
Discrete Choice Modeling 
Panel Data 
Exercise  5 

 
 

We continue our analysis of the healthcare data.  For these exercises, we will use the smaller 

subset of the full data set, HealthData.lpj 
 

In this exercise, we will be estimating and analyzing panel data models. 

 

Preliminaries:  You must declare the panel data set before fitting the models.  After loading the 

project, use 

 

 SETPANEL ; Group = id ; Pds = ti $ 

 

Part I.  Binary Choice and Ordered Choice Model Estimates 

 

1.  The first variable of interest is DOCTOR, a dummy variable that equals 1 if the number of 

doctor visits is greater than zero, and zero if not.  Describe this variable.  Is the sample relatively 

balanced, or highly unbalanced? 

 

2.  Begin the analysis by fitting pooled probit and logit models.  Use at least 3 of the independent 

variables in the data set including FEMALE as one of them.  Use the definition 

 

 NAMELIST ; XP = … your list of variables … (do not include HEALTHY) $ 

 

We will use your definition of xp in several exercises below.  You’ll be able to explore variations 

in the results just by changing this definition. 

 

3.  Since the data are a panel, your pooled estimator is ignoring the correlation across the 

observations in the households.  Before fitting the appropriate panel data model, compute the 

pooled probit model with robust, cluster corrected standard errors. Compare the results to what 

you obtained in part 2. 

 

 NLOGIT Tip:  Use the same PROBIT command you used in part 2, but add 

   ; Cluster = id 

 

4. At this point, we will look at fixed and random effects estimators.  We start with fixed effects.  

Fixed effects models require within group (time) variation of the independent variables.  Choose 

three variables, and define a namelist, 

 

 NAMELIST ; xfe = your 3 variables $  (for example, age, income, hhkids) 

 

A familiar choice for the fixed effects model is the LOGIT specification.  There are two 

approaches, the ‘conditional’ estimator (Chamberlain’s) and the unconditional (Greene, brute 

force).  It is well known that the second of these is biased due to the incidental parameters 

problem.  The familiar 100% bias applies when T = 2.  The average group size in our panel is 

closer to 4, so the bias should be smaller.  Let’s find out.  Compute the unconditional and 

conditional estimators and compare the results. 

 



 NLOGIT Tip: LOGIT ; Lhs = doctor ; Rhs = xfe ; Panel ; Table = logit_c $ 

   LOGIT ; Lhs = doctor ; Rhs = xfe ; Panel ; FEM ; Table = logit_u $ 

   MAKETABLE ; logit_c,logit_u $ 

 

4.  (Continued)  The conditional estimator of the logit model eliminates the fixed effects.  The 

unconditional estimator computes the constant terms (when it can) along with the slopes.  

Examine the estimated constant terms for your model. 

 

 NLOGIT Tip: LOGIT ; Lhs = … ; Rhs = … ; Panel ; FEM ; Parameters $ 

 Notice in the reported output above the coefficients it is indicated that the 

 panel contains 550 individuals, but 307 are skipped because of inestimable ai. 

 These are groups in which yit is always 1 or always 0.  Look in the project window 

 in the Matrices folder.  You will find a matrix named APLHAFE.  Double click 

 this matrix to display it.  The values -1.d20 and +1.d20 are fillers for the groups 

 for which ai could not be computed.  (The ;Parameters in your command requests 

 this matrix.) 

 

5.  Compute the coefficients of the random effects probit model using your specification of XP.  

Note, there are two ways to do the estimation, the Butler and Moffitt method using quadrature, 

and maximum simulated likelihood.  (Your model must contain a constant term.) 

 

 NLOGIT Tip: PROBIT ; Lhs = … ; Rhs = one,… ; Panel ; Random $ (B&M) 

   PROBIT ; Lhs = … ; Rhs = one,… ; Panel 

        ; RPM ; Fcn = one(n) ; Halton ; Pts = 50 $ 

 

6.  An ordered choice model.  Another interesting variable is HLTHSAT, the health satisfaction 

variable.  It is coded 0,1,2,3,4.  Fit an ordered probit model  Use a pooled ordered probit model, 

and use a cluster correction for the standard errors.  We’re also interested in seeing the partial 

effects.   

 

 NLOGIT Tip: ORDERED ; … ; Marginals ; Full ; Cluster = … $ 

 

Part II.  The Delta Method 

 

The delta method is used to compute standard errors for nonlinear (or linear) functions of 

asymptotically normally distributed estimators.  Here is an example.  We begin with a probit 

model.   

 

 Prob(y=1|x) = (x) 

 

Where  is the standard normal cdf.  The inverse Mills ratio based on this model is  

  =  (x)/(x) where  is the standard normal density.  You will first fit the probit model for 

the full sample, then compute the inverse Mills ratio using the subsample with FEMALE=1.  You 

will use the delta method to compute a standard error.  The computation is done two ways, first 

by computing the function at the means of the data, second by computing the function for each 

individual, then averaging the functions.  Do the results differ by the two methods? 

 

  

  



NLOGIT Tip: You can use the following template:  
 

NAMELIST ; xp = … your specification $ 

PROBIT ; lhs = doctor ; rhs=xp $ 

WALD ; if [ female=1 ]  ;  parameters = b ; covariance = varb ; labels = kreg_b 

; fn1 = n01(b1'xp)/phi(b1'xp) $ 

 

 The WALD command does the computation at the means of the data.  Note, in the 

 command, kreg is the number of variables in the previous model command.  In the 

 labels definition, kreg_b defines the list as b1,b2,b3,…  The construction b1’xp 

 computes the index function using the x vector and the parameter vector starting  

 with b1. 

Add ; Average to the WALD command to compute the average function value instead. 

 

Part III.  Bootstrapping 

 

A.  Nonlinear Function 

 

Bootstrapping is a method generally used to estimate the standard errors for an estimator.  We can 

also use it as an alternative to the delta method.  Use bootstrapping to estimate the standard error 

of the sample average IMR computed in Part II.   

 

 NLOGIT Tip:  You can use the following template for this exercise.  You must define 

 the namelist, XP.  Use the definition you provided earlier. 

 

PROCEDURE  $ 

PROBIT ;  quietly ; lhs=doctor ; rhs = xp $ 

CREATE ;  imr = n01(b'xp)/phi(b'xp) $ 

CALC   ;  meanimr = female'imr/sum(female) $ 

ENDPROC $ 

EXEC ; n=100 ; bootstrap = meanimr  ; histogram $ 

 

B.  Test Statistic 

 

Bootstrapping is often used to explore the distributions of test statistics.  We’ll try that here.  The 

probit model with heteroscedasticity would be 

 

 Prob(y=1|x,z)  =  
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The restricted model, under the null hypothesis that  = 0 is the original probit model.  We will 

use our data on doctor visits to examine the LM statistic for testing this hypothesis.  We start by 

simulating data that exactly obey the assumptions of the model.  Note, this exercise uses the XP 

namelist that you defined earlier. 

 

PROBIT  ; lhs = doctor ; rhs = xp $ (Obtains the ‘true’ coefficients.) 

CREATE ; ysim = (b'xp + rnn(0,1)) > 0 $ (Simulates the homoscedastic data) 
 

In the simulated data, the true coefficients are the MLE probit estimates.  There is no 

heteroscedasticity.   NLOGIT will compute an LM statistic for a hypothesis if you provide the 



restricted estimates as starting values and specify MAXIT=0.  We’ll test the hypothesis that the 

data are heteroscedastic depending on gender (FEMALE) 

 

 PROBIT ; Lhs = ysim ; Rhs = xp $ (this computes the restricted estimates) 

 PROBIT ; Lhs = ysim ; Rhs = xp ; Het ; Hfn = female ; start = b,0 ; Maxit = 0 $ 

 

This will report the LM statistic.  What value did you get?  What is the critical value for the test?  

We’ll now explore the distribution of the statistic under the true null hypothesis of 

homoscedasticity 

 

PROCEDURE $ 

PROBIT  ;  quietly ; lhs=ysim ; rhs = xp $ 

PROBIT  ;  quietly ; lhs=ysim ; rhs=xp 

        ;  het ; hfn=female;start=b,0 ; maxit=0 $ 

ENDPROC $ 

EXECUTE  ; n=100 ; bootstrap = lmstat $ 

HISTOGRAM; rhs = bootstrp $ 

 

It will be interesting to see if the real data we are using display evidence of heteroscedasticity.  

You can do the test just by changing ysim to doctor in the two pairs of PROBIT commands in the 

discussion above.  What do you find? 

 

C.  Estimated Parameter Vector. 

 

The most common use of bootstrapping is to compute variances and covariance matrices for 

estimators.  We’ll do that for a vector of partial effects as scaled coefficients, based on a logit 

model.  Here is the template you can use, once again based on your specification of the model in 

your XP namelist. 

 

 PROCEDURE $ 

 LOGIT ; quiet ; Lhs = healthy ; Rhs = xp ; Prob = p $ 

 CREATE ; scale = p*(1-p) $ 

 CALC ; avgscale = xbr(scale) $ 

 MATRIX ; ape = avgscale * b $ 

 ENDPROC $ 

 EXECUTE ; n = 50 ; bootstrap = ape $ 

 

You can compare your results to the results using the delta method by 

 

 LOGIT ; quiet ; Lhs = healthy ; Rhs = xp ; Marginal  $ 

 

Note that the comparison will become more favorable if you increase the number of bootstrap 

replications. 


