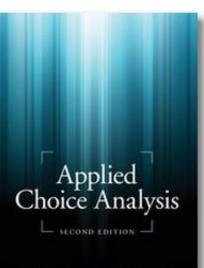


Discrete Choice Modeling

- 0 Introduction
- 1 Summary
- 2 Binary Choice
- 3 Panel Data
- 4 Bivariate Probit
- 5 Ordered Choice
- 6 Count Data
- 7 Multinomial Choice
- 8 Nested Logit
- 9 Heterogeneity
- 10 Latent Class
- 11 Mixed Logit
- 12 Stated Preference
- 13 Hybrid Choice


William Greene Stern School of Business New York University

Applied Choice Analysis A Primer

David A. Hensher, John M. Rose, and William H. Greene

David A. Hensher, John M. Rose and William H. Greene

A Microeconomics Platform

Consumers Maximize Utility (!!!)

- Fundamental Choice Problem: Maximize U(x₁,x₂,...) subject to prices and budget constraints
- □ A Crucial Result for the Classical Problem:
 - Indirect Utility Function: V = V(p,I)
 - Demand System of Continuous Choices

$$\mathbf{x}_{j}^{*} = -\frac{\partial V(\mathbf{p}, \mathbf{I}) / \partial \mathbf{p}_{j}}{\partial V(\mathbf{p}, \mathbf{I}) / \partial \mathbf{I}}$$


Observed data usually consist of choices, prices, income

The Integrability Problem: Utility is not revealed by demands

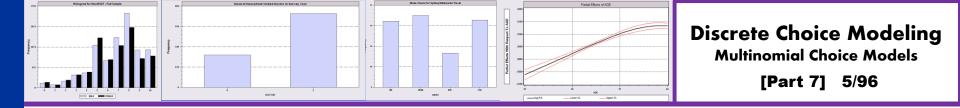
Implications for Discrete Choice Models

- Theory is silent about discrete choices
- **Translation of utilities to discrete choice requires:**
 - Well defined utility indexes: Completeness of rankings
 - Rationality: Utility maximization
 - Axioms of revealed preferences
- Consumers often act to simplify choice situations
- This allows us to build "models."
 - What common elements can be assumed?
 - How can we account for heterogeneity?
- However, revealed choices do not reveal utility, only rankings which are scale invariant.

Multinomial Choice Among J Alternatives

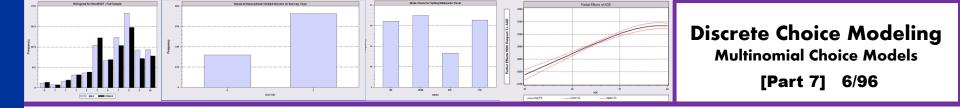
• Random Utility Basis

 $U_{itj} = \alpha_{ij} + \beta_i' \mathbf{x}_{itj} + \gamma_{ij} \mathbf{z}_{it} + \varepsilon_{ijt}$ i = 1,...,N; j = 1,...,J(i,t); t = 1,...,T(i)

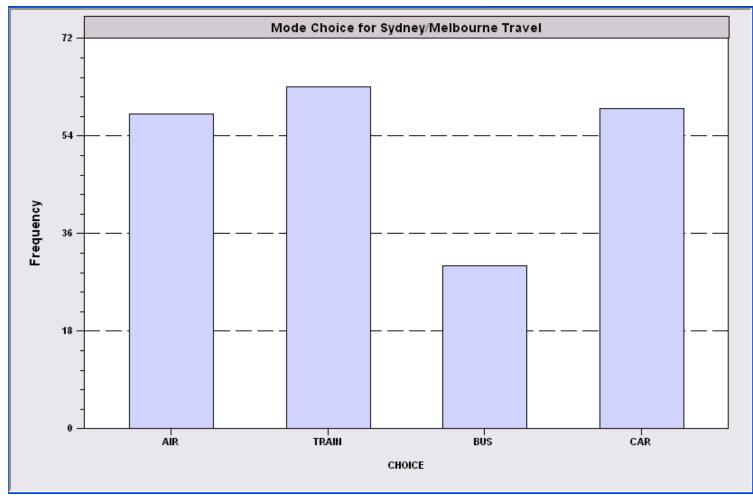

N individuals studied, J(i,t) alternatives in the choice set, T(i) [usually 1] choice situations examined.

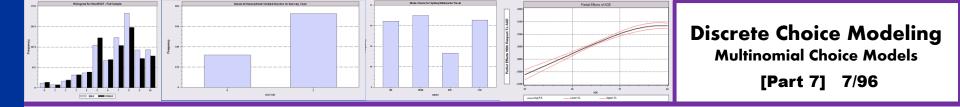
Maximum Utility Assumption

Individual i will Choose alternative j in choice setting t if and only if $U_{itj} \ge U_{itk}$ for all $k \ne j$.

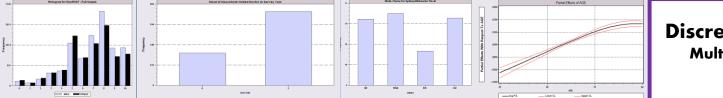

• Underlying assumptions

- Smoothness of utilities
- Axioms of utility maximization: Transitive, Complete, Monotonic




Features of Utility Functions

- **D** The linearity assumption $U_{itj} = \alpha_{ij} + \beta_i' \mathbf{x}_{itj} + \gamma_j' \mathbf{z}_{it} + \varepsilon_{ijt}$ To be relaxed later: $U_{itj} = V(\mathbf{x}_{itj}, \mathbf{z}_{it}, \beta_i) + \varepsilon_{ijt}$
- The choice set:
 - Individual (i) and situation (t) specific
 - Unordered alternatives j = 1,...,J(i,t)
- **Deterministic** $(\mathbf{x}, \mathbf{z}, \mathbf{\gamma}_j)$ and random components $(\alpha_{ij}, \beta_i, \varepsilon_{ijt})$
- **\square** Attributes of choices, \mathbf{x}_{iti} and characteristics of the chooser, \mathbf{z}_{it} .
 - Alternative specific constants α_{ij} may vary by individual
 - Preference weights, β_i may vary by individual
 - Individual components, γ_i typically vary by choice, not by person
 - Scaling parameters, $\sigma_{ij} = Var[\epsilon_{ijt}]$, subject to much modeling


Unordered Choices of 210 Travelers

Data on Multinomial Discrete Choices

CH	IOICE		ATTR	IBUTES		CHARACTERISTIC
MODE	TRAVEL	INVC	INVT	TTME	GC	HINC
AIR	.00000	59.000	100.00	69.000	70.000	35.000
TRAIN	.00000	31.000	372.00	34.000	71.000	35.000
BUS	.00000	25.000	417.00	35.000	70.000	35.000
CAR	1.0000	10.000	180.00	.00000	30.000	35.000
AIR	.00000	 58.000	68.000	64.000	68.000	30.000
TRAIN	.00000	31.000	354.00	44.000	84.000	30.000
BUS	.00000	25.000	399.00	53.000	85.000	30.000
CAR	1.0000	 11.000	255.00	.00000	50.000	30.000
AIR	.00000	127.00	193.00	69.000	148.00	60.000
TRAIN	.00000	109.00	888.00	34.000	205.00	60.000
BUS	1.0000	52.000	1025.0	60.000	163.00	60.000
CAR	.00000	 50.000	892.00	.00000	147.00	60.000
AIR	.00000	 44.000	100.00	64.000	59.000	70.000
TRAIN	.00000	25.000	351.00	44.000	78.000	70.000
BUS	.00000	20.000	361.00	53.000	75.000	70.000
CAR	1.0000	5.0000	180.00	.00000	32.000	70.000

Discrete Choice Modeling Multinomial Choice Models [Part 7] 8/96

Each person makes four choices from a choice set that includes either two or four alternatives.

The first choice is the RP between two of the RP alternatives

The second-fourth are the SP among four of the six SP alternatives.

There are ten alternatives in total.

	ID	CITY	SPRP	SPEXP	ALTIJ	CHSNMODE	ALTMODE	SPCHOIC	CHOSEN	CSET 1
1 »	1000	1	1	0	1	11	2	0	1	2
2 »	1000	1	1	0	4	11	2	0	0	2
3 »	1000	1	2	1	5	0	0	5	1	4
4 »	1000	1	2	1	6	0	0	5	0	4
5 »	1000	1	2	1	8	0	0	5	0	4
6 »	1000	1	2	1	10	0	0	5	0	4
7 »	1000	1	2	2	5	0	0	10	0	4
8 »	1000	1	2	2	6	0	0	10	0	4
9 »	1000	1	2	2	9	0	0	10	0	4
10 »	1000	1	2	2	10	0	0	10	1	4
11 »	1000	1	2	3	5	0	0	8	0	4
12 »	1000	1	2	3	6	0	0	8	0	4
13 »	1000	1	2	3	7	0	0	8	0	4
14 »	1000	1	2	3	8	0	0	8	1	4

A Stated Choice Experiment with Variable Choice Sets

Stated Choice Experiment: Unlabeled Alternatives, One Observation

		ID	BRAND	CHOICE	FASH	QUAL	PRICE	PRICESQ	ASC4	
Brand 1	1 »	1	1	0	0	0	0.12	0.0144	0	
Brand 2	2 »	1	2	1	1	0	0.12	0.0144	0	t=1
Brand 3	3 »	1	3	0	0	1	0.08	0.0064	0	
None	4 »	1	4	0	0	0	0	0	1	
	5 »	1	1	1	1	1	0.12	0.0144	0	
	6 »	1	2	0	0	1	0.12	0.0144	0	t=2
	7 »	1	3	0	1	0	0.12	0.0144	0	
	8 »	1	4	0	0	0	0	0	1	
Brand 1	9 »	1	1	0	0	1	0.08	0.0064	0	
Brand 2	10 »	1	2	0	1	1	0.2	0.04	0	t=3
Brand 3	11 »	1	3	1	1	0	0.08	0.0064	0	
None	12 »	1	4	0	0	0	0	0	1	
	13 »	1	1	0	0	0	0.08	0.0064	0	
	14 »	1	2	1	0	1	0.16	0.0256	0	t=4
	15 »	1	3	0	1	1	0.2	0.04	0	(- 4
	16 »	1	4	0	0	0	0	0	1	
Brand 1	17 »	1	1	1	0	0	0.04	0.0016	0	
Brand 2	18 »	1	2	0	1	0	0.12	0.0144	0	1 E
Brand 3	19 »	1	3	0	1	0	0.08	0.0064	0	t=5
None	20 »	1	4	0	0	0	0	0	1	
	21 »	1	1	0	0	0	0.08	0.0064	0	
	22 »	1	2	0	0	1	0.12	0.0144	0	
	23 »	1	3	1	1	0	0.08	0.0064	0	t=6
	24 »	1	4	0	0	0	0	0	1	
Brand 1	25 »	1	1	0	1	1	0.2	0.04	0	
Brand 2	26 »	1	2	1	0	0	0.08	0.0064	0	
Brand 3	27 »	1	3	0	0	1	0.08	0.0064	0	t=7
None	28 »	. 1	4	0	0	. 0	0	0	1	
	29 »	. 1	1	0	0	1	0.08	0.0064	0	
	30 »	. 1	2	1	1	0	0.12	0.0144	0	
	31 »	. 1	3	0	0	0	0.04	0.0016	0	t=8
	32 »	. 1	4	0	0	0	0.04	0.0010	1	
	52 //		4		0					

Unlabeled Choice Experiments

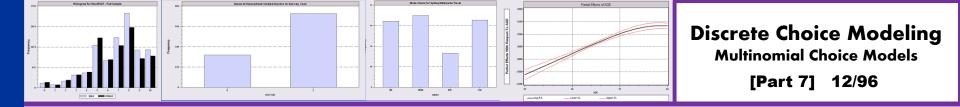

This an unlabelled choice experiment: Compare Choice = (Air, Train, Bus, Car)

То

Choice = (Brand 1, Brand 2, Brand 3, None) Brand 1 is only Brand 1 because it is first in the list.

What does it mean to substitute Brand 1 for Brand 2?

What does the own elasticity for Brand 1 mean?


The Multinomial Logit (MNL) Model

Independent extreme value (Gumbel):

- F(Eitj) = Exp(-Exp(-Eitj)) (random part of each utility)
- Independence across utility functions
- Identical variances (means absorbed in constants)
- **Same parameters** for all individuals (temporary)

Implied probabilities for observed outcomes

$$\begin{aligned} \mathsf{P}[\mathsf{choice} = j \mid \mathbf{x}_{\mathsf{itj}}, \mathbf{z}_{\mathsf{it}}, \mathsf{i}, \mathsf{t}] &= \mathsf{Prob}[\mathsf{U}_{\mathsf{i},\mathsf{t},\mathsf{j}} > \mathsf{U}_{\mathsf{i},\mathsf{t},\mathsf{k}}], \ \mathsf{k} = 1, \dots, \mathsf{J}(\mathsf{i}, \mathsf{t}) \\ &= \frac{\exp(\alpha_{\mathsf{j}} + \boldsymbol{\beta}' \mathbf{x}_{\mathsf{itj}} + \boldsymbol{\gamma}_{\mathsf{j}}' \mathbf{z}_{\mathsf{it}})}{\sum_{\mathsf{j}=1}^{\mathsf{J}(\mathsf{i},\mathsf{t})} \exp(\alpha_{\mathsf{j}} + \boldsymbol{\beta}' \mathbf{x}_{\mathsf{itj}} + \boldsymbol{\gamma}_{\mathsf{j}}' \mathbf{z}_{\mathsf{it}})} \end{aligned}$$

Multinomial Choice Models

Multinomial logit model depends on characteristics

$$P[\text{choice} = j | \mathbf{z}_{it}, i, t] = \frac{\exp(\alpha_j + \mathbf{\gamma}_j \mathbf{z}_{it})}{\sum_{j=1}^{J(i,t)} \exp(\alpha_j + \mathbf{\gamma}_j \mathbf{z}_{it})}$$

Conditional logit model depends on attributes

$$P[\text{choice} = j \mid \mathbf{x}_{itj}, i, t] = \frac{\exp(\alpha_j + \boldsymbol{\beta}' \mathbf{x}_{itj})}{\sum_{j=1}^{J(i,t)} \exp(\alpha_j + \boldsymbol{\beta}' \mathbf{x}_{itj})}$$

THE multinomial logit model accommodates both.

$$\mathsf{P}[\mathsf{choice} = j \mid \mathbf{x}_{\mathsf{itj}}, \mathbf{z}_{\mathsf{it}}, \mathsf{i}, \mathsf{t}] = \frac{\exp(\alpha_j + \boldsymbol{\beta}' \mathbf{x}_{\mathsf{itj}} + \boldsymbol{\gamma}_j' \mathbf{z}_{\mathsf{it}})}{\sum_{j=1}^{J(\mathsf{i},\mathsf{t})} \exp(\alpha_j + \boldsymbol{\beta}' \mathbf{x}_{\mathsf{itj}} + \boldsymbol{\gamma}_j' \mathbf{z}_{\mathsf{it}})}$$

There is no meaningful distinction.

Specifying the Probabilities

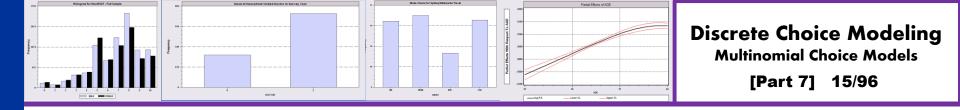
- Choice specific attributes (X) vary by choices, multiply by generic coefficients. E.g., TTME=terminal time, GC=generalized cost of travel mode
- Generic characteristics (Income, constants) must be interacted with choice specific constants.
- Estimation by maximum likelihood; $d_{ij} = 1$ if person i chooses j

 $P[choice = j | \mathbf{x}_{itj}, \mathbf{z}_{it}, i, t] = Prob[U_{i,t,j} > U_{i,t,k}], \ k = 1, ..., J(i, t)$ $= \frac{exp(\alpha_j + \boldsymbol{\beta' x}_{itj} + \boldsymbol{\gamma}_j ' \mathbf{z}_{it})}{\sum_{j=1}^{J(i,t)} exp(\alpha_j + \boldsymbol{\beta' x}_{itj} + \boldsymbol{\gamma}_j ' \mathbf{z}_{it})}$ $logL = \sum_{i=1}^{N} \sum_{j=1}^{J(i)} d_{ij}logP_{ij}$

Using the Model to Measure Consumer Surplus

Consumer Surplus = $\frac{Maximum_{j}(U_{j})}{Marginal Utility of Income}$

Utility and marginal utility are not observable

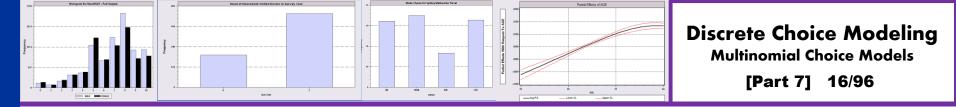

For the multinomial logit model (only),

$$\mathsf{E}[\mathsf{CS}] = \frac{1}{\mathsf{MU}_{\mathrm{I}}} \log \left(\sum_{j=1}^{\mathsf{J}(i,t)} \exp(\alpha_j + \boldsymbol{\beta}' \mathbf{x}_{itj} + \boldsymbol{\gamma}_j' \mathbf{z}_{it}) \right) + \mathsf{C}$$

Where U_i = the utility of the indicated alternative and C

is the constant of integration.

The log sum is the "inclusive value."



Measuring the Change in Consumer Surplus

$$E[CS | Scenario A] = \frac{1}{MU_{I}} \log \left(\sum_{j=1}^{J(i,t)} \exp(\alpha_{j} + \boldsymbol{\beta' x}_{itj} + \boldsymbol{\gamma}_{j} \boldsymbol{z}_{it}) | A \right) + C$$
$$E[CS | Scenario B] = \frac{1}{MU_{I}} \log \left(\sum_{j=1}^{J(i,t)} \exp(\alpha_{j} + \boldsymbol{\beta' x}_{itj} + \boldsymbol{\gamma}_{j} \boldsymbol{z}_{it}) | B \right) + C$$

MU₁ and the constant of integration do not change under scenarios. Change in expected consumer surplus from a policy (scenario) change

$$E[CS | Scenario A] - E[CS | Scenario B]$$
$$= \frac{1}{MU_{I}} \left[log \frac{\sum_{j=1}^{J(i,t)} \left\{ exp(\alpha_{j} + \boldsymbol{\beta' x}_{itj} + \boldsymbol{\gamma}_{j}' \boldsymbol{z}_{it}) | A \right\}}{\sum_{j=1}^{J(i,t)} \left\{ exp(\alpha_{j} + \boldsymbol{\beta' x}_{itj} + \boldsymbol{\gamma}_{j}' \boldsymbol{z}_{it}) | B \right\}} \right]$$

Willingness to Pay

Generally a ratio of coefficients

WTP = $\frac{\beta(\text{Attribute Level})}{\beta(\text{Income})}$

Use negative of cost coefficient as a proxu for MU of income

WTP = $\frac{\text{negative }\beta(\text{Attribute Level})}{\beta(\text{cost})}$


Measurable using model parameters

Ratios of possibly random parameters can produce wild and unreasonable values. We will consider a different approach later.

Observed Data

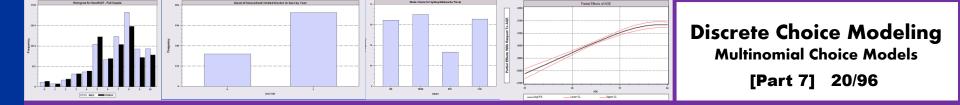
- Types of Data
 - Individual choice
 - Market shares consumer markets
 - Frequencies vote counts
 - Ranks contests, preference rankings
- Attributes and Characteristics
 - Attributes are features of the choices such as price
 - Characteristics are features of the chooser such as age, gender and income.
- Choice Settings
 - Cross section
 - Repeated measurement (panel data)
 - Stated choice experiments
 - Repeated observations THE scanner data on consumer choices

Choice Based Sampling

Over/Underrepresenting alternatives in the data set

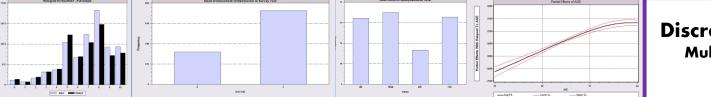
Choice	Air	Train	Bus	Car
True	0.14	0.13	0.09	0.64
Sample	0.28	0.30	0.14	0.28

- May cause biases in parameter estimates. (Possibly constants only)
- Certainly causes biases in estimated variances
 - Weighted log likelihood, weight = π_j / F_j for all i.
 - Fixup of covariance matrix use "sandwich" estimator. Using weighted Hessian and weighted BHHH in the center of the sandwich



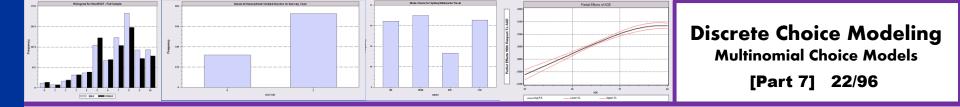
Discrete Choice Modeling Multinomial Choice Models [Part 7] 19/96

Data on Discrete Choices


CH	IOICE		ATTRI	BUTES		CHARACTERISTIC
MODE	TRAVEL	INVC	INVT	TTME	GC	HINC
AIR	.00000	59.000	100.00	69.000	70.000	35.000
TRAIN	.00000	31.000	372.00	34.000	71.000	35.000
BUS	.00000	25.000	417.00	35.000	70.000	35.000
CAR	1.0000	10.000	180.00	.00000	30.000	35.000
AIR	.00000	58.000	68.000	64.000	68.000	30.000
TRAIN	.00000	31.000	354.00	44.000	84.000	30.000
BUS	.00000	25.000	399.00	53.000	85.000	30.000
CAR	1.0000	11.000	255.00	.00000	50.000	30.000
AIR	.00000	127.00	193.00	69.000	148.00	60.000
TRAIN	.00000	109.00	888.00	34.000	205.00	60.000
BUS	1.0000	52.000	1025.0	60.000	163.00	60.000
CAR	.00000	50.000	892.00	.00000	147.00	60.000
AIR	.00000	44.000	100.00	64.000	59.000	70.000
TRAIN	.00000	25.000	351.00	44.000	78.000	70.000
BUS	.00000	20.000	361.00	53.000	75.000	70.000
CAR	1.0000	5.0000	180.00	.00000	32.000	70.000

This is the 'long form.' In the 'wide form,' all data for the individual appear on a single 'line'. The 'wide form' is unmanageable for models of any complexity and for stated preference applications.

An Estimated MNL Model


Discrete choic		-		
Dependent vari	l function	-199.97662		
Estimation bas				
Information Cr	iteria: Norm	alization=1/N		
	Normalized	Unnormalized		
AIC	1.95216	409.95325		
Fin.Smpl.AIC				
Bayes IC				
Hannan Quinn				
R2=1-LogL/LogI				
Constants only				
Chi-squared[2				
Prob [chi squ				
Response data	-			
Number of obs.		= =		
Variable Coef	ficient S		b/St.Er.	P[Z >z]
		.00438		0003
		.01044		
•		. 65592		
—		.44199		
_	8.21073***		7.140	

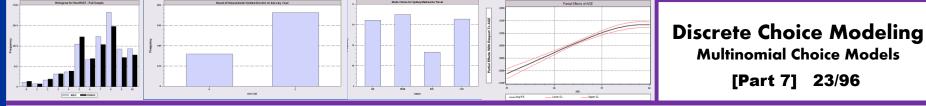
Discrete Choice Modeling Multinomial Choice Models [Part 7] 21/96

Estimated MNL Model

		nial logit) mode	1	
Dependent v	variable	Choice -199.97662		
Log likelih	nood function	-199.97662		
Estimation	based on $N =$	210, К = 5		
Information	n Criteria: Nor	cmalization=1/N		
	Normalized	Unnormalized		
AIC	1.95216	409.95325		
Fin.Smpl.AI	C 1.95356	410.24736		
Bayes IC	2.03185	426.68878		
Hannan Quir	in 1.98438	416.71880		
R2=1-LogL/I	ogL* Log-L fno	on R-sqrd R2Adj		
Constants o	only -283.758	38 .2953 .2896		
Chi-squared	1[2]	= 167.56429		
Prob [chi	squared > valu	ue]= .00000		
Response da	ata are given a	as ind. choices		
Number of c	bs.= 210, sk	tipped 0 obs		
+				
		Standard Error		P[Z >z]
GC	01578***	.00438	-3.601	.0003
TTME	09709***	.01044		
A_AIR	5.77636***	. 65592	8.807	.0000
A_TRAIN	3.92300***	.44199	8.876	.0000
ABUS	3.21073***	.44965	7.140	.0000
I				

Model Fit Based on Log Likelihood

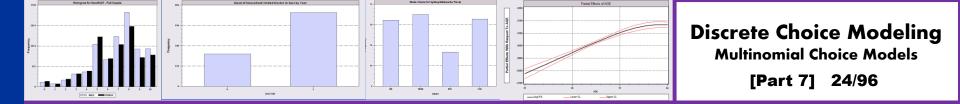
Three sets of predicted probabilities


■ No model: Pij = 1/J (.25)

• Constants only: Pij = $(1/N)\Sigma$ i dij

(58,63,30,59)/210=.286,.300,.143,.281 Constants only model matches sample shares

Estimated model: Logit probabilities

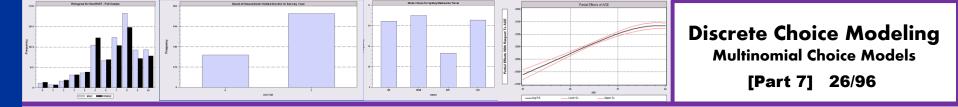

- Compute log likelihood
- Measure improvement in log likelihood with Pseudo R-squared = 1 – LogL/LogL₀ ("Adjusted" for number of parameters in the model.)

Fit the Model with Only ASCs

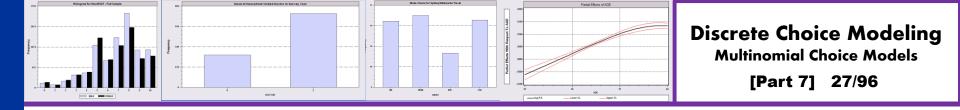

If the choice set varies across observations, this is the only way to obtain the restricted log likelihood.

Discrete cho	ice (multinomi	al logit) mode	1		
	riable	-		choice set	t is fixed at J, ther
-	od function		II the	choice se	t is fixed at 5, the
Estimation b	ased on N =	210, к = 3		7	(N)
Information	Criteria: Norm	alization=1/N	logI =	$= \sum_{j=1}^{J} N_{j}$	$\log\left(\frac{N_j}{N}\right)$
	Normalized	Unnormalized	iogli -		N
AIC	2.73104	573.51754			
Fin.Smpl.AIC	2.73159	573.63404		$\sum J$ M	1 ת
Bayes IC	2.77885	583.55886	=	$=\sum_{i=1}^{J}N_{i}$	$\log P_j$
Hannan Quinn	2.75037	577.57687		<u> </u>	·
R2=1-LogL/Lo	qL* Log-L fncn	R-sqrd R2Adj			
Constants on	ly -283.7588	.00000048			
Response dat	a are given as	ind. choices			
	s.= 210, ski	pped 0 obs			
Variable Co	efficient S	tandard Error	b/St.Er.	P[Z >z]	
•	01709	.18491	092	.9263	
A_TRAIN	.06560	.18117	.362	.7173	
A_BUS	67634***	.22424	-3.016	.0026	

Estimated MNL Model


Discrete choice (multin	omial logit) mode	e1		
Dependent variable	Choice			
Log likelihood function				
Estimation based on N =	210, К = 5			
Information Criteria: N	ormalization=1/N		$1 \log L$	
Normalize	d Unnormalized	Pseudo F	$R^2 = 1 - \frac{\log L}{\log L_0}.$	
AIC 1.9521	6 409.95325		~	
Fin.Smpl.AIC 1.9535	6 410.24736		2	$(N(J-1)) \log L$
Bayes IC 2.0318	5 426.68878	Adjusted	Pseudo $R^2 =$	$1 - \left(\frac{\mathrm{N}(\mathrm{J}-1)}{\mathrm{N}(\mathrm{J}-1)-\mathrm{K}}\right) \left(\frac{\log L}{\log L_0}\right)$
Hannan Quinn 1.9843	8 416.71880			$(\operatorname{IN}(J-1)-K)(\log L_0)$
R2=1-LogL/LogL* Log-L f	ncn R-sqrd R2Adj			
Constants only -283.7	588 .2953 .2896			
Chi-squared[2]	= 167.56429			
Prob [chi squared > va	lue] = .00000			
Response data are given	as ind. choices			
Number of obs.= 210,	skipped 0 obs			
+				
Variable Coefficient	Standard Error	b/St.Er.	P[Z >z]	
GC 01578***	.00438	-3.601	.0003	
TTME 09709***				
A AIR 5.77636***				
A TRAIN 3.92300***				
	.44965	7.140	.0000	
+				

Model Fit Based on Predictions


- □ N_j = actual number of choosers of "j."
- **D** Nfitj = Σ_i Predicted Probabilities for "j"
- Cross tabulate: Predicted vs. Actual, cell prediction is cell probability Predicted vs. Actual, cell prediction is the cell with the largest probability

Njk =
$$\Sigma$$
i dij × Predicted P(i,k)

Fit Measures Based on Crosstabulation

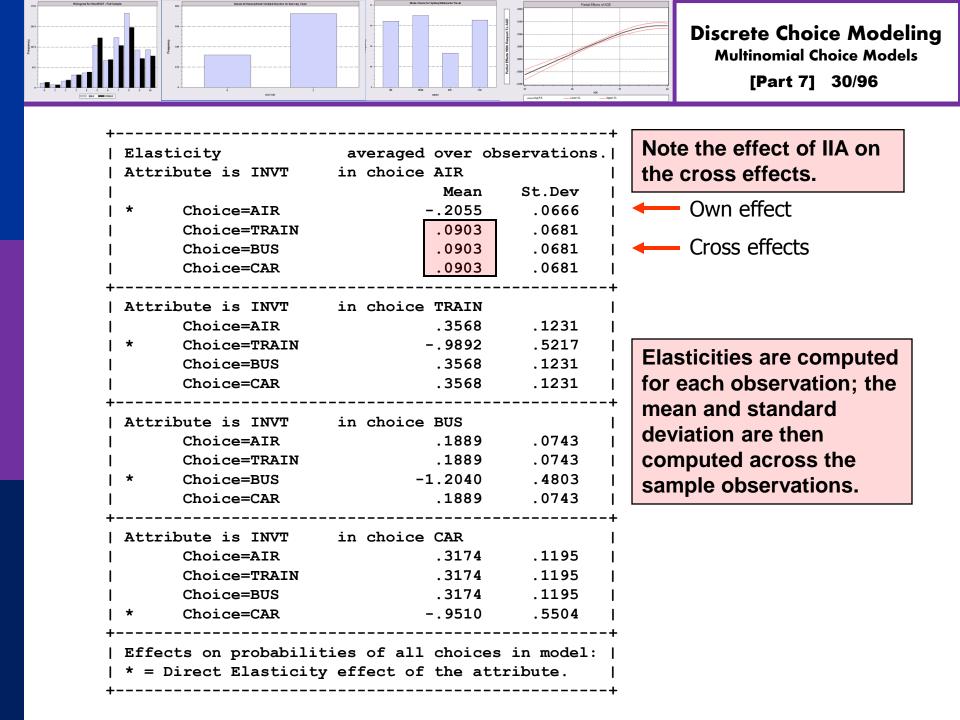
	+				-+	
	<pre>Cross tabulation of actual choice vs. predicted P(j) Row indicator is actual, column is predicted. Predicted total is F(k,j,i)=Sum(i=1,,N) P(k,j,i). Column totals may be subject to rounding error. </pre>					
	NLOGIT Cross I	abulation for	4 outcome Mu	ltinomial Choic	e Model	
	AIR	TRAIN	BUS	CAR	Total	
AIR	+ I <u>32</u>	·+ <u>8</u>	+ 5	+ 13	-++ 58	
TRAIN	8	37	I <u>5</u>	14	63	
BUS	3	15	15		30	
CAR	15	13	🛉 6	26	59	
Total	+ I 58	+ I 63	+ 30	+ I 59	-++ 210	
ICCUI	+	+	+	+	-++	
	NLOGIT Cross I	abulation for	4 outcome Co	nstants Only Ch	oice Model	
	AIR	TRAIN	BUS	CAR	Total	
AIR	16	I <u>17</u>	8	16	58	
TRAIN	17	19	I <u>+ 9</u>	18	63	
BUS	8	9	4	I <u>* 8</u>	30	
CAR	16	18	8	17	59	
Total	+ 58 +	63 +	30 +	59 +	210 -++	

Partial effects :

Change in attribute "k" of alternative "m" on the probability that the individual makes choice "j"

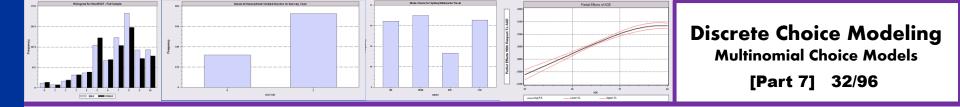
$$\frac{\partial \text{Prob}(j)}{\partial x_{m,k}} = \frac{\partial P_j}{\partial x_{m,k}} = P_j [1(j=m) - P_m] \beta_k$$

m = Car k = Price


Partial effects : k = Price Own effects : j = Train $\frac{\partial Prob(j)}{\partial x_{j,k}} = \frac{\partial P_j}{\partial x_{j,k}} = P_j [1 - P_j] \beta_k$ Cross effects : j = Train m = Car $\frac{\partial \text{Prob}(j)}{\partial x_{m,k}} = \frac{\partial P_j}{\partial x_{m,k}} = -P_j P_m \beta_k$

Elasticities for proportional changes :

$$\frac{\partial \log \operatorname{Prob}(j)}{\partial \log x_{m,k}} = \frac{\partial \log P_j}{\partial \log x_{m,k}} = \frac{x_{m,k}}{P_j} P_j [\mathbf{1}(j=m) - P_m] \beta_k$$
$$= [\mathbf{1}(j=m) - P_m] x_{m,k} \beta_k$$


Note the elasticity is the same for all j. This is a consequence of the IIA assumption in the model specification made at the outset.

Use Krinsky and Robb to compute standard errors for Elasticities

<pre>++ Elasticity averaged over observations. Effects on probabilities of all choices in model: * = Direct Elasticity effect of the attribute. ++</pre>						
Average e	lasticity c	of prob(alt)	wrt INVT	in A	AIR	
Choice	Coefficient	Standard Error	z	Prob. z >Z *		nfidence erval
AIR TRAIN BUS CAR	-1.33631*** .53493*** .53493*** .53493***	.14024 .04870 .04870 .04870 .04870	10.98 10.98	.0000 .0000 .0000 .0000	-1.61119 .43948 .43948 .43948 .43948	.63039 .63039
	★ ==> Signification estimated on Notest and Signature					
Average e	lasticity c	of prob(alt)	wrt INVT	in <i>P</i>	AIR	
Choice	Average Elasticity	Sample Sta Deviati		Sample Minimu		ple imum
AIR TRAIN BUS CAR	-1.33631 .53493 .53493 .53493 .53493	.05020 .04388 .04388 .04388	3 3	-4.60143 .00102 .00102 .00102	27 3.5 27 3.5	1069 4061 4061 4061 4061

Analyzing the Behavior of Market Shares to Examine Discrete Effects

- Scenario: What happens to the number of people who make specific choices if a particular attribute changes in a specified way?
- **•** Fit the model first, then using the identical model setup, add
 - ; Simulation = list of choices to be analyzed
 - ; Scenario = Attribute (in choices) = type of change

For the CLOGIT application

- ; Simulation = * ? This is ALL choices
- ; Scenario: GC(car)=[*]1.25\$ Car_GC rises by 25%

Discrete Choice Modeling Multinomial Choice Models

[Part 7] 33/96

shares when GC_CAR

Model Simulation

I Discrete Choice (One Level) Model I Model Simulation Using Previous Estimat I Number of observations 210) +
+	the choices. the choices. times the sample. ng error. observations.
Specification of scenario 1 is: Attribute Alternatives affected	
GC CAR 	s scenario:
TRAIN 30.000 63 31.748 67	Scenario - Base ChgShare ChgNumber 1.973% 4 1.748% 4 increases by 25%
BUS 14.286 30 15.189 32 CAR 28.095 59 23.472 49 Total 100.000 210 100.000 210	-4.624% -10

More Complicated Model Simulation

In vehicle cost of CAR falls by 10% Market is limited to ground (Train, Bus, Car)

CLOGIT ; Lhs = Mode

- ; Choices = Air,Train,Bus,Car
- ; Rhs = TTME,INVC,INVT,GC
- ; Rh2 = One ,Hinc
- ; Simulation = TRAIN, BUS, CAR
- ; Scenario: GC(car)=[*].9\$

Discrete Choice Modeling Multinomial Choice Models [Part 7] 35/96

Model Estimation Step

					-				
Discrete choice (multinomial logit) model									
Dependent variable Choice									
Log likelihood function -172.94366									
Estimation based on N = $210, K = 10$									
R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj									
Constants only -283.7588 .3905 .3807									
Chi-squared $[7] = 221.63022$									
• • •									
Prob [chi squared > value] = .00000									
Response data are given as ind. choices Number of obs.= 210, skipped 0 obs									
		= =							
-					-				
		Standard Error							
-					-				
		.01109							
INVC	08044***								
INVT	01399***	.00267	-5.240	.0000					
GC I	.07578***	.01833	4.134	.0000	-				
A AIR	4.37035***	1.05734	4.133	.0000					
AIR HIN1	.00428	.01306	.327	.7434	Alt				
—	5.91407***		8.572	.0000					
	05907***		-4.016	.0001	of				
—	4.46269***				Inc				
—	02295								

Alternative specific constants and interactions of ASCs and Household Income

			Multine	e Choice Modeling omial Choice Models Part 7] 36/96
Model Number +	te Choice (One Level) Mod Simulation Using Previous of observations	Estimates MC 210 MC	odel Simu	lation Step
Simulat Model: Simulat Number number	ions of Probability Model Discrete Choice (One Leve ed choice set may be a su of individuals is the pro of observations in the si el used was simulated wit	Al) Model abset of the choices. abability times the mulated sample. Ch 210 observations	· 	
	ation of scenario 1 is: e Alternatives affected	Change typ	ре	Value
INVC	CAR	Scale base	e by value	. 900
Simulate	lator located 210 obse d Probabilities (shares) +	for this scenario: + mario Scenario -	+ Base	
TRAIN BUS CAR Total	37.321 78 35.85 19.805 42 18.64 42.874 90 45.50 100.000 210 100.00	64 75 -1.467% 1 39 -1.164% 06 96 2.632%	-	
+	++		+	

Willingness to Pay

 $U(alt) = a_j + b_{INCOME}^*INCOME + b_{Attribute}^*Attribute + ...$ WTP = MU(Attribute)/MU(Income)

When MU(Income) is not available, an approximation often used is –MU(Cost).

U(Air, Train, Bus, Car)

 $= \alpha_{alt} + \beta_{cost} Cost + \beta_{INVT} INVT + \beta_{TTME} TTME + \epsilon_{alt}$ WTP for less in vehicle time = $-\beta_{INVT} / \beta_{COST}$ WTP for less terminal time = $-\beta_{TIME} / \beta_{COST}$

WTP from CLOGIT Model

Discrete choice (multinomial logit) model										
Dependent variable Choice										
+										
		Standard Error		P[Z >z]						
GC	00286	.00610	469	.6390						
INVT	00349***	.00115	-3.037	.0024						
TTME	09746***	.01035	-9.414	.0000						
AASC	4.05405***	.83662	4.846	.0000						
TASC	3.64460***	.44276	8.232	.0000						
BASC	3.19579***	.45194		.0000						
				ttme/h gcs						
		gc , inz=wi	F_11ME=D_							
WALD proce										
Variable		Standard Error								
		2.88619	.423	. 6725						
—		73.07097	.466	.6410						
+										

Very different estimates suggests this might not be a very good model.

Estimation in WTP Space

Problem with WTP calculation : Ratio of two estimates that

are asymptotically normally distributed may have infinite variance.

Sample point estimates may be reasonable

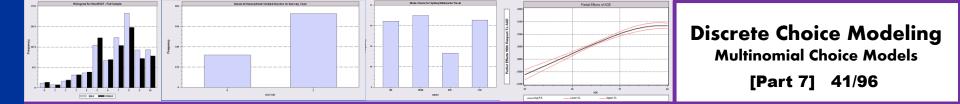

Inference - confidence intervals - may not be possible.

WTP estimates often become unreasonable in random parameter models in which parameters vary across individuals.

Estimation in WTP Space

$$\begin{split} \mathsf{U}(\mathsf{Air}) &= \alpha + \beta_{\mathsf{COST}}\mathsf{COST} + \beta_{\mathsf{TIME}}\mathsf{TIME} + \beta_{\mathsf{attr}}\mathsf{Attr} + \varepsilon \\ &= \alpha + \beta_{\mathsf{COST}} \left[\mathsf{COST} + \frac{\beta_{\mathsf{TIME}}}{\beta_{\mathsf{COST}}}\mathsf{TIME} + \frac{\beta_{\mathsf{attr}}}{\beta_{\mathsf{COST}}}\mathsf{Attr} \right] + \varepsilon \\ &= \alpha + \beta_{\mathsf{COST}} \left[\mathsf{COST} + \theta_{\mathsf{TIME}}\mathsf{TIME} + \theta_{\mathsf{attr}}\mathsf{Attr} \right] + \varepsilon \end{split}$$

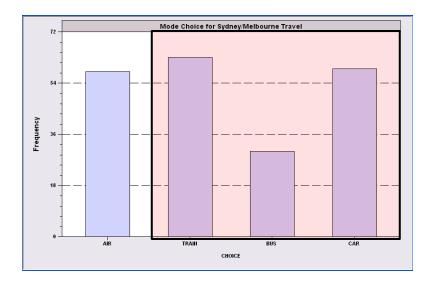
For a simple MNL the transformation is 1:1. Results will be identical to the original model. In more elaborate, RP models, results change.

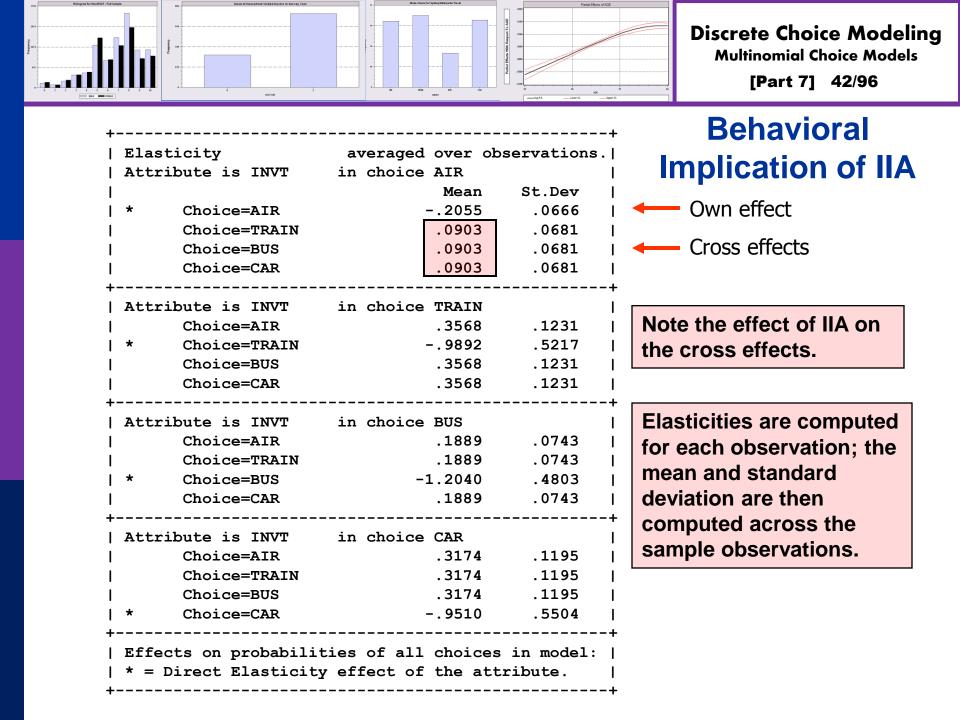

The I.I.D Assumption

jt

$$U_{itj} = \alpha_{ij} + \beta' \mathbf{X}_{itj} + \gamma' \mathbf{Z}_{it} + \varepsilon_{ij}$$

 $F(\varepsilon_{itj}) = Exp(-Exp(-\varepsilon_{itj})) \text{ (random part of each utility)}$ Independence across utility functions Identical variances (means absorbed in constants)


Restriction on equal scaling may be inappropriate Correlation across alternatives may be suppressed Equal cross elasticities is a substantive restriction Behavioral implication of IID is independence from irrelevant alternatives. If an alternative is removed, probability is spread equally across the remaining alternatives. This is unreasonable



IIA Implication of IID

 $Prob(train) = \frac{\exp[U(train)]}{\exp[U(air)] + \exp[U(train)] + \exp[U(bus)] + \exp[U(car)]}$ $Prob(train|train,bus,car) = \frac{\exp[U(train)]}{\exp[U(train)] + \exp[U(bus)] + \exp[U(car)]}$

Air is in the choice set, probabilities are independent from air if air is not in the condition. This is a testable behavioral assumption.

A Hausman and McFadden Test for IIA

- Estimate full model with "irrelevant alternatives"
- Estimate the short model eliminating the irrelevant alternatives
 - Eliminate individuals who chose the irrelevant alternatives
 - Drop attributes that are constant in the surviving choice set.
- Do the coefficients change? Under the IIA assumption, they should not.
 - Use a Hausman test:
 - Chi-squared, d.f. Number of parameters estimated

$$H = (\mathbf{b}_{short} - \mathbf{b}_{full})' [\mathbf{V}_{short} - \mathbf{V}_{full}]^{-1} (\mathbf{b}_{short} - \mathbf{b}_{full})$$

Discrete Choice Modeling Multinomial Choice Models [Part 7] 44/96

IIA Test for Choice AIR

+	+			+-			+		+	+
Variab	le	Coeff	icien	t I	Standard	Error	: b/s	t.Er.	P[Z	[>z]
<u>+</u>	+			+_			+		+	<u>. – – – +</u>
GC	1		06929	537	.01	743306	5	3.975	.0	001
TTME	1		10364	955	.010	93815	5 –	9.476	. 0	0000
INVC	- I		08493	182	.019	38251	L —	4.382	. 0	0000
INVT			01333	220	. 002	251698	3 –	5.297	. 0	0000
AASC	I	5.	20474	275	. 905	521312	2	5.750	.0	0000
TASC	I	4.	36060	457	.510	66543	3	8.539	. 0	0000
BASC	I	3.	76323	447	.500	525946	5	7.433	. 0	0000
+	+			+-			+		+	<u> +</u>
GC	I		53961	173	.140	554681	L	3.682	.0	002
TTME	1		06847	037	.010	574719) –	4.088	. 0	0000
INVC	1		58715	772	.149	955000) –	3.926	. 0	0001
INVT	<u> </u>		09100	015	.021	158271	L —	4.216	. 0	0000
TASC		4.	62957	401	.818	341212	2	5.657	. 0	0000
BASC	- 1	3.	27415	138	.764	103628	3	4.285	. 0	0000
Matrix	IIA	TEST	has	1 row	s and 1	colum	nns.			
		1	-							
	+-									
	1	33.7	8445		Test s	statis	stic			
+						+				
Liste	d C	alcula	tor R	esult	s	I	llA i	s rej	ecte	d
+						+				
Result	. =		9.487	729	Critic	ca⊥ va	a⊥ue			

Alternative to Utility Maximization (!) Minimizing Random Regret

The random regret model begins from an assumption that when choosing between alternatives, decision makers seek to minimize anticipated random regret, where random regret consists of the sum of the familiar iid extreme value and a regret function defined below. Systematic regret for choice *i*, is R_i , which consists of the sum of the binary regrets associated with bilateral comparisons of the attributes of the chosen alternative and the available alternatives. (See Chorus (2010), and Chorus, Greene and Hensher (2011).)

Attribute level regret for the kth attribute for alternative i compared to available alternative j is

$$R_{ij}(k) = \log\{1 + \exp[\beta_k (x_{jk} - x_{ik})]\}.$$

Systematic regret for choice *i* is the sum over the available alternatives of the systematic regret,

$$R_{i} = \sum_{j \neq i} \sum_{k=1}^{K} \log\{1 + \exp[\beta_{k}(x_{jk} - x_{ik})]\}.$$

Random regret for alternative *i* is $R_i + \varepsilon_i$. Minimization of regret is equivalent to maximization of the negative of regret. This produces the familiar form for the probability,

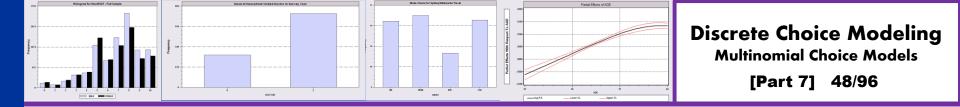
$$P_i = \frac{\exp(-R_i)}{\sum_{j=1}^J \exp(-R_j)}.$$

We also consider a hybrid form, in which some attributes are treated in random regret form and others are contributors to random utility. The result is

$$R_{i} = \sum_{k=1}^{K} \beta_{k} x_{ik} - \sum_{j \neq i} \sum_{k=1}^{K} \log \{1 + \exp[\beta_{k} (x_{jk} - x_{ik})]\}.$$

Discrete Choice Modeling Multinomial Choice Models [Part 7] 46/96

RUM vs. Random Regret


Discrete choice (multinomial logit) model Dependent variable Choice Log likelihood function -182.33831 Estimation based on N = 210, K = 8 Inf.Cr.AIC = 380.7 AIC/N = 1.813 R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj								
Constants	sonly -	283.7588	.3574 .34	92				
MODE	Coeffic		Standard Error	z				
GC	.075		.01825	4.14				
TTME	102	90***	.01099	-9.37				
INVT	014	35***	.00265	-5.41				
INVC	089	52***	.01995	-4.49				
AASC	4.065	74***	1.05260	3.86				
TASC	4.273	93***	.51214	8.35				
	3.714		.50856	7.30				
HINCA	.023	64**	.01155	2.05				
Note: ***	, **, * =	=> Sign:	ificance at	1%, 5%,				
Elasticit	y wrt cha	nge of X	in row cho	ice on P:				
GC	AIR	TRAIN	BUS	CAR				
AIR	5.4152	-2.3448	-2.3448	-2.3448				
			-2.3946					
			7.5620					
			-1.9584					

Discrete choice (multinomial logit) model							
Dependent variable Choice Log likelihood function -173.31398							
Log likelihood function -173.31398							
Estimatio	on based on N =	210, K =	8				
	IC = 362.6 J						
	timated: Sep 15,						
R2=1-LogI	L/LogL* Log-L fr	nen R-sard R2A	Adti				
	sonly -283.78						
	om Regret Form o						
	1	Standard					
MODE	Coefficient	Error	z				
	+						
	.02634***		5.75				
	03606***	.00426	-8.46				
	00877***		-7.28				
	Attributes Atte	ended to in Ra	andom Util				
INVC	05957***		-5.68				
AASC	1.85720**	.86496	2.15				
TASC	2.59183***	.33957	7.63				
	1.99911***		5.92				
	.02048**		2.01				
Note: ***	*, **, * ==> Si	ignificance at	: 19, 59,				
Elasticit	ty wrt change of	E X in row cho	pice on P:				
GC	AIR TRA	AIN BUS	CAR				
	1.6493 -1.05						
	6910 2.73	3846910	6910				
	451849	518 2.5840	4518				
CAR	449244	4924492	2.0639				

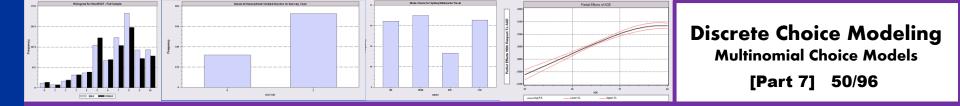
Fixed Effects Multinomial Logit:

Application of Minimum Distance Estimation

Binary Logit Conditional Probabiities

 $\begin{aligned} &\operatorname{Prob}(y_{it} = 1 \mid \mathbf{x}_{it}) = \frac{e^{\alpha_i + \mathbf{x}_{it}' \boldsymbol{\beta}}}{1 + e^{\alpha_i + \mathbf{x}_{it}' \boldsymbol{\beta}}}.\\ &\operatorname{Prob}\left(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, \dots, Y_{iT_i} = y_{iT_i} \mid \sum_{t=1}^{T_i} y_{it}\right) \\ &= \frac{\exp\left(\sum_{t=1}^{T_i} y_{it} \mathbf{x}_{it}' \boldsymbol{\beta}\right)}{\sum_{\Sigma_t d_{it} = S_i} \exp\left(\sum_{t=1}^{T_i} d_{it} \mathbf{x}_{it}' \boldsymbol{\beta}\right)} = \frac{\exp\left(\sum_{t=1}^{T_i} y_{it} \mathbf{x}_{it}' \boldsymbol{\beta}\right)}{\sum_{\Sigma_t d_{it} = S_i} \operatorname{exp}\left(\sum_{t=1}^{T_i} d_{it} \mathbf{x}_{it}' \boldsymbol{\beta}\right)} = \frac{\operatorname{Prob}\left(\sum_{t=1}^{T_i} d_{it} \mathbf{x}_{it}' \boldsymbol{\beta}\right)}{\sum_{\Sigma_t d_{it} = S_i} \operatorname{exp}\left(\sum_{t=1}^{T_i} d_{it} \mathbf{x}_{it}' \boldsymbol{\beta}\right)}.\end{aligned}$

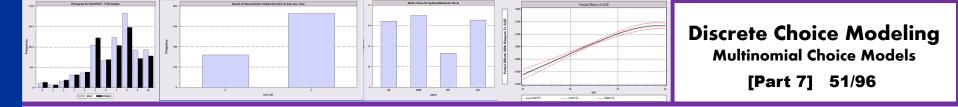
Denominator is summed over all the different combinations of T_i values of y_{it} that sum to the same sum as the observed $\sum_{t=1}^{T_i} y_{it}$. If S_i is this sum, there are $\begin{pmatrix} T \\ S_i \end{pmatrix}$ terms. May be a huge number. An algorithm by Krailo and Pike makes it simple.



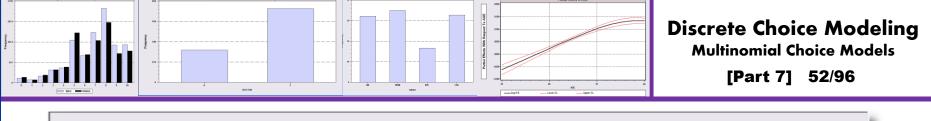
Example: Seven Period Binary Logit

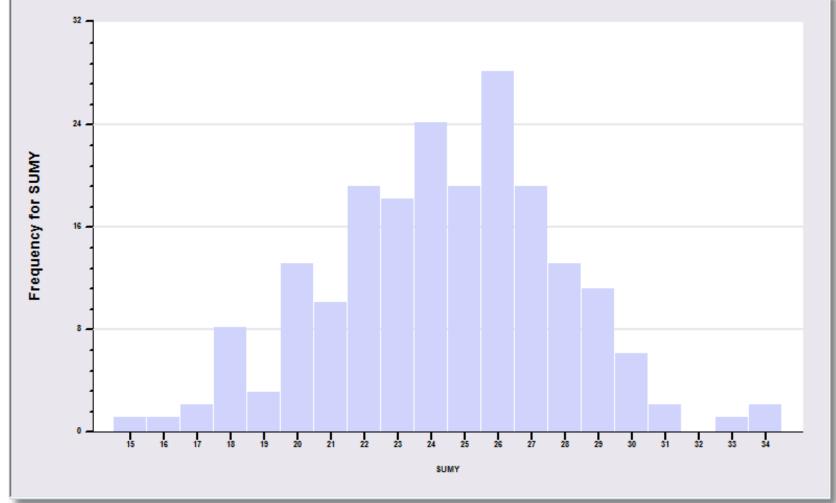
у				x	
DOCTOR	AGE	EDUC	HSAT	INCOME	MARRIED
	54 55 56 57 58 61 64	9 9 9 9 9 9 9	4 5 6 3 4	.08300 .09650 .12000 .13000 .11560 .10640 .09700	1 1 1 1 1 1

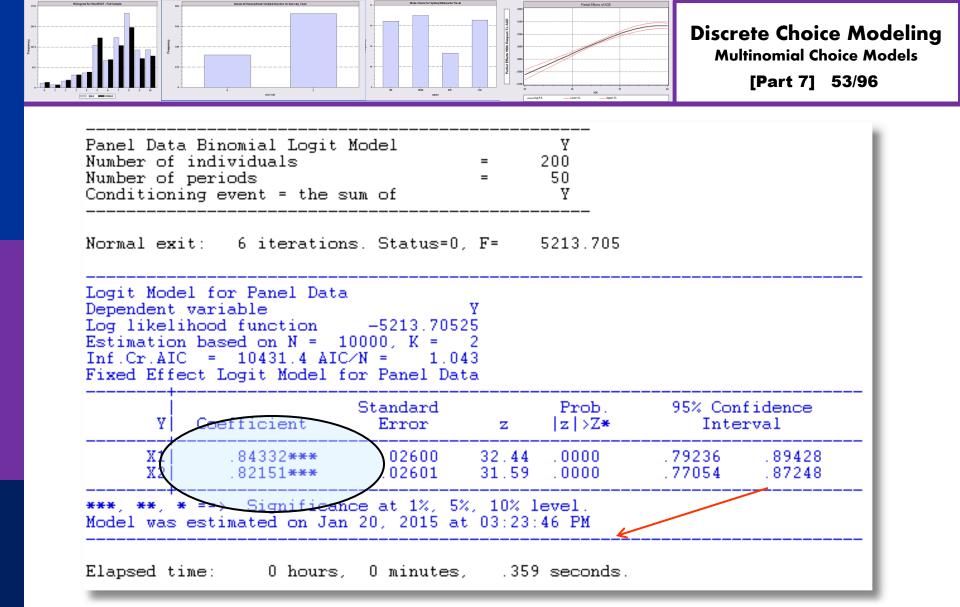
Prob[$\mathbf{y} = (1,0,0,0,1,1,1) | \mathbf{X}_i$]= $\frac{\exp(\alpha_i + \boldsymbol{\beta}' \mathbf{x}_1)}{1 + \exp(\alpha_i + \boldsymbol{\beta}' \mathbf{x}_1)} \times \frac{1}{1 + \exp(\alpha_i + \boldsymbol{\beta}' \mathbf{x}_2)} \times \dots \times \frac{\exp(\alpha_i + \boldsymbol{\beta}' \mathbf{x}_7)}{1 + \exp(\alpha_i + \boldsymbol{\beta}' \mathbf{x}_7)}$ There are 35 different sequences of \mathbf{y}_{it} (permutations) that sum to 4. For example, $\mathbf{y}_{it|p=1}^*$ might be (1,1,1,1,0,0,0). Etc.


$$Prob[y=(1,0,0,0,1,1,1)|\mathbf{X}_{i}, \Sigma_{t=1}^{7} y_{it} = 7] = \frac{\exp[\beta' \Sigma_{t=1}^{7} y_{it} \mathbf{X}_{it}]}{\sum_{p=1}^{35} \exp[\beta' \Sigma_{t=1}^{7} y_{it|p}^{*} \mathbf{X}_{it}]}$$

Panel Data Binomial Logit Model Number of individuals Number of periods Conditioning event = the sum of Observed distribution of sums by						= = D	OCTOR 887 7 OCTOR	
Sum Number Pct.	48	73	82		115	116	151	


Logit Model for Panel Data	
Dependent variable	DOCTOR
Log likelihood function -1713	2.75034
Estimation based on N = 6209, 1	K = 5
Inf.Cr.AIC = 3435.5 AIC/N =	. 553
Fixed Effect Logit Model for Pane	el Data 👘


DOCTOR	Coefficient	Standard Error	z	Prob. z >Z ≭	95% Confidence Interval					
AGE EDUC HSAT INCOME MARRIED	.05744*** .07263 25515*** .02831 .04337	.01128 .17827 .02396 .30633 .19974		.0000 .6837 .0000 .9264 .8281	.03534 27677 30211 57208 34810	.07954 .42203 20820 .62870 .43485				
	++									


With T = 50, the number of permutations of sequences of y ranging from sum = 0 to sum = 50 ranges from 1 for 0 and 50, to 2.3 x 10^{12} for 15 or 35 up to a maximum of 1.3 x 10^{14} for sum =25. These are the numbers of terms that must be summed for a model with T = 50. In the application below, the sum ranges from 15 to 35.

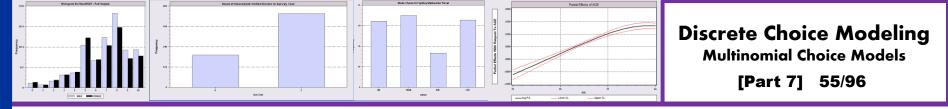
Untitled 1 *		x
fx Insert Name:		
rows ;	10000\$	A
create ;	i=trn(50,0)\$ (1,1,,2,2,,3,3,)	
create ;	t=trn(-50,0)\$ (1,2,,50,1,2,,50)	
create ;	x1=rnn(0,1);x2=rnn(0,1) \$	-
setpanel ;	group=i;pds=ti \$	=
create ;	y=(.5*x1+.5*x2+rnn(0,1))>0\$	
create ;	sumy=groupsums(y,pds=50)\$	
histogram;	if[t=1];rhs=sumy\$	
timer \$		
logit ;	lhs=y;rhs=x1,x2;panel;pds=50\$	-

The sample is 200 individuals each observed 50 times.

The data are generated from a probit process with b1 = b2 = .5. But, it is fit as a logit model. The coefficients obey the familiar relationship, 1.6*probit.

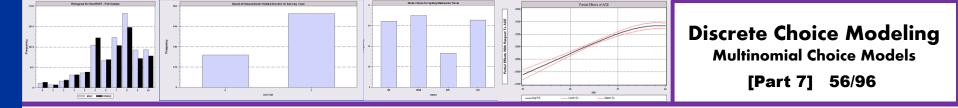
Multinomial Logit Model: J+1 choices including a base choice.

 $y_{iij} = 1$ if individual i makes choice j in period t


Prob
$$(y_{itj} = 1 | \mathbf{x}_{itj}) = \frac{e^{\alpha_{ij} + \mathbf{x}_{itj}\mathbf{\beta}}}{1 + \sum_{m=1}^{J} e^{\alpha_{im} + \mathbf{x}_{itm}'\mathbf{\beta}}}, j = 1, ..., J.$$

Prob
$$(y_{it0} = 1 | \mathbf{x}_{it0}) = \frac{1}{1 + \sum_{m=1}^{J} e^{\alpha_{im} + \mathbf{x}'_{itm} \boldsymbol{\beta}}}.$$

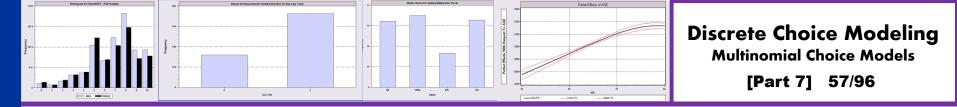
The probability attached to the sequence of choices is remarkably complicated.


$$= \frac{\prod_{j=1}^{J} \exp\left(\sum_{t=1}^{T_{i}} y_{itj} \mathbf{x}_{itj}' \boldsymbol{\beta}\right)}{\sum_{j=1}^{J} \sum_{\Sigma_{t} d_{itj} = S_{ij}} \exp\left(\sum_{t=1}^{T_{i}} d_{it} \mathbf{x}_{it}' \boldsymbol{\beta}\right)} = \frac{\prod_{j=1}^{J} \exp\left(\sum_{t=1}^{T_{i}} y_{itj} \mathbf{x}_{itj}' \boldsymbol{\beta}\right)}{\sum_{j=1}^{J} \sum_{\Sigma_{t} d_{itj} = S_{ij}} \exp\left(\sum_{t=1}^{T_{i}} d_{it} \mathbf{x}_{it}' \boldsymbol{\beta}\right)} = \frac{\prod_{j=1}^{J} \exp\left(\sum_{t=1}^{T_{i}} y_{itj} \mathbf{x}_{itj}' \boldsymbol{\beta}\right)}{\sum_{t=1}^{J} \sum_{\Sigma_{t} d_{itj} \text{ can equal } S_{ij}} \exp\left(\sum_{t=1}^{T_{i}} d_{itj} \mathbf{x}_{itj}' \boldsymbol{\beta}\right)}.$$

Denominator is summed over all the different combinations of T_i values of y_{itj} that sum to the same sum as the observed $\sum_{t=1}^{T_i} y_{it}$. If S_{ij} is this sum, there are $\begin{pmatrix} T \\ S_{ij} \end{pmatrix}$ terms. May be a huge number. Larger yet by summing over choices.

Estimation Strategy

- Conditional ML of the full MNL model. Impressively complicated.
- A Minimum Distance (MDE) Strategy
 - Each alternative treated as a binary choice vs. the base provides an estimator of β
 - Select subsample that chose either option j or the base
 - **\square** Estimate β using this binary choice setting
 - $\hfill\square$ This provides J different estimators of the same β
 - Optimally combine the different estimators of β



Minimum Distance Estimation

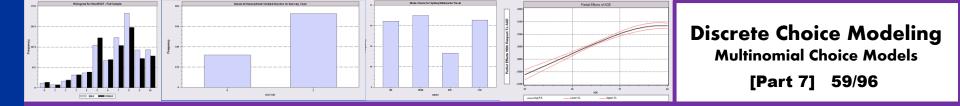
There are J estimators $\hat{\boldsymbol{\beta}}_{j}$ of the same parameter vector, $\hat{\boldsymbol{\beta}}$. Each estimator is consistent and asymptotically normal. Estimated covariance matrices $\hat{\mathbf{V}}_{j}$. How to combine the estimators?

MDE: Minimize wrt
$$\hat{\boldsymbol{\beta}}_{*} q = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1} - \hat{\boldsymbol{\beta}}_{*} \\ \hat{\boldsymbol{\beta}}_{2} - \hat{\boldsymbol{\beta}}_{*} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{J} - \hat{\boldsymbol{\beta}}_{*} \end{bmatrix} \mathbf{W} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1} - \hat{\boldsymbol{\beta}}_{*} \\ \hat{\boldsymbol{\beta}}_{2} - \hat{\boldsymbol{\beta}}_{*} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{J} - \hat{\boldsymbol{\beta}}_{*} \end{bmatrix}$$


What to use for the weighting matrix \mathbf{W} ? Any positive definite matrix will do.

MDE Estimation

Estimated covariance matrices $\hat{\mathbf{V}}_{j}$. How to combine the estimators?

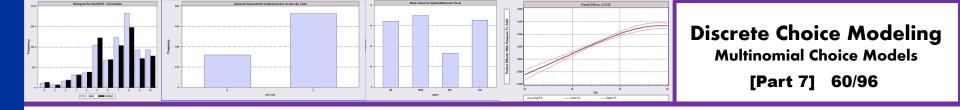

MDE: Minimize wrt
$$\hat{\boldsymbol{\beta}}_{*} q = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1} - \hat{\boldsymbol{\beta}}_{*} \\ \hat{\boldsymbol{\beta}}_{2} - \hat{\boldsymbol{\beta}}_{*} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{J} - \hat{\boldsymbol{\beta}}_{*} \end{bmatrix} \mathbf{W} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1} - \hat{\boldsymbol{\beta}}_{*} \\ \hat{\boldsymbol{\beta}}_{2} - \hat{\boldsymbol{\beta}}_{*} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{J} - \hat{\boldsymbol{\beta}}_{*} \end{bmatrix}$$
. Propose a GLS approach
$$\mathbf{W} = \mathbf{A}^{-1} = \begin{bmatrix} \hat{\mathbf{V}}_{1} & 0 & \cdots & 0 \\ 0 & \hat{\mathbf{V}}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \hat{\mathbf{V}}_{J} \end{bmatrix}^{-1}$$

MDE Estimation

MDE: Minimize wrt
$$\hat{\boldsymbol{\beta}}_{*} q = \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1} - \hat{\boldsymbol{\beta}}_{*} \\ \hat{\boldsymbol{\beta}}_{2} - \hat{\boldsymbol{\beta}}_{*} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{J} - \hat{\boldsymbol{\beta}}_{*} \end{bmatrix}^{\prime} \begin{bmatrix} \hat{\mathbf{V}}_{1} & 0 & \cdots & 0 \\ 0 & \hat{\mathbf{V}}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \hat{\mathbf{V}}_{J} \end{bmatrix}^{-1} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{1} - \hat{\boldsymbol{\beta}}_{*} \\ \hat{\boldsymbol{\beta}}_{2} - \hat{\boldsymbol{\beta}}_{*} \\ \vdots \\ \hat{\boldsymbol{\beta}}_{J} - \hat{\boldsymbol{\beta}}_{*} \end{bmatrix}^{\prime}$$

The solution is
$$\hat{\boldsymbol{\beta}}_{*} = \left[\hat{\mathbf{V}}_{1}^{-1} + \hat{\mathbf{V}}_{2}^{-1} + \dots + \hat{\mathbf{V}}_{J}^{-1}\right]^{-1} \left[\hat{\mathbf{V}}_{1}^{-1}\hat{\boldsymbol{\beta}}_{1} + \hat{\mathbf{V}}_{2}^{-1}\hat{\boldsymbol{\beta}}_{2} + \dots + \hat{\mathbf{V}}_{J}^{-1}\hat{\boldsymbol{\beta}}_{J}\right]$$

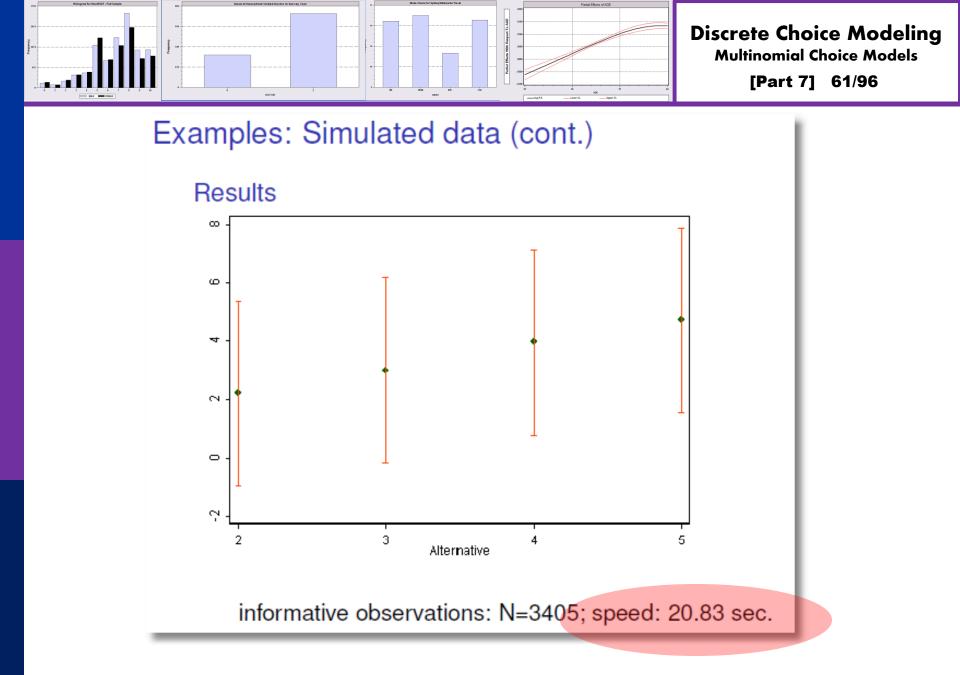
$$= \left[\sum_{j=1}^{J}\hat{\mathbf{V}}_{j}^{-1}\right]^{-1} \left[\sum_{j=1}^{J}\hat{\mathbf{V}}_{j}^{-1}\hat{\boldsymbol{\beta}}_{j}\right]$$
$$= \sum_{j=1}^{J}\mathbf{H}_{j}\hat{\boldsymbol{\beta}}_{j} \text{ where } \sum_{j=1}^{J}\mathbf{H}_{j} = \mathbf{I}$$

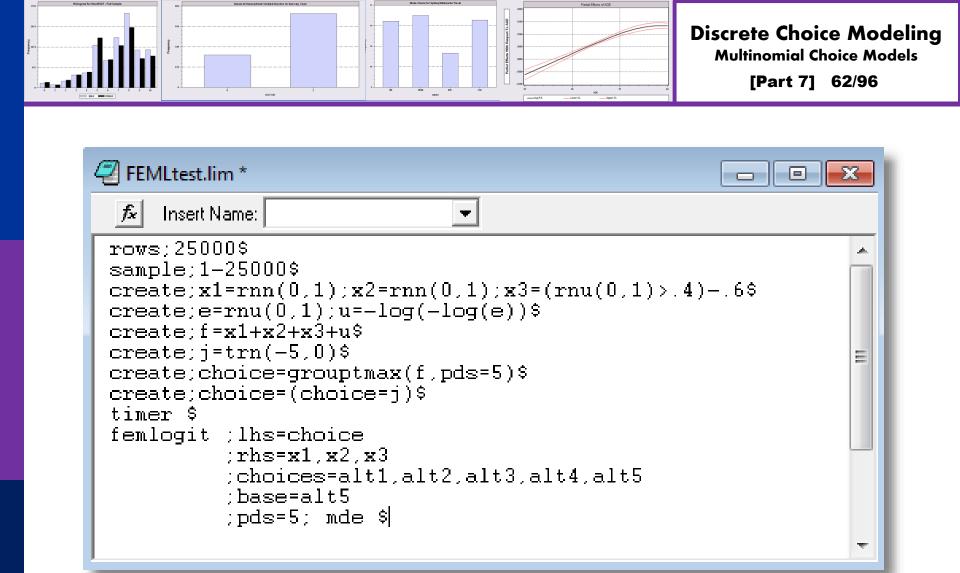


Implementation of a multinomial logit model with fixed effects

Klaus Pforr

Mannheim Centre for European Social Research (MZES) University of Mannheim klaus.pforr@mzes.uni-mannheim.de

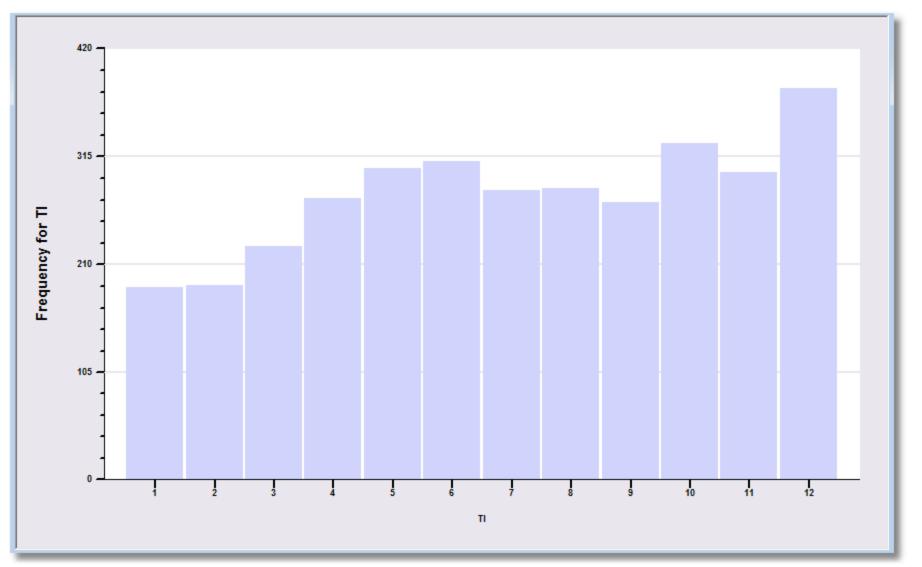

July 1, 2011, Ninth German Stata Users Group Meeting, Bamberg



Examples: Simulated data

Performance with more alternatives Simulated data

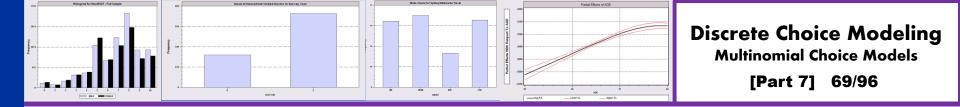
- ▶ N=1000, T=5, J=5
- Unobs. het. α_{ij}: over all i random draw (α_{i1},..., α_{i5}) from uniform distribution over 4-simplex Δ⁴.
- Error ε_{itj} : over all i and t, for each j indep. draws from Gumbel-distribution (E(ε_{itj}) = γ , Var(ε_{itj}) = $\pi/\sqrt{6}$).
- Indep. variable: x correlated with α
 - $X_{it} = U_{it} + \alpha_{i2},$
 - *u_{it}* drawn from uniform distribution.
- Coefficients $\beta_2 = 2, \beta_3 = 3, \beta_4 = 4, \beta_5 = 5.$



				Peter Effects of AGE		ete Choice Mo inomial Choice M [Part 7] 63/96	odels
Normal ex Normal ex Normal ex Normal ex	ait: 6 iteration ait: 6 iteration ait: 5 iteration ait: 6 iteration	ns. Status=0, ns. Status=0, ns. Status=0, ns. Status=0,	는 = 	958.5621 896.4347 1011.594 941.2443			
Dependent Log like Restricte Chi squar Significa McFadden Estimatic Inf.Cr.Al	ects Multinomial variable lihood function ed log likelihood red [3](P= .000) ance level Pseudo R-squared on based on N = 2 IC = 7621.7 AIC r is Minimum Dista	CHOIC -3807.8352 -5033.9435 2452.2165 .0000 .243568 25000, K = C/N = .30	注 27 33 30 31 3 35				
CHOICE	Coefficient	Standard Error		Prob. z >Z *	95% Con Inte		L .
X1 X2 X3	.54600***	.01818 .01803 .03346	31.21 30.28 13.73	. 0000 . 0000 . 0000	.53162 .51066 .39384		
	<pre>* ==> Significar s estimated on Jar</pre>						
Elapsed t	ime: O hours;	. O minutes,	. 344	4 seconds.			

Discrete Choice Modeling Multinomial Choice Models [Part 7] 64/96 How precise and how fast is it? Comparison with clogit for J = 2. Data used: http://www.stata-press.com/data/r11/union.dta Belative difference of coefficients: 9 078e-16. Speed: clogit: 2.42 sec., femlogit: 101.58 sec.. . femlogit union age grade not_smsa south black, group(idcode) b(0) note: 2744 groups (14165 obs) dropped because of all positive or all negative outcomes. note: black omitted because of no within-group variance. log likelihood = -4521.3385 Iteration 0: Iteration 1: $\log likelihood = -4516.1404$ log likelihood = -4516.1385 Iteration 2: log likelihood = -4516.1385 Iteration 3: Number of obs 12035 = Wald chi2(4) = Log likelihood = -4516.1385Prob > chi2 = Coef. Std. Err. P>|z| [95% Conf. Interval] union z .0170301 .004146 0.000 .0251561 age 4.11 .0089042 grade .0853572 .0418781 2.04 0.042 .0032777 .1674368 .1127963 0.07 0.941 -.2127088 . 2294445 not smsa .0083678 south -.748023.1251752 0.000 -.9933619-5.98 -. 5026842 (omitted) black

					Multir	e Choice Modeli nomial Choice Models Part 7] 66/96
;rhs= ;pds=	git;lhs=union;cho age,grade,not_sma ti =notunion;list;mo	sa, south, blac				
Dependent Log likel Restricte Chi squar Significa McFadden Estimatic Inf.Cr.AI	ects Multinomial variable ihood function ed log likelihood ed [4](P= .000) ince level Pseudo R-squared on based on N = 9 C = 9040.3 AIC is Conditional N	UNIC -4516.1384 -4550.1859 68.0948 .0000 .007482 52400, K = 2/N = .17	DN 49 92 37 00 26 4 73			
UNION	Coefficient	Standard Error	z	Prob. z >Z*		nfidence erval
AGE GRADE NOT_SMSA SOUTH		.00415 .04188 .11280 .12518	2.04 .07	.0000 .0415 .9409 .0000	.00890 .00328 21271 99336	.16744
	<pre>* ==> Significar : estimated on Jar</pre>					
Elapsed t	ime: O hours,	0 minutes,	. 297	seconds		



Why a 500 fold increase in speed?

- MDE is much faster
- Not using Krailo and Pike, or not using efficiently
- Numerical derivatives for an extremely messy function (increase the number of function evaluations by at least 5 times)

Rank Data and Best/Worst

1	Internet	Dating	Survey	- 14 <i>i</i>	26
1.507	THEFT	coong			20

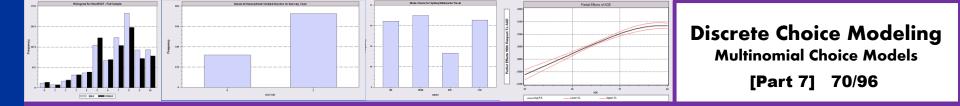
An example

We will show you 5 profiles of people that you might consider contacting.

We will then ask you to tell us which profile represents the best candidate and which represents the worst.

We will then get you to tell us of the three remaining profiles, which is the best and which is the worst.

If you were looking through a dating website and considered contacting among the five people shown based on the descriptions listed, which profile represents the best candidate and which represents the worst? And then which is the best and which is the worst of the three remaining profiles?


	Ř Ř	фŶ	ŤŤ	Ů Ť	İİ	
	Person A	Person B	Person C	Person D	Person E	
Drinking Habit Smoking Habit Children Job Looks Cost to contact	Non drinker Ex smoker Single parent White Collar Above average \$20	Casual drinker Smoker None currently Blue Collar Below average \$15	Moderate drinker Non smoker Single parent Blue Collar Above average \$10	Casual drinker Ex smoker Single parent Unemployed Below average \$15	Moderate drinker Smoker None currently White Collar Average \$10	
Which profile do you consider to be the best and which is the worst?	Best 💌		•	Warst 🔻		
Of the remaning profiles, which profile is the best and which is the worst?		Warst 💌	Best 💌			

In the above example, we found Person A to be the best candidate for contacting and person D the worst, and Of the three remaining profiles, we believe that Person C is the best remaining profile and Person B the worst.

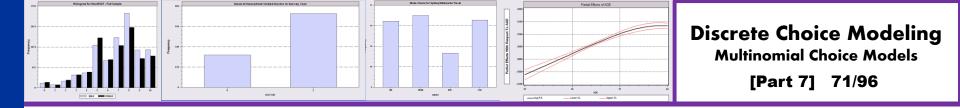
You will be shown nine scenarios similar to the above one. Each scenario will show the profiles of different potential contacts.

Please make sure that you understand the task before proceeding. Once you go to the next screen, you will not be able to go back.

Back

Rank Data and Exploded Logit

Resp	Set	RespSet	Explode	Altij	Altn	Cset	Choice	Drink	Smoke	Child	Job	Looks	Cost
1	1	1	1	1	1	5	1	0	1	1	0	2	20
1	1	1	1	2	2	5	0	1	2	0	1	0	15
1	1	1	1	3	3	5	0	2	0	1	1	2	10
1	1	1	1	4	4	5	0	1	1	1	2	0	15
1	1	1	1	5	5	5	0	2	2	0	0	1	10
1	2	1	2	2	7	4	0	1	2	0	1	0	15
1	2	1	2	3	8	4	1	2	0	1	1	2	10
1	2	1	2	4	9	4	0	1	1	1	2	0	15
1	2	1	2	5	10	4	0	2	2	0	0	1	10
1	3	1	3	2	12	3	0	1	2	0	1	0	15
1	3	1	3	4	14	3	0	1	1	1	2	0	15
1	3	1	3	5	15	3	1	2	2	0	0	1	10
1	4	1	4	2	17	2	1	1	2	0	1	0	15
1	4	1	4	4	19	2	0	1	1	1	2	0	15


Alt 1 is the best overall

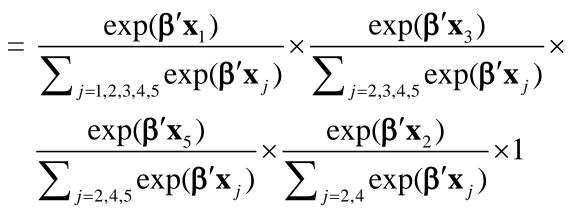
Alt 3 is the best among remaining alts 2,3,4,5

Alt 5 is the best among remaining alts 2,4,5


Alt 2 is the best among remaining alts 2,4

Alt 4 is the worst.

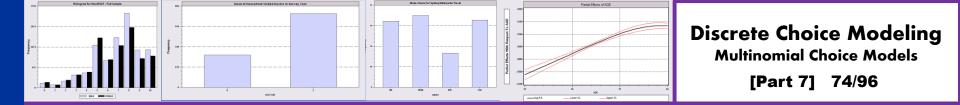
Exploded Logit


$$\begin{split} U[j] &= jth favorite alternative among 5 alternatives \\ U[1] &= the choice made if the individual indicates only the favorite \\ Prob{j = [1],[2],[3],[4],[5]} &= Prob{[1]|choice set = [1]...[5]} \times \\ Prob{[2]|choice set = [2]...[5]} \times \\ Prob{[3]|choice set = [3]...[5]} \times \\ Prob{[4]|choice set = [4],[5]} \times \\ 1 \end{split}$$

Exploded Logit

U[j] = jth favorite alternative among 5 alternatives U[1] = the choice made if the individual indicates only the favoriteIndividual ranked the alternatives 1,3,5,2,4

Prob{This set of ranks}



Best Worst

- Individual simultaneously ranks best and worst alternatives.
- Prob(alt j) = best = exp[U(j)] / $\Sigma_m exp[U(m)]$
- □ Prob(alt k) = worst = exp[-U(k)] / $\Sigma_m exp[-U(m)]$

Resp	Set	Altij	Cset	Bestworst	AirNZ	Delta	Emirates	JetStar	Qantas	Singapore	United	Choice
1	1	1	4	1	0	0	0	0	0	1	0	0
1	1	2	4	1	0	0	1	0	0	0	0	0
1	1	3	4	1	0	0	0	0	1	0	0	0
1	1	4	4	1	0	0	0	0	0	0	0	1
1	1	1	4	-1	0	0	0	0	0	-1	0	0
1	1	2	4	-1	0	0	-1	0	0	0	0	1
1	1	3	4	-1	0	0	0	0	-1	0	0	0
1	1	4	4	-1	0	0	0	0	0	0	0	0

Case 1 involves respondents being shown subsets of alternatives/brands and being asked out of the subset shown, which alternative/brand is best and which is worst. Note that unlike discrete choice experiments, the alternatives/brands are not represented as bundles of attributes.

Consider an example of quadruples, selected from 1. Air NZ, 2. Delta, 3. Emirates, 4. Jetstar, 5. Qantas, 6. Singapore, 7. United, and 8. Virgin. An example of a choice question is show below.

Best worst scaling (Case 1)

Best	Attribute	Worst
\bigcirc	Singapore	\bigcirc
\bigcirc	Emirates	\bigcirc
\bigcirc	Qantas	\bigcirc
\bigcirc	Virgin	\bigcirc

Figure 1: Example B/W Case 1 task

The data is set up as per a normal DCE where the attributes are dummy codes for the alternatives shown. Each task however is repeated, once for best and once for worst. For worst, the coding is the same, however -1 is used instead of 1. An example is presented in the table below, where the first task is an example of the above task.


Choices

Table 1: Example B/W Case 1 task data set up 1												
Resp	Set	Altij	Cset	Bestworst	AirNZ	Delta	Emirates	JetStar	Qantas	Singapore	United	Choice
1	1	1	4	1	0	0	0	0	0	1	0	0
1	1	2	4	1	0	0	1	0	0	0	0	0
1	1	3	4	1	0	0	0	0	1	0	0	0
1	1	4	4	1	0	0	0	0	0	0	0	1
1	1	1	4	-1	0	0	0	0	0	-1	0	0
1	1	2	4	-1	0	0	-1	0	0	0	0	1
1	1	3	4	-1	0	0	0	0	-1	0	0	0
1	1	4	4	-1	0	0	0	0	0	0	0	0
1	2	1	4	1	1	0	0	0	0	0	0	0
1	2	2	4	1	0	0	1	0	0	0	0	0
1	2	3	4	1	0	0	0	0	1	0	0	0
1	2	4	4	1	0	0	0	0	0	0	1	1
1	2	1	4	-1	-1	0	0	0	0	0	0	0
1	2	2	4	-1	0	0	-1	0	0	0	0	1
1	2	3	4	-1	0	0	0	0	-1	0	0	0
1	2	4	4	-1	0	0	0	0	0	0	-1	0

Best

		Table 1: Example B/W Case 1 task data set up 1											
Resp	Set	Altij	Cset	Bestworst	AirNZ	Delta	Emirates	JetStar	Qantas	Singapore	United	Choice	
1	1	1	4	1	0	0	0	0	0	1	0	0	
1	1	2	4	1	0	0	1	0	0	0	0	0	
1	1	3	4	1	0	0	0	0	1	0	0	0	
1	1	4	4	1	0	0	0	0	0	0	0	1	
1	2	1	4	1	1	0	0	0	0	0	0	0	
1	2	1 2	4	1	1 0	0	0	0	0	0	0	0	
1 1 1	-	-		-	-	-	-			-	_	Ŭ	

Worst

Table 1: Example B/W Case 1 task data set up 1												
Resp	Set	Altij	Cset	Bestworst	AirNZ	Delta	Emirates	JetStar	Qantas	Singapore	United	Choice
1	1	1	4	-1	0	0	0	0	0	-1	0	0
1	1	2	4	-1	0	0	-1	0	0	0	0	1
1	1	3	4	-1	0	0	0	0	-1	0	0	0
1	1	4	4	-1	0	0	0	0	0	0	0	0
1	2	1	4	-1	-1	0	0	0	0	0	0	0
1	2	2	4	-1	0	0	-1	0	0	0	0	1
1	2	3	4	-1	0	0	0	0	-1	0	0	0
1	2	4	4	-1	0	0	0	0	0	0	-1	0

Case 2 differs to case 1 in that the method concentrates on attributes, not alternatives. Consider an example with four attributes, seat pitch, entertainment, alcohol payment and stop over. The attribute levels of the four levels are given as:

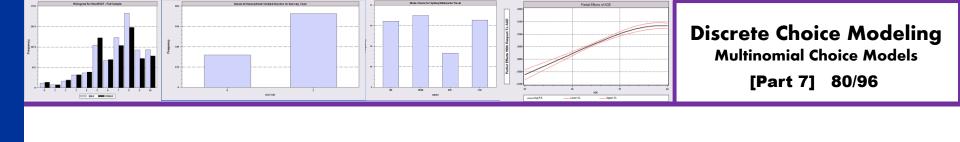
Table 3: Example B/W Case 2 task attribute levels

Attribute	Level 1	Level 2	Level 3
Seat Pitch	28 inches	30 inches	32 inches
Entertainment	Single cabin screen	Limited movies	Full entertainment
Alcohol payment	Pay for alcohol	Free alcohol	
Stop over	No stop over	3 hour stop over	5 hour stop over

An example of a choice question is show below.

Best worst scaling (Case 2)

Best	Attribute	Worst
\bigcirc	Seat pitch 30'	\bigcirc
\bigcirc	Limited movies	\bigcirc
\bigcirc	Pay for alcohol	\bigcirc
\bigcirc	5 hour stopover	\bigcirc


Figure 2: Example B/W Case 2 task

The data is set up as per a normal DCE where the attributes are dummy codes of the attribute levels. Each task however is repeated, once for best and once for worst. For worst, the coding is the same, however -1 is used instead of 1. An example is presented in the table below, where the first task is an example of the above task.

Uses the result that if U(i,j) is the lowest utility, -U(i,j) is the highest.


Resp	Set	Altij	Altn	Cset	Bestworst	Inch28	Inch30	CabScr	LimMov	Pay	Hour1	Hour3	Choice
1	1	1	1	4	1	0	1	0	0	0	0	0	0
1	1	2	2	4	1	0	0	0	1	0	0	0	0
1	1	3	3	4	1	0	0	0	0	0	0	0	1
1	1	4	4	4	1	0	0	0	0	0	0	0	0
1	1	1	5	4	-1	0	-1	0	0	0	0	0	0
1	1	2	6	4	-1	0	0	0	-1	0	0	0	1
1	1	3	7	4	-1	0	0	0	0	0	0	0	0
1	1	4	8	4	-1	0	0	0	0	0	0	0	0
1	2	1	1	4	1	1	0	0	0	0	0	0	0
1	2	2	2	4	1	0	0	1	0	0	0	0	0
1	2	3	3	4	1	0	0	0	0	1	0	0	1
1	2	4	4	4	1	0	0	0	0	0	0	1	0
1	2	1	5	4	-1	-1	0	0	0	0	0	0	1
1	2	2	6	4	-1	0	0	-1	0	0	0	0	0
1	2	3	7	4	-1	0	0	0	0	-1	0	0	0
1	2	4	8	4	-1	0	0	0	0	0	0	-1	0


```
nlogit
;lhs=choice,cset,altij
;choices=A,B,C,D
;model:
U(A) = Seat + in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
U(B) = Scrn + in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
U(C) = Alco + in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
U(D) = in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
```

Note that you could potentially run any model for this data. For example, if one wanted to test for differences in scale between the best and worst alternatives, one could use the NL model (note however that you need the altij variable to take different values for best and worst now – see altn in the two examples above).

Uses the result that if U(i,j) is the lowest utility, -U(i,j) is the highest.

Nested Logit Approach.

Resp	Set	Altij	Altn	Cset	Bestwo	rst	Inch28	Inch30	CabScr	LimMov	Pay	Hour1	Hour3	Choice
1	1	1	1	4	1		0	1	0	0	0	0	0	0
1	1	2	2	4	1		0	0	0	1	0	0	0	0
1	1	3	3	4	1		0	0	0	0	0	0	0	1
1	1	4	4	4	1		0	0	0	0	0	0	0	0
1	1	1	5	4	-1		0	-1	0	0	0	0	0	0
1	1	2	6	4	-1		0	0	0	-1	0	0	0	1
1	1	3	7	4	-1		0	0	0	0	0	0	0	0
1	1	4	8	4	-1		0	0	0	0	0	0	0	0
1	2	1	1	4	1		1	0	0	0	0	0	0	0
1	2	2	2	4	1		0	0	1	0	0	0	0	0
1	2	3	3	4	1		0	0	0	0	1	0	0	1
1	2	4	4	4	1		0	0	0	0	0	0	1	0
1	2	1	5	4	-1		-1	0	0	0	0	0	0	1
1	2	2	6	4	-1		0	0	-1	0	0	0	0	0
1	2	3	7	4	-1		0	0	0	0	-1	0	0	0
1	2	4	8	4	-1		0	0	0	0	0	0	-1	0

Nested Logit Approach – Different Scaling for Worst

```
nlogit
;lhs=choice,cset,altn
                                                8 choices are two blocks of 4.
;choices=Ab,Bb,Cb,Db, Aw,Bw,Cw,Dw
                                                Best in one brance, worst in the
;tree =Bst(Ab,Bb,Cb,Db),Wst(Aw,Bw,Cw,Dw)
                                                second branch
ru1:
;ivset:(Bst)=[1.0]
:model:
U(Ab) = Seat + in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
U(Bb) = Scrn + in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
U(Cb) = Alco + in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
             in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
U(Db) =
U(Aw) = Seat + in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
U(Bw) = Scrn + in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
U(Cw) = Alco + in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 /
U(Dw) =
              in28*inch28 + in30*inch30 + scr*cabscr + limmov*limmov + pay*pay + h1*hour1 + h3*hour3 $
```


🐺 Internet Dating Survey - 14 / 26 👘

An example

We will show you 5 profiles of people that you might consider contacting.

We will then ask you to tell us which profile represents the best candidate and which represents the worst.

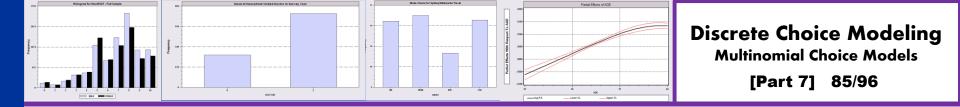
We will then get you to tell us of the three remaining profiles, which is the best and which is the worst.

If you were looking through a dating website and considered contacting among the five people shown based on the descriptions listed, which profile represents the best candidate and which represents the worst? And then which is the best and which is the worst of the three remaining profiles?

	Ů Ť	фŶ	† †	ŕŕ	İİ
	Person A	Person B	Person C	Person D	Person E
Drinking Habit Smoking Habit Children Job Looks Cost to contact	Non drinker Ex smoker Single parent White Collar Above average \$20	Casual drinker Smoker None currently Blue Collar Below average \$15	Moderate drinker Non smoker Single parent Blue Collar Above average \$10	Casual drinker Ex smoker Single parent Unemployed Below average \$15	Moderate drinker Smoker None currently White Collar Average \$10
Wikiek weefte de vers eenstder te ke					
Which profile do you consider to be the best and which is the worst?	Best 💌	•	▼	Worst 💌	
Of the remaning profiles, which profile is the best and which is the worst?		Worst 💌	Best 💌		T

In the above example, we found Person A to be the best candidate for contacting and person D the worst, and Of the three remaining profiles, we believe that Person C is the best remaining profile and Person B the worst.

You will be shown nine scenarios similar to the above one. Each scenario will show the profiles of different potential contacts.


Please make sure that you understand the task before proceeding. Once you go to the next screen, you will not be able to go back.

Back

Discrete Choice Modeling Multinomial Choice Models [Part 7] 84/96

Resp	Set	RespSet	Explode	Altij	Altn	Cset	Choice	Drink	Smoke	Child	Job	Looks	Cost
1	1	1	1	1	1	5	1	0	1	1	0	2	20
1	1	1	1	2	2	5	0	1	2	0	1	0	15
1	1	1	1	3	3	5	0	2	0	1	1	2	10
1	1	1	1	4	4	5	0	1	1	1	2	0	15
1	1	1	1	5	5	5	0	2	2	0	0	1	10
1	2	1	2	2	7	4	0	1	2	0	1	0	15
1	2	1	2	3	8	4	1	2	0	1	1	2	10
1	2	1	2	4	9	4	0	1	1	1	2	0	15
1	2	1	2	5	10	4	0	2	2	0	0	1	10
1	3	1	3	2	12	3	0	1	2	0	1	0	15
1	3	1	3	4	14	3	0	1	1	1	2	0	15
1	3	1	3	5	15	3	1	2	2	0	0	1	10
1	4	1	4	2	17	2	1	1	2	0	1	0	15
1	4	1	4	4	19	2	0	1	1	1	2	0	15

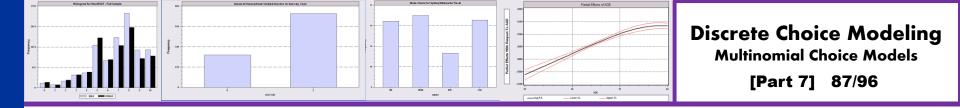
Resp	Bestworst	Explode	Altij	Altn	Cset	Choice	Drink	Smoke	Child	Job	Looks	Cost
1	1	1	1	1	5	1	0	1	1	0	2	20
1	1	1	2	2	5	0	1	2	0	1	0	15
1	1	1	3	3	5	0	2	0	1	1	2	10
1	1	1	4	4	5	0	1	1	1	2	0	15
1	1	1	5	5	5	0	2	2	0	0	1	10
1	-1	2	1	6	5	0	0	-1	-1	0	-2	-20
1	-1	2	2	7	5	0	-1	-2	0	-1	0	-15
1	-1	2	3	8	5	0	-2	0	-1	-1	-2	-10
1	-1	2	4	9	5	1	-1	-1	-1	-2	0	-15
1	-1	2	5	10	5	0	-2	-2	0	0	-1	-10
1	1	3	2	12	4	0	1	2	0	1	0	15
1	1	3	3	13	4	1	2	0	1	1	2	10
1	1	3	4	14	4	0	1	1	1	2	0	15
1	1	3	5	15	4	0	2	2	0	0	1	10
1	-1	4	1	16	4	0	0	-1	-1	0	-2	-20
1	-1	4	2	17	4	1	-1	-2	0	-1	0	-15
1	-1	4	3	18	4	0	-2	0	-1	-1	-2	-10
1	-1	4	5	20	4	0	-2	-2	0	0	-1	-10
1	1	5	2	22	3	0	1	2	0	1	0	15
1	1	5	4	24	3	0	1	1	1	2	0	15
1	1	5	5	25	3	1	1	1	1	2	0	15
1	-1	6	1	26	3	0	0	-1	-1	0	-2	-20
1	-1	6	3	28	3	0	-2	0	-1	-1	-2	-10
1	-1	6	5	30	3	1	-2	-2	0	0	-1	-10
1	1	7	2	32	2	1	1	2	0	1	0	15
1	1	7	4	34	2	0	1	1	1	2	0	15
1	-1	8	1	35	2	0	0	-1	-1	0	-2	-20
1	-1	8	3	37	2	1	-2	0	-1	-1	-2	-10

Nonlinear Utility Functions

Generalized (in functional form) multinomial logit model

 $U(i, j) = V_j(x_{ij}, z_i, \beta) + \varepsilon_{ij}$ (Utility function may vary by choice.)

 $F(\epsilon_{ij}) = exp(-exp(-(\epsilon_{ij})))$ - the standard IID assumptions for MNL

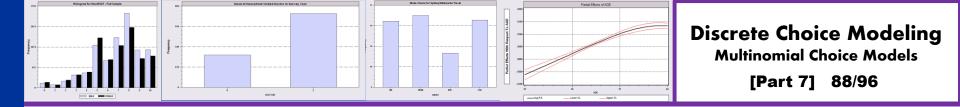

$$Prob(i,j) = \frac{exp\left[V_{j}(x_{ij}, z_{i}, \beta)\right]}{\sum_{m=1}^{J} exp\left[V_{m}(x_{im}, z_{i}, \beta)\right]}$$

Estimation problem is more complicated in practical terms

Large increase in model flexibility.

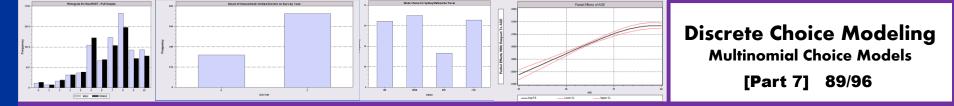
Note : Coefficients are no longer generic.

WTP(i,k | j) =
$$-\frac{\partial V_j(x_{ij}, z_i, \beta) / \partial x_{i,j}(k)}{\partial V_j(x_{ij}, z_i, \beta) / \partial Cost}$$



Assessing Prospect Theoretic Functional Forms and Risk in a Nonlinear Logit Framework: Valuing Reliability Embedded Travel Time Savings

David Hensher The University of Sydney, ITLS William Greene Stern School of Business, New York University


8th Annual Advances in Econometrics Conference Louisiana State University Baton Rouge, LA November 6-8, 2009

Hensher, D., Greene, W., "Embedding Risk Attitude and Decisions Weights in Non-linear Logit to Accommodate Time Variability in the Value of Expected Travel Time Savings," *Transportation Research Part B*

Prospect Theory

- Marginal value function for an attribute (outcome)
 v(x_m) = subjective value of attribute
- Decision weight w(p_m) = impact of a probability on utility of a prospect
- □ Value function $V(x_m, p_m) = v(x_m)w(p_m) = value of a prospect that delivers outcome x_m with probability p_m$
- We explore functional forms for w(p_m) with implications for decisions

An Application of Valuing Reliability (due to Ken Small)

PLEASE CIRCLE EITHER CHOICE A OR CHOICE B


Average Travel Time Average Travel Time 9 minutes 9 minutes You have an equal chance of arriving You have an equal chance of arriving at any of the following times: at any of the following times: 3 minutes early 7 minutes early 3 minutes early 4 minutes early late 1 minute early 2 minute early 2 minutes early 5 minutes late late On time 9 minutes late

Your cost: **\$0.25**

Choice A

Choice **B**

Your cost: **\$1.50**

Stated Choice Survey

Trip Attributes in Stated Choice Design

- Routes A and B
- Free flow travel time
- Slowed down travel time
- Stop/start/crawling travel time
- Minutes arriving earlier than expected
- Minutes arriving later than expected
- Probability of arriving earlier than expected
- Probability of arriving at the time expected
- Probability of arriving later than expected
- Running cost
- Toll Cost

Individual Characteristics: Age, Income, Gender


Value and Weighting Functions

Value Function: $V(x) = \frac{x^{1-\alpha}}{1-\alpha}$

Weighting Functions :

$$\frac{\text{Model 1}}{\left[p_{m}^{\gamma} + (1 - p_{m})^{\gamma}\right]^{\frac{1}{\gamma}}} \quad \frac{\text{Model 2}}{\left[\text{T}P_{m}^{\gamma} + (1 - p_{m})^{\gamma}\right]} = \frac{\text{T}P_{m}^{\gamma}}{\left[\text{T}P_{m}^{\gamma} + (1 - p_{m})^{\gamma}\right]}$$


$$\frac{\text{Model 3}}{\text{Model 3}} = \exp(-\tau(-\ln p_{m})^{\gamma}) \quad \frac{\text{Model 4}}{\text{Model 4}} = \exp(-(-\ln p_{m})^{\gamma})$$

Choice Model

Constraint: $\beta_{curr} = \beta_{late} = \beta_{early}$

$$\begin{split} U(j) &= \beta_{ref} + \beta_{cost}Cost + \beta_{Age}Age + \beta_{Toll}TollASC \\ &+ \beta[w(p_{curr})v(t_{curr}) + w(p_{late})v(t_{late}) + w(p_{early})v(t_{early})] \\ &+ \epsilon_{j} \end{split}$$


Application

2008 study undertaken in Australia

- toll vs. free roads
- stated choice (SC) experiment involving two SC alternatives (i.e., route A and route B) pivoted around the knowledge base of travellers (i.e., the current trip).

280 Individuals

32 Choice Situations (2 blocks of 16)

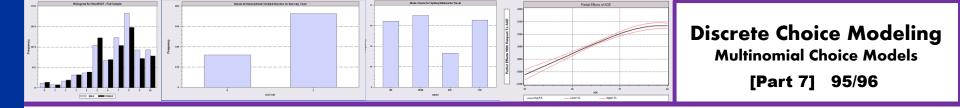
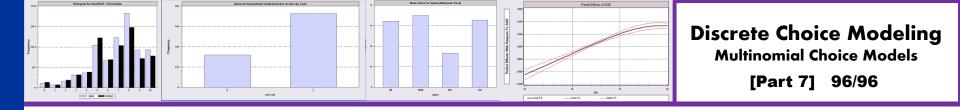
Data

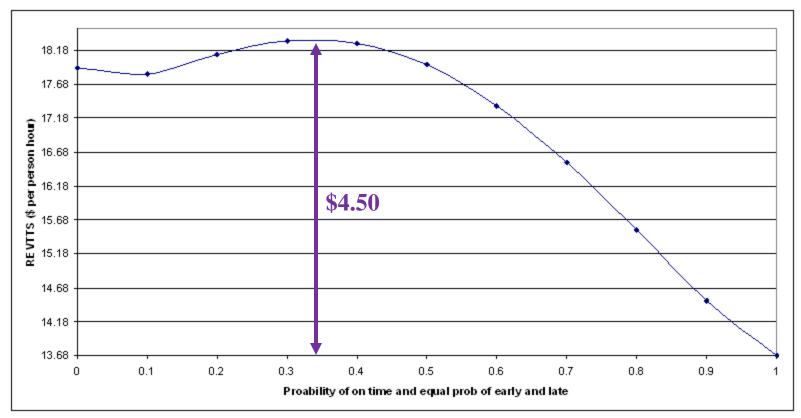
Descriptive socioeconomic statistics

Purpose	Statistic	Gender (1=female)	Income	Age
Commuter	Mean	0.575	\$67,145	42.52
	Std. Deviation	0.495	\$36,493	14.25

Descriptive statistics for costs by segment

	All times of day		Peak		Off-Peak	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Running costs	\$3.15	\$2.56	\$3.58	\$3.01	\$2.92	\$2.26
Toll costs	\$1.41	\$1.50	\$1.40	\$1.50	\$1.41	\$1.51


 Table 7: Non-linear probability weighting function with uncertainty attitude

 (All models are estimated using Nlogit5)

Variable	Model 1 (M1)	Model 2 (M2)	Model 3 (M3)	Model 4 (M4)	
	$w(p_m) = \frac{p_m^7}{1}$	$w(p_m) = \frac{\tau P_m^y}{\left[\tau P_m^y + (1 - P_m)^y\right]}$			
Decision Weight	$[p_m^{\gamma} + (1 - p_m)^{\gamma}]^{\overline{\gamma}}$	$\left[\tau P_m^{\gamma} + (1 - P_m)^{\gamma}\right]$	$w(p_m) = \exp(-\tau(-\ln p_m)^{\gamma})$	$w(p_m) = \exp(-(-\ln p_m)^r)$	
Reference constant	0.5017 (4.12)	0.5318 (4.32)	0.5311 (4.33)	0.4933 (4.05)	
Alpha (α)	0.3834 (3.41)	0.2670 (2.21)	0.2729 (2.26)	0.2288 (1.85)	
Gamma (y)	0.7641 (3.31)	1.2549 (6.43)	1.4185 (7.79)	1.1638 (5.82)	
On-time/Early/Late (mins)	-0.2966 (-2.43)	-0.1532 (-2.1)	-0.1620 (-2.07)	-0.1742 (-2.16)	
Cost (\$)	-0.2612 (-12.2)	-0.2602 (-12.2)	-0.2607 (-12.2)	-0.2609 (-12.2)	
Tollasc	-0.2815 (-3.02)	-0.2727 (-2.88)	-0.2711 (-2.87)	-0.3022 (-3.21)	
Tau (τ)	-	1.9487 (7.00)	0.7304 (9.56)	-	
Age (years)	0.0054 (2.11)	0.0053 (2.12)	0.0054 (2.13)	0.0052 (2.05)	
No. of observations		4,480			
Information Criterion : AIC	6850.86	6829.54	6829.91	6864.23	
Log-likelihood	-3418.43	-3406.77	-3406.96	-3425.11	
REVTTS	18.15 (3.21)	17.63 (2.28)	17.60 (2.31)	17.47 (1.80)	

Reliability Embedded Value of Travel Time Savings in Au\$/hr

REVTTS Distribution given Probability of being on-time (Model 2) with equal residual probability of being early and late