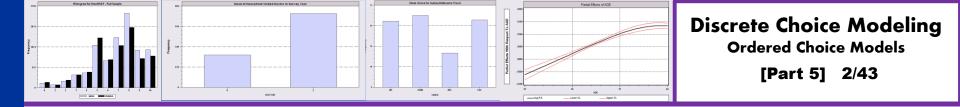
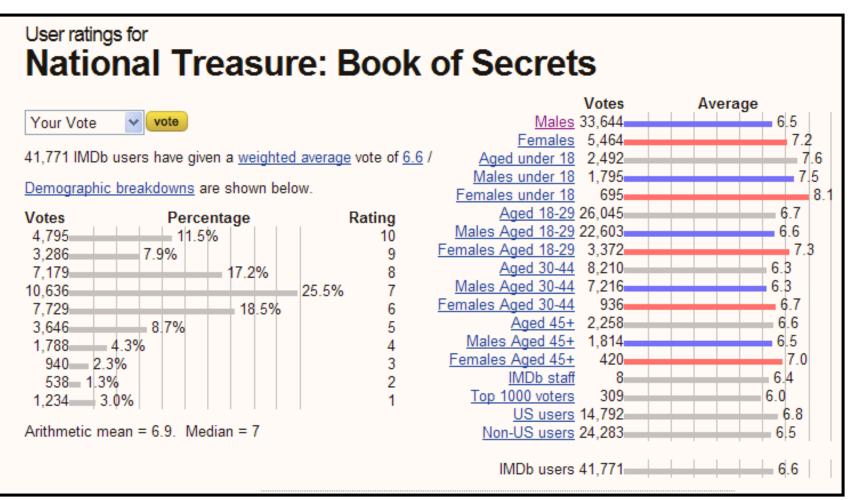

Discrete Choice Modeling

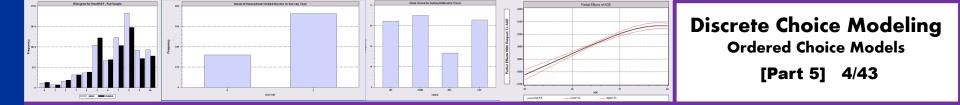

- 0 Introduction
- 1 Summary
- 2 Binary Choice
- 3 Panel Data
- 4 Bivariate Probit
- 5 Ordered Choice
- 6 Count Data
- 7 Multinomial Choice
- 8 Nested Logit
- 9 Heterogeneity
- 10 Latent Class
- 11 Mixed Logit
- **12 Stated Preference**
- 13 Hybrid Choice

William Greene

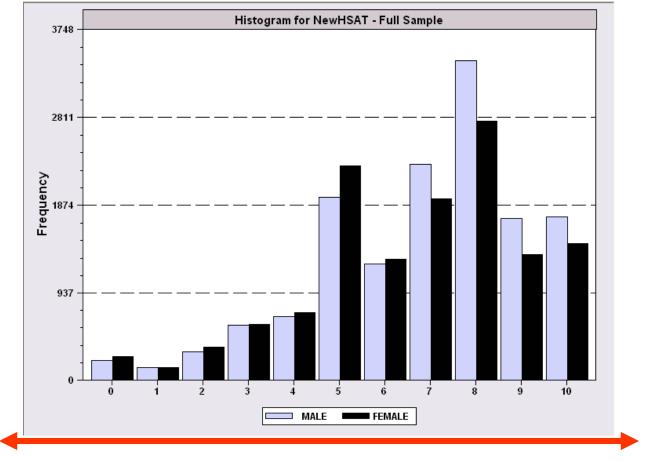
Stern School of Business

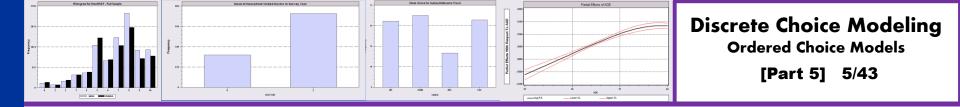
New York University




Ordered Discrete Outcomes

- E.g.: Taste test, credit rating, course grade, preference scale
- Underlying random preferences:
 - Existence of an underlying continuous preference scale
 - Mapping to observed choices
- Strength of preferences is reflected in the discrete outcome
- Censoring and discrete measurement
- **The nature of ordered data**

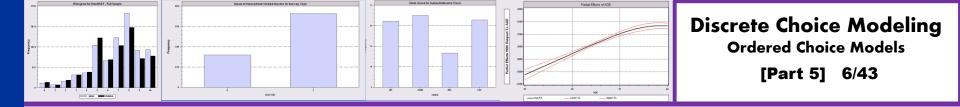

Ordered Preferences at IMDB.com



Health Satisfaction (HSAT)

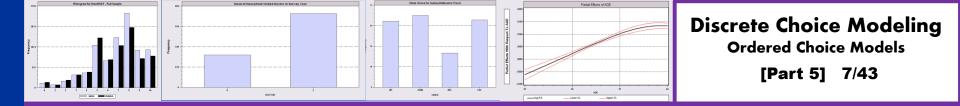
Self administered survey: Health Care Satisfaction? (0 – 10)

Continuous Preference Scale

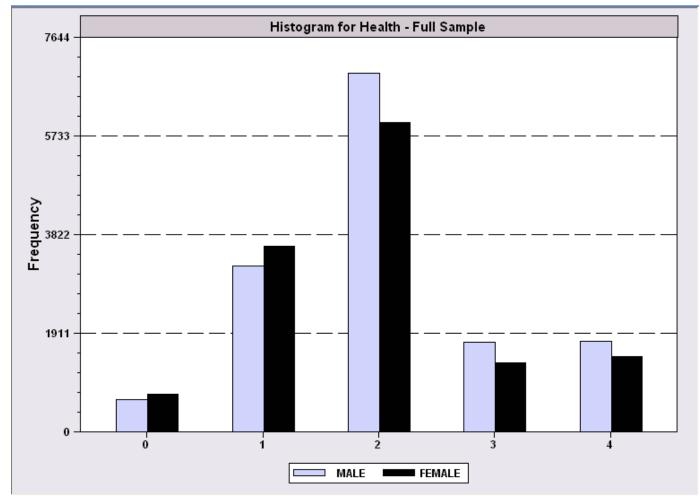

Modeling Ordered Choices

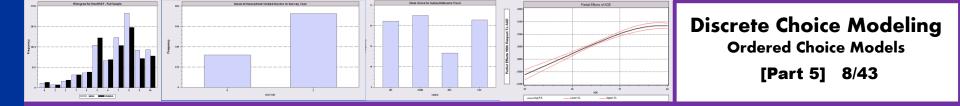
Random Utility (allowing a panel data setting)

Uit =
$$\alpha$$
 + β' **X**it + ε_{it}


$$= a_{it} + \varepsilon_{it}$$

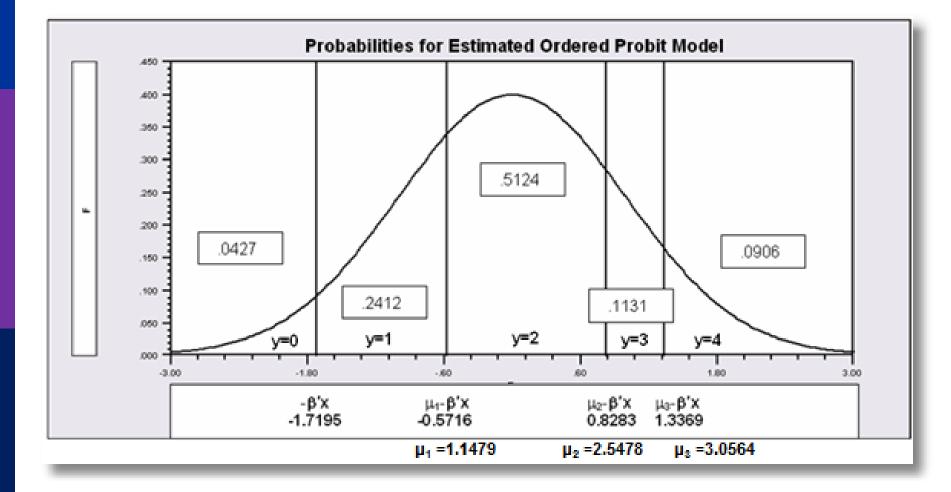
 Observe outcome j if utility is in region j
Probability of outcome = probability of cell Pr[Yit=j] = F(μ_i - a_{it}) - F(μ_{i-1} - a_{it})




Ordered Probability Model

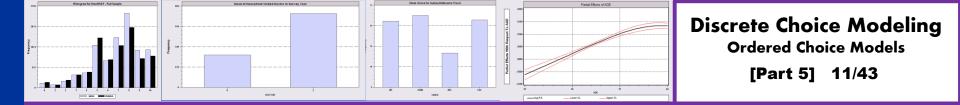
 $y^* = \beta' x + \varepsilon$, we assume x contains a constant term y = 0 if $y^* \leq 0$ $y = 1 \text{ if } 0 \quad < y^* \leq \mu_1$ $y = 2 \text{ if } \mu_1 < y^* \leq \mu_2$ $y = 3 \text{ if } \mu_2 < y^* \leq \mu_3$. . . $y = J \text{ if } \mu_{1-1} < y^* \leq \mu_1$ In general: y = j if $\mu_{i-1} < y^* \le \mu_i$, j = 0, 1, ..., J $\mu_{-1} = -\infty$, $\mu_{0} = 0$, $\mu_{1} = +\infty$, $\mu_{i-1} < \mu_{i}$, j = 1,...,J

Combined Outcomes for Health Satisfaction

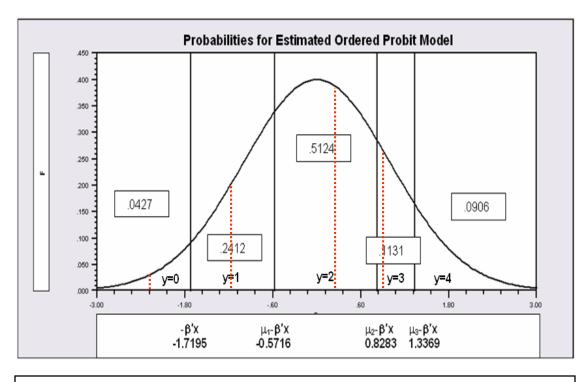


Ordered Probabilities

 $\begin{aligned} & \text{Prob}[\mathbf{y}=\mathbf{j}] = \text{Prob}[\mu_{j-1} < \mathbf{y}^* \le \mu_j] \\ &= \text{Prob}[\mu_{j-1} < \mathbf{\beta}'\mathbf{x} + \epsilon \le \mu_j] \\ &= \text{Prob}[\mathbf{\beta}'\mathbf{x} + \epsilon \le \mu_j] - \text{Prob}[\mathbf{\beta}'\mathbf{x} + \epsilon \le \mu_{j-1}] \\ &= \text{Prob}[\epsilon \le \mu_j - \mathbf{\beta}'\mathbf{x}] - \text{Prob}[\epsilon \le \mu_{j-1} - \mathbf{\beta}'\mathbf{x}] \\ &= F[\mu_j - \mathbf{\beta}'\mathbf{x}] - F[\mu_{j-1} - \mathbf{\beta}'\mathbf{x}] \end{aligned}$ where F[\varepsilon] is the CDF of \varepsilon.


Coefficients

• What are the coefficients in the ordered probit model? There is no conditional mean function.


$$\frac{\partial \text{Prob}[\mathbf{y}=\mathbf{j}|\mathbf{x}]}{\partial \mathbf{X}_{k}} = [f(\boldsymbol{\mu}_{j-1} - \boldsymbol{\beta}'\mathbf{x}) - f(\boldsymbol{\mu}_{j} - \boldsymbol{\beta}'\mathbf{x})] \boldsymbol{\beta}_{k}$$

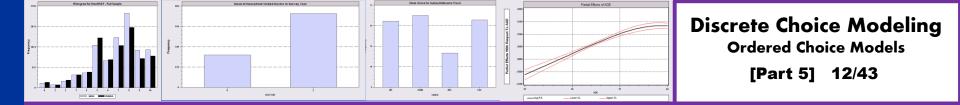
Magnitude depends on the scale factor and the coefficient. Sign depends on the densities at the two points!

• What does it mean that a coefficient is "significant?"

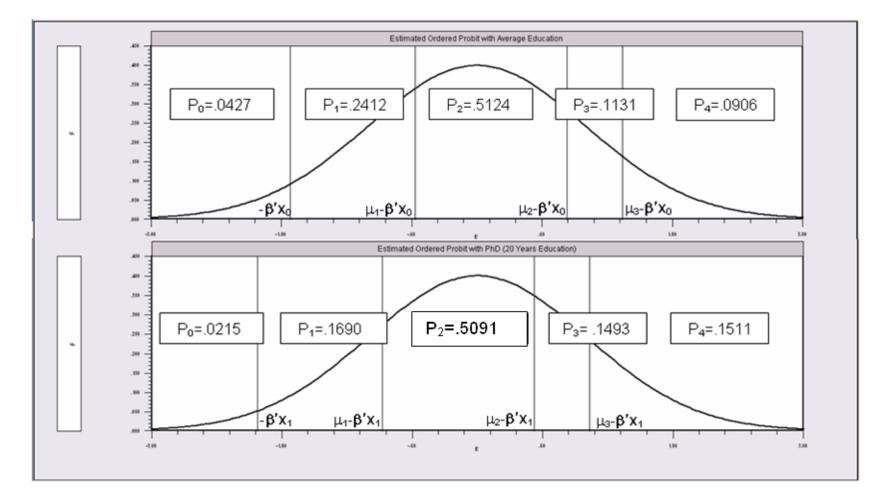
Partial Effects in the Ordered Choice Model

When $\beta_k > 0$, increase in x_k decreases Prob[y=0] and increases Prob[y=J]. Intermediate cells are ambiguous, but there is only one sign change in the marginal effects from 0 to 1 to ... to J Assume the β_k is positive.

Assume that x_k increases.


β'x increases. $μ_j$ - **β'x** shifts to the left for all 5 cells.

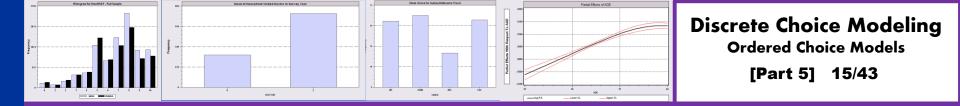
Prob[y=0] decreases


Prob[y=1] decreases – the mass shifted out is larger than the mass shifted in.

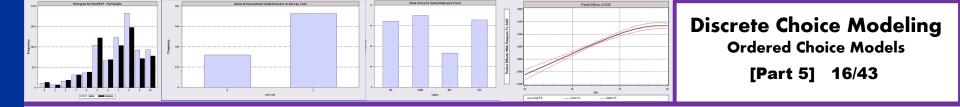
Prob[y=3] increases – same reason in reverse.

Prob[y=4] must increase.

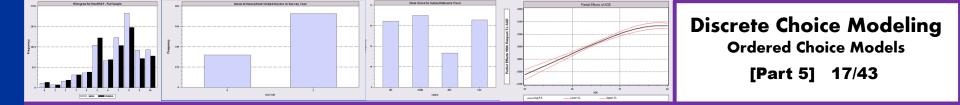
Partial Effects of 8 Years of Education


An Ordered Probability Model for Health Satisfaction

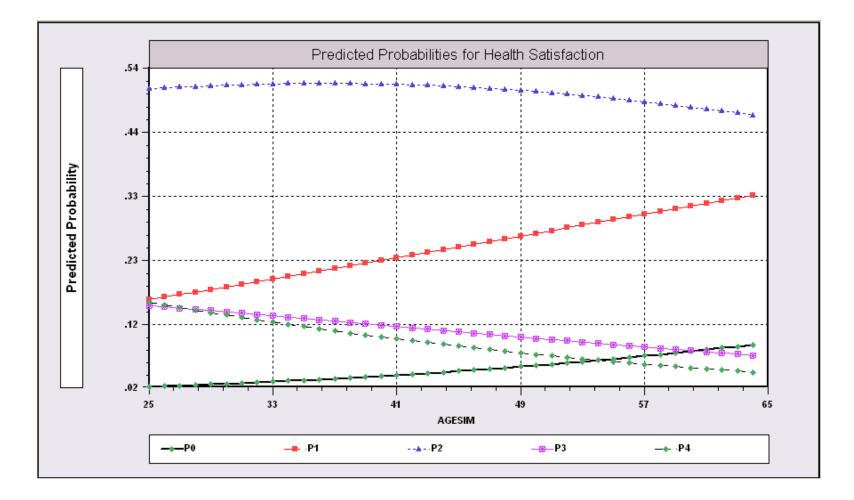
+		+		
Ordered H	Probability Model	I		
Dependent	z variable	HSAT		
•	5 observations	27326		
Underlyin	ng probabilities bas	sed on Normal		
Cell f	requencies for out	comes		
•	Freq Y Count Freq	- ·		
•	.016 1 255 .009			
•	.042 4 1390 .050			
6 2530	.092 7 4231 .154	8 6172 .225		
	.112 10 3192 .116			
	+			++
	Coefficient Sta			
	+	•	+	++
	Index function for p			
Constant	2.61335825			
FEMALE	05840486			.47877479
EDUC	.03390552			11.3206310
AGE	01997327			43.5256898
HHNINC				.35208362
HHKIDS	.06314906		577 .0000	.40273000
	Threshold parameters			
Mu(1)	.19352076			
Mu(2)	. 49955053		935 .0000	
Mu(3)	.83593441		402 .0000	
Mu(4)	1.10524187	.00908506 121.0		
Mu(5)	1.66256620	.00801113 207.5	532 .0000	
Mu(6)	1.92729096	.00774122 248.9	965 .0000	
Mu(7)	2.33879408	.00777041 300.9		
Mu(8)	2.99432165	.00851090 351.8	322 .0000	
Mu(9)	3.45366015	.01017554 339.4	108 .0000	


Ordered Probability Partial Effects

+				+	
Marginal	L effects for orde	ered probability	y model	I	
M.E.s fo	or dummy variables	s are Pr[y x=1]-	$\Pr[y x=0]$	1	
Names fo	or dummy variables	s are marked by	*.	I	
+				+	
+	-++-		-+	+	++
	Coefficient -++				
+	These are the eff				++
*FEMALE	.00200414	.00043473	4.610	.0000	.47877479
EDUC	00115962	.986135D-04	-11.759	.0000	11.3206310
AGE	.00068311	.224205D-04	30.468	.0000	43.5256898
HHNINC	00886328	.00124869	-7.098	.0000	.35208362
*HHKIDS	00213193	.00045119	-4.725	.0000	.40273000
	These are the eff	fects on Prob[Y=	=01] at me	ans.	
*FEMALE	.00101533	.00021973	4.621	.0000	.47877479
EDUC	00058810	.496973D-04	-11.834	.0000	11.3206310
AGE	.00034644	.108937D-04	31.802	.0000	43.5256898
HHNINC	00449505	.00063180	-7.115	.0000	.35208362
*HHKIDS	00108460	.00022994	-4.717	.0000	.40273000
repea	ated for all 11 ou	itcomes			
	These are the eff	fects on Prob[Y=	=10] at me	ans.	
*FEMALE	01082419	.00233746	-4.631	.0000	.47877479
EDUC	.00629289	.00053706	11.717	.0000	11.3206310
AGE	00370705	.00012547	-29.545	.0000	43.5256898
HHNINC	.04809836	.00678434	7.090	.0000	.35208362
*HHKIDS	.01181070	.00255177	4.628	.0000	.40273000


Ordered Probit Marginal Effects

+ Summary	of Margi	nal Effe	cts for	Ordered	Probabil	ity Mode	l (probi	t)
+ Variable	Y=00 Y=08	Y=01 Y=09	Y=02 Y=10	Y=03 Y=11	Y=04 Y=12	Y=05 Y=13	Y=06 Y=14	Y=07 Y=15
*FEMALE	.0020	.0010	. 0023	.0037	.0036	.0074	.0024	. 0008
EDUC	0059 0012 .0034	0064 0006 .0037	0108 0013 .0063	0021	0021	0043	0014	0005
AGE	.0007 0020	.0003	.0008	.0012	.0012	.0025	.0008	.0003
HHNINC	0089	0022 0045 .0283	0103	0162	0159	0329	0105	0035
*HHKIDS	.0262 0021 .0063	.0283 0011 .0069	.0481 0025 .0118	0039	0039	0080	0026	0009



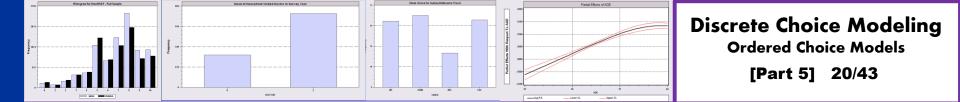

Analysis of Model Implications

- Partial Effects
- Fit Measures
- Predicted Probabilities
 - Averaged: They match sample proportions.
 - By observation
 - Segments of the sample
 - Related to particular variables


Predictions from the Model Related to Age

Fit Measures

- There is no single "dependent variable" to explain.
- There is no sum of squares or other measure of "variation" to explain.
- Predictions of the model relate to a set of J+1 probabilities, not a single variable.
- How to explain fit?
 - Based on the underlying regression
 - Based on the likelihood function
 - Based on prediction of the outcome variable


Log Likelihood Based Fit Measures

 $R_{Pseudo}^2 = 1 - \log L_{Model} / \log L_{No Model}$

A degrees of freedom adjusted version is sometimes reported,

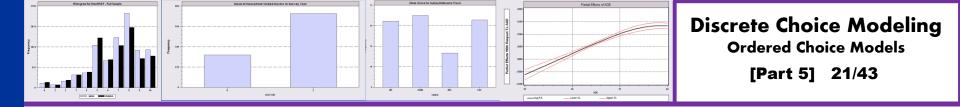
Adjusted $R_{Pseudo}^2 = 1 - [\log L_{No Model} - M] / \log L_{Model}$

Log Akaike Information Criterion = AIC= $(-2\log L + 2M)/n$,Finite Sample AIC= AIC_{FS} = AIC + 2M(M+1)/(n - M - 1),Bayes Information Criterion= BIC= $(-2\log L + M/\log n)/n$ Hannan-Quinn IC= HQIC= $(-2\log L + 2M\log\log n)/n$.

$$Count R^2 = \frac{Number of Correct Predictions}{n}$$

and

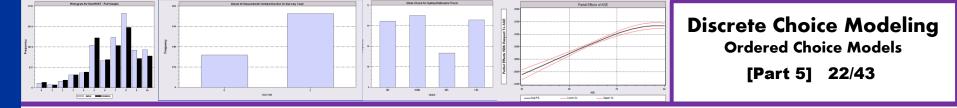
Adjusted Count
$$R^2 = \frac{Number \ of \ Correct \ Predictions - n_j *}{n - n_j *}$$


where n_j^* is the count of the most frequent outcome.

 $\hat{y}_i = j^*$ such that estimated $\operatorname{Prob}(y_i = j^* | \mathbf{x}_i) > \text{ estimated } \operatorname{Pr}(y_i = j | \mathbf{x}_i) \ \forall \ j \neq j^*$

That is, put the predicted y in the cell with the highest probability.

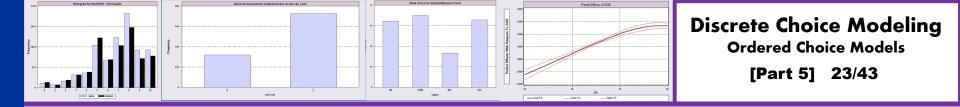
Predicted vs. Actual Outcomes for Ordered Probit Model

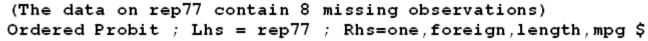

Model=	actual Probit.	l, colu . Predi	mn is .ction=	predia =most 1	cted. Likely	
Actual	0	1	2	3	4	+ Row Sum +
0			230			-
1	0	0	1113	0	0	1113
2	0	0	2226	0	0	2226
3	0	0	500	0	0	500
4	0	0	414	0	0	414
+ Col Sum	++ 0	++ 0	4483	•		++ 4483
+	++	++	+	+	++	++

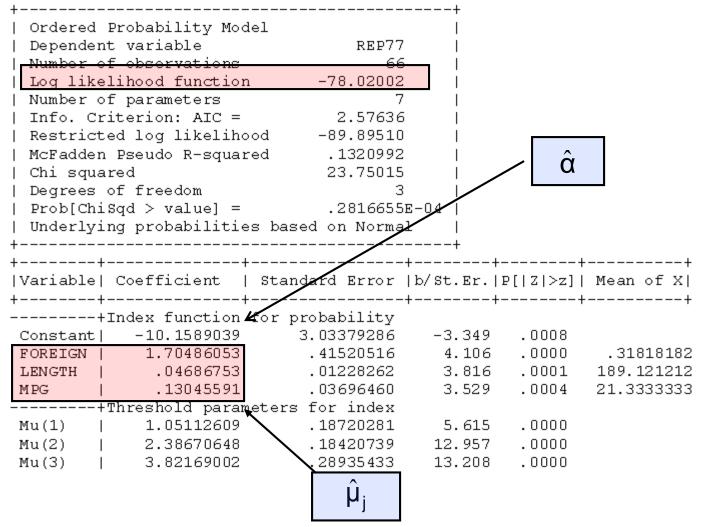
A Somewhat Better Fit

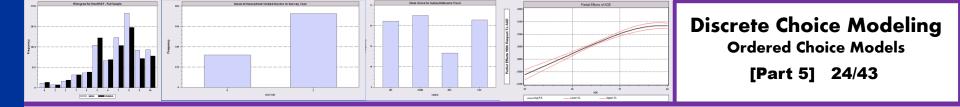
www.stata-press.com/data/r8/fullauto.dta 1977 repair records of 66 foreign and domestic cars. The variable *rep77* takes values *poor*, *fair*, *average*, *good* and *excellent*. Explanatory variables in the model are *foreign* (origin of manufacture), *length* (a proxy for size) and *mpg*. The McFadden *Pseudo* R^2 is 0.1321. The *Count* R^2 is (1+0+21+7+1)/66 = 0.454. The adjusted value is (30 - 27)/(66-27) = 0.077.

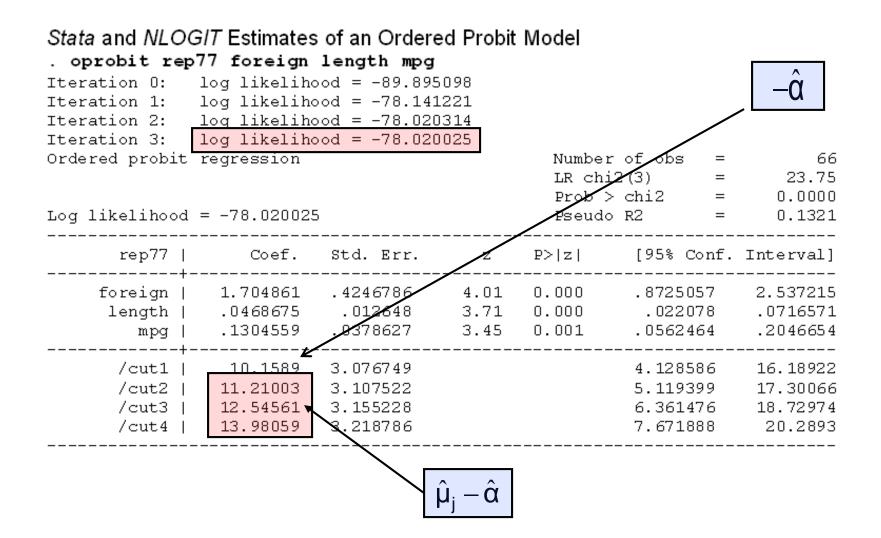
Cross t Row is Model=P	actual Probit.	L, colu	umn is iction=	predia =most]	cted. Likely	
Actual	0	1	2	3	4	Row sum
+						+ 3
1	0	0	9	2	0	11
2	0	1	21	5	0	27
3	0	0	11	7	2	20
4	0		_	2 +	. – .	5
Col Sum +	1	1 				+ 66 +

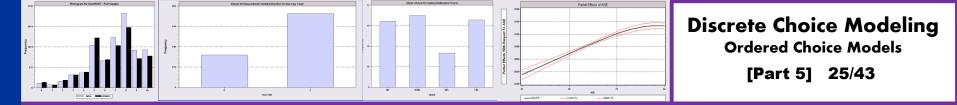

Different Normalizations


NLOGIT


- Y = 0,1,...,J, U^{*} = α + β 'x + ϵ
- One overall constant term, α
- J-1 "cutpoints;" $\mu_{-1} = -\infty$, $\mu_0 = 0$, μ_1 ,... μ_{J-1} , $\mu_J = +\infty$


Stata

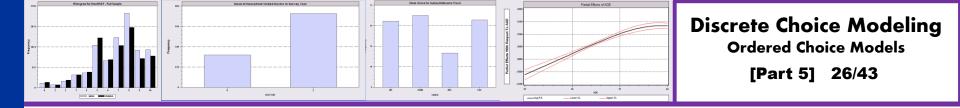

- Y = 1,...,J+1, U* = $\beta'x + \epsilon$
- No overall constant, α=0
- J "cutpoints;" $\mu_0 = -\infty$, μ_1, \dots, μ_J , $\mu_{J+1} = +\infty$



Generalizing the Ordered Probit with Heterogeneous Thresholds

Index = $\boldsymbol{\beta}' \mathbf{x}_i$

Threshold parameters


Standard model: $\mu_{-1} = -\infty$, $\mu_0 = 0$, $\mu_i > \mu_{i-1} > 0$, $\mu_J = +\infty$

Preference scale and thresholds are homogeneous

A generalized model (Pudney and Shields, JAE, 2000)

 $\boldsymbol{\mu}_{ij} = \boldsymbol{\alpha}_j + \boldsymbol{\gamma}'_j \boldsymbol{z}_i$

Note the identification problem. If z_{ik} is also in x_i (same variable) then $\mu_{ij} - \beta' x_i = \alpha_j + \gamma z_{ik} - \beta z_{ik} + ...$ No longer clear if the variable is in **x** or **z** (or both)

Hierarchical Ordered Probit

Index = $\boldsymbol{\beta}' \mathbf{x}_{i}$

Threshold parameters

Standard model: $\mu_{-1} = -\infty$, $\mu_0 = 0$, $\mu_i > \mu_{i-1} > 0$, $\mu_J = +\infty$

Preference scale and thresholds are homogeneous

A generalized model (Harris and Zhao (2000), NLOGIT (2007))

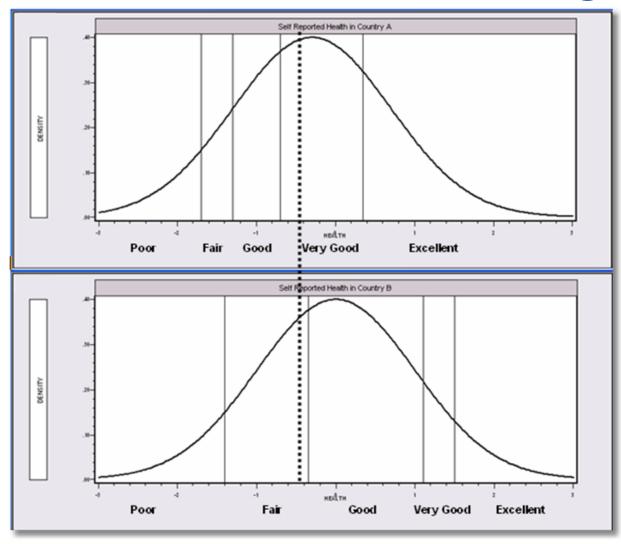
 $\mu_{ij} = \exp[\alpha_j + \gamma'_j \mathbf{z}_i]$

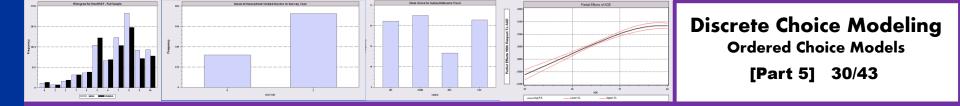
An internally consistent restricted modification

 $\mu_{ij} = \exp[\alpha_j + \mathbf{\gamma}' \mathbf{z}_i], \ \alpha_j = \alpha_{j-1} + \exp(\theta_j)$

Ordered Choice Model

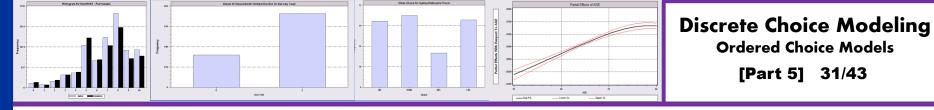
+			-+		
Dependent Weighting Number of Iterations Log likel: Number of Info. Crit Finite S Info. Crit Info. Crit Restricted Chi square Degrees of Prob[ChiSe Underlying Cell fo Y Count H 0 89 3 267	g probabilities b requencies for ou Freq Y Count Fre .045 1 55 .02 .137 4 336 .17	1939 14 -2622.995 9 2.71480 2.71484 2.74065 2.72430 -2634.772 23.55427 4 .9810369E-04 vased on Normal			
Variable	Coefficient S	tandard Error b/	St.Er.	P[Z >z]	Mean of X
In Constant AGE EDUC FEMALE HHNINC Mu(1) Mu(2) Mu(3)	ndex function for 1.98785052 01237740 .01798743 .09599181 .13604164 nreshold paramete .24287214 .67874854	rprobability .23413738 .00293176 - .01553417 .05307917 .18479073 rs for index .02704191 .03076131 2 .02944830 3	8.490 4.222 1.158 1.808 .736 8.981 2.065 9.084	.0000 .0000 .2469 .0705 .4616 .0000 .0000	46.3140794 10.5102719 .52037133 .33073435




HOPit Model

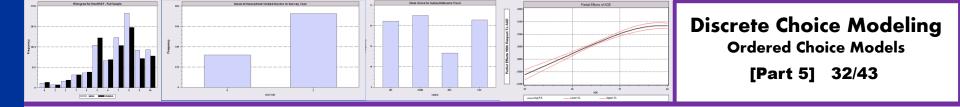
++	
Ordered Probability Model	
Dependent variable HSAT Weighting variable None Number of observations 1939	
Number of observations 1939	
Iterations completed 16 Log likelihood function -2622.269	
Log likelihood function -2622.269	
Number of parameters 11	
Info. Criterion: AIC = 2.71611	
Finite Sample: AIC = 2.71618	
Info. Criterion: BIC = 2.74771	
Info. Criterion:HQIC = 2.72773	
Restricted log likelihood -2634.772	
Chi squared 25.00667	
Number of parameters 11 Info. Criterion: AIC = 2.71611 Finite Sample: AIC = 2.71618 Info. Criterion: BIC = 2.74771 Info. Criterion: HQIC = 2.72773 Restricted log likelihood -2634.772 Chi squared 25.00667 Degrees of freedom 4 Prob[ChiSqd > value] = .5015413E-04	
Prob[ChiSqd > value] = .5015413E-04	
Underlying probabilities based on Normal	
Cell frequencies for outcomes	
Y Count Freq Y Count Freq Y Count Freq	
0 89.045 1 55.028 2 158.081	
3 267 .137 4 336 .173 5 1034 .533	
HOPIT (covariates in thresholds) model	
++	+
Variable Coefficient Standard Error b/St.Er. P[Z >z] Mean of X
++++++++	+
Index function for probability Constant 1.92291596 .25039254 7.680 .	
Constant 1.92291596 .25039254 7.680 .	0000
AGE01097834 .00313151 -3.506 . EDUC .01790608 .01703842 1.051 . FEMALE .09800495 .05307626 1.846 .	0005 46.3140794
EDUC .01790608 .01703842 1.051 .	2933 10.5102719
FEMALE .09800495 .05307626 1.846 .	0648 .52037133
HHNINC .13128664 .17744955 .740 .	<u>4594</u> .33073435
Estimates of t(j) in mu(j)=exp[t(j)+d*z]	
Theta(1) -1.44465511 .14963340 -9.655 .	0000
Theta(2)41703432 .09847125 -4.235 .	0000
Theta(3) .11112389 .08371803 1.327 .	1844
Theta(4) .449/1160 .0/809864 5.758 .	0000
Estimates of t(j) in mu(j)=exp[t(j)+d*z] Theta(1) -1.44465511 .14963340 -9.655 . Theta(2)41703432 .09847125 -4.235 . Theta(3) .11112389 .08371803 1.327 . Theta(4) .44971160 .07809864 5.758 . Threshold covariates mu(j)=exp[t(j)+d*z] HHKIDS03932779 .03943145997 .	2106
INSURANC .04440841 .07060503 .629 .	
INSURANC .0110011 .07060505 .029 .	5254

Differential Item Functioning



A Vignette Random Effects Model

To use all the information in the sample, the log likelihood function is the sum of the two parts, with the restriction on the common threshold parameters,


$$\log L = \sum_{i=1}^{N} \log \sum_{j=0}^{J} B_{i,j} \begin{bmatrix} \Phi(\tau_{i,j} - (\beta_0 - \lambda_0) - (\beta' \mathbf{x}_i - \gamma'_0 \mathbf{z}_i)) - \\ \Phi(\tau_{i,j-1} - (\beta_0 - \lambda_0) - (\beta' \mathbf{x}_i - \gamma'_0 \mathbf{z}_i)) \end{bmatrix} \\ + \sum_{q=1}^{Q} \sum_{m=1}^{M} \log \sum_{j=0}^{J} B_{q,j,m} \begin{bmatrix} \Phi\{\frac{1}{\sigma} \begin{bmatrix} \tau_{q,j} - (\theta_m - \lambda_0) - \gamma'_0 \mathbf{z}_q \end{bmatrix}\} - \\ \Phi\{\frac{1}{\sigma} \begin{bmatrix} \tau_{q,j-1} - (\theta_m - \lambda_0) - \gamma'_0 \mathbf{z}_q \end{bmatrix}\} \end{bmatrix}$$

Vignettes

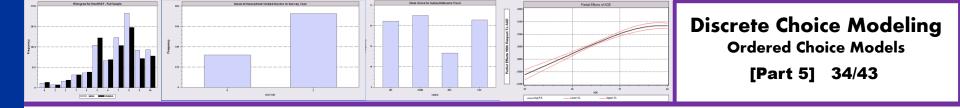
TABLE 2.	Comparing Political Ef	Ordered		Our M	lethod
Eq.	Variable	Coeff.	(SE)	Coeff.	(SE)
μ	China	0.670	(0.082)	-0.364	(0.090)
	Age	0.004	(0.003)	0.006	(0.003)
	Male	0.087	(0.076)	0.114	(0.081)
	Education	0.020	(0.008)	0.020	(0.008)
τ ¹	China		()	-1.059	(0.059)
	Age			0.002	(0.001)
	Male			0.044	(0.036)
	Education			-0.001	(0.004)
	Constant	0.425	(0.147)	0.431	(0.151)
τ ²	China		X /	-0.162	(0.071)
	Age			-0.002	(0.002)
	Male			-0.059	(0.051)
	Education			0.001	(0.006)
	Constant	-0.320	(0.059)	-0.245	(0.114)
τ ³	China		(<i>'</i>	0.345	(0.053)
	Age			-0.001	(0.002)
	Male			0.044	(0.047)
	Education			-0.003	(0.005)
	Constant	-0.449	(0.074)	-0.476	(0.105)
τ^4	China		ι <i>γ</i>	0.631	(0.083)
	Age			0.004	(0.002)
	Male			-0.097	(0.072)
	Education			0.027	(0.007)
	Constant	-0.898	(0.119)	-1.621	(0.149)
Vignettes	θ_1			1.284	(0.161)
•	θ_2			1.196	(0.160)
	θ_3			0.845	(0.159)
	θ_4			0.795	(0.159)
	θ_5			0.621	(0.159)
lnσ	-			-0.239	(0.042)

Note: Ordered probit indicates counterintuitively and probably incorrectly that the Chinese have higher political efficacy than the Mexicans, whereas our approach reveals that this is because the Chinese have comparatively lower standards (τ 's) for moving from one categorical response into the next highest category. The result is that although the Chinese give higher reported levels of political efficacy than the Mexicans, it is the Mexicans who are in fact more politically efficacious.

Qual Life Res DOI 10.1007/s11136-013-0615-2

Anchoring vignettes for health comparisons: an analysis of response consistency

Nicole Au · Paula K. Lorgelly



Abstract

Purpose Self-rated health (SRH) is widely used to measure and compare the health status of different groups of individuals. However, SRH can suffer from heterogeneity in reporting styles, making health comparisons problematic. Anchoring vignettes is a promising technique for improving inter-group comparisons of SRH. A key identifying assumption of the approach is response consistency—that respondents rate themselves using the same underlying response scale that they rate the vignettes. Despite growing research into response consistency, it remains unclear how respondents rate vignettes and why respondents may not assess vignettes and themselves consistently.

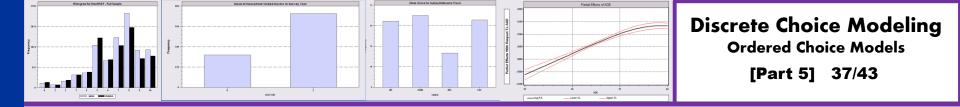
Method Vignettes for the EQ-5D-5L were developed and included in an online survey. In-depth interviews were conducted with participants following survey completion. Response consistency was examined through qualitative analysis of the interview responses and quantitative coding of participants' thought processes.

Introduction


Self-rated measures of general health have been shown to be good predictors of mortality and morbidity [1-3], and are widely used to measure and compare the health status of individuals. Self-rated health (SRH) measures have been used in a range of applications, including evaluations of health programs [4, 5], patient-reported outcomes [5-8] and monitoring of population health [9, 10]. In its simplest form, SRH asks individuals to evaluate their overall health on a five-point scale, while more comprehensive measures of SRH, such as the EQ-5D [11], aim to capture overall health-related quality of life (HRQL) using a number of questions about specific health dimensions (such as mobility and pain).

Panel Data

Fixed Effects


- The usual incidental parameters problem
- Practically feasible but methodologically ambiguous
- Partitioning Prob(y_{it} > j|x_{it}) produces estimable binomial logit models. (Find a way to combine multiple estimates of the same β.
- Random Effects
 - Standard application
 - Extension to random parameters see above

Incidental Parameters Problem

Table 9.1 Monte Carlo Analysis of the Bias of the MLE in Fixed Effects Discrete Choice Models (Means of empirical sampling distributions, N = 1,000 individuals, R = 200 replications)

			· ·	-			
	T=	= 2	T=	= 3	T=	= 5	
	β	δ	β	δ	β	δ	
Logit	2.020	2.027	1.698	1.668	1.379	1.323	
Probit	2.083	1.938	1.821	1.777	1.589	1.407	
Ordered Probit	2.328	2.605	1.592	1.806	1.305	1.415	
	T	T=8		10	T = 20		
	β	δ	β	δ	β	δ	
Logit	1.217	1.156	1.161	1.135	1.069	1.062	
Probit	1.328	1.243	1.247	1.169	1.108	1.068	
Ordered Probit	1.166	1.220	1.131	1.158	1.058	1.068	

A Dynamic Ordered Probit Model

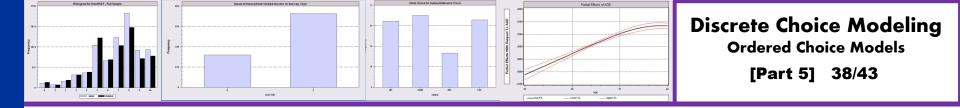
Issue

Research Article

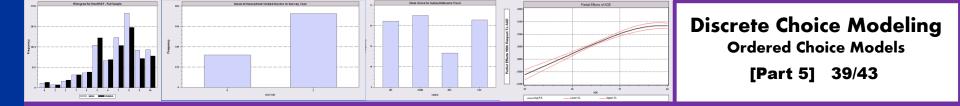
The dynamics of health in the British Household Panel Survey

Paul Contoyannis¹, Andrew M. Jones^{2,*}, Nigel Rice³

Article first published online: 9 AUG 2004


DOI: 10.1002/jae.755

Copyright © 2004 John Wiley & Sons, Ltd.


Journal of Applied Econometrics

Volume 19, Issue 4, pages 473–503, July/August 2004

Model for Self Assessed Health

- British Household Panel Survey (BHPS)
 - Waves 1-8, 1991-1998
 - Self assessed health on 0,1,2,3,4 scale
 - Sociological and demographic covariates
 - Dynamics inertia in reporting of top scale
- Dynamic ordered probit model
 - Balanced panel analyze dynamics
 - Unbalanced panel examine attrition

Dynamic Ordered Probit Model

Latent Regression - Random Utility $h_{it}^* = \beta' \mathbf{x}_{it} + \gamma' \mathbf{H}_{i,t-1} + \alpha_i + \varepsilon_{it}$ $\mathbf{x}_{it} = \text{relevant covariates and control variables}$ $\mathbf{H}_{i,t-1} = 0/1 \text{ indicators of reported health status in previous period}$ $\mathbf{H}_{i,t-1}(j) = 1[\text{Individual i reported h}_{it} = j \text{ in previous period}], j=0,...,4$

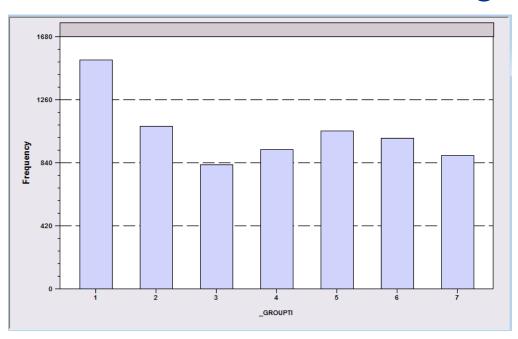
Ordered Choice Observation Mechanism

$$h_{it} = j \text{ if } \mu_{j-1} < h_{it}^* \leq \mu_j, j = 0, 1, 2, 3, 4$$

Ordered Probit Model - $\varepsilon_{it} \sim N[0,1]$

Random Effects with Mundlak Correction and Initial Conditions $\alpha_i = \alpha_0 + [\alpha'_1 \mathbf{H}_{i,1} + \alpha'_2 \mathbf{\bar{x}}_i] + u_i, \ u_i \sim N[0,\sigma^2]$

Testing for Attrition Bias


Table 9: Verbeek and Nijman tests for attrition: based on dynamic ordered probit models with Wooldridge specification of correlated effects and initial conditions

		MEN				WOMEN		
	β	Std.err.	t-test	p-value	β	Std.err.	t-test	p-value
NEXT WAVE	.199	.035	5.67	.000	.060	.034	1.77	.077
ALL WAVES	.139	.031	4.46	.000	.071	.029	2.45	.014
NUMBER OF	.031	.009	3.54	.000	.016	.008	1.88	.060
WAVES								

Three dummy variables added to full model with unbalanced panel suggest presence of attrition effects.

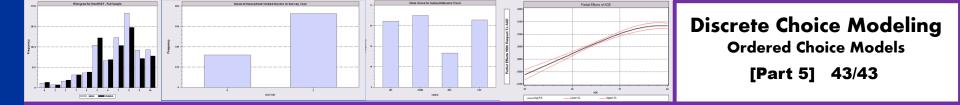
Attrition Model with IP Weights

Assumes (1) Prob(attrition|all data) = Prob(attrition|selected variables) (ignorability) (2) Attrition is an 'absorbing state.' No reentry. Obviously not true for the GSOEP data above. Can deal with point (2) by isolating a subsample of those present at wave 1 and the monotonically shrinking subsample as the waves progress.

Inverse Probability Weighting

Panel is based on those present at WAVE 1, N1 individuals Attrition is an absorbing state. No reentry, so $N1 \ge N2 \ge ... \ge N8$. Sample is restricted at each wave to individuals who were present at the previous wave.

- $d_{it} = 1$ [Individual is present at wave t].
- $\mathbf{d}_{i1} = 1 \quad \forall \quad \mathbf{i}, \, \mathbf{d}_{it} = \mathbf{0} \implies \mathbf{d}_{i,t+1} = \mathbf{0}.$
- $\tilde{\mathbf{x}}_{i1}$ = covariates observed for all i at entry that relate to likelihood of being present at subsequent waves.

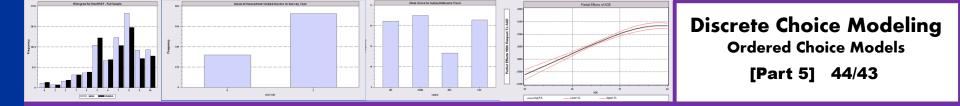

(health problems, disability, psychological well being, self employment, unemployment, maternity leave, student, caring for family member, ...)

Probit model for $d_{it} = 1[\delta' \tilde{\mathbf{x}}_{i1} + w_{it}]$, t = 2,...,8. $\hat{\pi}_{it} =$ fitted probability.

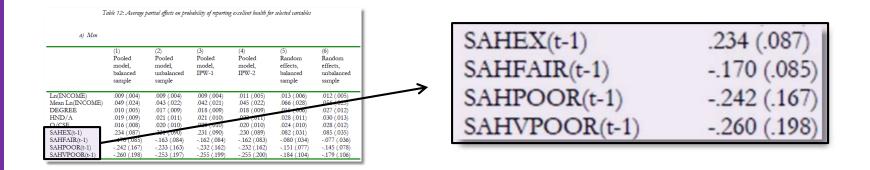
Assuming attrition decisions are independent, $\hat{P}_{it} = \prod_{s=1}^{t} \hat{\pi}_{is}$

Inverse probability weight $\hat{W}_{it} = \frac{d_{it}}{\hat{P}_{it}}$

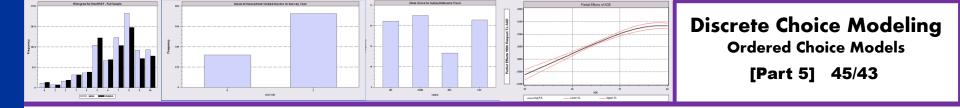
Weighted log likelihood $\log L_W = \sum_{i=1}^{N} \sum_{t=1}^{8} \log L_{it}$ (No common effects.)



Estimated Partial Effects by Model


Table 12: Average partial effects on probability of reporting excellent health for selected variables

a) Men


	(1) Pooled model, balanced sample	(2) Pooled model, unbalanced sample	(3) Pooled model, IPW-1	(4) Pooled model, IPW-2	(5) Random effects, balanced sample	(6) Random effects, unbalanced sample
Ln(INCOME)	.009 (.004)	.009 (.004)	.009 (.004)	.011 (.005)	.013 (.006)	.012 (.005)
Mean Ln(INCOME)	.049 (.024)	.043 (.022)	.042 (.021)	.045 (.022)	.066 (.028)	.056 (.025)
DEGREE	.010 (.005)	.017 (.009)	.018 (.009)	.018 (.009)	.015 (.006)	.027 (.012)
HND/A	.019 (.009)	.021 (.011)	.021 (.010)	.022 (.011)	.028 (.011)	.030 (.013)
O/CSE	.016 (.008)	.020 (.010)	.020 (.010)	.020 (.010)	.024 (.010)	.028 (.012)
SAHEX(t-1)	.234 (.087)	.231 (.090)	.231 (.090)	.230 (.089)	.082 (.031)	.085 (.035)
SAHFAIR(t-1)	170 (.085)	163 (.084)	162 (.084)	162 (.083)	080 (.034)	077 (.036)
SAHPOOR(t-1)	242 (.167)	233 (.163)	232 (.162)	232 (.162)	151 (.077)	145 (.078)
SAHVPOOR(t-1)	260 (.198)	253 (.197)	255 (.199)	255 (.200)	184 (.104)	179 (.106)

Partial Effect for a Category

These are 4 dummy variables for state in the previous period. Using first differences, the 0.234 estimated for SAHEX means transition from EXCELLENT in the previous period to GOOD in the previous period, where GOOD is the omitted category. Likewise for the other 3 previous state variables. The margin from 'POOR' to 'GOOD' was not interesting in the paper. The better margin would have been from EXCELLENT to POOR, which would have (EX,POOR) change from (1,0) to (0,1).

Model Extensions

- Multivariate
 - Bivariate
 - Multivariate
- Inflation and Two Part
 - Zero inflation
 - Sample Selection
 - Endogenous Latent Class

A Sample Selection Model

Dependen Number o Log like	l Probit Model nt variable PUBLIC of observations 4483 elihood function -1471.427 ted log likelihood -1711.545		HEAL HEAL (HEA	TH_i^* TH_i LTH_i	$= \hat{\boldsymbol{\beta}}' \mathbf{x}_i + j \text{ if } \mu_i$	$_{j-1} < HEALT$ wed when PUI			
/ariable 	Coeff.	+ Standard Error	b/St.Er. 	Prob. 	Coeff. 	St Er	andard ror	b/St.Er.	Prob.
		+ ction for	•	•	•	•			• •
AGE	0054	.0025	-2.181		•				
BDUC	1804	.0093	-19.394	.0000	196	7	.0094	-21.016	.0000
HANDDUM	.6710	.0803	8.353	.0000	.288	1	.0980	2.939	.0033
+	Index fun	ction for	ordered	probit	l				I
Constant	2.2347	.1270	17.590	.0000	Binary 🛛	Choi	.ce Mode	el Predict	tions
AGE	0160	.0016	-9.780		l				I
3DUC	0314	.0092	-3.398	.0007	Actual	0	1	Total	I
	.2384		2.399		•			572	
IARRIED	0093	.0386	242	.8089	1	141	L 3770	3911	I
KIDS	.0545		1.466		Total	305	6 4178	4483	I
·+	Threshold	paramete	rs for in	ıdex					I
	.9695		24.581		•				I
	2.2399		42.718		•				I
Iu(3)	2.7091	.0547	49.519	.0000	l				I
Rho(u,e)	.8080	.0452	17.880	.0000					