{i}$$

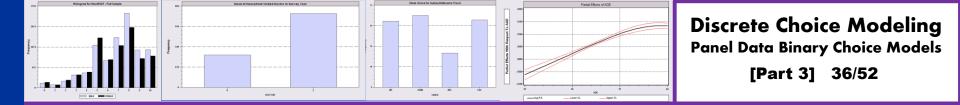
Mundlak style correction with the initial value in the equation. This is (again) a random effects model



[Part 3] 33/52

A Dynamic Model for Public Insurance


Add initial value, lagged value, group means


[Part 3] 34/52

Dynamic Common Effects Model

Restricte Chi squar Significa (Cannot c to obtain	variable ihood function d log likelihood ed [1](P= .000 nce level ompute pseudo R2 the required rea n based on N =	-2696.911) 217.765 .000 . Use RHS=o stricted log	82 67 70 00 ne L)			
Inf.Cr.AI	C = 5200.1 AI	C∕N = .2)	60			
	d panel has 57 1] tests for ran	dom effects	-			
	qd 111.854 P v qd 217.766 P v	value .000 value .000				
	qd 217.766 Pr qd 474.563 Pr					
+		 Standard			 95% Cor	fidence
PUBLIC	Coefficient	Error	z	z >Z*		erval
AGE	01568	.01212		.1957	03944	
TATOOMET	67338***	.25494	-2.64	.0083	-1.17305	
INCOME	01001		11	.9124	24095	.21534
HHKIDS	01281					02504
HHKIDS HSAT	00336	.02000	17	.8666	04256	.03584
HHKIDS HSAT AGEBAR	00336 .04392 ***	.02000 .01258	17 3.49	.8666 .0005	04256 .01926	.06858
HHKIDS HSAT AGEBAR INCBAR	00336 .04392*** -1.71950***	.02000 .01258 .38878	17 3.49 -4.42	.8666 .0005 .0000	04256 .01926 -2.48149	.06858 95751
HHKIDS HSAT AGEBAR	00336 .04392 ***	.02000 .01258	17 3.49 -4.42	.8666 .0005	04256 .01926	.06858
HHKIDS HSAT AGEBAR INCBAR KIDSBAR HSATBAR	00336 .04392*** -1.71950*** .26462*	.02000 .01258 .38878 .15011	17 3.49 -4.42 1.76	.8666 .0005 .0000 .0779 .1048	04256 .01926 -2.48149 02959	.06858 95751 .55883
HHKIDS HSAT AGEBAR INCBAR KIDSBAR HSATBAR Constant YI0	00336 .04392*** -1.71950*** .26462* 05228 -1.57400*** 4.02429***	.02000 .01258 .38878 .15011 .03223 .31448 .28588	17 3.49 -4.42 1.76 -1.62 -5.01 14.08	.8666 .0005 .0000 .0779 .1048 .0000	04256 .01926 -2.48149 02959 11545 -2.19038 3.46398	.06858 95751 .55883 .01089 95762 4.58460
HHKIDS HSAT AGEBAR INCBAR KIDSBAR HSATBAR Constant	00336 .04392*** -1.71950*** .26462* 05228 -1.57400***	.02000 .01258 .38878 .15011 .03223 .31448	17 3.49 -4.42 1.76 -1.62 -5.01	.8666 .0005 .0000 .0779 .1048 .0000	04256 .01926 -2.48149 02959 11545 -2.19038	.06858 95751 .55883 .01089 95762

Fixed Effects

Fixed Effects Models

Estimate with dummy variable coefficients

Uit = α_i + $\beta' \mathbf{X}$ it + ε_{it}

Can be done by "brute force" for 10,000s of individuals

$$\log L = \sum_{i=1}^{N} \sum_{t=1}^{T_i} \log F(y_{it}, \alpha_i + \boldsymbol{\beta}' \mathbf{x}_{it})$$

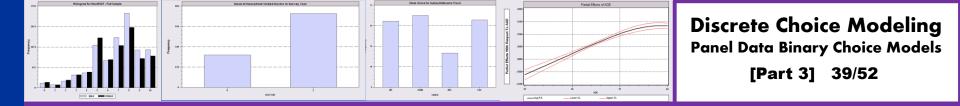
- \square F(.) = appropriate probability for the observed outcome
- **□** Compute β and α_i for i=1,...,N (may be large)
- See FixedEffects.pdf in course materials.

Unconditional Estimation

Maximize the whole log likelihood

Difficult! Many (thousands) of parameters.

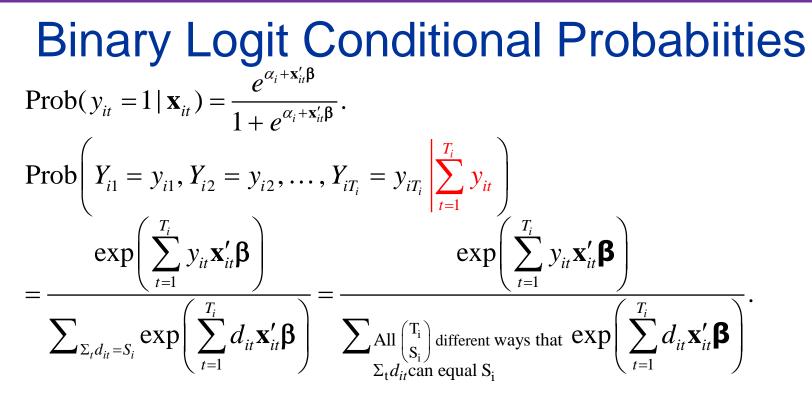
□ Feasible – NLOGIT (2001) ("Brute force")

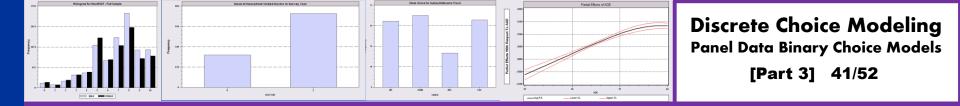

		Hard State
MALE MALE	BOCTOR	09863 ADE

[Part 3] 38/52

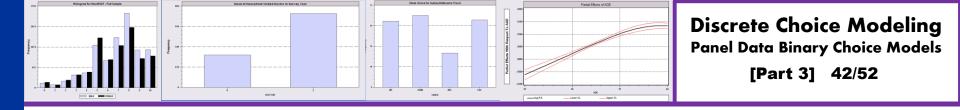
Fixed Effects Health Model


	Groups in which y_{it} is always = 0 or always = 1. Cannot compute α_i .
--	---

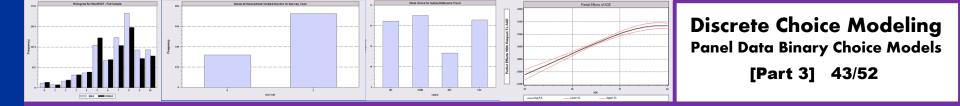

	Log Log 729	(LR = -1)3 Indiv	500.704 7365.76		Poo Log Log 	Mean			
Variable	Coef.	S.E.	t	P	Coef.	S.E.	t	P	
Constant					.4963	.0589	8.425	.0000	1.0000
AGE	0649	.0045	-14.418	.0000	0232	.0008	-28.991	.0000	43.5257
EDUC	.0027	.0506	.054	.9570	.0573	.0037	15.467	.0000	11.3206
INCOME	.3530	.1161	3.040	.0024	.3425	.0481	7.118	.0000	.35208
MARRIED	0609	.0666	915	.3600	.0129	.0206	.627	.5307	.75862
KIDS	0118	.0475	249	.8032	.0666	.0186	3.581	.0003	.40273
+	÷	Partial	Effects		l i i i i i i i i i i i i i i i i i i i	Parti	al Effect	s	
AGE	0248	.0049	-5.087	.0000	0089	.0003	-29.012	.0000	43.5257
EDUC	.0010	.0192	.054	.9567	.0219	.0014	15.478	.0000	11.3206
INCOME	.1349	.0515	2.617	.0089	.1309	.0184	7.118	.0000	.35208
MARRIED	0233	.0010	-22.562	.0000	.0049	.0079	.626	.5311	.75862
KIDS	0045	.0004	-10.792	.0000	.0254	.0071	3.589	.0003	.40273


Conditional Estimation

- Principle: f(y_{i1},y_{i2},... | some statistic) is free of the fixed effects for some models.
- Maximize the conditional log likelihood, given the statistic.
- **C**an estimate $\boldsymbol{\beta}$ without having to estimate α_i .
- Only feasible for the logit model. (Poisson and a few other continuous variable models. No other discrete choice models.)



Denominator is summed over all the different combinations of T_i values of y_{it} that sum to the same sum as the observed $\sum_{t=1}^{T_i} y_{it}$. If S_i is this sum, there are $\begin{pmatrix} T \\ S_i \end{pmatrix}$ terms. May be a huge number. An algorithm by Krailo and Pike makes it simple.


Example: Two Period Binary Logit

$$\begin{aligned} & \text{Prob}(\mathbf{y}_{it} = 1 \mid \mathbf{x}_{it}) = \frac{e^{\alpha_i + \mathbf{x}_{it}^* \boldsymbol{\beta}}}{1 + e^{\alpha_i + \mathbf{x}_{it}^* \boldsymbol{\beta}}}.\\ & \text{Prob}\bigg(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, \dots, Y_{iT_i} = y_{iT_i} \left| \sum_{t=1}^{T_i} y_{it}, \text{data} \right) = \frac{\exp\bigg(\sum_{t=1}^{T_i} y_{it} \mathbf{x}_{it}^* \boldsymbol{\beta}\bigg)}{\sum_{\Sigma_t d_t = S_i} \exp\bigg(\sum_{t=1}^{T_i} d_{it} \mathbf{x}_{it}^* \boldsymbol{\beta}\bigg)}.\\ & \frac{\text{Prob}\bigg(Y_{i1} = 0, Y_{i2} = 0 \left| \sum_{t=1}^{2} y_{it} = 0, \text{data} \right) = 1.}{\text{Prob}\bigg(Y_{i1} = 1, Y_{i2} = 0 \left| \sum_{t=1}^{2} y_{it} = 1, \text{data} \right) = \frac{\exp(\mathbf{x}_{i1}^* \boldsymbol{\beta})}{\exp(\mathbf{x}_{i1}^* \boldsymbol{\beta}) + \exp(\mathbf{x}_{i2}^* \boldsymbol{\beta})} \\ & \text{Prob}\bigg(Y_{i1} = 0, Y_{i2} = 1 \left| \sum_{t=1}^{2} y_{it} = 1, \text{data} \right) = \frac{\exp(\mathbf{x}_{i1}^* \boldsymbol{\beta})}{\exp(\mathbf{x}_{i1}^* \boldsymbol{\beta}) + \exp(\mathbf{x}_{i2}^* \boldsymbol{\beta})} \\ & \text{Prob}\bigg(Y_{i1} = 1, Y_{i2} = 1 \left| \sum_{t=1}^{2} y_{it} = 2, \text{data} \right) = 1. \end{aligned}$$

Estimating Partial Effects

"The fixed effects logit estimator of β immediately gives us the effect of each element of **x**_i on the log-odds ratio... Unfortunately, we cannot estimate the partial effects... unless we plug in a value for α_i . Because the distribution of α_i is unrestricted – in particular, $E[\alpha_i]$ is not necessarily zero - it is hard to know what to plug in for α_i . In addition, we cannot estimate average partial effects, as doing so would require finding E[$\Lambda(\mathbf{x}_{it} \boldsymbol{\beta} + \boldsymbol{\alpha}_i)$], a task that apparently requires specifying a distribution for α_i ." (Wooldridge, 2010)

Logit Constant Terms

Step 1. Estimate $\boldsymbol{\beta}$ with Chamberlain's conditional estimator Step 2. Treating $\boldsymbol{\beta}$ as if it were known, estimate α_i from the first order condition

$$\begin{split} \overline{y}_{i} &= \frac{1}{T_{i}} \sum_{t=1}^{T_{i}} \frac{e^{\alpha_{i}} e^{\boldsymbol{x}_{it}^{'} \hat{\boldsymbol{\beta}}}}{1 + e^{\alpha_{i}} e^{\boldsymbol{x}_{it}^{'} \hat{\boldsymbol{\beta}}}} = \frac{1}{T_{i}} \sum_{t=1}^{T_{i}} \frac{\delta_{i} C_{it}}{1 + \delta_{i} C_{it}} = \frac{1}{T_{i}} \sum_{t=1}^{T_{i}} \frac{C_{it}}{\mu_{i} + C_{it}} \\ \text{Estimate } \mu_{i} &= 1 / \exp(\alpha_{i}) \Longrightarrow \alpha_{i} = -\log \mu_{i} \\ c_{it} &= \exp\left(\boldsymbol{x}_{it}^{'} \hat{\boldsymbol{\beta}}\right) \text{ is treated as known data.} \\ \text{Solve one equation in one unknown for each } \alpha_{i}. \\ \text{Note there is no solution if } \overline{y}_{i} &= 0 \text{ or } 1. \\ \text{Iterating back and forth does not maximize logL.} \end{split}$$

Fixed Effects Logit Health Model: Conditional vs. Unconditional

Table 2.14 Estimated Fixed Effects Logit Models

	Log Log 729	L = -8 LR = -1 3 Indiv	<u>nal Estim</u> 506.164 7365.15 iduals iduals By		<u>Con</u> Log	or 	Maaa		
Variable	Coef.	S.E.	t	P	Coef.	S.E.	t	Ρļ	Mean of X
AGE	1095	.0076	-14.405	.0000	0881	.0068	-12.984	.00001	43.5257
EDUC	.0090	.0835	.108	.9141	.0126	.0718	.176	.8604	11.3206
INCOME	.6038	.1968	3.068	.0022	.4767	.1750	2.724	.0064	.35208
MARRIED	1091	.1114	979	.3276	0772	.0983	785	.4322	.75862
KIDS	0167	.0793	210	.8337	0059	.0706	084	.9331	.40273
+		Partial	Effects	1		Parti	al Effect	s	
AGE	0259	.0063	-4.102	.0000	0012	.00009	-13.961	.0000	43.5257
EDUC	.0021	.0193	.110	.9122	.0002	.0010	.176	.8605	11.3206
INCOME	.1429	.0582	2.455	.0141	.0066	.0023	2.920	.0035	.35208
MARRIED	0258	.0015	-17.531	.0000	0011	.0014	789	.4303	.75862
KIDS	0039	.0008	-5.225	.0000	00008	.0010	084	.93311	.40273

Advantages and Disadvantages of the FE Model

- Advantages
 - Allows correlation of effect and regressors
 - Fairly straightforward to estimate
 - Simple to interpret
- Disadvantages
 - Model may not contain time invariant variables
 - Not necessarily simple to estimate if very large samples (Stata just creates the thousands of dummy variables)
 - The incidental parameters problem: Small T bias

Incidental Parameters Problems: Conventional Wisdom

General: The unconditional MLE is biased in samples with fixed *T* except in special cases such as linear or Poisson regression (even when the FEM is the right model).

The conditional estimator (that bypasses estimation of α_i) is consistent.

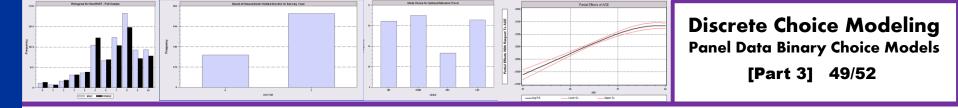
Specific: Upward bias (experience with probit and logit) in estimators of β

Discrete Choice Modeling Panel Data Binary Choice Models [Part 3] 47/52

A Monte Carlo Study of the FE Estimator: Probit vs. Logit

Estimates of Coefficients and Marginal Effects at the Implied Data Means

Means of Empirical Sampling Distributions, N = 1000 Individuals Based on 200 Replications.


	<i>T</i> =2	T=3	<i>T</i> =5	<i>T</i> =8	<i>T</i> =10	<i>T</i> =20
	βδ	βδ	βδ	βδ	βδ	βδ
Logit Coeff	2.020, 2.027	1.698, 1.668	1.379, 1.323	1.217, 1.156	1.161, 1.135	1.069, 1.062
Logit M.E.	1.676 1.660	1.523 1.477	1.319 1.254	1.191 1.128	1.140 1.111	1.034 1.052
Probit Coeff	2.083, 1.938	1.821, 1.777	1.589, 1.407	1.328, 1.243	1.247, 1.169	1.108, 1.068
Probit M.E.	1.474 1.388	1.392 1.354	1.406 1.231	1.241 1.152	1.190 1.110	1.088 1.047
Ord. Probit	2.328, 2.605	1.592, 1.806	1.305, 1.415	1.166, 1.220	1.131, 1.158	1.058, 1.068

Results are scaled so the desired quantity being estimated (β , δ , marginal effects) all equal 1.0 in the population.

Bias Correction Estimators

- Motivation: Undo the incidental parameters bias in the fixed effects probit model:
 - (1) Maximize a penalized log likelihood function, or
 - (2) Directly correct the estimator of β
- Advantages
 - For (1) estimates α_i so enables partial effects
 - Estimator is consistent under some circumstances
 - (Possibly) corrects in dynamic models
- Disadvantage
 - No time invariant variables in the model
 - Practical implementation
 - Extension to other models? (Ordered probit model (maybe) see JBES 2009)

A Mundlak Correction for the FE Model

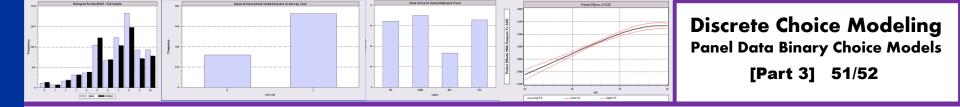
Fixed Effects Model :

$$\mathbf{y}_{it}^* = \boldsymbol{\alpha}_i + \boldsymbol{\beta}' \mathbf{x}_{it} + \boldsymbol{\varepsilon}_{it}, i = 1,...,N; t = 1,...,T_i$$

 $y_{it} = 1$ if $y_{it} > 0$, 0 otherwise.

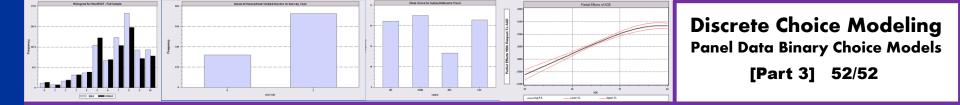
Mundlak (Wooldridge, Heckman, Chamberlain),...

 $\alpha_{i} = \gamma + \theta' \overline{\mathbf{x}}_{i} + u_{i}$ (Projection, not necessarily conditional mean) where u is normally distributed with mean zero and standard deviation σ_{u} and is uncorrelated with $\overline{\mathbf{x}}_{i}$ or $(\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{iT})$ **Reduced form random effects model**


$$\mathbf{y}_{it}^* = \gamma + \mathbf{\theta}' \overline{\mathbf{x}}_i + \mathbf{\beta}' \mathbf{x}_{it} + \varepsilon_{it} + u_i, i = 1,...,N; t = 1,...,T_i$$

$$\mathbf{y}_{it} = 1 \text{ if } \mathbf{y}_{it} > 0, 0 \text{ otherwise.}$$

Mundlak Correction


Table 2.17 Random Effects Model with Mundlak Correction

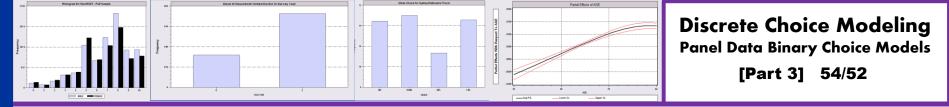
	Log Log	L = -1	ects Prob 5424.40 < 7365.76 iduals	it	Gro Log Log	 			
Variable	Coef.	S.E.	t	P	Coef.	S.E.	t	P	Mean of X
Constant	.9459	.1116	8.473	.0000	.6551	.1232	5.320	.00001	43.5257
AGE	0365	.0015	-24.279	.0000	0521	.0036	-14.582	.0000	43.5257
EDUC	.0817	.0073	11.230	.0000	.0031	.0421	.073	.9415	11.3206
INCOME	.3207	.0717	4.474	.0000	.2937	.0959	3.064	.0022	.35208
MARRIED	.0188	.0346	.544	.5863	0429	.0534	803	.4220	.75862
KIDS	.0430	.0298	1.443	.1490	0019	.0397	048	.9614	.40273
AGEBAR					.0193	.0039	4.895	.0000	
EDUCBAR					.0790	.0427	1.848	.0646	
INCMBAR					.3451	.1496	2.307	.0211	
MARRBAR					.0499	.0717	.695	.4871	
KIDSBAR					.0936	.0616	1.520	.1285	
Rho	.5404	.0100	53.842	.0000	.5389	.0100	53.822	.0000	

A Variable Addition Test for FE vs. RE

The Wald statistic of 45.27922 and the likelihood ratio statistic of 40.280 are both far larger than the critical chi squared with 5 degrees of freedom, 11.07. This suggests that for these data, the fixed effects model is the preferred framework.

Fixed Effects Models Summary

- □ Incidental parameters problem if T < 10 (roughly)
- Inconvenience of computation
- Appealing specification
- Alternative semiparametric estimators?
 - Theory not well developed for T > 2
 - Not informative for anything but slopes (e.g., predictions and marginal effects)
- Ignoring the heterogeneity definitely produces an inconsistent estimator (*even with cluster correction*!)
- A Hobson's choice
- Mundlak correction is a useful common approach.


A Study of Health Status in the Presence of Attrition

Research Article

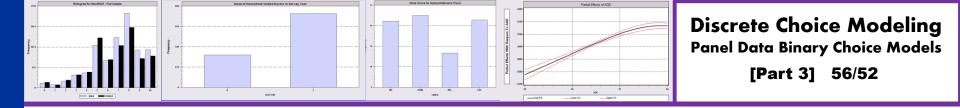
The dynamics of health in the British Household Panel Survey

Model for Self Assessed Health

British Household Panel Survey (BHPS)

- Waves 1-8, 1991-1998
- Self assessed health on 0,1,2,3,4 scale
- Sociological and demographic covariates
- Dynamics inertia in reporting of top scale
- Dynamic ordered probit model
 - Balanced panel analyze dynamics
 - Unbalanced panel examine attrition

Dynamic Ordered Probit Model


Latent Regression - Random Utility $h_{it}^* = \beta' \mathbf{x}_{it} + \gamma' \mathbf{H}_{i,t-1} + \alpha_i + \varepsilon_{it}$ $\mathbf{x}_{it} = \text{relevant covariates and control variables}$ $\mathbf{H}_{i,t-1} = 0/1 \text{ indicators of reported health status in previous period}$ $\mathbf{H}_{i,t-1}(j) = 1[\text{Individual i reported h}_{it} = j \text{ in previous period}], j=0,...,4$

Ordered Choice Observation Mechanism

$$h_{it} = j \text{ if } \mu_{j-1} < h^*_{it} \leq \mu_j, j = 0, 1, 2, 3, 4$$

Ordered Probit Model - $\varepsilon_{it} \sim N[0,1]$

Random Effects with Mundlak Correction and Initial Conditions $\alpha_i = \alpha_0 + [\alpha'_1 \mathbf{H}_{i,1} + \alpha'_2 \mathbf{\bar{x}}_i] + u_i, \ u_i \sim N[0,\sigma^2]$

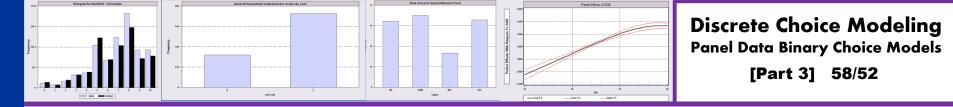
Random Effects Dynamic Ordered Probit Model

Random Effects Dynamic Ordered Probit Model $h_{it} * = \mathbf{x}'_{it}\beta + \Sigma_{j=1}^{J}\gamma_{j}h_{i,t-1}(j) + \alpha_{i} + \varepsilon_{i,t}$ $h_{i,t} = j \text{ if } \mu_{j-1} < h_{it} * < \mu_{j}$ $h_{i,t}(j) = 1 \text{ if } h_{i,t} = j$ $P_{it,j} = P[h_{it} = j] = \Phi(\mu_{j} - \mathbf{x}'_{it}\beta - \Sigma_{j=1}^{J}\gamma_{j}h_{i,t-1}(j) - \alpha_{i})$ $-\Phi(\mu_{j-1} - \mathbf{x}'_{it}\beta - \Sigma_{j=1}^{J}\gamma_{j}h_{i,t-1}(j) - \alpha_{i})$ Parameterize Pandom Effects

Parameterize Random Effects

$$\boldsymbol{\alpha}_{i} = \boldsymbol{\alpha}_{0} + \boldsymbol{\Sigma}_{j=1}^{J} \boldsymbol{\alpha}_{1,j} \boldsymbol{h}_{i,1}(j) + \boldsymbol{\alpha}' \overline{\boldsymbol{x}}_{i} + \boldsymbol{u}_{i}$$

Simulation or Quadrature Based Estimation


$$InL = \sum_{i=1}^{N} In \int_{\alpha_i} \prod_{t=1}^{T_i} P_{it,j} f(\alpha_j) d\alpha_j$$

Data

Table I. Variable definitions

SAH WIDOW SINGLE DIV/SEP NON-WHITE DEGREE HND/A O/CSE HHSIZE NCHO4 NCH511	Self-Assessed Health: 5 if excellent, 4 if good, 3 if fair, 2 if poor, 1 if very poor 1 if widowed, 0 otherwise 1 if never married, 0 otherwise 1 if divorced or separated, 0 otherwise 1 if a member of ethnic group other than white, 0 otherwise 1 if highest academic qualification is a degree or higher degree, 0 otherwise 1 if highest academic qualification is HND or A level, 0 otherwise 1 if highest academic qualification is O level or CSE, 0 otherwise Number of people in household including respondent Number of children in household aged 0–4 Number of children in household aged 5–11
NCH1218	Number of children in household aged 12-18
INCOME	Equivalized annual real household income in pounds
AGE	Age in years at 1st December of current wave

Variable of Interest

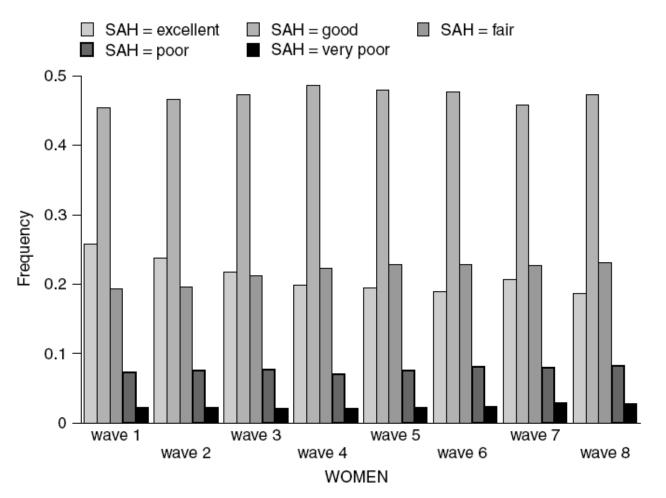
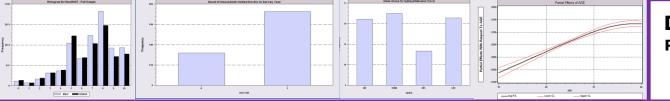


Figure 1. Self-assessed health status by wave

Dynamics

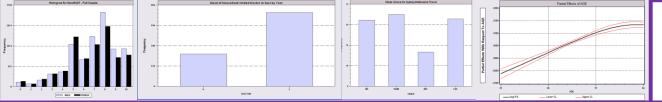

Table II. Transition matrices, balanced panel

(a) Men

SAH	EX	GOOD	FAIR	POOR	VERY POOR	Ν
EX	0.600	0.342	0.046	0.010	0.002	5485
GOOD	0.184	0.651	0.142	0.019	0.004	9263
FAIR	0.055	0.361	0.471	0.100	0.012	3433
POOR	0.029	0.120	0.340	0.418	0.093	1031
VERY POOR	0.032	0.073	0.133	0.423	0.339	248
Ν	5231	9287	3565	1111	266	19 460

(b) Women

SAH	EX	GOOD	FAIR	POOR	VERY POOR	Ν
EX	0.572	0.353	0.059	0.013	0.004	5164
GOOD	0.150	0.657	0.162	0.026	0.005	11 306
FAIR	0.040	0.362	0.465	0.116	0.017	4928
POOR	0.021	0.156	0.360	0.365	0.098	1587
VERY POOR	0.014	0.106	0.192	0.326	0.362	423
Ν	4884	11 3 2 9	5082	1649	464	23 408



Attrition

Table V. Sample size, drop-outs and attrition rates by wave

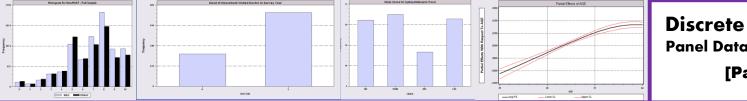
(a) All data

	FULL	SAMPLE		EX at $t-1$	GOOD at $t - 1$	FAIR at $t - 1$	POOR at $t - 1$	VPOOR at $t - 1$	
Wave	No. individuals	Survival rate	Drop-outs	Attrition rate	Attrition rate	Attrition rate	Attrition rate	Attrition rate	Attrition rate
1	10 2 5 6								
2	8957	87.33%	1299	12.67%	11.54%	12.57%	13.01%	13.73%	23.74%
3	8162	79.58%	795	8.88%	8.08%	8.13%	9.65%	12.62%	19.46%
4	7825	76.30%	337	4.13%	6.67%	6.54%	6.73%	10.35%	14.74%
5	7430	72.45%	395	5.05%	6.21%	6.18%	7.87%	9.11%	16.34%
6	7238	70.57%	192	2.58%	3.11%	3.24%	5.06%	10.47%	18.83%
7	7102	69.25%	136	1.88%	3.15%	3.85%	4.79%	8.83%	8.75%
8	6839	66.68%	263	3.70%	3.43%	3.82%	5.30%	5.88%	17.01%


Discrete Choice Modeling Panel Data Binary Choice Models [Part 3] 61/52

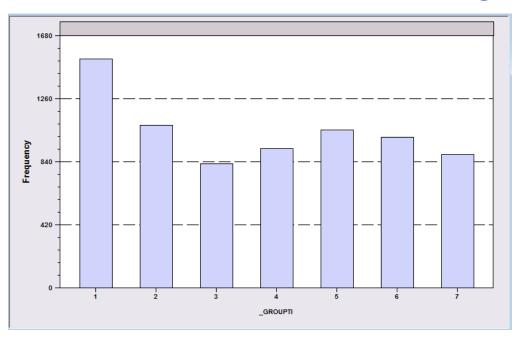
Testing for Attrition Bias

Table 9: Verbeek and Nijman tests for attrition: based on dynamic ordered probit models with Wooldridge specification of correlated effects and initial conditions


		MEN				WOMEN		
	β	Std.err.	t-test	p-value	β	Std.err.	t-test	p-value
NEXT WAVE	.199	.035	5.67	.000	.060	.034	1.77	.077
ALL WAVES	.139	.031	4.46	.000	.071	.029	2.45	.014
NUMBER OF WAVES	.031	.009	3.54	.000	.016	.008	1.88	.060

Three dummy variables added to full model with unbalanced panel suggest presence of attrition effects.

Probability Weighting Estimators


- A Patch for Attrition
- (1) Fit a participation probit equation for each wave.
- (2) Compute p(i,t) = predictions of participation for each individual in each period.
 - Special assumptions needed to make this work
- Ignore common effects and fit a weighted pooled log likelihood: Σ_i Σ_t [d_{it}/p(i,t)]logLP_{it}.

Discrete Choice Modeling Panel Data Binary Choice Models

[Part 3] 63/52

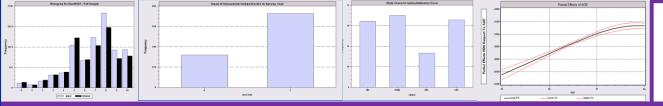
Attrition Model with IP Weights

Assumes (1) Prob(attrition|all data) = Prob(attrition|selected variables) (ignorability) (2) Attrition is an 'absorbing state.' No reentry. Obviously not true for the GSOEP data above. Can deal with point (2) by isolating a subsample of those present at wave 1 and the monotonically shrinking subsample as the waves progress.

Inverse Probability Weighting

Panel is based on those present at WAVE 1, N1 individuals Attrition is an absorbing state. No reentry, so $N1 \ge N2 \ge ... \ge N8$. Sample is restricted at each wave to individuals who were present at the previous wave.

- $d_{it} = 1$ [Individual is present at wave t].
- $\mathbf{d}_{i1} = 1 \ \forall \ \mathbf{i}, \mathbf{d}_{it} = 0 \implies \mathbf{d}_{i,t+1} = \mathbf{0}.$

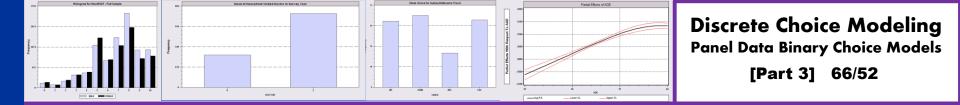

 $\tilde{\mathbf{x}}_{i1}$ = covariates observed for all i at entry that relate to likelihood of being present at subsequent waves.

(health problems, disability, psychological well being, self employment, unemployment, maternity leave, student, caring for family member, ...)

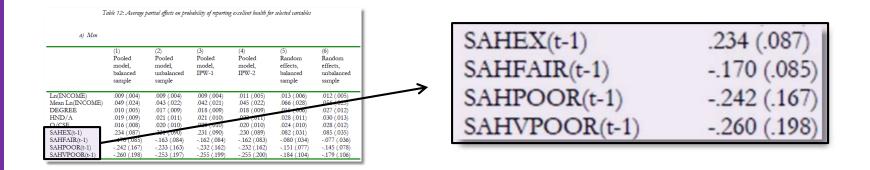
Probit model for $d_{it} = 1[\delta' \tilde{\mathbf{x}}_{i1} + w_{it}]$, t = 2,...,8. $\hat{\pi}_{it} =$ fitted probability.

Assuming attrition decisions are independent, $\hat{P}_{it} = \prod_{s=1}^{t} \hat{\pi}_{is}$

Inverse probability weight $\hat{W}_{it} = \frac{d_{it}}{\hat{P}_{it}}$ Weighted log likelihood $\log L_W = \sum_{i=1}^{N} \sum_{t=1}^{8} \log L_{it}$ (No common effects.)


Discrete Choice Modeling Panel Data Binary Choice Models [Part 3] 65/52

Estimated Partial Effects by Model


Table 12: Average partial effects on probability of reporting excellent health for selected variables

a) Men

	(1) Pooled model, balanced sample	(2) Pooled model, unbalanced sample	(3) Pooled model, IPW-1	(4) Pooled model, IPW-2	(5) Random effects, balanced sample	(6) Random effects, unbalanced sample
Ln(INCOME)	.009 (.004)	.009 (.004)	.009 (.004)	.011 (.005)	.013 (.006)	.012 (.005)
Mean Ln(INCOME)	.049 (.024)	.043 (.022)	.042 (.021)	.045 (.022)	.066 (.028)	.056 (.025)
DEGREE	.010 (.005)	.017 (.009)	.018 (.009)	.018 (.009)	.015 (.006)	.027 (.012)
HND/A	.019 (.009)	.021 (.011)	.021 (.010)	.022 (.011)	.028 (.011)	.030 (.013)
O/CSE	.016 (.008)	.020 (.010)	.020 (.010)	.020 (.010)	.024 (.010)	.028 (.012)
SAHEX(t-1)	.234 (.087)	.231 (.090)	.231 (.090)	.230 (.089)	.082 (.031)	.085 (.035)
SAHFAIR(t-1)	170 (.085)	163 (.084)	162 (.084)	162 (.083)	080 (.034)	077 (.036)
SAHPOOR(t-1)	242 (.167)	233 (.163)	232 (.162)	232 (.162)	151 (.077)	145 (.078)
SAHVPOOR(t-1)	260 (.198)	253 (.197)	255 (.199)	255 (.200)	184 (.104)	179 (.106)

Partial Effect for a Category

These are 4 dummy variables for state in the previous period. Using first differences, the 0.234 estimated for SAHEX means transition from EXCELLENT in the previous period to GOOD in the previous period, where GOOD is the omitted category. Likewise for the other 3 previous state variables. The margin from 'POOR' to 'GOOD' was not interesting in the paper. The better margin would have been from EXCELLENT to POOR, which would have (EX,POOR) change from (1,0) to (0,1).