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I.  Basic Regression 
 

This first assignment will help you get started with some familiar, basic estimation and 
analysis computations.  This assignment is based on the German health care data discussed in 
class. They are an unbalanced panel of 7,293 households observed in 1 to 7 years from 1984 to 
1994 (with a couple gaps). 
 
Import the data   
File:Import … Import healthcare.csv 
 
For most of our present purposes, however, we will treat theese data as a cross section of 27,326 
observations.  Since these are panel data, we define them as a panel now – later it will be 
convenient to move back and forth between panel and pooled data treatments. 
 
xtset id 
 
1.  Descriptive Statistics 
 
First, let’s take a look at the data.  Use 
 
summarize *   /// The * means all variables in the active data set. 
 
to get some descriptive statistics for the variables in the data set.   The analysis below will focus 
on the income variable.  We are going to use log(income) as the dependent variable in the 
regressions.  The following describes this variable and examines whether it appears to be 
normally distributed by comparing it to a random sample of draws from the normal distribution 
with the same mean and standard deviation.  The kernel estimator uses only the 1994 data. 
  
gen logincome = log(income) 
kdensity logincome if year == 1994, normal 
   
The following produces boxplots for the incomes of the female household heads by year.  
Depending on how they are drawn, boxplots can be distorted by extreme observations in any data 
set. In the following, we take a simple strategy, and just restrict attention to a range that includes 
most of the data.  The set of plots reveals both the skewed nature of the distribution and the 
upward trend. 
 
graph box income if female == 1 & income <= 2, over(year) 
 

I am also interested in the education variable.  In the original data, education is coded in 
part years, so a histogram is not very pretty.  I will look at the full years of education by 
converting educ to integers. 
 
hist educ if year == 1994 



 
(Note only one graph window can be open at a time.)  The distinctive lump at 18 years in the 
figure probably shows that the data are censored – it appears that education above 18 years is 
coded as 18.  A histogram for a continuous variable will only look good if the data really are 
continuous.  A kernel estimator is not necessarily better.  You can see by using the commands  
 
gen yearseduc = int(educ) 
histogram yearseduc if year == 1994 
kdensity yearseduc if year == 1994 
 
2.  Linear Regression and Testing Hypotheses 
 

For this exercise, we will pool the data and not explicitly use the panel aspect.  For 
convenience, we define a couple of namelists with 
 
global demographic age female married 
global years year1984 year1985 year1986 year1987 year1988 year1991 
 
(We have omitted year1994, so year1994 is the base year.)   

To start, we are going to do some linear regression modeling using the variable 
logincome as the dependent variable.  We will fit a simple least squares regression with 
 
regress logincome $demographic $years 
 
An alternative way to handle a categorical variable is to use the internal procedure.   
 
regress logincome $demographic i.year 
 
(Note that using the internal form changes the base year from 1994 (the last year) to 1984 (the 
first year).)  Of course this is inconsequential, but it does change the normalization of the dummy 
variable year coefficients.  I will want to use the R2 from this regression, so I save it for later with 
 
scalar r20 = e(r2) 
 
Does education help to explain the variation in logincome?  Add educ to the regression and test 
the hypothesis that the coefficient on education equals zero using an F test.  (We use the familiar 
Wald (squared t) test first, then construct the F statistic.) 
 
regress logincome $demographic i.year educ 
test educ  /// Wald statistic 
scalar r21 = e(r2) 
scalar df1 = e(df_r) 
display ((r21 - r20)/1) / ((1 - r21)/df1)  /// F statistic 
 
What did you find?  Note, your results contain two statistics for carrying out this test, the F 
statistic and a t statistic reported with the regression results.  What are the results? 
 Now, test the joint hypothesis that neither gender nor education are significant in the 
model.  
  
test educ  female 

 
Test the hypothesis that the three coefficients in demographic all equal zero.  What do 

you find?   
 



test $demographic 
 
We also want to test for the presence of ‘time’ effects in the regression model.  In the regression 
setup, we used i.year to specify the categorical variable.  It is necessary to be a little careful here – 
Stata does not recognize i.year in the test procedure.  We can use, instead 
 
regr logincome $demographic $years 
test $years 
 
(More transparent)  We can use matrix algebra.  The REGRESS command provides the 
coefficients in e(b) and covariance matrix in e(V) for us to use in matrix algebra and other 
commands.  For example, in the regression command, the years variables are the 5th to 10th 
variables.  We can use 
 
 
regr logincome $demographic $years educ 
matrix vy = e(V) 
matrix vy = vy[4..9,4..9] 
matrix by = e(b) 
matrix by = by[1..1,4..9] 
matrix wald = by*invsym(vy)*by' 
matrix list wald 
 
3.  Partial Effects.   
 

Consider the elaborate nonlinear regression model 
 
 logincome = β1 +  β2age + β3educ + β4female +  

          β5age*educ + β6age2 + β7age*female + β8educ*female + ε 
 
What are the partial effects of Age and Educ on logincome?  Differentiating, we get 
 
 ∂logincome/∂age   = β2 + β5educ + 2β6age + β7female 
 
 ∂logincome/∂educ = β3 + β5age + β8female. 
 
What is the male – female income differential? 
 
 (logincome|female=1) – (loginc|female=0) = β4 + β7age + β8educ. 
 
How can you compute these and obtain standard errors for them?  There are built in functions that 
can be used for this sort of computation. First fit the regression with the interaction terms made 
explicit for the post estimation program. 
 
regress logincome c.age c.educ i.female c.age#c.educ c.age#c.age   /// 

c.age#i.female c.educ#i.female 
 
The basic marginal effects (averaged over the sample) are then obtained with 
 
margins,dydx(age) 
margins,dydx(educ) 
margins,dydx(i.female) 
 
 



(a) A more elaborate calculation is the effect of age computed for education fixed at 
12,14,16,18,20, and averaged over sample observations. 
 
margins,dydx(age) at(educ=(12(2)20)) 
 
(b) Effect of education computed for ages of 25, 28, 31, …, 64.  Plot of the values with 
confidence intervals. 
 
margins,dydx(educ) at(age=(25(3)64)) 
marginsplot 
 
(c) Effect for female, for three levels of education, age 25 to 64 at each education level.  Plots of 
three sets of values.  We compute the partial effects and the predictions of the regression. 
 
margins,dydx(i.female) at(age=(25(5)65) educ=(12,16,20)) 
marginsplot 
 
A detour (via NLOGIT). 
When the model contains a set of categories, such as levels of education, say coded with 4 
dummy variables: LTHS (less than high school), HS (high school), COLL (college) or GRAD 
(postgraduate), the partial effects for each dummy variable compute the effect relative to the base 
category. It might be interesting to compute the other partial effects.  For example, suppose that 
LTHS is the base.  We might compute the impact on income of achieving college education after 
finishing high school.  This suggests a ‘transition  matrix’ of partial effects.  In the regression, the 
educ variable is replaced by the group of variables, in the primary effect and in the interactions. 
 

? Examine threshold effects of education 
CREATE   ; LTHS     = YrsEduc < 12  
               ; HS          = YrsEduc = 12 
               ; COLL     = (yrseduc > 12)*(yrseduc<=16) 
               ; GRAD    = yrseduc > 16 $ 

       NAMELIST ; degree   = LTHS,HS,COLL,GRAD $ 
REGRESS  ; lhs = income      
? Note dot after degree. Drops last category when it is expanded. 
                ; rhs = one,age,degree., female, degree.*age,    
                                         age^2, age*female,   degree.*female $     
Partials  ; effects:  degree  ;transition $ 

 
----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=INCOME   Mean                 =         .35214 
             Standard deviation   =         .17686 
----------   No. of observations  =          27326  DegFreedom   Mean square 
Regression   Sum of Squares       =        86.6414          13       6.66473 
Residual     Sum of Squares       =        768.040       27312        .02812 
Total        Sum of Squares       =        854.682       27325        .03128 
----------   Standard error of e  =         .16769  Root MSE          .16765 
Fit          R-squared            =         .10137  R-bar squared     .10095 
Model test   F[ 13, 27312]        =      237.00187  Prob F > F*       .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  INCOME|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.23222***      .02362    -9.83  .0000     -.27851   -.18593 
     AGE|     .02883***      .00086    33.44  .0000      .02714    .03052 
    LTHS|     .08552***      .01835     4.66  .0000      .04956    .12148 
      HS|     .10676***      .02444     4.37  .0000      .05885    .15466 
    COLL|     .02968         .02126     1.40  .1627     -.01198    .07135 
  FEMALE|     .01132         .01130     1.00  .3166     -.01083    .03346 
LTHS*AGE|    -.00562***      .00042   -13.30  .0000     -.00645   -.00479 



  HS*AGE|    -.00458***      .00056    -8.19  .0000     -.00568   -.00349 
COLL*AGE|    -.00233***      .00050    -4.67  .0000     -.00330   -.00135 
 AGE^2.0|    -.00026***   .8780D-05   -29.80  .0000     -.00028   -.00024 
        |Interaction AGE*FEMALE 
Intrct05|    -.00089***      .00018    -4.84  .0000     -.00126   -.00053 
        |Interaction LTHS*FEMALE 
Intrct06|     .02469***      .00878     2.81  .0049      .00748    .04190 
        |Interaction HS*FEMALE 
Intrct07|     .02505**       .01177     2.13  .0334      .00197    .04812 
        |Interaction COLL*FEMALE 
Intrct08|     .00910         .01089      .84  .4032     -.01224    .03044 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Linear Regression Function 
--------------------------------------------------------------------- 
Effects of switches between categories in DEGREE   (dummy variables) 
Results are computed by average over sample observations 
LTHS    = .7731   HS      = .0632   COLL    = .0950   GRAD    = .0687 
--------------------------------------------------------------------- 
df/dDEGREE         Partial    Standard 
From --> To        Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
LTHS     LTHS       .00000     .00000     .00      .00000      .00000 
LTHS     HS         .06668     .00442   15.10      .05802      .07533 
LTHS     COLL       .08023     .00386   20.81      .07268      .08779 
LTHS     GRAD       .14743     .00444   33.23      .13873      .15613 
LTHS     (Other)    .09679     .00261   37.09      .09167      .10190 
HS       LTHS      -.06668     .00442   15.10     -.07533     -.05802 
HS       HS         .00000     .00000     .00      .00000      .00000 
HS       COLL       .01356     .00563    2.41      .00252      .02459 
HS       GRAD       .08075     .00604   13.38      .06892      .09258 
HS       (Other)   -.04773     .00439   10.86     -.05635     -.03912 
COLL     LTHS      -.08023     .00386   20.81     -.08779     -.07268 
COLL     HS        -.01356     .00563    2.41     -.02459     -.00252 
COLL     COLL       .00000     .00000     .00      .00000      .00000 
COLL     GRAD       .06719     .00564   11.90      .05613      .07826 
COLL     (Other)   -.06439     .00383   16.79     -.07191     -.05688 
GRAD     LTHS      -.14743     .00444   33.23     -.15613     -.13873 
GRAD     HS        -.08075     .00604   13.38     -.09258     -.06892 
GRAD     COLL      -.06719     .00564   11.90     -.07826     -.05613 
GRAD     GRAD       .00000     .00000     .00      .00000      .00000 
GRAD     (Other)   -.13471     .00441   30.52     -.14337     -.12606 
--------------------------------------------------------------------- 
* (Other) = conditional share weighted average of all switch effects 
--------------------------------------------------------------------- 
 
----------------------------------------------------------------- 
Partial Effects Transition Matrix for DEGREE 
There are  4 categories (sample %) 
  01=LTHS     (77.31) 02=HS       ( 6.32) 03=COLL     ( 9.50) 
  04=GRAD     ( 6.87) 
Entry = effect on outcome of switch from row category to column 
Switch to Other is unspecified switch out of row category 
--------+-------------------------------------------------------- 
        |     01     02     03     04  Other 
--------+-------------------------------------------------------- 
    LTHS|   .000   .067   .080   .147   .097 
      HS|  -.067   .000   .014   .081  -.048 
    COLL|  -.080  -.014   .000   .067  -.064 
    GRAD|  -.147  -.081  -.067   .000  -.135 
--------+-------------------------------------------------------- 

 
This technique is not available as a built in procedure in Stata.  It would be possible to program 
the computations in part, for example with 
 
gen lths=  educ < 12  



gen hs  =   educ == 12 
gen coll =  educ > 12 & educ <= 16 
gen grad= educ > 16 
global degree lths hs coll grad 
gen edlevel = 0*lths + 1*hs + 2*coll + 3*grad 
regr logincome c.age i.lths i.hs i.coll i.female c.age#i.lths c.age#i.hs c.age#i.coll /// 
c.age#c.age c.age#i.female i.lths#i.female i.hs#i.female i.coll#i.female 
margin,dydx(i.hs) 
margin,dydx(i.coll) 
* Then, the effect we are looking for would be the difference of these two.  It would be necessary 
* to use the estimated covariance matrix to compute the standard error for this difference. 
 
 
4.  Panel Data 
 
 We will examine panel data later in the course.  We’ll take a brief look at some of the 
operations here.  The GSOEP data are a panel. There is probably correlation across observations, 
which may mean that although least squares is consistent, the standard errors need correcting.  Do 
we see ‘cluster effects’ in the standard errors? We consider two approaches.  In the first, we 
correct the OLS standard errors for the correlation across observations in a group.  In the second, 
we use the fixed and random effects approaches to fit the model. 
 
global all $demographic $years 
regress logincome $all 
matrix mols = e(V) 
matrix mols = vecdiag(mols) 
matrix mols = mols' 
regress logincome $all,cluster(id) 
matrix mcluster= e(V) 
matrix mcluster=vecdiag(mcluster) 
matrix mcluster=mcluster' 
matrix list mols 
matrix list mcluster 
 
xtreg logincome $all, re 
xtreg logincome $all, fe 
 
Notice the treatment of a time invariant variable in the fixed effects model.  Can you see why a 
second year dummy variable is also dropped from the regression? 



II.  Binary Choice with Cross Section Data 
 
 
This exercise will involve estimating and analyzing binary choice models.  We will analyze the 
panel probit, manufacturing innovation data.  The data set is PanelProbit.csv.  These data are a 
panel.  The data set appears as follows: 
 
+------------------------------------------------------------------------------+ 
|****************************************************************              | 
|Panel probit data: Stacked, 6350 observations                                 | 
|N = 1270, T = 5                                                               | 
|EMPLP  = Employment                                                           | 
|IM = Industry employment                                                      | 
|IP = dependent variable, innovation, binary                                   | 
|IMUM = imports share                                                          | 
|FDIUM = FDI share                                                             | 
|SP = relative size                                                            | 
|PROD = productivity                                                           | 
|SALES = sales                                                                 | 
|LOGSALES = log sales                                                          | 
|RAWMTL, INVGOOD, CONSGOOD, FOOD = sector dummies                              | 
|T = period, T1,T2,T3,T4,T5 = period dummy variables                           | 
|FIRM = firm ID                                                                | 
|Authors Model = (one,logsales,sp,imum,fdium,prod,rawmtl,invgood)              | 
|****************************************************************              | 
|Panel Probit Data -  Wide form, 1270 observations                             | 
|For observations with T=1 (ignore the others)                                 | 
|IP84...IP88 = 5 years of IP                                                   | 
|EMPLP84...EMPLP88                                                             | 
|IM84...IM88                                                                   | 
|IMUM84...IMUM88                                                               | 
|FDIUM84...FDIUM88                                                             | 
|PROD84...PROD88                                                               | 
|SALES84...SALES88                                                             | 
|LSALES84...LSALES88                                                           | 
+------------------------------------------------------------------------------+ 

 
Import the data then declare it to be a panel with 
 
xtset firm 
 
Some other setup: declare some convenient lists of names. 
 
global sector rawmtl invgood consgood 
global x im imum fdium sp prod logsales 
global allx $x $sector 
 
1.  Different Functional forms.   
 

As we saw in class, the different distributions chosen for the binary choice model each 
imply a scaling of the coefficients.  Superficially, it appears that the model results depend heavily 
on the distribution.  But, this is illusory.  The differences essentially disappear when we examine 
the partial effects rather than the raw coefficients.  The following will illustrate this effect for two 
specific functional forms.    
 
probit ip $x 
margin,dydx($x) 
logit ip $x 
margin,dydx($x) 
 



 
2.  The Linear Probability Model 
 
 Some recent applications have used linear regression to fit a ‘linear probability’ model, 
rather than employ the usual probit or logit model.  What does least squares do in a binary choice 
setting?  As might be expected from the previous exercise, the coefficients one obtains are very 
different.  Are the results?  The following compares the results of the linear probability model to 
those of a logit model, both in terms of the coefficients and the partial effects.  The results suggest 
what is actually happening when one uses a linear probability model.  The coefficients are 
approximating the partial effects (at the means of the data) of the appropriate nonlinear binary 
choice model. 
 
regr ip $x 
margin,dydx($x) 
matrix bols=e(b) 
matrix bols = bols' 
matrix list bols 
probit ip $x 
margin,dydx($x) 
 
The success of the linear probability at mimicing the probit model is mixed.  Notice the good 
result for IMUM and FDIUM, but the less favorable results for IM, SP, PROD and LOGSALES. 
 
3.  A Robust Covariance Matrix.   
 

It is now common to compute a ‘robust’ sandwich type of estimator when fitting a binary 
choice model.  As we discussed in class, there is not much in the way of failures of the model 
assumption to which the MLE could be robust.   Nonetheless, it might be of interest how much 
difference it makes.  The robust estimator is H-1(G′G)H-1, where H is the negative of the Hessian 
of the log likelihood and G is the n×K matrix of first derivatives, by observation, of the log 
densities.  The following computes the conventional estimator, H-1 and the robust estimator.  We 
then report the two sets of results. 
 
* Conventional estimator 
probit ip $x 
matrix vmle=e(V) 
matrix vmle=vecdiag(vmle) 
matrix vmle=vmle' 
* 'Robust' estimator 
probit ip $x,robust 
matrix vrobust=e(V) 
matrix vrobust=vecdiag(vrobust) 
matrix vrobust=vrobust' 
* 'Cluster corrected' estimator 
probit ip $x,cluster(firm) 
matrix vcluster=e(V) 
matrix vcluster=vecdiag(vcluster) 
matrix vcluster=vcluster' 
matrix list vmle 
matrix list vrobust 
matrix list vcluster 
 
With one notable exception (prod), the so-called robust estimator doesn’t matter much.  But, the 
clustering seems to make a large difference.  Again, this is to be expected. 
 



4.  Creating a Plot of Probabilities.   
 

Once estimation is completed, there are a variety of useful post estimation computations 
that can be carried out with the estimated model.  To begin, it is useful to display the predicted 
probabilities produced by the model.  The following estimates a probit model for innovation, then 
simulates the probabilities over the range of logSales.  The plot is generated by dividing the range 
into 20 parts from the sample minimum of logSales to the maximum.  A listing of the 
probabilities averaged over the sample with all other variables taking their observed values is 
shown, followed by a plot with a confidence interval around the prediction. 
 
quietly probit ip im imum fdium sp prod logsales if t==1 
quietly margins, at(logsales=(3.5(.7)18)) 
marginsplot 
 
5.  Fit Measures 
 
 The binary choice models are not fit by least squares, and there is no R squared-like 
statistic to measure the correlation between the predictions of the model and the observed data.  
Many ad hoc measures have been proposed.  The most widely known is McFadden’s pseudo R 
squared, which as discussed in class, does not actually measure anything like the fit of the model 
to the data.  We examined a number of others in class.  The following fits a probit model and 
stores the predicted probabilities.  It then computes predictions by the rule ‘Predict y = 1 if fitted 
probability is greater than T*.’  The usual choice is T* = .5.  You can change the .5 to some other 
value then see if the value gives a better fit.  Some authors label this statistic the ‘count R 
squared,’ though that name seems a bit misleading. 
 
probit ip $x 
predict p 
gen iphat = p>.5 
table ip iphat 
probit 
 
6. Partial Effects for a Quadratic and for Interaction Terms  
 

Marginal effects in the binary choice models are complicated functions of the parameters 
and the data.  They are more so when the index function contains complex functions of the data.  
Suppose, for example, 
 
 P  =  Φ(β′x + α0logSales + α1logSales2). 
 
The marginal effect of logSales, which is the effect on the probability of a one percent change in 
sales is 
 
 ∂P/∂logSales = φ(β′x + α0logSales + α1logSales2) × (α0 + 2α1logSales) 
 
Computing these properly is a longstanding, widely discussed issue in modern software.  The 
problem, in general, is in obtaining the right single effect for logSales rather than separate effects 
for the two parts, neither of which give the right answer.  Recent versions of Stata (with 
‘Margins’) and NLOGIT (with PARTIALS and SIMULATE) have automated the computation of 
these types of effects.  The following does several computations around this formulation.  The 
probit model contains the indicated quadratic term in logSales.  The first command computes the 
average partial effects for logSales and fdium.  The second computes the average partial effect for 



logSales while varying fdium from .05 to 1.0 in steps of .05, and plots the results.  This 
calculation is done using the delta method.   
 
* Partial effects for a nonlinear model 
* Partial effects for categories - sectors 
global sector $sector food 
probit ip $x $sector 
margins,dydx($sector) 
 
probit ip im imum fdium sp prod c.logsales c.logsales#c.logsales 
margins,dydx(c.logsales) 
margins,dyex(fdium) 
margins,dydx(c.logsales) at(fdium=(.05(.05)1)) 
marginsplot 
probit ip im c.imum c.fdium c.sp prod c.logsales c.logsales#c.logsales /// 
             c.imum#c.sp c.fdium#c.sp  
quietly margins,dydx(sp) at (sp=(.05(.05)1.0)) 
marginsplot 
 
7.  A Group of Dummy Variables for a Set of Categories   
 

The data set also includes a set of sector dummy variables for four sectors.  It might be 
interesting to examine the different results for the four sectors.  The Namelist instruction defines 
the data matrix Sector which contains all four dummy variables.  One of them must be dropped in 
estimation.   

 
* Partial effects for categories - sectors 
global sector $sector food 
probit ip $x $sector 
margins,dydx($sector) 
 
8.  Testing for Structural Change.   
 

A common test is for homogeneity of the parameter vector across different groups.  For 
example, in our application here, it might be interesting to test whether underlying structural of 
the model has changed over the five year period of the data.  Consider the structure 
 
  Pit  =  F(βt′xit), i = 1,…,1270, t = 1,…,5 (1993 to 1997) 
 
which allows for different coefficient vectors in each year.  We are interested in testing the 
hypothesis 
  H0 : β1 = β2 = β3 = β4 = β5 
  H1:  not H0. 
 
In a linear regression context, this would be a ‘Chow’ test and would be tested with an F test.  
Since this is not a linear regression model, we can’t use the F test here.  The easiest way to do this 
test is with a likelihood ratio test.  The strategy is to fit the restricted model (pool the 5 years of 
data) and the unrestricted model (estimate the model separately for each year), and compare the 
log likelihoods.  The log likelihood for the unrestricted model is the sum of the five years.  Here 
is how you can automate this computation. Carry out the test.  What do you conclude?  Should 
the null hypothesis be rejected?  Repeat the test using a logit model instead of a probit model.  
Does the conclusion change?  Try the exercise again while adding the sector dummy variables to 
the model.  To do these, it is only necessary to change the model name from probit to logit, or the 
global command, global x im imum fdium sp prod logsales, by adding variables to it. 



 
* Chow style test for structural change 
probit ip $x  
scalar ll = e(ll) 
scalar loglsum = -ll 
foreach time in 1 2 3 4 5 { 
quietly probit ip $x if t==`time' 
scalar loglsum = loglsum + e(ll)  
} 
display 2*loglsum 
 
9.  Hypothesis Tests:   
 
This exercise will illustrate two methods of carrying out hypothesis tests.  Two tests are carried 
out.  All of the procedures save for the last carry out the test of whether the sector dummy 
variables should be included in the index function in the probit model.  In the last test, The model 
is    yi* = β′xi + εi 

  ε  ~  N[0,σi
2],  σi  =  exp(γ′zi). 

  yi  =  1(yi*  >  0] 
and the test of whether γ = 0 is carried out using an LM test.  The (small) advantage of the LM 
test is that it is not actually necessary to estimate the model to carry out the test as the statistic is 
based on the restricted, homoscedastic model. 
 
* Testing for and estimating a heteroscedastic probit model 
probit ip $x if t == 5 
scalar logl0 = e(ll) 
probit ip $x $sector if t == 5 
test $sector 
scalar logl1 = e(ll) 
display 2*(logl1 - logl0) 
hetprob ip $x if t==5,het($sector) 
scalar loglh = e(ll)  
display 2*(loglh - logl0)                            
     
10.  Simulation:  
 
Using the binary choice model simulator, examine how a 1.1 fold increase in LOGSALES which 
corresponds to a roughly 10% increase in sales would affect the probability of innovation.  The 
BinaryChoice command carries out a simulated change in every observation, and shows what 
would happen to the predicted sample responses.  The simulation displays the average predicted 
probabilities over a range of values of logSales. 
 
probit ip $x 
margins, at(logsales=(5(1)15)) 
marginsplot 


