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This first assignment will help you get started using NLOGIT with some familiar 

estimation and analysis computations.  This assignment is based on the German health care data 
discussed in class. They are an unbalanced panel of 7,293 households observed in 1 to 7 years 
from 1984 to 1994 (with a couple gaps). 

   
Load the health care panel data:  project file healthcare.lpj 

 
For most of our present purposes, however, we will treat them as a cross section of 27,326 
observations.  Since these are panel data, we define them as a panel now – later it will be 
convenient to move back and forth between panel and pooled data treatments. 
 

SETPANEL  ; group = id ; pds = ti $ ti = the group size 
CREATE       ; t = ndx(id,1) $                t  = the within group index, 1,2,...,Ti 
CREATE    ; yr = map(year) $ year - 1983 ; if(yr=8)yr=6 ; if(yr=11)yr=7 $ 
 

1.  Descriptive Statistics 
 
First, let’s take a look at the data.  Use 
 
 DSTAT   ; rhs = * $  (The * means all variables in the active data set.) 
 
to get some descriptive statistics for the variables in the data set.   The analysis below will focus 
on the income variable.  We are going to use log(income) as the dependent variable in the 
regressions.  The following describes this variable and examines whether it appears to be 
normally distributed by comparing it to a random sample of draws from the normal distribution 
with the same mean and standard deviation.  The kernel estimator uses only the 1994 data. 
  

CREATE  ; loginc=log(income)  
CALC   ; if[year = 1994] incbar=xbr(loginc);sdv=sdvinc(loginc)$ 
CREATE  ; normal=rnn(incbar,sdvinc)$ 
KERNEL  ; if[year = 1994] ; rhs=loginc,normal  

; title=Kernel Estimator for Log of Income ; grid $ 
   
(Notice that the kernel estimator for log income seems to be to the right of the normal 
distribution.  Perhaps incomes in Germany were growing in this period.  We can learn a bit more 
about the income in the data by using boxplots.  The following produces boxplots for the incomes 
of the female household heads by year.  Depending on how they are draws, boxplots can be 
distorted by extreme observations in any data set. In the following, we take a simple strategy, and 
just restrict attention to a range that includes most of the data.  The set of plots reveals both the 
skewed nature of the distribution and the upward trend. 
 



BOXPLOT ; if [Female=1 & Income < 2]  
; rhs = Income 

          ; str = year 
          ; labels = 1984,1985,1986,1987,1988,1991,1994 
          ; title = Boxplots of Income for Females by Year in GSOEP Data$ 
 

I am also interested in the education variable.  In the original data, education is coded in 
part years, so a histogram is not very pretty.  I will look at the full years of education by 
converting educ to integers. 
 

HISTOGRAM  ; if [ year = 1994] ; rhs = educ $ 
CREATE         ; yrseduc = int(educ) $ 
HISTOGRAM ; if[year = 1994] ; rhs = yrseduc ; title=Full Years of Education $ 

 
The distinctive lump at 18 years in the figure probably shows that the data are censored – it 
appears that education above 18 years is coded as 18.  A histogram for a continuous variable will 
only look good if the data really are continuous.  It is better to use a kernel estimator.  You can try 
typing the command  
 

KERNEL ;if[year=1994];rhs=educ$  
 

somewhere in the editing window and submitting it to see the effect.  Note the mode near 18 
years. 
 
2.  Linear Regression and Testing Hypotheses 
 

For this exercise, we will pool the data and not explicitly use the panel aspect.  For 
convenience, we define a couple of namelists with 
 
 NAMELIST  ;  demogrfc = age, female, married $ 
 NAMELIST  ;  years = year1984, year1985,year1986,year1987,year1988,year1991 $ 
 
(We have omitted year1994, so year1994 is the base year.)   

To start, we are going to do some linear regression modeling using the variable income 
as the dependent variable.  We will fit a simple least squares regression with 
 
 REGRESS  ; lhs = loginc ; rhs = one, demogrfc, years $ 
 CALC   ; rsq0 = rsqrd $ 
 
(An alternative way to handle a categorical variable is to use the internal procedures.  We have a 
variable YR which indexes the years.  We can use 
 
 REGRESS  ; lhs = loginc ; rhs = one, demogrfc, #yr $ 
 
Does education help to explain the variation in income?  Add educ to the regression and test the 
hypothesis that the coefficient on education equals zero using an F test. 
 
 REGRESS  ; lhs = loginc ; rhs = one, demogrfc, years, educ $ 
 CALC   ; rsq1 = rsqrd $ 
 CALC   ; list ; fstat = ((rsq1 – rsq0)/1) / ((1-rsq1)/(n-kreg) $ 

CALC      ; list ; Ftb(.95,1,(n-kreg))$ 
 



What did you find?  Note, the results contain two statistics for carrying out this test, the F statistic 
and a t statistic reported with the regression results.  What are the results?  The last instruction 
retrieves the critical value from the F table in case we do not remember it. 
 There are a variety of ways to test hypotheses.  The program will compute a Wald (chi 
squared) statistic for you as part of the command.  In the regression above, add ;Test:educ=0 to 
the command and resubmit it.  Now, test the joint hypothesis that neither gender nor education are 
significand in the model.  Use ;Test:educ=0,female=0.  This arrangement can also be used to set up 
constraints and test individual hypotheses. 
 
 REGRESS  ; lhs = loginc ; rhs = one,demogrfc,years ; cls: married = 0 $ 
 

Test the hypothesis that the three coefficients in demogrfc all equal zero.  What do you 
find?  There is a yet easier way to do this: 
 

REGRESS  ; lhs = income ; rhs = one,demogrfc,years; cluster=id ; test : demogrfc$ 
 

We also want to test for the presence of ‘time’ effects in the regression model.  There are several 
ways to do this:  (Easiest)  There is a built in function.  Recall that years is the set of dummy 
variables, collected in a namelist.  We can do the following Wald test using our robust covariance 
matrix: 
 
 REGRESS  ; lhs = loginc ; rhs = one,demogrfc,years ; test: years $ 
 
(More transparent)  We can use matrix algebra.  The REGRESS command provides the 
coefficients (matrix B) and covariance matrix (VARB) for us to use in matrix algebra and other 
commands.  For example, in the regression command, the years variables are the 5th to 10th 
variables.  We can use 
 

MATRIX  ; by=b(5:10) ; vy=varb(5:10,5:10) $ 
MATRIX  ; list ; wld = by'<vy>by $ 

 
3.  Partial Effects.   
 

Consider the nonlinear regression model 
 
 Loginc = β1 +  β2Age + β3Educ + β4Female +  

          β5Age*Educ + β6Age2 + β7Age*Female + β8Educ*Female + ε 
 
What are the partial effects of Age and Educ on Loginc?  Differentiating, we get 
 
 ∂Loginc/∂Age = β2 + β5Educ + 2β6Age + β7Female 
 
 ∂Loginc/∂Educ = β3 + β5Age + β8Female. 
 
What is the male – female income differential? 
 
 (Loginc|Female=1) – (Loginc|Female=0) = β4 + β7Age + β8Educ. 
 
How can you compute these and obtain standard errors for them?  There are built in functions.  
First fit the regression with the interaction terms made explicit. 
 
 



 REGRESS  ; Lhs = loginc ; rhs = one,age, educ, female, age*educ, 
     age^2, age*female, educ*female $ 
 
(a) Effect of age computed for education fixed at 12,14,16,18,20, and averaged over sample 
observations. 
 
 PARTIAL  ; effects: age | educ = 12,14,16,18,20 $ 
 
(b) Effect of education computed for ages of 25, 28, 31, …, 64.  Plot of the values with 
confidence intervals. 
 
 PARTIAL  ; effects: educ & age = 25(3)64 ; plot(ci) $ 
 
(c) Effect for female, for three levels of education, age 25 to 64 at each education level.  Plots of 
three sets of values.  We compute the partial effects and the predictions of the regression. 
 

PARTIAL  ; effects:      female | educ = 12,16,20 & age = 25(5)64 ; plot $ 
      SIMULATE ; scenario:  female | educ = 12,16,20 & age = 25(5)64 ; plot $ 
 
(d) When the model contains a set of categories, such as levels of education, say coded with 4 
dummy variables: LTHS (less than high school), HS (high school), COLL (college) or GRAD 
(postgraduate), the partial effects for each dummy variable compute the effect relative to the base 
category. It might be interesting to compute the other partial effects.  For example, suppose that 
LTHS is the base.  We might compute the impact on income of achieving some college 
education.  The following shows how to compute such a ‘transition  matrix.’  In the regression, 
the educ variable is replaced by the group of variables, in the primary effect and in the 
interactions. 
 
   ? Examine threshold effects of education 

CREATE   ; LTHS     = YrsEduc < 12  
               ; HS          = YrsEduc = 12 
               ; COLL     = (yrseduc > 12)*(yrseduc<=16) 
               ; GRAD    = yrseduc > 16 $ 

       NAMELIST ; degree   = LTHS,HS,COLL,GRAD $ 
REGRESS  ; lhs = income      
? Note dot after degree. Drops last category when it is expanded. 
                ; rhs = one,age,degree., female, degree.*age,    
                                         age^2, age*female,   degree.*female $     
Partials  ; effects: degree ; transition $ 

 



----------------------------------------------------------------------------- 
Ordinary     least squares regression ............ 
LHS=INCOME   Mean                 =         .35214 
             Standard deviation   =         .17686 
----------   No. of observations  =          27326  DegFreedom   Mean square 
Regression   Sum of Squares       =        86.6414          13       6.66473 
Residual     Sum of Squares       =        768.040       27312        .02812 
Total        Sum of Squares       =        854.682       27325        .03128 
----------   Standard error of e  =         .16769  Root MSE          .16765 
Fit          R-squared            =         .10137  R-bar squared     .10095 
Model test   F[ 13, 27312]        =      237.00187  Prob F > F*       .00000 
--------+-------------------------------------------------------------------- 
        |                  Standard            Prob.      95% Confidence 
  INCOME|  Coefficient       Error       z    |z|>Z*         Interval 
--------+-------------------------------------------------------------------- 
Constant|    -.23222***      .02362    -9.83  .0000     -.27851   -.18593 
     AGE|     .02883***      .00086    33.44  .0000      .02714    .03052 
    LTHS|     .08552***      .01835     4.66  .0000      .04956    .12148 
      HS|     .10676***      .02444     4.37  .0000      .05885    .15466 
    COLL|     .02968         .02126     1.40  .1627     -.01198    .07135 
  FEMALE|     .01132         .01130     1.00  .3166     -.01083    .03346 
LTHS*AGE|    -.00562***      .00042   -13.30  .0000     -.00645   -.00479 
  HS*AGE|    -.00458***      .00056    -8.19  .0000     -.00568   -.00349 
COLL*AGE|    -.00233***      .00050    -4.67  .0000     -.00330   -.00135 
 AGE^2.0|    -.00026***   .8780D-05   -29.80  .0000     -.00028   -.00024 
        |Interaction AGE*FEMALE 
Intrct05|    -.00089***      .00018    -4.84  .0000     -.00126   -.00053 
        |Interaction LTHS*FEMALE 
Intrct06|     .02469***      .00878     2.81  .0049      .00748    .04190 
        |Interaction HS*FEMALE 
Intrct07|     .02505**       .01177     2.13  .0334      .00197    .04812 
        |Interaction COLL*FEMALE 
Intrct08|     .00910         .01089      .84  .4032     -.01224    .03044 
--------+-------------------------------------------------------------------- 
Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx. 
Note: ***, **, * ==>  Significance at 1%, 5%, 10% level. 
----------------------------------------------------------------------------- 
--------------------------------------------------------------------- 
Partial Effects  Analysis for Linear Regression Function 
--------------------------------------------------------------------- 
Effects of switches between categories in DEGREE   (dummy variables) 
Results are computed by average over sample observations 
LTHS    = .7731   HS      = .0632   COLL    = .0950   GRAD    = .0687 
--------------------------------------------------------------------- 
df/dDEGREE         Partial    Standard 
From --> To        Effect      Error     |t|  95% Confidence Interval 
--------------------------------------------------------------------- 
LTHS     LTHS       .00000     .00000     .00      .00000      .00000 
LTHS     HS         .06668     .00442   15.10      .05802      .07533 
LTHS     COLL       .08023     .00386   20.81      .07268      .08779 
LTHS     GRAD       .14743     .00444   33.23      .13873      .15613 
LTHS     (Other)    .09679     .00261   37.09      .09167      .10190 
HS       LTHS      -.06668     .00442   15.10     -.07533     -.05802 
HS       HS         .00000     .00000     .00      .00000      .00000 
HS       COLL       .01356     .00563    2.41      .00252      .02459 
HS       GRAD       .08075     .00604   13.38      .06892      .09258 
HS       (Other)   -.04773     .00439   10.86     -.05635     -.03912 
COLL     LTHS      -.08023     .00386   20.81     -.08779     -.07268 
COLL     HS        -.01356     .00563    2.41     -.02459     -.00252 
COLL     COLL       .00000     .00000     .00      .00000      .00000 
COLL     GRAD       .06719     .00564   11.90      .05613      .07826 
COLL     (Other)   -.06439     .00383   16.79     -.07191     -.05688 
GRAD     LTHS      -.14743     .00444   33.23     -.15613     -.13873 
GRAD     HS        -.08075     .00604   13.38     -.09258     -.06892 
GRAD     COLL      -.06719     .00564   11.90     -.07826     -.05613 
GRAD     GRAD       .00000     .00000     .00      .00000      .00000 
GRAD     (Other)   -.13471     .00441   30.52     -.14337     -.12606 
--------------------------------------------------------------------- 
* (Other) = conditional share weighted average of all switch effects 
--------------------------------------------------------------------- 
 



----------------------------------------------------------------- 
Partial Effects Transition Matrix for DEGREE 
There are  4 categories (sample %) 
  01=LTHS     (77.31) 02=HS       ( 6.32) 03=COLL     ( 9.50) 
  04=GRAD     ( 6.87) 
Entry = effect on outcome of switch from row category to column 
Switch to Other is unspecified switch out of row category 
--------+-------------------------------------------------------- 
        |     01     02     03     04  Other 
--------+-------------------------------------------------------- 
    LTHS|   .000   .067   .080   .147   .097 
      HS|  -.067   .000   .014   .081  -.048 
    COLL|  -.080  -.014   .000   .067  -.064 
    GRAD|  -.147  -.081  -.067   .000  -.135 
--------+-------------------------------------------------------- 

 
 
4.  Panel Data 
 
 We will examine panel data later in the course.  We’ll take a brief look at some of the 
operations here.  The GSOEP data are a panel. There is probably correlation across observations, 
which may mean that although least squares is consistent, the standard errors need correcting.  Do 
we see ‘cluster effects’ in the standard errors? We consider two approaches.  In the first, we 
correct the OLS standard errors for the correlation across observations in a group.  In the second, 
we use the fixed and random effects approaches to fit the model. 
 
 SAMPLE ;all $ 
 REGRESS ; lhs = loginc ; rhs = one,demogrfc,years ; Table = OLS $ 
 REGRESS  ; lhs = loginc ; rhs = one,demogrfc,years ; cluster=id ; Table = Cluster $ 
 MAKETABLE ; OLS,Cluster ; Standard errors$ 
 REGRESS  ; lhs = loginc ; rhs = one,demogrfc,years ; panel $ 
 
Note, it is only necessary to add ;Panel to the command to request the estimators.  At the very 
beginning of this exercise, we used SETPANEL to declare the form of the panel.  It is also possible 
to request just fixed effects with ;Fixed or random effecs with ;Random.  Notice the treatment of a 
time invariant variable in the fixed effects model. 
 
  
 


