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Application: Health Care Panel Data
German Health Care Usage Data, 7,293 Individuals, Varying Numbers of Periods

Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel with 7,293 

individuals. They can be used for regression, count models, binary choice, ordered choice, and bivariate binary 

choice. There are altogether 27,326 observations. The number of observations ranges from 1 to 

7. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987).

Variables in the file are

DOCTOR  =  1(Number of doctor visits > 0)

HOSPITAL =  1(Number of hospital visits > 0)

HSAT       = health satisfaction, coded 0 (low) - 10 (high) 

DOCVIS    = number of doctor visits in last three months

HOSPVIS  = number of hospital visits in last calendar year

PUBLIC    = insured in public health insurance = 1; otherwise = 0

ADDON = insured by add-on insurance = 1; otherswise = 0

HHNINC = household nominal monthly net income in German marks / 10000.

(4 observations with income=0 were dropped)

HHKIDS =  children under age 16 in the household = 1; otherwise = 0

EDUC = years of schooling 

AGE =  age in years

MARRIED =  marital status
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Unbalanced Panels

Group Sizes

Most theoretical results are for balanced panels.

Most real world panels are unbalanced.

Often the gaps are caused by attrition.

The major question is whether the gaps are ‘missing 

completely at random.’  If not, the observation 

mechanism is endogenous, and at least some 

methods will produce questionable results.

Researchers rarely have any reason to treat the data 

as nonrandomly sampled.  (This is good news.)
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Unbalanced Panels and Attrition ‘Bias’

 Test for ‘attrition bias.’  (Verbeek and Nijman, Testing for Selectivity 

Bias in Panel Data Models, International Economic Review, 1992, 

33, 681-703.

 Variable addition test using covariates of presence in the panel

 Nonconstructive – what to do next?

 Do something about attrition bias. (Wooldridge, Inverse Probability 

Weighted M-Estimators for Sample Stratification and Attrition, 

Portuguese Economic Journal, 2002, 1: 117-139)

 Stringent assumptions about the process

 Model based on probability of being present in each wave of the panel
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Panel Data Binary Choice Models

Random Utility Model for Binary Choice

Uit =   +  ’xit +  it + Person i specific effect

Fixed effects using “dummy” variables

Uit =  i + ’xit + it

Random effects using omitted heterogeneity

Uit =   + ’xit +  it +  ui

Same outcome mechanism:  Yit =  1[Uit > 0]
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Pooled Model
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Ignoring Unobserved Heterogeneity

 

  

   

    

    

it

it

it

it it

x

x β

x β

x β x δ

i it

it i it

it it i it

2

it it u

Assuming strict exogeneity; Cov( ,u ) 0

y *= u

Prob[y 1| x ] Prob[u  - ]
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This is the 'population averaged model.'
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Ignoring Heterogeneity in the RE Model

 



Ignoring heterogeneity, we estimate not .

Partial effects are f( ) not f( )

 is underestimated, but f( ) is overestimated.

Which way does it go?  Maybe ignoring u is ok? 

Not if we want

it it

it

δ  β

δ x δ β x β

β x β

 to compute probabilities or do 

statistical inference about Estimated standard

errors will be too small.

β.  
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Ignoring Heterogeneity (Broadly)

 Presence will generally make parameter estimates look 

smaller than they would otherwise.

 Ignoring heterogeneity will definitely distort standard 

errors.

 Partial effects based on the parametric model may not 

be affected very much.

 Is the pooled estimator ‘robust?’  Less so than in the 

linear model case.
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Pooled vs.  RE Panel Estimator
----------------------------------------------------------------------

Binomial Probit Model

Dependent variable               DOCTOR 

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

Constant|     .02159          .05307         .407   .6842

AGE|     .01532***       .00071       21.695   .0000      43.5257

EDUC|    -.02793***       .00348       -8.023   .0000      11.3206

HHNINC|    -.10204**        .04544       -2.246   .0247       .35208

--------+-------------------------------------------------------------

Unbalanced panel has   7293 individuals

--------+-------------------------------------------------------------

Constant|    -.11819          .09280       -1.273   .2028

AGE|     .02232***       .00123       18.145   .0000      43.5257

EDUC|    -.03307***       .00627       -5.276   .0000      11.3206

HHNINC|     .00660          .06587         .100   .9202       .35208

Rho|     .44990***       .01020       44.101   .0000

--------+-------------------------------------------------------------
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Partial Effects
----------------------------------------------------------------------

Partial derivatives of E[y] = F[*]  with

respect to the vector of characteristics

They are computed at the means of the Xs

Observations used for means are All Obs.

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]  Elasticity

--------+-------------------------------------------------------------

|Pooled

AGE|     .00578***       .00027       21.720   .0000       .39801

EDUC|    -.01053***       .00131       -8.024   .0000      -.18870

HHNINC|    -.03847**        .01713       -2.246   .0247      -.02144

--------+-------------------------------------------------------------

|Based on the panel data estimator

AGE|     .00620***       .00034       18.375   .0000       .42181

EDUC|    -.00918***       .00174       -5.282   .0000      -.16256

HHNINC|     .00183          .01829         .100   .9202       .00101

--------+-------------------------------------------------------------
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Effect of Clustering

 Yit must be correlated with Yis across periods

 Pooled estimator ignores correlation

 Broadly, yit = E[yit|xit] + wit, 

 E[yit|xit]  =  Prob(yit = 1|xit)

 wit is correlated across periods

 Assuming the marginal probability is the same, the 
pooled estimator is consistent.  (We just saw that it might 
not be.)

 Ignoring the correlation across periods generally leads to 

underestimating standard errors.
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‘Cluster’ Corrected Covariance Matrix

1

the number if  clusters

number of  observations  in cluster c

 = negative inverse of  second derivatives matrix

 = derivative of  log density for observation
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Cluster Correction: Doctor
----------------------------------------------------------------------

Binomial Probit Model

Dependent variable               DOCTOR

Log likelihood function    -17457.21899

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

| Conventional Standard Errors

Constant|    -.25597***       .05481       -4.670   .0000

AGE|     .01469***       .00071       20.686   .0000      43.5257

EDUC|    -.01523***       .00355       -4.289   .0000      11.3206

HHNINC|    -.10914**        .04569       -2.389   .0169       .35208

FEMALE|     .35209***       .01598       22.027   .0000       .47877

--------+-------------------------------------------------------------

| Corrected Standard Errors

Constant|    -.25597***       .07744       -3.305   .0009

AGE|     .01469***       .00098       15.065   .0000      43.5257

EDUC|    -.01523***       .00504       -3.023   .0025      11.3206

HHNINC|    -.10914*         .05645       -1.933   .0532       .35208

FEMALE|     .35209***       .02290       15.372   .0000       .47877

--------+-------------------------------------------------------------
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Random Effects
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Quadrature – Butler and Moffitt (1982)
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Quadrature Log Likelihood
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Simulation Based Estimator
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Random Effects Model: Quadrature
----------------------------------------------------------------------

Random Effects Binary Probit Model

Dependent variable               DOCTOR

Log likelihood function    -16290.72192   Random Effects

Restricted log likelihood  -17701.08500   Pooled

Chi squared [   1 d.f.]      2820.72616

Estimation based on N =  27326, K =   5

Unbalanced panel has   7293 individuals

--------+-------------------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]   Mean of X

--------+-------------------------------------------------------------

Constant|    -.11819          .09280       -1.273   .2028

AGE|     .02232***       .00123       18.145   .0000      43.5257

EDUC|    -.03307***       .00627       -5.276   .0000      11.3206

HHNINC|     .00660          .06587         .100   .9202       .35208

Rho|     .44990***       .01020       44.101   .0000

--------+-------------------------------------------------------------

|Pooled Estimates

Constant|     .02159          .05307         .407   .6842

AGE|     .01532***       .00071       21.695   .0000      43.5257

EDUC|    -.02793***       .00348       -8.023   .0000      11.3206

HHNINC|    -.10204**        .04544       -2.246   .0247       .35208

--------+-------------------------------------------------------------
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Random Parameter Model
----------------------------------------------------------------------

Random Coefficients  Probit   Model

Dependent variable               DOCTOR (Quadrature Based)

Log likelihood function    -16296.68110 (-16290.72192)

Restricted log likelihood  -17701.08500

Chi squared [   1 d.f.]      2808.80780

Simulation based on  50 Halton draws

--------+-------------------------------------------------

Variable| Coefficient    Standard Error  b/St.Er. P[|Z|>z]

--------+-------------------------------------------------

|Nonrandom parameters

AGE|     .02226***       .00081       27.365   .0000  ( .02232)

EDUC|    -.03285***       .00391       -8.407   .0000  (-.03307)

HHNINC|     .00673          .05105         .132   .8952  ( .00660)

|Means for random parameters

Constant|    -.11873**        .05950       -1.995   .0460  (-.11819)

|Scale parameters for dists. of random parameters

Constant|     .90453***       .01128       80.180   .0000

--------+-------------------------------------------------------------

Using quadrature, a = -.11819.  Implied  from these estimates is

.904542/(1+.904532) = .449998 compared to .44990 using quadrature.



[Part 3]   30/52

Discrete Choice Modeling
Panel Data Binary Choice Models

A Dynamic Model
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Two similar 'effects'

      Unobserved heterogeneity

      State dependence = state 'persistence'

Pr(y 1| y ,..., y , x ,u] F[ y u ]

How to estimate , , marginal effects, F(.), etc?

(1) Deal with the latent common effect

(2) Handle the lagged effects:  

     This encounters the initial conditions problem.
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Dynamic Probit Model: A Standard Approach
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Simplified Dynamic Model
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A Dynamic Model for Public Insurance

Age

Household Income

Kids in the household

Health Status

Add initial value, lagged value, group means 
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Dynamic Common Effects Model
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Fixed Effects
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Fixed Effects Models

 Estimate with dummy variable coefficients

Uit =  i + ’xit +  it

 Can be done by “brute force” for 10,000s of individuals

 F(.) = appropriate probability for the observed outcome

 Compute  and i for i=1,…,N (may be large)

 See FixedEffects.pdf in course materials.

1 1
log log ( , )

iN T

it i iti t
L F y

 
    x
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Unconditional Estimation

 Maximize the whole log likelihood 

 Difficult!  Many (thousands) of parameters.

 Feasible – NLOGIT (2001)  (“Brute force”)
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Fixed Effects Health Model
Groups in which yit is always = 0 or always = 1. Cannot compute αi.
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Conditional Estimation

 Principle:  f(yi1,yi2,… | some statistic) is free of 

the fixed effects for some models.

 Maximize the conditional log likelihood, given 

the statistic.

 Can estimate β without having to estimate αi.

 Only feasible for the logit model. (Poisson 

and a few other continuous variable models. 

No other discrete choice models.)
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Binary Logit Conditional Probabiities
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Example: Two Period Binary Logit
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Estimating Partial Effects

“The fixed effects logit estimator of  immediately gives us 

the effect of each element of xi on the log-odds ratio… 

Unfortunately, we cannot estimate the partial effects… 

unless we plug in a value for αi.  Because the distribution of 

αi is unrestricted – in particular, E[αi] is not necessarily zero 

– it is hard to know what to plug in for αi. In addition, we 

cannot estimate average partial effects, as doing so would 

require finding E[Λ(xit + αi)], a task that apparently requires 

specifying a distribution for αi.”

(Wooldridge, 2010)
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Logit Constant Terms
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Step 1. Estimate  with Chamberlain's conditional estimator

Step 2. Treating  as if it were known, estimate  from the

           first order condition
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Estimate 1 / exp( ) log

ˆc exp is treated as known data.

Solve one equation in one unknown for each . 

Note there is no solution if y  = 0 or 1.

Iterating back 
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and forth does not maximize logL.
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Fixed Effects Logit Health Model: 

Conditional vs. Unconditional
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Advantages and Disadvantages 

of the FE Model
 Advantages

 Allows correlation of effect and regressors

 Fairly straightforward to estimate

 Simple to interpret

 Disadvantages

 Model may not contain time invariant variables

 Not necessarily simple to estimate if very large 

samples (Stata just creates the thousands of dummy 

variables)

 The incidental parameters problem:  Small T bias



[Part 3]   46/52

Discrete Choice Modeling
Panel Data Binary Choice Models

Incidental Parameters Problems: 

Conventional Wisdom

 General:  The unconditional MLE is biased in 

samples with fixed T except in special cases 

such as linear or Poisson regression (even when 

the FEM is the right model).

The conditional estimator (that bypasses 

estimation of αi) is consistent.

 Specific:  Upward bias (experience with probit

and logit) in estimators of 
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A Monte Carlo Study of the 

FE Estimator: Probit vs. Logit

Estimates of Coefficients and Marginal 

Effects at the Implied Data Means

Results are scaled so the desired quantity being estimated 

(, , marginal effects) all equal 1.0 in the population.
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Bias Correction Estimators

 Motivation: Undo the incidental parameters bias in the 
fixed effects probit model:
 (1) Maximize a penalized log likelihood function, or

 (2) Directly correct the estimator of β

 Advantages
 For (1) estimates αi so enables partial effects

 Estimator is consistent under some circumstances

 (Possibly) corrects in dynamic models

 Disadvantage
 No time invariant variables in the model

 Practical implementation

 Extension to other models? (Ordered probit model (maybe) –
see JBES 2009)
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A Mundlak Correction for the FE Model
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Mundlak Correction
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A Variable Addition Test for FE vs. RE

The Wald statistic of 45.27922 and 

the likelihood ratio statistic of 

40.280 are both far larger than the 

critical chi squared with 5 degrees 

of freedom, 11.07.  This suggests 

that for these data, the fixed 

effects model is the preferred 

framework.
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Fixed Effects Models Summary

 Incidental parameters problem if T < 10 (roughly)

 Inconvenience of computation

 Appealing specification

 Alternative semiparametric estimators?

 Theory not well developed for T > 2

 Not informative for anything but slopes (e.g., 
predictions and marginal effects)

 Ignoring the heterogeneity definitely produces an 
inconsistent estimator (even with cluster correction!)

 A Hobson’s choice

 Mundlak correction is a useful common approach.
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A Study of Health Status in the Presence of Attrition
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Model for Self Assessed Health

 British Household Panel Survey (BHPS) 

 Waves 1-8, 1991-1998

 Self assessed health on 0,1,2,3,4 scale

 Sociological and demographic covariates

 Dynamics – inertia in reporting of top scale

 Dynamic ordered probit model

 Balanced panel – analyze dynamics

 Unbalanced panel – examine attrition
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Dynamic Ordered Probit Model
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Latent Regression - Random Utility
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Random Effects Dynamic Ordered Probit Model
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Data
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Variable of Interest
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Dynamics
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Attrition
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Testing for Attrition Bias

Three dummy variables added to full model with unbalanced panel suggest 

presence of attrition effects.
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Probability Weighting Estimators

 A Patch for Attrition

 (1) Fit a participation probit equation for each wave.

 (2) Compute p(i,t) = predictions of participation for each 

individual in each period.

 Special assumptions needed to make this work

 Ignore common effects and fit a weighted pooled log 

likelihood: Σi Σt [dit/p(i,t)]logLPit.
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Attrition Model with IP Weights

Assumes (1) Prob(attrition|all data) = Prob(attrition|selected variables) (ignorability)

(2) Attrition is an ‘absorbing state.’  No reentry.  

Obviously not true for the GSOEP data above.

Can deal with point (2) by isolating a subsample of those present at wave 1 and the 

monotonically shrinking subsample as the waves progress.
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Inverse Probability Weighting
Panel is based on those present at WAVE 1, N1 individuals

Attrition is an absorbing state.  No reentry, so N1  N2  ...  N8.

Sample is restricted at each wave to individuals who were present at

the pre
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vious wave.
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Estimated Partial Effects by Model
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Partial Effect for a Category

These are 4 dummy variables for state in the previous period.  Using 

first differences, the 0.234 estimated for SAHEX means transition from 

EXCELLENT in the previous period to GOOD in the previous period, 

where GOOD is the omitted category.  Likewise for the other 3 previous 

state variables.   The margin from ‘POOR’ to ‘GOOD’ was not interesting 

in the paper.  The better margin would have been from EXCELLENT to 

POOR, which would have (EX,POOR) change from (1,0) to (0,1).


