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I.  Bivariate and Multivariate Probit 
 
This exercise uses the data file panelprobit.lpj 
 
Some preliminaries after the file is loaded. 
 

Setpanel  ; Group = firm ; pds = ti $ 
Namelist  ; x84 = one,imum84,fdium84,prod84$ 
Namelist  ; x85 = one,imum85,fdium85,prod85$ 
Namelist  ; x86 = one,imum86,fdium86,prod86$ 

 
1.  The Bivariate Probit Model.   
 

In this exercise, we will first fit a bivariate probit model.  The model is 
 
  y1* = x1′β1 + ε1 
  y2* = x2′β2 + ε2 
  ε1,ε2 ~ N2[(0,0),(1,1,ρ)]. 
 
The model is fit by maximum likelihood.  You can use the following commands to treat the 1984 
and 1985 observations as a bivariate probit outcome:   (Later, we will apply the model to two 
distinct decisions.) 
 

Bivariate ; if[t = 1] ; Lhs = ip84,ip85 ; Rh1 = x84; Rh2 = x85 $ 
Calc      ; lu = logl $ 

 
Notice that if β1 = β2, that this becomes a two period random effects model.  You can constrain 
the slope parameters to be equal by using 
 

Bivariate ; if[t = 1] ; Lhs = ip84,ip85 
; Rh1 = x84 
; Rh2 = x85  

           ; Rst = b1,b2,b3,b4,b1,b2,b3,b4,corr$ 
Calc       ; lr = logl $ 
Calc       ; list ; lrstat = 2*(lu - lr) $ 

 

Do the results change substantially when the restriction is imposed?  Does the estimate of ρ 
change? The hypothesis of interest is H0: β1 = β2.  You can test this hypothesis using these models 
with a likelihood ratio test.  Compute twice the difference in the log likelihoods.  What are the 
degrees of freedom for the test?  What is the 95% critical value from the chi squared table?   
 



(It is also possible to reproduce the bivariate probit model with 
 

Probit     ; if[t <= 2] ; lhs=ip;rhs=one,imum,fdium,prod ; pds=2;random ; halton $ 
 
2.  Recursion 
 
Many applications involve simultaneous equations sorts of binary choice models.  The bivariate 
probit model is analogous to the seemingly unrelated regressions, save, of course for the discrete 
dependent variables. 
 
The recursive bivariate probit model has made some recent appearances in the literature.  A two 
period panel version might appear as follows:  
 
 yi1  =  1[β1′xi1 + εi1 > 0], 
 yi2  =  1[β2′xi2 + γ2yi1 +  εi1 > 0] 
 
One might model insurance take up with such a model.  Here, we model innovation in 1985 as a 
function of 1985 covariates and  1984 innovation.  An interesting feature of the recursive 
bivariate probit model is that variables in the second may have two effects on yi2.  A direct effect 
in xi2 and an indirect effect if they appear in the yi1 equation and effect yi1 which then affects yi2.  
Here is an example. 
 

Bivariate  ;  if[t=1]   ; lhs=ip84,ip85 
                      ;  rh1=x84,invgood,consgood 
                       ;  rh2=x85,invgood,consgood,ip84 
                      ;  Marginal effects $ 
Partials   ;  if[t = 1] ; effects: invgood / consgood ; summary $ 

 
3. Identification and Incoherence 
 
 There is a temptation sometimes to specify a fully simultaneous model, as in 
 
 yi1  =  1[β1′xi1 + γ1yi2 + εi1 > 0], 
 yi2  =  1[β2′xi2 + γ2yi1 +  εi1 > 0] 
 
This model is not identified and is inestimable.  In the common language used for discrete choice 
modeling, the model is ‘incoherent.’  That does not mean that one cannot try to fit the model.  
Unlike linear models, it is sometimes possible to obtain numbers for unidentified nonlinear 
models.  For this particular one, NLOGIT will refuse to try – the first command produces an error 
message.  But, suppose we try to bypass this control, and program and estimate our own 
unidentified model. 
 

? This produces an error 
Bivariate  ; if[t=1]   ; lhs=ip84,ip85;rh1=x84,ip85;rh2=x85,ip84$ 
? Try to program around the built in control 
? Get starting values 
Probit     ; if[t=1]   ; lhs = ip84 ; rhs=x84,ip85 $ 
Matrix     ; {c84=b(5) } ; b84=b(1:4) $ 
Probit     ; if[t=1]   ; lhs = ip85 ; rhs=x85,ip84 $ 
Matrix     ; {c85=b(5) } ; b85=b(1:4)$ 



? Try our own MLE. We use a familiar device to constrain rho to (-1,+1) 
Maximize   ; if[t=1] ; maxit=10  ; start = b84,c84,b85,c85,0 
            ; labels= a1,a2,a3,a4,a5,c1,c2,c3,c4,c5,tt 
     ; fcn   = bx1=(2*ip84-1)*(a1'x84+a5*ip85)  | 

             bx2=(2*ip85-1)*(c1'x85+c5*ip84)  | 
 r = (exp(tt)-1) / (exp(tt)+1)          | 
             r12=(2*ip84-1)*(2*ip85-1)*r      | 
             log(bvn(bx1,bx2,r12)) $ 

 
This does not work very well. 
 
 ? What is the sign of the correlation of these two variables? 
 CALC  ; List ; r12  =  (exp(tt)-1)/(exp(tt)+1) $ 

Crosstab   ; if[t=1] ; lhs = ip84 ; rhs = ip85 $ 
Bivariate  ; if[t=1] ; lhs=ip84,ip85 ; rh1=one;rh2=one $ 
Bivariate  ; if[t=1]; lhs=ip84,ip85;rh1=x84;rh2=x85$ 

 
The estimator appears to try to estimate something.  But, the results are nonsense.  
 
4.  Sample Selection 
 
 A sample selection model for binary outcomes would work the same as in the linear case.  
However, the model is fit by maximum likelihood, and there is no inverse Mills ratio (‘lambda’) 
involved in the estimation.  Here, we select on a particular industry, investment goods, and fit a 
model for innovation. 
 

Bivariate  ; if[t=1] ;lhs = ip84,invgood 
        ; rh1 = one,imum,fdium,sp,logsales 
        ; rh2 = one,prod,im  
        ; selection $ 

 
One occasionally reads that the sample selection model requires for identification that there be at 
least one variable in the selection (probit) equation that is not in the main equation.  Strictly, this 
is not true for the bivariate probit model – in fact, it is not even true for the linear model.  The 
following illustrates.  In fact, the estimator is improved when the model is ‘identified’ in this 
fashion, but statistically, it is not necessary. 
 

Bivariate  ; if[t=1] ;lhs = ip84,invgood 
        ; rh1 = one,imum,fdium,sp,logsales 
        ; rh2 = one,prod,im  ? With exclusion restrictions 
        ; selection $ 
Bivariate  ; if[t=1] ;lhs = ip84,invgood 
        ; rh1 = one,prod,imum,fdium,sp,logsales,im  ? No exclusion restrictions 
        ; rh2 = one,prod,imum,fdium,sp,logsales,im 
        ; selection $ 

 
5.  Multivariate Probit Model   
 
 A multivariate probit model with more than two equations must be estimated by 
simulation.  Currently, this is done using the GHK simulator.  We can fit the “panel probit model” 
as a multivariate probit model by extending the model above.  We will use a limited form, with 
three periods.  The following commands can be used.  Note, since this is a very slow estimator, 
we have used only 5 simulation points and limited it to 10 iterations.  How do the results here 
compare to those in part 3?  Is the correlation matrix what you would expect?  Do the coefficients 
vary across periods? 
 



Mprobit   ; If [ _obsno <= 1270 ] 
; lhs = ip84,ip85,ip86 

           ; eq1 = x84  
; eq2 = x85 
; eq3 = x86  

           ; Pts = 5 ; Maxit=10 $ 
  
Note, this is not the usual application of a bivariate or multivariate probit model.  In the more 
common case, one would model two or more distinct binary decisions.  We’ll reconsider that 
possibility when we reexamine the healthcare data. 
 
Part II.  Binary Choice Modeling with Panel Data and Heterogeneity 
 

This assignment will extend the models of binary choice to modeling heterogeneity in 
panel data frameworks.  These exercises will continue to use the German manufacturing 
innovation data, panelprobit.lpj 
 
1. Random Parameters Models   
 
In the original study that used these data, the coefficients on IMUM and FDIUM were of 
particular interest.  In his followup studies, Greene treated these two parameters as randomly 
distributed across firms.  Here, you can partially replicate that study by reestimating the random 
parameters (RP) model.  Several models are fit:  
 
(1)  We start with the basic fixed parameters probit model.  
 
(2) The second probit model is a random effects (random constant term) model fit using 
quadrature (the Butler and Moffitt method).  We then fit several RP models.  

(a) This is the equivalent of the random effects model, formally fit as an RP model.  
(b) This is the relatively common form of the RP model in which the two coefficients of 

interest are treated as random normally distributed and independent. 
(c)  This is the same as (b) except the two parameters are allowed to be freely correlated;   
(d)  This is a much more general form in which the distribution of the random parameters 

can vary systematically with covariates.  Here, the two random parameters are 
assumed to have a mean that varies by industry.  In this case, we specify  

      βk = β0k + δk1RawMtl + βk2InvGood  + σkvk.   
 
We could also specify that the two parameters remain correlated and/or heteroscedastic. That is 
left for an exercise.   
 
One of the interesting computations one can do is examine the distribution of the parameters 
across the sample observations (firms).  To do this, we compute for each firm, the conditional 
expection of the parameter, given the information about the firm in the sample. 
 
(e) The final PROBIT command contains ; PARAMETERS.  This creates a matrix BETA_I that 
contains the firm specific conditional means of the random parameters.  You can double click this 
matrix to see the values.  The remaining commands manipulate this matrix to explore the 
distribution of parameter values across firms.  The kernel density estimator in the last command 
does this exercise for the coefficient on IMUM.  It also plots a normal distribution with the same 
mean and variance.  By changing BIMUM to BFDIUM in the commands, you can repeat the 
exercise for the coefficient on FDIUM. 



 
Namelist ; x=one,logsales,sp,imum,fdium,prod,rawmtl,invgood$ 
Probit   ; lhs = ip ; rhs = x $ 
Probit   ; lhs=ip ; rhs = x ; panel ; random ; hpt=8$ 
? (a) Random constant model 
Probit   ; Lhs = ip ; rhs=x ; Panel ; RPM ; fcn=one(n) ; Halton ; pts=25 ; Maxit = 10 $ 
? (b)  Uncorrelated random parameters 
Probit   ; Lhs = Ip ; Rhs = x ; Panel ; RPM ; Maxit = 10  

; Halton ; Fcn = imum(n),fdium(n) ; Pts = 25 $ 
? (c)  Correlated random parameters 
Probit   ; Lhs = Ip ; Rhs = X ; Panel ; RPM ; Correlated 
         ; Halton ; Fcn = imum(n),fdium(n) ; Pts = 25 ; Maxit = 10 $ 
? (d) Random parameters with covariates in the means of the random parameters. 
Namelist  ; xit = one,logsales,sp,imum,fdium,prod $ 
Namelist  ; Sector = rawmtl,invgood$ 
Probit   ; Lhs = Ip ; Rhs = xit ; Panel ; RPM = Sector  
         ; Correlated ; Fcn = imum(n),fdium(n) ; Pts = 25 ; Maxit=10$ 
? (e) Examine conditional means of random parameters. 
Probit   ; Lhs = Ip ; Rhs = X ; Panel ; RPM ; Maxit=10 
         ; Fcn = imum(n),fdium(n) ; Halton ; Pts = 25 ; Parameters $ 
Kernel   ; rhs = beta_i[1,B_IMUM]  ; Grid 

; Title=Population Distribution of Probit Coefficient on IMUM $ 
Kernel   ; rhs = beta_i[2,B_FDIUM] ; Grid 

;Title=Population Distribution of Probit Coefficient on FDIUM$ 
 
7.  Latent Class Model.   
 
In this exercise, we fit a latent class LOGIT model.  This is an alternative method of building 
heterogeneity into the panel data model.  The procedure looks for an appropriate specification by 
computing the MLE, then assembling the AIC and reporting the number of classes and the AIC.  
The optimal model has 6 classes.  The model with 7 classes is clearly overspecified.  An 
interesting computation from a latent class model is to derive the posterior class probabilities for 
each individual.  With those in hand, we compute a prediction for the class for each person.  The 
last Logit command displays the predictions from a 2 class model. 
 

Namelist  ; xit    = one,logsales,sp,imum,fdium,prod $ 
Sample    ; All $ 
? Two class latent class logit model 
Logit      ; Lhs = IP ; Rhs = xit ; LCM ; pts = 2 ; panel  ; Parameters $ 
? Constraint across classes 
Logit      ; Lhs = IP ; Rhs = xit ; LCM ; pts = 2 ; Panel  
           ; rst = b1,b2,b3,a1,a2,b4, c1,c2,c3,a1,a2,c4,p1,p2 $ 
? Specification Search Using AIC 
Proc = LCM $ 
Logit    ; Lhs = IP ; Rhs = Xit ; LCM ; Pts = NumClass ; panel  ; quietly $ 
Calc     ; List ; Numclass ; ModelAIC $ 
EndProc$ 
Exec   ; Proc = LCM ; Numclass = 2,7 $ 
? An Overspecified model - too many classes 
Logit    ; Lhs = IP ; Rhs = Xit ; LCM ; Pts = 7 ; panel  $ 
? Listing of Posterior Class Assignments 
Logit    ; if[_obsno <= 500]  
         ; Lhs = IP ; Rhs = Xit ; LCM = InvGood,Consgood,Food  

; Pts = 2 ; panel  ; List $ 


